
HAL Id: hal-03273522
https://hal.science/hal-03273522v1

Preprint submitted on 29 Jun 2021 (v1), last revised 3 Jan 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coupled topology optimization of structure and
connections for bolted mechanical systems

Lalaina Rakotondrainibe, Jeet Desai, Patrick Orval, Grégoire Allaire

To cite this version:
Lalaina Rakotondrainibe, Jeet Desai, Patrick Orval, Grégoire Allaire. Coupled topology optimization
of structure and connections for bolted mechanical systems. 2021. �hal-03273522v1�

https://hal.science/hal-03273522v1
https://hal.archives-ouvertes.fr


Coupled topology optimization of structure and connections for
bolted mechanical systems

L. Rakotondrainibe1,2 J. Desai3 P. Orval1 G. Allaire2

1Technocentre RENAULT, 1 Avenue du Golf, 78 084 Guyancourt cedex, France,
rakotondrainibe.anja@gmail.com, patrick.orval@renault.com

2 Centre de Mathématiques Appliquées, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France,
gregoire.allaire@polytechnique.fr

3 IRT SystemX, 8, Avenue de la Vauve, 91127 Palaiseau, France,
jeet.desai@irt-systemx.fr

June 29, 2021

Abstract

This work introduces a new coupled topology optimization approach for a structural assembly.
Considering several parts connected by bolts, the shape and topology of potentially each part, as
well as the position and number of bolts are simultaneously optimized. The main ingredients of
our optimization approach are the level-set method for structural optimization, a new notion of
topological derivative of an idealized model of bolt in order to decide where it is advantageous to
add a new bolt, coupled with a parametric gradient-based algorithm for its position optimization.
Both idealized bolt and its topological derivative handle prestressed state complexity. Several 3d
numerical test cases are performed to demonstrate the efficiency of the proposed strategy for
mass minimization, considering Von Mises and fatigue constraints for the bolts and compliance
constraint for the structure. In particular, a simplified but industrially representative example of
an accessories bracket for car engines demonstrates significant benefits. Optimizing both the
structure and its connections reduces the mass by 24% compared to classical "structure-only"
optimization.

Keywords: Topology optimization, Assembled system, Bolt, Topological derivative, Level-set
method
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1 Introduction
Design of mechanical parts in automotive industry now benefits from topology optimization, mostly
in a linear mechanics context. Latest improvements in topology optimization result in shapes that
are easier to interpret. Moreover, significant efforts have been made to reduce the computational
burden and to incorporate non-linear mechanics. Yet the scope of existing research mainly focuses on
the optimization of a single part. Important industrial applications involve modeling of mechanical
connections between two or more disjointed parts. Incorporating these connections as design
variables in the topology optimization process should greatly benefit to weight reduction.

Indeed, former works using classical topology optimization techniques have proved their efficiency.
However, they are limited to springs and supports (elastic or rigid), whereas connections involved in
solid parts assemblies are mostly bolts or screws. The level-set method is employed in [31, 45] to
optimize both structure and supports. In [7, 50], authors use a density approach, such as SIMP, to
find the optimal supports configuration. Another example of supports modeled by elastic springs is
investigated in [4]. The optimal locations and number of springs that support a vibrating cantilever
beam are optimized to minimize the shear force applied to the beam. In [40], support locations
are optimized with a gradient-based method to solve a frequency optimization problem. In [43],
connections are successively modeled by elastic then by rigid supports in order to maximize the
fundamental frequency of a beam or plate structure through the supports location optimization.
Classical shape optimization techniques, supplemented by non-overlapping constraints between
parts, provide satisfactory results for the optimization of supports in [51].

Technological implementation of tightening process involves complexity in terms of mechanical
behavior, not only for bolts as individual components (their own resistance) but also for the entire
system (mechanical response considering prestressed state). In [18], spot-welds and adhesive bonds
are modeled by springs scaled by a penalization parameter. A multi-point constraints (MPC)
based method is applied in [48, 49] to define rivets or bolts connections in the design of multi-
component systems. In [17], bolts are modeled by bar elements connecting two circular surfaces
embodying fastener holes to minimize the structure compliance under fatigue failure constraints
with Sines criterion [35]. An optimal layout of fasteners is determined in [26] with a fatigue design.
Besides, evolutionary and genetic algorithms are proposed in [21, 41, 42] to optimize structure and
connections.

More synthetically, recent works allow to express limitations of available methods for connections
pattern optimization: SIMP topology optimization is efficient but fails to deal with non-linearity
and still requires human ingredients to achieve discretized patterns for connections, combinatorial
analysis of parametrized models in conjunction with metamodels can handle non-linearity but may
miss the true optimal pattern for connections when cumulated computational time is bounded
[33, 46]. This research work in topology optimization takes on this double challenge: to consider
the mechanical behavior complexity of bolted systems, and to solve what looks like a combinatorial
problem with regards to connections pattern. Furthermore, as topology relies on identification and
adjustment to load paths, a high precision model for the behavior of a bolt (see e.g. [6, 24, 47, 52])
would be computationally expensive and useless for the optimization of large assemblies. It is
worth simplifying the model of bolt connection in some cases (computational limitations, complex
mechanical behavior) [5, 13] and even considering analytical models [9, 14].

This paper investigates a coupled optimization of mechanical parts and their bolted connections
and is organized as follows. In Section 2, we define a model of assembly using an idealized long bolt
and a sliding contact formulation. The prestress induced by the tightening process is established with
mechanically and mathematically rigorous justifications. Mechanical design constraints dependent
on bolt strength and resistance are derived for optimization needs. Section 3 presents the methods
used to optimize concurrently the structure, and the location and number of bolts. The structure is
optimized using the level-set method combined with the Hadamard’s boundary variation method
[3, 44]. Bolts location is optimized using a parametric gradient-based algorithm. Bolts number is
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optimized using the concept of topological derivative [8, 38] to add an idealized bolt at the optimal
location. We use the notion developed in [32] to add a supplementary bolt in the assembly. Finally,
Section 4 numerically illustrates the resulting coupled optimization, applied first to an academic
test case, and then to a simplified, but representative, industrial test case.

2 Mechanical framework for a bolted assembly

2.1 Idealized model of a bolt

2.1.1 Motivations

A representative mechanical behavior between two bolted parts demands a model of bolt connection
to include its whole technical implementation. However, fine modeling of the bolt by the Finite
Element (FE) method is not necessary if one is not interested in local results, which is the case for
topology optimization of solid parts. In the case of long bolts, it may be advantageous to consider
an analytical model which is established in this section. Physical representativeness for load paths
is kept at first order using this idealized model. Moreover, this analytical model is computationally
cheap, easy to plug-in in an optimization loop and amenable to the notion of topological derivative.

2.1.2 Analytic constitutive behavior

We propose a simple representation in which the bolt is represented by two spheres symbolizing its
head and its threads, respectively denoted by ωA and ωB (see Fig. 1). These spheres allow efforts
transmission and displacements continuity between the bolt extremities and the jointed parts. Their
centers are separated by a distance `, in the direction of a unit vector e oriented from ωA to ωB,
and have a radius rb. The length ` stands for the effective implantation length of the bolt in the
assembly and the radius rb corresponds to the effective radius of the bolt [14, 15].

L `

eωA

ωB

Head

Root

Threads

Bolt Idealized model

∅ = 2rb

Figure 1: Long bolt and the idealized model

Remark 1. According to [14, 15], the effective lenght ` is approximated from the implantation
length L by ` = L+ 1.6rb.

The idealized model is associated to the rigidity matrix, Kb, obeying to the Euler-Bernoulli
condition for long beam which may read ` ≥ 10rb. The study is carried out in the framework of
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small displacements. Thus, the rigidity matrix reads at first order

Kb = Ebπr
2
b

`
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0 3
(
rb
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(
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2
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2
r2
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b 0

0 −3
2
r2
b

`
0 0 0 r2

b



, (1)

where Eb is the Young modulus and ν is Poisson’s ratio of the bolt. The subscript "b" indicates that
the matrix is written in the local orthonormal cylindrical coordinates system of the bolt where unit
vector e defines the first axis. The expression of the matrix Kb (1) is obtained with an expansion at
first order considering Euler-Bernoulli condition for long beam. Both spheres are represented in the
FE model and the action of the root is modeled as a remote interaction between them, using an
analytical 6 degrees of freedom (DOFs) linear-spring law

F b = KbLb, (2)

with F b the generalized forces and Lb the generalized lengthenings of the bolt in the local coordinate
system. The first three components of Lb stand for relative translations between ωA and ωB and
the last three for relative rotations.
The rigidity matrix Kb is decomposed into a traction/torsion matrix and a shear/flexion matrix,
respectively denoted Kb and K̃b. They read

Kb = Ebπr
2
b

`



1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 r2
b

4(1 + ν) 0 0

0 0 0 0 0 0
0 0 0 0 0 0


, (3)

K̃b = Ebπr
2
b

`



0 0 0 0 0 0

0 3
(
rb
`
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2
r2
b

`

0 0 3
(
rb
`

)2
0 3

2
r2
b

`
0

0 0 0 0 0 0

0 0 3
2
r2
b

`
0 r2

b 0

0 −3
2
r2
b

`
0 0 0 r2

b


. (4)

We remove the subscript "b" when the matrices are written in the global Cartesian coordinates.

2.2 Generic assembly

Let us consider two disjointed parts ΩA and ΩB connected by one bolt (see Fig. 2). Let Ω be the
union of ΩA and ΩB . This union is assumed to be a smooth bounded domain of R3. The boundary
of this domain is composed of three disjointed parts, ∂Ω = Γ ∪ ΓN ∪ ΓD. Traction-free, Neumann
and Dirichlet boundary conditions are respectively imposed on Γ, ΓN and ΓD. The study is carried
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out in the framework of small deformations. For a displacement field u, the strain tensor is defined
by ε(u) = 1

2(∇u+∇Tu). Each part ΩA (resp. ΩB) is filled with a linear isotropic elastic material,
with Lamé coefficients µA and λA (resp. µB and λB). The stress tensor is then given by the Hooke’s
law

Cε(u) =
{

2µAε(u) + λAtr(ε(u))I in ΩA

2µBε(u) + λBtr(ε(u))I in ΩB
.

Several interface models on S can be considered. For example, a perfect interface is used in [32]. In
this paper, we consider the contact model described in Section 2.3.

ΩA

ΩB

ωA

ωB

S

ΓD

ΓN

Figure 2: Assembled system with one bolt

2.3 Contact model

We now describe the contact model used in this work, which is frictionless. As shown in Fig. 2, let
ΩA and ΩB be two solids in contact at the interface S. The interface S is also denoted S+ when it is
seen as a subset of the boundary of ΩA and S− when it is a subset of the boundary of ΩB. Let n+

and n− be the outward normal to S+ and S− respectively. The value of u on S+ and S− shall be
denoted by u+ and u− respectively. Let the jump in displacement be [u] = u− −u+. For the solids
ΩA and ΩB, the Signorini contact boundary conditions are formulated assuming

• Absence of penetration:
[u] · n− ≤ 0 (5)

• Contact reaction force being compressive only:

Cε(u|S−)n− · n− = Cε(u|S+)n+ · n+ ≤ 0 (6)

• Complementary relation between contact and contact-force:

[u] · n−(Cε(u|S−)n− · n−) = 0. (7)

The complementary relation implies that either there is no contact [u] · n− < 0 and a zero contact
force Cε(u|S−)n− · n− = 0, or there is contact [u] · n− = 0 and the contact force is non-zero. These
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contact boundary conditions (5)-(7) ought to be satisfied with the momentum balance equation
div(Cε(u)) = 0 in ΩA and in ΩB

Cε(u) · n = g on ΓN
Cε(u) · n = 0 on Γ

u = 0 on ΓD,

(8)

where n denotes the outward normal to ΩA and ΩB, and g denotes an external surface load.
We introduce the space of displacements u as

V = {u ∈ (H1(ΩA) ∩H1(ΩB))3 : u = 0 on ΓD}

and the set K of displacements satisfying the non penetration condition on S as

K = {u ∈ V : [u] · n− ≤ 0, on S}.

It is easily seen that K is a convex subset of V . We introduce a bilinear form a : V × V 7→ R

a(u,v) =
∫
Ω

Cε(u): ε(v) dV. (9)

Only if we assume that the dirichlet boundary ΓD is present on both the boundaries ∂ΩA and
∂ΩB, we can show that the bilinear form a(·, ·) is coercive in V . We then introduce a linear form
l : V ∗ 7→ R

l(u) =
∫

ΓN

g · u dS, (10)

where g ∈ (L2(ΓN ))3 is the external force. To determine the weak form of equations (8) with its
boundary conditions, consider a test function v ∈ K, multiply (8) by v − u and integrate by parts
over ΩA and ΩB, resulting in

(11)

∫
Ω

Cε(u) : ε(v − u) dV

=
∫

S+

Cε(u+) · n+(v+ − u+) dS +
∫

S−

Cε(u−) · n−(v+ − u−) dS +
∫

ΓN

g · (v − u) dS.

Then, injecting the contact boundary conditions (5)-(7), one ends up with a weak form that is an
inequality. Using the bilinear form a(·, ·) and linear form l(·) defined in (9) and (10), this inequality
reads: find u ∈ K such that

a(u,v − u) ≥ l(v − u) ∀v ∈ K. (12)

The variational inequality (12) admits a unique solution u ∈ K [20].

2.3.1 Regularization and penalization

In order to determine the shape derivative for the contact problem (12), it ought to be differentiated
with respect to u. Since there is a constraint on u ∈ K, where K is a convex set, the notion of
classical differentiation is lost and one needs to resort to the notion of conical derivative [23]. This
has been performed in the context of the static contact problem with and without friction in [37].
The conical derivative so obtained is hard to implement numerically.

In order to simplify the differentiation and numerical implementation of the derivative, we
replace the constrained problem (12), where the solution and the test function must belong to the
convex set K, by a penalized version, where the constraint u ∈ K is penalized. The penalization
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method in the context of contact mechanics has been elaborated in [11]. The idea of the penalization
method is to search for a solution in V by penalizing the constraint (5), thereby forcing the solution
to belong to K in the limit of a vanishing penalization parameter. The penalization of the contact
boundary condition converts the inequality (12) into an equality. We introduce a penalization
parameter 0 < ε� 1 and define a function jε : V 7→ R

jε(u) = 1
ε

∫
S

[u]·n∫
0

Mε(t)dt ds, (13)

where Mε(·) is the regularization of the max(·, 0) function given by

Mε(t) = 1
2
(
t+

√
t2 + ε2

)
. (14)

The term jε(u) penalizes the constraint (5). Using the above, the solution to (12) u is then
approximated by uε, defined as the unique minimizer in V of

min
v∈V

(1
2a(v,v)− l(v) + jε(v)

)
, (15)

where jε(·), defined in (13), is convex and thus ensures the existence and uniqueness of the solution.
Since the functional jε(·) is smooth, the minimization (15) is equivalent to Euler-Lagrange optimality
condition, which reads: find uε ∈ V such that, for any v ∈ V ,

a(uε,v)− l(v) + 〈j′ε(uε),v〉 = 0, (16)
where the pairing 〈·, ·〉 denotes the scalar product on L2(Ω)3,

〈u,v〉 =
∫
Ω

u · v dV ∀u,v ∈ L2(Ω)3.

We shall be treating the above contact formulation for the rest of the article.

2.3.2 Adjoint state

We now briefly talk about the shape optimization problem for (16). Given a functional

J(Ω) =
∫
Ω

m(uε(Ω))dV +
∫

ΓN

q(uε(Ω))dS,

where uε(Ω) is the solution to (16), we wish to determine Ω such that
Ω = arg min

Ω∈Uad

J(Ω),

where Uad is the space of admissible shapes. The adjoint state pε for J(Ω) solves the following
equations 

div(Cε(pε)) = m′(uε) in ΩA and in ΩB,

Cε(pε) · n− = −1
ε
M ′ε([uε] · n−)[pε] · n− on S−,

Cε(pε) · n+ = −1
ε
M ′ε([uε] · n−)[pε] · n− on S+,

Cε(pε) · n = −q′(uε) on ΓN ,
Cε(pε) · n = 0 on Γ,

u = 0 on ΓD.

(17)

The derivation of the above adjoint equation has been performed in [22]. The weak form of (17)
reads: find pε ∈ V such that

a(ψ,pε) + 1
ε

∫
S

[ψ] · n−M ′ε([uε] · n−)[pε] · n− dS = −
∫
Ω

m′(uε)ϕ dV −
∫

ΓN

q′(uε)ϕ dS ∀ψ ∈ V.
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2.4 Elasticity problems

This section sets up elasticity problems with an idealized bolt, including the contact model described
in Section 2.3. In the following, we assume that the lengthening of the root is the difference between
the average degrees of freedom in ωA and ωB. Let us introduce the notation WA, for the average
degrees of freedom on ωA of an arbitrary displacement field w

WA =



 
ωA

wdV

1
2

 
ωA

curl(w)dV

 =


1
|ωA|

∫
ωA

wdV

1
2|ωA|

∫
ωA

curl(w)dV

 ,

and likewise for WB in ωB.

The idealized model is described through Euler-Bernoulli theory which relies on the displacement
of the neutral fiber of the bolt. It leads to the rigidification of the extremities of the bolt which is
strictly considered here with rigid body motions in the head and the threads of the idealized bolt.
The space of admissible displacements then corresponds to zero displacement on ΓD and rigid body
motions in ωA and ωB

W =


w ∈ (H1(ΩA) ∩H1(ΩB))3,w = 0 on ΓD,
∀x ∈ ωA w(x) = Ca + Rax,
∀x ∈ ωB w(x) = Cb + Rbx

 , (18)

where (Ca,Cb) ∈ R3 ×R3 are translations and Ra = −RTa and Rb = −RTb are anti-symmetric 3x3
matrices modeling infinitesimal rotations.

Remark 2. In numerical applications of Section 4, rigid body motions are applied by penalization
of material properties.

2.4.1 Step 1 : prestressed state

Correct mechanical modeling for bolted assembly requires to consider a two-step history problem:
firstly, tightening process leading to a prestressed state or "Step 1", then in-service conditions leading
to in-service state or "Step 2". In practice, a bolted joint is carried out by applying a tightening
torque to the head of the bolt. It creates traction and torsion of the bolt root and local compression
of the jointed parts. Forgetting inner tightening torsion in the following, the prestress is obtained by
applying a given external tensile force between both extremities of the root (see Fig. 3), regardless
of axial and torsionnal elongations of the root. Euler-Bernoulli slenderness and elasticity allow this
approximation, exactly as proposed in computational softwares, such as ABAQUS [36] and NX
NASTRAN [1].

Thus, this first step consists in identifying the extremities ωA and ωB in the domain Ω and
having the root behave according to the rigidity matrix K̃ (i.e. only in shear/flexion modes). The
prestress external force of amplitude Q > 0 is remotely applied between each domain ωA and ωB
along the direction e. This elasticity problem, including contact, results in a displacement field uS1
computed over the domain Ω. The subscript "S1" refers to Step 1.
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ΩA

ΩB

ωA

ωB

Qe

−Qe

K̃ S

ΓD

ΓN

g1

Figure 3: Step 1

ΩA

ΩB

ωA

ωB

K

g2

S

ΓD

ΓN

Figure 4: Step 2

Let ES1 be the energy functional

ES1(w) =1
2

∫
Ω\(ωA∪ωB)

Cε(w) : ε(w)dV −
∫
Ω

f1 ·wdV −
∫

ΓN

g1 ·wdS

+ 1
2(WB −WA)T K̃(WB −WA)−Q

 
ωA

w · edV − (−Q)
 
ωB

w · edV

+ 1
ε

∫
S

[w]·n∫
0

Mε(t)dt dS.

(19)

The first term is the elastic strain energy. Rigid body motions in each sphere implies that ωA and
ωB can be excluded from the elastic energy computation. Body and surface holding forces f1 and
g1 are applied to the assembly. The fourth term is the energy of the root subjected to shear and
flexion solicitations. Finally, the prestress force of amplitude Q is applied. The minimum potential
energy principle then states that the displacement field describing the system in the first step is the
unique minimizer uS1 of (19) in W, i.e.,

ES1(uS1) = min
w∈W

ES1(w). (20)

It leads to the following variational problem :

Find uS1 ∈ W s.t. ∀w ∈ W,

∫
Ω\(ωA∪ωB)

Cε(uS1) : ε(w)dV −
∫
Ω

f1 ·wdV −
∫

ΓN

g1 ·wdS

+ (UB
S1 −UA

S1)T K̃(WB −WA) +Q

 
ωB

w · edV −
 
ωA

w · edV

+ 1
ε

∫
S

Mε([uS1] · n) [w] · n dS = 0.

(21)

2.4.2 Step 2 : in-service state

Once the first step is achieved, the second step consists in evaluating the previously stressed assembly
submitted to in-service external loads f2 and g2, as shown in Fig. 4, where holding forces f1 and g1
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have been removed. The root behaves in all 6 degrees of freedom according to its rigidity matrix K.
The displacement field uS1 involves a prestressed state and is imposed as a pre-displacement field
over the domain Ω. In the same manner, now in the second step, the prestress force of amplitude Q
is acting as an internal force. This second elasticity problem results in a displacement field uS2
computed over the domain Ω. The subscript "S2" refers to Step 2.

Let ES2 be the energy functional

ES2(w) =1
2

∫
Ω\(ωA∪ωB)

Cε(w) : ε(w)dV −
∫
Ω

f2 ·wdV −
∫

ΓN

g2 ·wdS +
∫
Ω

f1 ·wdV +
∫

ΓN

g1 ·wdS

+ 1
2(WB −WA)TK(WB −WA)

−
∫

Ω\(ωA∪ωB)

Cε(uS1) : ε(w)dV − (UB
S1 −UA

S1)TK(WB −WA)

+ 1
ε

∫
S

[w]·n∫
0

Mε(t)dt dS.

(22)
The first term is the elastic strain energy. External in-service loads f2 and g2 are applied and the
holding forces f1 and g1 are removed. The root now works according to all degrees of freedom
according to the rigidity matrix K which appears in the sixth term. The pre-displacement field
uS1 acts as external forces on both parts and bolt and the corresponding energy is represented by
seventh and eighth terms of ES2. The minimum potential energy principle then states that the
displacement field describing the system in the Step 2 is the unique minimizer uS2 of (22) in W,
i.e.,

ES2(uS2) = min
w∈W

ES2(w). (23)

It leads to the following variational problem :

Find uS2 ∈ W s.t. ∀w ∈ W,

∫
Ω

Cε(uS2) : ε(w)dV −
∫
Ω

(f2 − f1) ·wdV −
∫

ΓN

(g2 − g1) ·wdS

+ (UB
S2 −UA

S2)TK(WB −WA)−
∫
Ω

Cε(uS1) : ε(w)dV − (UB
S1 −UA

S1)TK(WB −WA)

+ 1
ε

∫
S

Mε([uS2] · n) [w] · n dS = 0.

(24)

Using the variational problem of Step 1 (21), the variational problem (24) is rewritten as

Find uS2 ∈ W s.t. ∀w ∈ W,

∫
Ω

Cε(uS2) : ε(w)dV −
∫
Ω

f2 ·wdV −
∫

ΓN

g2 ·wdS

+ (UB
S2 −UA

S2)TK(WB −WA)− (UB
S1 −UA

S1)TK(WB −WA) +Q

 
ωB

w · edV −
 
ωA

w · edV


+ 1
ε

∫
S

Mε([uS2] · n) [w] · n dS = 0.

(25)
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2.5 Mechanical constraints specific to the bolt

Avoiding malfunction or failure of bolted joints requires further mechanical considerations. This
section provides main technological constraints to be controlled with a meaningful physical rep-
resentation [14, 15, 19]. Briefly stated, inner efforts torsor results from the root deformation and
the tightening traction force Q. It is evaluated through the rigidity matrices and the average
displacement UA

S1 and UB
S2 of the spheres ωA and ωB. Technological constraints formulations

are thus suitable for chain rule derivation for the purpose of topology optimization and for shape
derivatives.

2.5.1 Torsor of inner efforts

The root inner efforts correspond to the torsor of the external efforts applied on the sphere ωB by
the part ΩB evaluated at the center of ωB. It is evaluated in the local coordinate system. Denote
Fn, with 1 ≤ n ≤ 3, the resulting forces and Mn, with 1 ≤ n ≤ 3, the resulting moments. The inner
efforts at the end of the second step, in-service state, read

F 1(uS2)
F 2(uS2)
F 3(uS2)
M1(uS2)
M2(uS2)
M3(uS2)


= Kb(UB

2 −UA
2 )− Kb(UB

1 −UA
1 ) +



Q
0
0
0
0
0


. (26)

Remark 3. Inner efforts at the end of the first step, the prestressed state, can be evaluated by
substituting uS2 with uS1 in (26) and thus read

F 1(uS1)
F 2(uS1)
F 3(uS1)
M1(uS1)
M2(uS1)
M3(uS1)


= K̃b(UB

1 −UA
1 ) +



Q
0
0
0
0
0


. (27)

2.5.2 Elasticity of the root

Connections should be considered with elasticity condition while designing assemblies in most cases.
This is achieved by controlling the Von Mises yield criterion as stated in [15]√

(σt + σf )2 + 3τ2 ≤ 0.9Re, (28)

where σt and σf are respectively the tensile and flexural components of the normal stress, τ is the
shear stress from transversal and torsional forces and Re is the yield stress of the root. The Von
Mises criterion is evaluated from inner efforts using theory of elasticity for long beam [19]. It is
evaluated at points where it may reach its maximal value: the rim (resp. the center) of the root,
where the maximal flexural and torsional components of stress (resp. maximal transversal component
stress) lie. Note that the effective implantation length ` has to be considered to accurately evaluate
worst lever-arm effect.

For the sake of simplicity, the yield criterion is squared.

• At the rim of the root (r = rb)
√

(F 1)2

πr2
b

+

√
(M2 − `F 3)2 + (M3 + `F 2)2

π
4 r

3
b

2

+ 3
(
M1

π
2 r

3
b

)2

≤ (0.9Re)2. (29)
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• At the center of the root (r = 0)(
F 1

πr2
b

)2

+ 3

4
3

√
(F 2)2 + (F 3)2

πr2
b

2

≤ (0.9Re)2. (30)

Remark 4. Given the Euler-Bernoulli condition for long beam, it is very likely that the Von Mises
criterion at the center is smaller than the Von Mises criterion at the rim of the root during the
optimization process.
Remark 5. Criteria (29) and (30) should be verified for each state of the two-steps process, which
requires further research works on the implementation of optimization constraints.

2.5.3 Fatigue of the root

Connections should be considered with high cycle fatigue condition while designing assemblies too.
For an infinite lifetime in service, long bolts exhibit a maximal allowed conservative stress amplitude
given by [15]

σa = 0.855
(150
d

+ 45
)
. (31)

Remark 6. Numerical values in (31) are given for a system of units in MPa and mm.
Root fatigue failure appears at engaged threads level, thus, the effective length ` has to be

considered again to accurately evaluate worst lever-arm effect. The fatigue constraint is then given
by √(∆F 1)2

πr2
b

+

√
(∆M2 − `∆F 3)2 + (∆M3 + `∆F 2)2

π
4 r

3
b

2

≤ (2σa)2, (32)

where ∆ indicates the operating cycle between the two equilibrium states Step 1 and Step 2. For
instance ∆F 1 = F 1(uS2)− F 1(uS1) and likewise for the other inner efforts.

In the sequel, the term "bolt" will always refer to idealized bolt by abuse of language.

3 Optimization methods

3.1 Shape optimization

3.1.1 Level-set method

In this paper, structures are represented with the level-set method as introduced by [28] (see also
the textbooks [27, 34]). It offers a large flexibility in topological changes and the boundaries of the
structure are explicitly defined. Consider a working domain D ⊂ R3 that contains all admissible
shapes. A shape (or structure) is parameterized by a function ψ defined on D such that

ψ(x) = 0 ⇐⇒ x ∈ ∂Ω ∩ D
ψ(x) < 0 ⇐⇒ x ∈ Ω
ψ(x) > 0 ⇐⇒ x ∈ (D\Ω)

. (33)

Thus the boundaries of the structure are defined as the zeros of the level-set function. The boundary
of the structure evolves in time according to the transport Hamilton-Jacobi equation

∂ψ

∂t
+ V |∇ψ| = 0 on [0,∞[×D

ψ(t = 0,x) = ψ0(x)
, (34)

where V (t,x), with t ∈ R+, is the velocity field. Finally, to avoid undefined tensor when the
elasticity problem is solved, the void is replaced by an ersatz material with Hooke’s law C = 10−3C.
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3.1.2 Hadamard’s boundary variation method

We use Hadamard’s boundary variation method to compute the velocity field V of (34). Introduced
by [16], this method describes shape variations. It relies on the notion of differentiation with respect
to the position of a shape Ω [2, 29, 37]. Let Ω ⊂ R3 be a given reference shape. Assume that Ω
is an open, smooth and bounded domain of R3. Let θ ∈W 1,∞(R3,R3) be a displacement field of
small amplitude, where W 1,∞(R3,R3) is the space of Lipschitz vector fields [2, 37]. The purpose of
Hadamard’s boundary variation method is to transport the reference domain Ω into an admissible
shape Ωθ = (Id+θ)(Ω). The vector θ moves slightly all points of Ω from a location x to a deformed
location x+ θ(x) as displayed in Fig. 5.

Ω

θ

Ωθ

Figure 5: Transport of a domain Ω to a domain Ωθ with the Hadamard’s boundary variation method

Definition 1. Let J(Ω) be a function from the set of admissible shapes Uad to R. The shape
function J is said to be shape differentiable if there exists a continuous linear form J ′(Ω) acting on
W 1,∞(R3,R3) such that

J((Id+ θ)(Ω)) = J(Ω) + J ′(Ω)(θ) + o(θ), where lim
θ→0

|o(θ)|
‖θ‖W 1,∞(R3,R3)

= 0. (35)

The function J ′(Ω) is called the shape derivative of the shape functional J at Ω. The next
proposition gives the example of shape derivative of the compliance, which is useful for the sequel.

Proposition 1. Let Ω be a smooth, bounded, open set of R3. Let J be the shape functional, called
the compliance, from Uad to R defined by

J(Ω) =
∫
Ω

Cε(u) : ε(u)dV,

where u solves (8). Then, J is shape differentiable and it holds

J ′(Ω)(θ) = −
∫
Γ

Cε(u) : ε(u)θ · ndS, ∀θ ∈W 1,∞(R3,R3), (36)

where n is the outward normal to Ω.

3.2 Bolt location optimization

In this paper, the bolt has fixed shape, length and orientation. Bolt location is parameterized by
the center x0 of its head ωA. It is then optimized with a parametric gradient-based algorithm

xk+1
0 = xk0 − δk

∂J

∂x0
(Ω,xk0), (37)
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where xk0 is the center of the sphere ωA at the iteration k, δk is the descent step and ∂J

∂x0
(Ω,xk0) is

the partial derivative of the objective function with respect to the location x0, derived according to
Hadamard’s boundary variation method. The spheres representing the head and the threads are
translated. Therefore, the deformation vector θ is constant on the given sphere ωA. The following
result gives the form of the derivative of the bolt constitutive behavior law and specific mechanical
constraints.

Proposition 2. Let ωA be a smooth bounded, open set of R3. Let f ∈W 1,1(R3,R3) and J a shape
functional from W to R defined by

J(Ω,x0) =
 
ωA

fdV = 1
|ωA|

∫
ωA

fdV.

Then, J is shape differentiable and it holds〈
∂J

∂x0
(Ω,x0),θ

〉
= J ′(Ω,x0)(θ) = θ

|ω|
·
∫
∂ωA

fndS, ∀θ ∈W 1,∞(R3,R3), (38)

where n is the outward normal to ωA.

3.3 Bolt number optimization

The topological derivative is a notion introduced in [8, 25, 12, 38, 39] to indicate where it might
be mostly beneficial (for a given objective function) to introduce a small inclusion or a small hole
with regards to given boundary conditions. It results from an asymptotic analysis of an objective
function with respect to that small inclusion or hole. This notion is extended to a small bolt in [30]
in order to determine the advantageous location of an additional bolt in an assembled system.

Briefly stated, the spheres are rescaled by an adimensional factor ρ > 0 that goes to zero in order
to get small perturbations. The topological derivative takes only into account the leading term of Kb,
the rigidity matrix (1) of the bolt root, with regards to the size of the spheres. This leading rigidity,
denoted κ(ρ), is the stiffness along the axis of the root, that is to say its traction-compression
behavior. Then, the rigidity of the small bolt root and the associated pre-tension amplitude Φ(ρ)
read

κ(ρ) = Kρ2 and Φ(ρ) = Qρ2, (39)

where K > 0 and Q > 0. The topological derivative is computed with the displacement fields and
the adjoint state of the background domain (i.e. the domain without the supplementary small bolt).

Consider some objective function J to be minimized and denote by Jρ(Ω) its value in the domain
Ω, perturbed by a small bolt (thus, J0(Ω) is its value in the background domain Ω, without the
small bolt). We recall that the center of the head of the bolt is denoted by x0.

Definition 2. The objective function Jρ is said to admit a topological derivative DJ(x0, e) at the
point x0 for a small bolt of direction e and for a pair of inclusions of shape ω, if the following
asymptotic expansion holds for small ρ > 0

Jρ(Ω) = J0(Ω) + s(ρ)DJ(x0, e) + o(s(ρ)), (40)

where s(ρ) is a positive scalar function of ρ which satisfies lim
ρ→0

s(ρ) = 0.

If the quantity DJ(x0, e) is negative, it is then favorable to create a small bolt at the point x0
in the direction e. Its expression is given by the following Theorem (cf. [32])
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Theorem 1. Let ω be the unit ball of R3. Let us set

US1 = uS1(x0 + `e)− uS1(x0),
US2 = uS2(x0 + `e)− uS2(x0),
P S2 = pS2(x0 + `e)− pS2(x0),

(41)

where uS1, uS2 and pS2 are respectively the displacement fields of the background Step 1, Step 2
and the adjoint state of the background adjoint problem of Step 2. The objective function Jρ admits
a topological asymptotic expansion of the form (40), that reads

Jρ(Ω) = J0(Ω) + ρ2 (K(US2 −US1) · e+Q)P S2 · e+O(ρ3). (42)

4 Numerical illustrations

4.1 Academic use case

4.1.1 Setting of the problem

This academic 3d use case is a precursor to the more significant and complete simplified industrial
use case developed in Section 4.2. Let Ω be a cube of side L = 100 mm with a vertical crack on the
middle, as pictured in Fig. 6. The cube is clamped on the left side and a sinusoidal horizontal force
g =

(
sin
(
πz

2

)
× 105, 0, 0

)
is applied on a thin surface of 2 mm height of the right side. Young

modulus and Poisson’s ratio are Ecube = 210 GPa and νcube = 0.3. The sliding contact condition of
Section 2.3 is applied on the crack. The mesh initially contains 31 569 tetrahedral elements. In this
use case, the properties of the bolt are :

• radius rb = 5 mm

• length ` = 50 mm

• Young modulus E = 172.5 GPa

• Poisson’s ratio ν = 0.3

• Pre-tension force Q =25 000 N

A surrounding of material is added around each sphere. This non-design domain for the structure is
spherical-shaped and twice the size of the sphere. It ensures the diffusion of efforts into the system.

Figure 6: Setting of a cube with a crack

The problem is initialized without bolts. We use the topological derivative to place the first bolt.
Then we perform a structure optimization with this fixed bolt as a reference. After that, a coupled
optimization of both structure and bolt location is performed with two alternating strategies.
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4.1.2 Test of the topological derivative

Given the cube size (L = 100 mm) and the spheres radius (rb = 5 mm), the bolt is small enough to
justify the use of topological derivative. The topological derivative is used to place one bolt oriented
along X axis. The goal is to decrease the compliance J(Ω) =

∫
ΓN

g ·udS. The topological derivative

indicates the best location to put a 1 DOF bolt. We put directly a 6 DOFs bolt at the location
given by the topological derivative, that is x0 = (−26.8, 32.5, 32.4) (see Fig. 7). The initial and the
final compliance, resp. without and with the bolt, are J0(Ω) = 102 J and Jρ(Ω) = 95 J. Then the
location given by the topological derivative, reminding it considers only the main DOF of the bolt,
provides improvements even when a 6 DOFs bolt is used in the elasticity problem.

(a) (b) (c)

ωA
ωB

Figure 7: Iso-values of the topological derivative (a), (b) and the optimal location of the bolt (c)

4.1.3 Structure optimization with a fixed bolt

Let us optimize the structure where the bolt remains fixed and a technological constraint is imposed
to the bolt. The structure is initialized with holes and the bolt is at the location given by the
topological derivative (see Fig. 8). The problem is to minimize the volume V (Ω) under a constraint

ωA
ωB

Figure 8: Initial topology and bolt location

on the compliance C(Ω) and on the Von Mises at the rim of the bolt VMR(Ω). It reads

min
Ω ∈ Uad

C(Ω) ≤ C0
VMR(Ω) ≤ VM0

V (Ω), (43)

where the constraint bounds are C0 = 110 J and VM0 = 656× 105 Pa2. Optimization constraints
are taken into account with an Augmented Lagrangian algorithm. Therefore, the problem (43) is
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rewritten as

min
Ω∈Uad

max
α≥0

{
L(Ω) = V (Ω) + αC(C(Ω)− C0) + βC

2 (C(Ω)− C0)2

+ αVMR(VMR(Ω)−VM0) + βVMR
2 (VMR(Ω)−VM0)2

}
,

(44)

where α = (αC , αVMR).
The optimal shape is given in Fig. 9. The final volume is V (Ω) = 5.40× 105 mm3. The Von Mises
constraint is saturated while the compliance C(Ω) = 104 J is below the threshold.

(a)
(b)

ωA
ωB

Figure 9: Optimal structure for the optimization problem (43): volume minimization, with compli-
ance constraint and Von Mises constraint at the rim of the bolt root

4.1.4 Coupled optimization of structure and bolt location

Consider the initialization of Fig. 8. We perform now a coupled optimization of both the structure
and the bolt location to solve the problem (44) with 3 iterations of structure advection for 1 iteration
of parametric gradient for the location, until convergence.

Remark 7. The bolt is movable in the following optimization problem. Since the initial mesh is
coarse enough to save computation time, we need to remesh around the spheres for each location
change to ensure a correct computation of the displacement field on the bolt extremities. Consequently,
numerical results may present some fluctuations. The mesh is refined around the spheres with the
open source library mmg3d [10].

The optimal structure and bolt location are shown in Fig. 10. The final volume is V (Ω) =
4.40 × 105 mm3. This is quite an improvement compared to the structure optimized with a
fixed bolt for which the final volume was V (Ω) = 5.40 × 105 mm3. The optimal bolt location is
x0 = (−10.6, 32.7, 33.1), which corresponds to an amplitude of displacement of 16.2 mm.

The convergence history is given in Fig. 11. We deliberately display all iterations, even those
which have been rejected. It is quite noticeable how the brutal violation of the Von Mises constraint
leads to an important response of the bolt location, and not of the structure around iteration 100.
The parametric optimization of the bolt location reduces the constraints violation and proves its
efficiency for the integration of specific mechanical constraint on the bolt. Actually, the change of
location does not affect the oscillations of the compliance constraint around the bound. Note that
these oscillations are customary with the Augmented Lagrangian method.

We also solve the same optimization problem with a strategy of 1 iteration of structure advection
for 1 iteration of parametric gradient. The optimal structure and bolt location are given in Fig. 12.
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(a)
(b)

ωA
ωB

Figure 10: Optimal structure and bolt location for the problem of volume minimization under
a compliance constraint and Von Mises criterion at the rim of the bolt root with an alternating
strategy of 3 iterations of structure advection and 1 iteration of parametric gradient for bolt location
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Figure 11: Convergence history of the volume minimization problem under several constraints
(compliance and Von Mises at the rim of the bolt root, threshold in red) with an alternating strategy
of 3 iterations of structure advection and 1 iteration of parametric gradient for bolt location (X in
blue solid line, Y in green dotted line and Z in orange dashed line)

The final volume of V (Ω) = 4.25× 105 mm3, which is a better result, of about 3.5%, than the one
given by the previous alternating strategy. The optimal bolt is located at x0 = (−10.1, 32.0, 33.2),
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which corresponds to an amplitude of displacement of 16.7 mm from initial location, and 0.87 mm
away from final location of previous optimization.

(a)
(b)

ωA
ωB

Figure 12: Optimal structure and bolt location for the problem of volume minimization under
a compliance constraint and Von Mises criterion at the rim of the bolt root with an alternating
strategy of 1 iteration of structure advection for 1 iteration of parametric gradient for bolt location

The convergence history is shown in Fig. 13. We still display iterations which have been rejected.
A brutal decrease of the volume provokes an important increase of the compliance and the Von
Mises response. The coupling proves its efficiency to bring each response back into the admissible
domain : the structure advection acts for the compliance and the parametric gradient acts mainly
for the Von Mises criterion.

Remark 8. The iterations frequency between structure optimization and locations optimization may
have a great impact on the optimization process. In [30] (Chapter 5, Section 5.3.2, Remark 48), it
has been noticed that final topology of a 2D use case is strongly redesigned, switching from a strategy
of 4 iterations of structure for 1 iteration of locations which favors the structure and disregards the
connections behavior, to a strategy of 1 structure for 1 location which allows equal efficiency between
both optimization ingredients.

4.2 Simplified industrial use case

4.2.1 Setting of the problem

This section is devoted to a simplified model of an accessories bracket assembly taken from a diesel
engine (cf. Fig. 14). This simplified model has the characteristic dimensions of a reference model
given by Renault (cf. Fig. 15). Accessories are an alternator, a belt tensioning roller and an air
conditioning (AC) compressor. Perfect bonding is assumed between the accessories and the bracket.
The accessories bracket insures their positioning and their fastening to the crankcase. The assembly
is the union of all accessories plus the bracket plus the crankcase. In the sequel, the accessories and
the crankcase are not optimized.

The assembly ΩASB is made of disjointed parts

ΩASB = Ω ∪ ΩNDS ∪ ΩACC ∪ ΩCKC ,

namely the design-space Ω and the non design-space ΩNDS of the bracket (resp. in brown and in
red in Fig. 14), the accessories ΩACC and the crankcase ΩCKC . Boundaries, depicted in Fig. 16,
are defined by

∂ΩASB = ΓTF ∪ ΓD ∪ ΓN ,
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Figure 13: Convergence history of the volume minimization problem under several constraints
(compliance and Von Mises at the rim of the bolt root, threshold in red) with an alternating strategy
of 1 iteration of structure advection and 1 iteration of parametric gradient for bolt location (X in
blue solid line, Y in green dotted line and Z in orange dashed line)

Figure 14: Simplified accessories and bracket Figure 15: Reference engine

where ΓTF is the traction-free boundary and ΓD corresponds to clamped zones. Surface loads g on
the accessories pulleys are applied simultaneously on 3 different parts of ΓN . Loads g are then split
into gALT , gBTR and gCOMP as displayed in Fig. 17. They correspond to integrated contact force
of the tensioned belt on each pulley. The in-service mechanical analysis problem is then a single and
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static load case. Since the accessories and the crank-case are not optimized, it is better to separate
the traction-free boundary of the design-space of the bracket, denoted Γ, from the traction-free
boundaries of accessories, that is ΓTF \Γ. We assume perfect bounding between accessories and the
bracket while the bracket is bolted onto the crankcase. The sliding contact condition described in
Section 2.3 is applied between the bracket and the crank-case.

Figure 16: Boundaries of the sub-parts Figure 17: Load case

Bolts orientation is fixed to satisfy industrial manufacturing constraints. All bolts are parallel
to the axis X, and their head and threads (resp. ωA and ωB) are equally distant from the contact
interface plane between the bracket and the crankcase. We consider n identical bolts with the
following properties, corresponding to M10×1.5 standard bolt :
radius rb = 4.3 mm, length ` = 50 mm, Young modulus E = 176 GPa, Poisson’s ratio ν = 0.3,
Pre-tension force Q = 20 000 N and Yield stress of the root Re = 900 MPa.

4.2.2 Optimization problem

The problem is to minimize the volume of the bracket V (Ω) =
∫
Ω

dV under a constraint on the

compliance of the assembly C(Ω) =
∫

ΓN

g ·uS2dS. Von Mises at the rim and at the center of the bolt

root and fatigue constraints are implemented for each bolt. For the sake of simplicity, we consider
for fatigue cycle that belt tension undergoes variations of full amplitude g, which is not the case in
real in-service conditions.

Remark 9. We use the unit system of (mN, kPa, mm). We recall that all Von Mises and fatigue
constraints, and so their corresponding bounds, are squared. Therefore, they are given in kPa2.

Denote X = (x1, ...,xn) where xi, 1 ≤ i ≤ n, is the center of the head of the bolt i. The coupled
optimization of both the bracket structure and the bolts location reads

min
(Ω,X)∈Uad

s.t.



C(Ω,X) ≤ C0

VMR2
i (Ω,xi) ≤ VM2

0, ∀i ∈ J1, nK

VMC2
i (Ω,xi) ≤ VM2

0,∀i ∈ J1, nK

F 2
i (Ω,xi) ≤ F 2

0 , ∀i ∈ J1, nK

V (Ω), (45)

where constraints bounds are
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• Compliance : C0 = 325000 µJ,

• Von Mises : VM2
0 = 6.56× 1011 kPa2,

• Fatigue : F 2
0 = 3.5× 1010 kPa2.

Remark 10. The Von Mises bound VM2
0 is equal to (0.9Re)2 (see (28)) The fatigue bound F 2

0 is
equal to (2σa)2 (see (32)). However, we recall that fatigue cycle of our simplified model undergoes
larger amplitude compared to realistic in-service conditions, the fatigue limit value, σa, has to be
numerically adapted and thus differs from [15].

The optimization problem (45) is computed with the Augmented Lagrangian method. It is thus
rewritten as

min
(Ω,X)∈Uad

max
α∈R3n+1

{
L(Ω,X) = V (Ω) + αC max

(
C(Ω,X)− C0,−

αC
βC

)
+ βC

2 max
(
C(Ω,X)− C0,−

αC
βC

)2

+
n∑
i=1

αVMR,i max
(

VMR2
i (Ω,xi)−VM2

0,−
αVMR,i
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)
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(
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+
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(
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)
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2 max
(
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+
n∑
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αF,i max
(
F 2
i (Ω,xi)− F 2

0 ,−
αF,i
βF,i

)
+ βF,i

2 max
(
F 2
i (Ω,xi)− F 2

0 ,−
αF,i
βF,i

)2


(46)
where α = (αC , αVMR,1, ..., αVMR,n, αVMC,1, ..., αVMC,n, αF,1, ..., αF,n) are Lagrange multipliers

and β = (βC , βVMR,1, ..., βVMR,n, βVMC,1, ..., βVMC,n, βF,1, ..., βF,n) are penalty parameters.

The coupled optimization involves two types of design-variables and thus requires two types
of design spaces as displayed in Fig. 18. The design space of the structure is naturally the entire
bracket. In the sequel, the structure is always initialized to the completely filled bracket design space.
Bolts translate inside the area delimited by the white lines in Fig. 18 without non-overlapping
condition. Finally, in the following optimizations, we alternate between one structure iteration and
one bolt-location iteration.

Structure design space (3D)

Bolts design space (2D)

Figure 18: Structure and bolts design spaces
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4.2.3 Reference optimization: structure alone

Seven bolts are placed according to a user’s proposition which is the reference bolts distribution
and number (see Fig. 19). For comparison purposes, we perform a topology optimization to solve
the problem (46) where the only design variable is the structure of the bracket while these seven
bolts are fixed. The final shape of the bracket is given in Fig. 20. The bracket has a final volume
of V (Ω) = 1.13× 106 mm3. All optimization constraints are respected. The compliance bound is
not reached. All Von Mises constraints are significantly below the threshold. The only saturated
constraint is the fatigue of bolt 4 (see Fig. 19), which leads to the convergence of the structure (see
Fig. 24). Moreover, material is uniformly distributed between the upper and the lower part of the
bracket. The thickness is almost constant from top to bottom. The bracket structure is smooth and
thus appears to be manufacturable.

Figure 19: User’s proposition for the distribution of 7 bolts (in black)

Remark 11. The optimization problem (46) without any constraints on the 7 bolts has been
performed in [30]. It has been then noticed that the final shape exhibits an unbalanced material
distribution between upper part (thick) and lower part (thin) of the bracket.

4.2.4 Coupled optimization

Use of five bolts
Let us start with bolts 1, 2, 3 and 4 from the user’s proposition (see Fig. 19). The mechanical

analysis shows that some bolts mechanical constraints are violated (see [30], Section 9.2.4). Then
we decide to firstly apply the topological derivative to decrease the compliance of the assembly.
Negative iso-values of the topological derivative are given in Fig. 21. The most relevant area (blue)
places the fifth bolt at the upper left hand-side of the bracket (see Fig. 22). The new compliance
(with five bolts) is C(Ω) = 305000 µJ, which is under the threshold and all mechanical constraints
on bolts are satisfied too.

Let us now perform a coupled optimization of the structure and bolts location to solve the
problem (46). Final shape and bolts location are given in Fig. 23. The compliance bound is reached
and all bolts mechanical constraints are satisfied. Bolts location has changed with a minimum
displacement amplitude of 0.09 mm for bolt 4 and a maximum of 5.24 mm for bolt 3. The bracket
is again smooth with a rather regular material distribution between the upper and the lower parts.
Finally, the bracket has a final volume of V (Ω) = 9.56 × 105 mm3. It represents a reduction of
about 15.5% compared to the reference result with seven fixed bolts. Convergence history of the
volume, the compliance and the fatigue of bolts 1 and 4 are compared in Fig. 24 for the problem
with 7 fixed bolts and with 5 optimized bolts.
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Figure 20: Optimal shape with 7 fixed bolts

Figure 21: Iso-values of the topological derivative on the assembly with four bolts

25



Figure 22: Fifth bolt (in red) placed by the topological derivative

Figure 23: Final assembly after coupled optimization of structure and locations (5 bolts)

26



0 20 40 60 80 100

1

1.5

2

2.5
·106

Iterations

Vo
lu
m
e
(m

m
3 )

0 20 40 60 80 1002.5

3

3.5

4 ·105

Iterations

C
om

pl
ia
nc

e
(µ
J)

0 20 40 60 80 1002.5

3

3.5

4

4.5 ·1010

Iterations

Fa
tig

ue
bo

lt
1
(k
Pa

2 )

0 20 40 60 80 1002.5

3

3.5

4

4.5 ·1010

Iterations

Fa
tig

ue
bo

lt
4
(k
Pa

2 )

Figure 24: Convergence history of the volume, the compliance and the fatigue of bolts 1 and 4 for
the problem with 7 fixed bolts (in black solid line) and with 5 bolts (in blue dashed line)
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Use of six bolts
Based on the optimal assembly with five bolts, we apply again the topological derivative to place

a sixth both in order to decrease the compliance. Negative iso-values of the topological derivative
are given in Fig. 25. The sixth bolt is then placed in the lower left corner of the bracket (see Fig.
26). The new compliance is C(Ω) = 314000 µJ. All bolts mechanical constraints are in the feasible
design.

Figure 25: Iso-values of the topological derivative
on the assembly with the optimal bracket for five
bolts

Figure 26: Sixth bolt (in red) placed by the topo-
logical derivative

We solve the problem (46) to optimize the structure of the bracket and the locations of six
bolts. Final structure and bolts location are given in Fig. 27. Once again, the compliance
threshold is reached and all bolts mechanical constraints are respected. Bolts location barely
changed with respectively a minimum and a maximum displacement amplitude of 0.04 mm for
bolt 2 and 0.72 mm for bolt 1. The shape of the bracket does not change a lot. The add of
the sixth bolt smooths curves and corners. The bracket has a final volume of V (Ω) = 8.57× 105

mm3, corresponding to a reduction of 24.14% compared to the reference result with seven fixed bolts.

Table 1 summarizes volumes of the bracket and optimization constraints according to the number
of bolts and design variables. Thanks to these data, technico-economic trade-off between unit cost
(the mass) and investment (the number of bolts) may be carried out.

Figure 27: Final assembly for volume minimization of the bracket under compliance and bolts
mechanical constraints with six bolts
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Bolts Design variables Volume (mm3) Compliance (µJ) Bolts mechanical constraints
7 Structure 1.13×106 319000 All respected - 1 saturated
6 Structure + Locations 8.57×105 325000 All respected
5 Structure + Locations 9.56×105 325000 All respected

Table 1: Summary of volumes and constraints versus number of bolts and design variables

5 Conclusion and perspectives
In this work, we introduced a new optimization approach for assembled systems where we simulta-
neously optimize the shape and topology of an individual part of the system and the location and
number of connecting bolts. Compared to a classical topology optimization with fixed bolts, the
shape and bolts coupled optimization delivers a lighter structure and is able to reduce the number
of required bolts while keeping equivalent mechanical performances. The main new ingredients are
an idealized bolt model and a notion of topological derivative to decide where to introduce a new
bolt. Another feature of our bolt model is the intrinsic definition of specific mechanical constraints
which can be taken into account in the optimization process, ensuring maximal exploitation of the
final optimized assembly by designers.

There are many perspectives and generalizations of our work. The orientation, the size and
the prestressed state of the bolts could be optimized too. Additional tools are needed to suppress
a useless bolt or to merge two bolts getting too close into a unique larger one. Other objective
functions or mechanical constraints for which shape derivatives are available (see e.g. [22]) could
be optimized, particularly the contact pressure. Different models could be accommodated in our
setting, like free or forced vibrations.
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