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ABSTRACT

This paper reports investigations led on the combination of the refractive index and morphological dilation to enhance
performances towards breast tumour margin delineation during conserving surgeries. The refractive index map of invasive
ductal and lobular carcinomas were constructed from an inverse electromagnetic problem. Morphological dilation combined
with refractive index thresholding was conducted to classify the tissue regions as malignant or benign. A histology routine was
conducted to evaluate the performances of various dilation geometries associated with different thresholds. It was found that
the combination of a wide structuring element and high refractive index was improving the correctness of tissue classification in
comparison to other configurations or without dilation. The method reports a sensitivity of around 80% and a specificity of 82%
for the best case. These results indicate that combining the fundamental optical properties of tissues denoted by their refractive
index with morphological dilation may open routes to define supporting procedures during breast-conserving surgeries.

1 Introduction
Terahertz imaging and spectroscopy have rapidly spread to different application areas thanks to the continued development of1

efficient emitters and detectors between 0.1 and 7-THz1. The biomedical field is one domain of study that could benefit from2

terahertz wave properties2, 3. Radiations at terahertz frequencies have been shown to be non-ionizing and non-hazardous for3

biological tissues at the power commonly employed to inspect the super-cellular level4. Besides, terahertz radiations are notably4

sensitive to the presence of polar molecules such as the most abundant component of the body: water5. Hence, different medical5

topics have been assessed with terahertz imaging and spectroscopy to look for alternative and complementary methods to the6

existing ones. These investigations cover a broad range of possible surgical and clinical applications6–8. Among them, cancer7

diagnosis remains the most widely investigated topic throughout the literature, covering blood9, 10, brain11–13, colorectal14, 15,8

gastric16, 17, liver6, lung18, oral19, skin20, 21 and breast cancer22–26.9

Investigations, conducted on breast cancer, mainly aim to develop supporting procedures for breast-conservative surgeries10

through breast tumour margin delineation. The success of breast-conserving surgeries is dictated by the accuracy of delineating11

the concentric margins of excised breast volumes. Although there is no clear description of what ideal margins are, it is12

recommended that no cancer cells remain adjacent to any inked edge/surface of the specimen27. Conserving surgeries are13

usually followed by postoperative radiation management to eradicate microscopic remains of disease28. Margin cleanliness is14

assessed via biopsy examinations during which excised volumes are subsequently fixed into formalin solution, embedded into15

paraffin, sliced in micrometric sections and immersed into different alcohol and biological stain baths. Usually, hematoxylin16

and eosin stains are used. The reason for that is that hematoxylin stains cell nuclei blue and eosin stains both the cytoplasm and17

the extracellular matrix pink. The stain draws the global layout of a tissue structure so that a pathologist judges the cleanliness18

of the margin29. Overall, two extreme cases of margin delineation can be observed: (i). positive margins - malignant cells19

are located at the edge of the excised volume; (ii). negative margins - an absence of tumor cells at the edge or the distance of20

abnormal cells from the edge is at least more than 1-mm. Following histopathologic inspection, up to 20% of excised breast21

samples are reported to exhibit positive margins30. Reasons behind tumor edge delineation failure are often presence of in situ22

carcinoma at close proximity to the surgical margin, discontinuous tumor spread from the original surgery site, or inappropriate23

presurgical tumor localization and inappropriate excision during surgery31. A positive margin inevitably leads to a second24

surgery to favor low recurrence risk and to attain more widely clear surgical margins. In return, a second surgery concomitantly25

increases the morbidity rate.26

So far, different research teams worldwide have reported the ability of terahertz imaging and spectroscopy to discriminate27
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between healthy and malignant breast tissues. These studies were primarily conducted on formalin-fixed and paraffin-embedded28

breast tissues32–34. Such investigations opened the route for clinical studies on freshly excised breast volumes18, 22, 24. The29

capabilities of terahertz radiation demarcation between normal and abnormal tissue regions were originally attributed to30

free-water content. Indeed, free-water molecules have been proven to present a specific permittivity step around 900-GHz5.31

Moreover cancer tissues are known to exhibit a greater free-water content than normal tissues35. However, further studies have32

suggested that the origin of contrast could not be solely attributed to water. That is because specific dielectric features exhibited33

by breast tissues, in the low terahertz frequency band, were not observed in water dielectric profile36. Hence, it has been34

suggested that, specific functional groups play a potential role22. Globally, the refractive index of breast cancer tissues has been35

shown to be higher than the one observed for normal tissues over the terahertz band. On the contrary, the related absorption36

coefficient was reported as unsatisfactory parameter for demarcation36, 37. Additionally, the contrast level between healthy and37

malignant tissues depends on cancer cell density. In fact, while the resolution of any light-based imager remains dictated by38

the diffraction limit, two objects separated by a distance less than the wavelength cannot be distinguished. For instance, the39

spatial resolution of a far-field imaging system operating at 1-THz will be limited to 0.3-mm. Hence, the respective response to40

the external terahertz radiation stimuli of two biological entities, separated by a distance smaller than 0.3-mm, will have to be41

averaged. Considering the typical diameter of the eukaryotic cell is at the order of tens of microns, it can be concluded that,42

such a terahertz imager cannot manage to resolve entities at the cellular level. It has, however, been demonstrated that the use43

of computational imaging system operating in a total internal reflection geometry could resolve features with a sub-wavelength44

lateral resolution.38 While it can be expected that high densities of cancer cells will lead to a well-defined demarcation, the45

dielectric response of isolated abnormal groups may be blurred by the healthy surrounding and ultimately leading to recognition46

analysis failure. Although the diffraction limit of resolution may complicate recognition in areas sparsely populated by cancer47

cells39, it also raises delicate questions on the exact frontier between two well localized normal and abnormal regions. Indeed,48

rather than depicting a sharp contrast between areas, the obtained cliché may inevitably exhibit a smooth gradient from one to49

another area which is a result of class-overlapping. That is particularly limiting when it comes to providing a pixel-by-pixel50

diagnosis based on the information collected.51

The present work proposes a new approach for the clinical classification of breast tissue pixels that overcomes the limitations52

aforementioned. The method is based on the extraction of the terahertz refractive index map of freshly excised samples followed53

by morphological dilation. A high value of the refractive index has been reported as a reliable measure of the presence of cancer54

within a tissue22, 24. Morphological dilation is a part of set-theory40 and is commonly employed to images having characteristics55

of ambiguity and vagueness41. It consists of expanding a given shape contained in the input image. In biology, morphological56

processing was notably employed for counting blood cells during blood smear test42, to isolate female gametocyte43 or for skin57

cancer segmentation44.58

Operating dilation from regions exhibiting a higher refractive index should allow bypassing class-overlapping limitations.59

Such a process is referred to as terahertz refractive index-based morphological dilation and operates as follows: (i). the refractive60

index map of a freshly excised breast tissue is extracted through a specific objective function minimization; (ii). a refractive61

index threshold is defined such that pixels exhibiting a refractive index higher than the threshold are classified as malignant62

while others are classified as benign; (iii). morphological dilation is used to spread the malignant zones to the neighborhood.63

To conduct these investigations, different freshly excised breast tissues have been scanned in reflection geometry by means64

of a terahertz spectrometer. The refractive index maps have been extracted. Different refractive index thresholds and dilation65

shapes have been tested. The related pixel classifications have been compared to those provided by a pathologist. Finally, the66

sensitivity and specificity of each combination of threshold - dilation shape have been derived.67

The paper is organized as follows: Section 2 describes the experimental framework to acquire raw terahertz images68

of the freshly excised breast tissues. Section 3 describes the mathematical background to extract the refractive index map.69

Section 4 defines the morphological dilation and the respective dilation shapes employed in the study. Section 5 describes the70

registration of obtained images with respect to the pathological cliché. Section 6 details the evaluation of compliance between71

the classifications provided respectively by the pathologist and the reported strategy. Section 7 presents the results for different72

samples. Finally, Section 8 presents the conclusions.73

2 Experimental Framework74

The experimental protocol was assessed and approved by the ethics committee of the Bergonié Institute. Human tissue analysis75

have been conducted in view of the fundamental ethical principles as stipulated in the Helsinki declaration and its later76

revisions. Written informed consent from each patient undergoing breast surgery was collected, stipulating their agreement77

regarding the use of their tissues for research purposes.78
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2.1 Breast Tissue Samples79

Following surgery, breast excisions were cut into slices of a few millimeters and kept into physiological serum before80

measurement to ensure the moisture content and delay the necrosis. A maximum of one hour elapsed between the end of81

surgery and the terahertz acquisition starting time. Once measurement was complete, excised tissue samples were placed82

in formalin-buffered solution. This process enabled the further histology routine to compare the diagnoses provided by the83

reported method and the pathologist. Biological samples analyzed using the method about to be reported were obtained from84

three different patients. One sample was excised from each of these patients.85

2.2 Measurement Setup86

Time-domain terahertz pulsed images were acquired with a TPS3000 spectrometer (TeraView Ltd, Cambridge, UK) operating in87

reflection geometry. In such systems, terahertz pulses are generated from the activation of a GaAs photoswitch. A photoswitch88

consists of a discontinuous metallic antenna patterned onto a photoconductive layer. Ultra-fast near-infrared pulses with an89

energy greater than the semiconductor band gap are focused onto the gap between the two electrodes forming the photoswitch.90

The incident pump laser thus propagates within the photoconductive layer and generates electron-hole pairs due to absorption.91

Those photocarriers are then accelerated within the electric field of the biased antenna. The acceleration of these charges92

produces a transient current that drives the metallic antenna and is eventually emitted as a broadband terahertz pulse. The93

bandwidth directly depends on the lifetime of the carriers before recombination. The carrier lifetime in the GaAs crystal is in94

the subpicosecond scale, hence enabling pulses with a bandwidth ranging from 200-GHz to 2-THz.95

The schematic of the experimental set-up is given in Figure 1. The route of the terahertz pulses is governed by two planar96

mirrors and a knife-edge right-angle prism mirror (KERAPM). The terahertz pulses are focused on the tissue sample supported97

by a 2-mm thick non-birefractive C-cut sapphire substrate (see Supplementary Information, Supplementary Fig. 1.) via a98

polytetrafluoroethylene (PTFE) lens. The maximum incident angle of the terahertz pulses is 10◦. Both the reflections at the99

air-sapphire and sapphire-tissue interfaces are then focused onto a photoconductive antenna detector. The detector is sourced100

from the same ultra-fast near-infrared pulses used for terahertz wave generation with a beam splitter. The pulses are, however,101

delayed in time with a mechanical delay line. The periodic variation of the delay line length allows a time gated detection of102

terahertz pulses reflected by the object. In order to reduce the natural absorption of terahertz pulses by water vapor molecules,103

the terahertz route is confined within nitrogen chamber.104

Figure 1. Schematic of the acquisition system.

3 Refractive Index Map105

To extract the refractive index from a raw frequency image, a reference electric field has to be recorded. The reference electric106

field Er(ω) refers to the electric field generated by the acquisition system. The reference measurement records the electric field107

of the reflection from a metal plate that is located where the sapphire substrate sample holder is aimed to be positioned for108

tissue imaging. From the reference electric field Er(ω), the experimental transfer function T s(ω), which is a measure of the109

disturbance experienced by the incident field as a result of the interaction with the sample, can be calculated:110

T s(ω) =
Es(ω)

Er(ω)
, (1)
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with Es(ω) the sample frequency-dependent electric field. The shape of transfer function T s(ω) is a function of the111

refractive index n(ω) and the extinction coefficient κ(ω) of the sample under inspection. Es(ω) depends on the Fresnel’s112

coefficients in transmission T (ω) and in reflection R(ω), and on propagation coefficients P(ω,d):113

Es(ω) ∝ Tair−sapphire(ω)×Rsapphire−tissue(ω)×Tsapphire−air(ω)×P2
sapphire(ω,d), (2)

with d being the thickness of the sapphire substrate. The Fresnel’s coefficients T (ω) and R(ω), as well as propagation114

terms P(ω,d) relate to the refractive index n(ω) and the extinction coefficient κ(ω) through:115

Ta−b(ω) =
2n̂a

n̂a + n̂b
, (3a)

Ra−b(ω) =
n̂a− n̂b

n̂a + n̂b
, (3b)

Pa(ω,d) = e− j ωd
c n̂a , (3c)

116

where a and b are the indices of the respective medium, n̂ is the complex refractive index defined as n̂ = n(ω)− jκ(ω) and117

c is the light velocity in vacuum. Although the extinction coefficient κ(ω) is involved in the calculation of the transfer function118

T s(ω), no significant differences have been reported in the literature between normal and abnormal tissue extinction22, 36.119

Hence, solely the refractive index is further considered as a possible intrinsic parameter for demarcation.120

3.1 Map Extraction121

The extraction of the complex refractive index n̂(ω) at each pixel from the experimental transfer function T s(ω) can be122

performed by solving an inverse electromagnetic problem. Inverse electromagnetic problems usually minimize a specific convex123

objective function. This function denotes the discrepancies between the experimental waveform Es(ω) and the waveforms124

Ec
x (ω) successively computed from a set of candidate parameters, where the x-index refers to the xth-candidate tested. The125

candidate waveforms Ec
x (ω) are computed as stipulated in45. The corresponding transfer functions T c

x (ω) are calculated in the126

same way as described by (1). The measures of discrepancies δMx(ω) between the experimental transfer function T s(ω) and127

the computed transfer functions T c
x (ω) are defined as:128

δMx(ω) = ln(
|T s(ω)|
|T c

x (ω)|
). (4)

The natural logarithmic ratio is favored here instead of standard difference as it is more penalizing. Finally, the objective129

function χ(ω) to be minimized is defined as:130

χ(ω) = δM(ω)×δM(ω). (5)

The minimization of the transfer function is subject to the following set of candidate parameters:131

min
n(ω),κ(ω)

χ(ω), subject to
{

n ∈ [1.5;3], with ∆n = 1.10−2,
κ ∈ [0;1], with ∆κ = 1.10−3.

(6)

It was stated before that the sample is maintained by the sapphire substrate. Instead of extracting the properties of the132

sapphire substrate for each pixel, the properties were extracted upstream, in absence of a sample, and following the same133

minimization process. The sapphire properties are provided in Supplementary Information, see Supplementary Fig. 2. Finally,134

applying the above process to each electric field stored in each pixel of the sample image allows to construct the refractive135

index map.136

Once the refractive index map is obtained, it is converted to a binary map that shows areas that are considered malignant or137

benign. To do so, a threshold among the refractive index vector has to be set. Depending on the defined value for the threshold,138

one may progressively increase or decrease the extent of areas classified as malignant, since pixels with a refractive index139

higher than the threshold are classified as cancerous. A schematic of the process is given in Figure 2.140
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Figure 2. Thresholding principle applied to the refractive index map. a: Schematic refractive index map; b: Binary refractive
index map with a threshold set at 2.4; c: Binary refractive index map with a threshold set at 2.1; d: Binary refractive index map
with a threshold set at 1.8;

3.2 Operating Frequency141

Although the refractive index is often referred to as optical constant, its profile varies as a function of the frequency. Previous142

studies have reported the terahertz frequency dependent refractive index values of abnormal and normal breast tissues37. Overall,143

the global difference between these values was shown to be the highest between 300-GHz and 700-GHz, roughly. Hence, rather144

than investigating the entire band, the classification was operated at 550-GHz, as a good trade-off between signal-to-noise145

ratio (SNR) and higher frequency spatial resolution46. However, naively classifying pixels via the refractive index exhibited146

at 550-GHz may hardly be relevant. In particular, the refractive index extracted at the edges of malignant regions with low147

density may present values close to the ones of healthy tissues. Therefore, morphological dilation is introduced to overcome148

this limitation.149

4 Morphological Dilation150

Prior to dilation, the refractive index map is converted to a binary image as it was described in the previous section. The dilation151

can therefore be referred to as binary dilation. The dilation consists of a shift-invariant addition, denoted “⊕”, within the152

meaning of Minkoswki47. Mathematically, let’s define P as an ensemble that contains the pixels (x,y) of the tissue imaged. The153

binary dilation ∂Λ(P) of P by a shape Λ ∈ Z2 - also referred to as a structuring element, is given by:154

∂Λ(P) = P⊕Λ = {x+λ ,y+λ |λ ∈ Λ} , (7)

where λ ∈Λ produces the translation from P to ∂Λ(P). Supposing the matrix P and the structuring element Λ as represented155

in Figure 3, the matrix ∂Λ(P) is obtained by superimposing the center of Λ aligned with each pixel in P that has a value of 1.156

Figure 3. Morphological dilation operated with a cross structuring element Λ on the matrix P.

In the present work, three different structuring elements have been considered to dilate the binary refractive index map.157

They are referred to as Λ1, Λ2 and Λ3 classifiers. Their spatial properties are exposed in Figure 4. These specific geometries158

allow the classifiers to act in the close vicinity of a starting pixel and with the same impact in all directions.159
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Figure 4. Geometry of the three different classifiers Λ1, Λ2, Λ3.

Therefore, depending on the classifier considered, a pixel may be attributed to the malignant group if at least one of the160

component λ of the structuring element Λn – where n ∈ N∗ – reports a pixel whose refractive index is higher than the defined161

refractive index threshold. Alternatively, the structuring elements can be seen as the area of influence of a cancerous pixel.162

Consequently pixels with a refractive index lower than the threshold but situated in such an area of influence, are turned into163

malignant pixels. It is however important to note that the process is constrained to a unique dilation and therefore, newly164

classified malignant pixels cannot, in turn, exercise a zone of influence.165

In order to carry out the dilation and the registration steps that follow, it is essential to preserve the morphology of the166

imaged sample. To do this, the dilation procedure must be carried out with respect to the initial contour of the sample generated167

from a standard contouring algorithm, thus preventing the appearance of cancerous pixels outside the original surface of the168

sample. A schematic of the dilation process operated on a binary refractive index map is given in Figure 5.169

Figure 5. Schematic of a morphological dilation applied to a binary refractive index map over a tissue sample. a: Binary
refractive index map with a threshold set at 1.8; b: Morphological dilation applied to the binary refractive index map with an
arbitrary classifier Λn.

5 Image Registration170

The classification images provided by the reported method and the ones given by the pathologist do not share the same171

coordinate system. Image registration is the process of migrating different images into one common coordinate system48.172

Therefore, image registration is necessary to enable the comparison between the data sets. Effectively, the spatial resolution173

of the optical microscope used to acquire pathology clichés is far greater than the one of the employed terahertz imager.174

Additionally, the orientation of the tissue sample in the terahertz image and in the clinical image are expected to be different, as175

they are not acquired with the same angle. A simple pixel-by-pixel comparison is therefore not possible as it stands. Prior to176

comparison, images have to be resized and reorientated. The registration process is feature-based and solely involves image177

contours to avoid unintentional human bias. The different steps that are followed to register the images with respect to each178

other are hereafter described.179
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5.1 Contouring180

Contour lines, also called isolines, can be calculated by interpolating the value of the scalar field found at each pointel of each181

pixel. An infinite number of isolines can however be delineated. The choice of the contour to define the spatial extent of the182

sample in the image remains therefore subjective. For each sample, the isoline that suited the visualized tissue area best was183

determined by carefully comparing the terahertz image and the different contour levels.184

5.2 Resizing185

As the resolution of the images is different, it is necessary to resize the histology pictures. To do so, a bicubic interpolation is186

operated onto pathology images. Contrary to the previous interpolation, where it is based on the four nearest pixels, bicubic187

interpolation takes into account a neighborhood of sixteen pixels. Therefore, bicubic interpolation provides a smoother histology188

slide than simple bilinear interpolation.189

5.3 Reorientation190

First, the contour of the terahertz image is manually and progressively twisted to bring it closer to the twist angle of the pathology191

contour. Once the orientations approximately match, the pathology contour is iteratively rotated to establish the correlation192

between the two contour matrices at each step. Basically, it consists in determining the Pearson’s correlation coefficients49. The193

rotation angle providing the highest positive correlation is selected and the terahertz image is correspondingly rotated. The flow194

chart of these three pre-treatments, namely contouring, resizing and reorientation for image registration is provided in Figure 6.195

Figure 6. Flow chart of the registration procedure for predicted diagnosis evaluation.

5.4 Image Discrepancies Issues196

Although one can resize and reorientate the two images with respect to each other, the pathology cliché and the terahertz197

image may not perfectly depict the same information. First, while terahertz imaging is performed directly on freshly excised198

tissues, the pathology diagnosis is established after the histology routine. Moreover, to obtain the pathology image, the excised199

tissue is first fixed in neutral buffered formalin, then dehydrated in subsequent alcohol baths with increasing concentrations,200

then cleared in a solvent before being infiltrated and finally embedded in paraffin wax. At this stage, the processed tissue is201

encased in a paraffin block that can be sliced in sections of a few microns thickness to be deposited on glass slides. These202

tissue sections are deparaffinized, rehydrated and subsequently stained with hematoxylin and eosin dyes. Finally, they are203

dehydrated in alcohol and cleared in a solvent before being mounted with a coverslip. The embedding, the sectioning and the204

desiccation alter the global structure of the tissues. These alterations are collectively referred as artefacts50. Artefacts include205

loss of tissue area and details, folds and wrinkles or cracks and holes. These alterations may result in misinterpretation as they206

are modifying the morphological structure of tissues. Alternatively, these artefacts may drastically limit the evaluation of the207

terahertz classification compliance (see Supplementary Information Supplementary Fig. 3, for an example based on one of the208

tissue reported by the present work). However, histological slides remain the only available reference picture that allows one209

to examine the performances of classifier under-test. Overall, there are two ways to deal with such issues: (i). correcting the210

histology slides at risk of adding artificial information; (ii). comparing directly the terahertz image with the raw pathology211

image at risk of underestimating the efficiency of the method. The first way would require to morph the pathology image212

to correspond to the terahertz picture. Some procedures to do so were reported in the literature51. However, these methods213
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are cumbersome and the evaluation of the histological cliché reconstruction is often complicated since no perfect reference214

pathology image exists. As terahertz imaging remains a new technology for breast carcinoma delineation, the second approach215

was favored - at risk of underestimating the efficiency of the classifiers.216

6 Diagnosis Compliance217

Following the histology routine, pathology images are colored in different shades of blue and pink. The pathologist draws the218

contour of malignant areas based on his/her expertise. From the interpretation of the pathologist, the images were binarized and219

each pixel was classified either as benign or as malignant52.220

Once both diagnosis images exhibit binary information, have the same size and orientation, the compliance between them221

can be evaluated. In case of discrepancies, the pathologist classification prevails over terahertz delineation. The present section222

describes how the ability of classifiers was evaluated with respect to the pathologist one.223

6.1 Performance of the Classification Test224

As each diagnosis presents a binary information, four different cases can be distinguished:225

i. True negative: both methods classify a pixel as benign;226

ii. True positive: both methods classify a pixel as malignant;227

iii. False positive: the terahertz method stands for a malignant pixel while histology stipulates a benign pixel;228

iv. False negative: the terahertz method stands for a benign pixel while histology stipulates a malignant pixel;229

Hence, for each refractive index threshold associated with a specific classifier, one can fill the corresponding confusion230

matrices that highlight the classification procedure performances. In such error matrices, the rows represent the instances in the231

terahertz class, here the predicted class, while columns represent the actual diagnosis provided by histology examination53.232

From these matrices, the effectiveness of the classification method is assessed by creating the receiver operatic characteristic233

(ROC) curve54 for each classifier. The ROC curve represents the ability of the classifier to provide the correct diagnosis as234

the refractive index threshold varies. The ROC curve is obtained by plotting the true positive rate (TPR) as a function of the235

false positive rate (FPR). The TPR is defined as the number of true positives divided by all pixels classified by the pathologist236

as positives: true positives and false negatives. The FPR is defined as the number of false negatives divided by all pixels237

classified by the pathologist as negatives: false positives and true negatives. It can also be thought as a plot of the sensitivity238

- that is equivalent to the TPR defined in equation (8), against the probability of false-alarm - that can be calculated as (1 -239

specificity) and defined in equation (9)55. These measures of performances are favored as they are not sensitive to changes in240

data distributions, compared to accuracy and to error rate. Hence, both metrics can be used with imbalanced data56.241

True Positive Rate = Sensitivity =
True Positives

True Positives+False Negatives
, (8)

False Positive Rate = 1−Specificity =
False Positives

False Positives+True Negatives
. (9)

To complement these measures, the area under each ROC curve (AUC) is calculated as it relies on the performance of score242

classifiers for all possible classification thresholds57.243

Finally, the best discrimination thresholds are selected as the ones that provide the highest sensitivity while preserving the244

healthy tissue area from false diagnosis, i.e. specificity. It is noted that the aforementioned classification procedure is studied for245

the specific case of breast conserving surgery. Hence, it is essential to preserve the healthy area while removing the malignant246

zones. Ultimately, the best classifiers are selected as the ones that provide the highest measure of T PR−FPR, since higher247

values of this function indicates more accurate results.248

7 Results249

In this section, the classifiers are employed to evaluate their effectiveness on three freshly excised breast tissues. Two of these250

samples were diagnosed as invasive ductal carcinoma (IDC) and one was identified as an invasive lobular carcinoma (ILC).251

These samples are referred to as test sample TS#1, TS#2 and TS#3.252
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Figure 7. Sample TS#1. (i). Pathology image and correlated view of the respective zones a, b, c and d; (ii). Pathology mask;
(iii). Raw terahertz image at 550-GHz; (iv). Refractive index map at 550-GHz.

7.1 TS#1253

TS#1 is an invasive ductal carcinoma. The pathology image with some enlightened pathology areas, the pathology mask, the254

raw terahertz image obtained at 550-GHz and the correlated refractive index map are presented in Figure 7.255

It can be observed that the raw terahertz image as well as the refractive index map exhibits specific features that correspond256

to the pathology image. Regions depicted in Figure 7.a. and Figure 7.b. correspond to fibrous tissues that are included in an257

adipose matrix. Such regions are therefore expected to globally give rise to a lower refractive index than the one classified as258

malignant as depicted in Figure 7.c. and Figure 7.d. Although such a refractive index seems overall lower than the refractive259

index of the tumour, it remains relatively close to it. Therefore, classifying only on the basis of the refractive index would260

certainly prove to be inefficient. The sensitivity and the specificity of each structuring element classifier for varying refractive261

index threshold were calculated for TS#1. The corresponding ROC curves and T PR−FPR functions are given in Figure 8.262

Each Λn-dependent ROC curve is located to the left of the T PR = FPR line in Figure 8, proving that the fraction of true263

positives is greater than the proportion of false positives. It is clear that the use of the refractive index alone as a classifier (Λ0)264

is shown to be less efficient than associating the refractive index with a classifier. Such a statement is not surprising as the265

classification does not consider the neighborhood. While on ROC graphics, depicted in Figure 8, it does not seem that obvious266

which classifier among Λ1, Λ2 and Λ3 performs well, the T PR−FPR visualization indicates that the structuring element Λ3
267

in association with a high refractive index threshold by about 2.6 is the most efficient rule of classification. The association268

provides a classification with a sensitivity by around 80% and a specificity of 82%. What is more, the wider the structuring269

element, the higher the refractive index has to be set for good performances. Effectively, starting with a high refractive index270

makes it possible to identify, in a first instance, tissue areas densely populated with cancer cells, while a broad structuring271

element makes it possible to efficiently spread the identification over a wide zone.272

The corresponding AUC for each ROC curve, the T PR−FPR value, the sensitivity and the specificity for the first two best273

refractive index thresholds are given in Table 1 (see Supplementary Information, Supplementary Table 1. for the complete274

list of performances). While Λ1 and Λ2 are less efficient than Λ3 for both sensitivity and specificity, the Λ0 classifier provides275

a slightly greater sensitivity for a threshold of 2.1, by about 83%. However, the gain of 4% in sensitivity with respect to Λ3
276

costs concomitantly 20% in method specificity. Reasonably, this gain is not worth it, considering such a drastic decrease in277

classification specificity. Alternatively, if one wants to increase the sensitivity while maintaining specificity at a reasonable278

level, second best thresholds may offer a promising substitute. On using the second best threshold provided by Λ3 of 2.5, an279

increase of 7% in sensitivity conjointly leads to a decrease by about 12% in specificity. By doing so, one reaches a sensitivity of280

86%.281

The superimposition of the classification images from the reported method and the clinical one, corresponding to the282

performances listed in Table 1 are given in Figure 9.283
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Figure 8. Left: receiver operating characteristic for the different classification methods, at 550-GHz applied to TS#1. The
black line stands for T PR = FPR. Right: Refractive index threshold as a function of the T PR−FPR measure for the different
classifiers.

Table 1. Statistical measure of the performance of the classifiers and AUC. The sensitivity and specificity obtained for the best
performing classifier - refractive index threshold association is given in bold.

Classifier Λ0 Λ1 Λ2 Λ3

AUC 0.7804 0.8149 0.8285 0.8360
RI-Threshold 2.1 2.2 2.4 2.3 2.5 2.4 2.6 2.5
TPR - FPR 0.4540 0.4181 0.5227 0.4829 0.5759 0.5093 0.6068 0.5433

Sensitivity-% 83 62 72 84 76 86 79 86
Specificity-% 62 79 81 65 81 65 82 69
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Figure 9. TS#1 tissue sample classification maps at 550-GHz for Λ0, Λ1, Λ2, Λ3 and their respective first two best thresholds.
“Not applicable” refers to regions where the binary pathology classification and the binary terahertz classification image do not
match spatially. The values listed in each box are respectively standing for the refractive index threshold, the true positive rate
and the false positive rate.
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7.2 TS#2284

TS#2 sample is an invasive ductal carcinoma from which a 67 years old woman was suffering. The initial tumor site was285

found to be roughly 100 mm2. On Figure 10, the pathology image with some enlightened pathology areas, the pathology286

mask, the terahertz image at 550-GHz, and the refractive index map are shown. The pathology image as well as the pathology287

mask exhibit the presence of a hole, where no tissue is found. The lack of tissue in the middle of the section is not natural288

and enlightens the issues, that have been previously reported towards pathology images. Hence, this specific region is not289

considered for performance evaluation.290

Figure 10. Sample TS#2. (i). Pathology image and correlated view of the respective zones a, b, c and d; (ii). Pathology mask;
(iii). Raw terahertz image at 550-GHz; (iv). Refractive index map at 550-GHz.

The ROC curves as well as the T PR−FPR function for different classifiers with various thresholds are given in Figure 11.291

Similarly to the foregoing, all ROC curves are located to the left of the T PR = FPR line, hence proving that the fraction of true292

positives remains greater than that of false positives.293
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Figure 11. Left: receiver operating characteristic for the different classification methods, at 550-GHz applied to TS#2. The
black line stands for T PR = FPR. Right: Refractive index threshold as a function of the T PR−FPR measure for the different
classifiers.
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The most effective classifiers towards conserving classification are Λ2 and Λ3, both for a threshold set at 2.1. While the294

combination of such a threshold with Λ2 provides a sensitivity of 67% and a specificity of 70%, the same threshold operating295

with Λ3 gives rise to a sensitivity by about 78% and a specificity of 57%. Hence, tuning the structuring element geometry296

would offer an interesting trade-off between specificity and sensitivity. The respective performances of each classifier applied297

to TS#2 are listed in Table 2 (see Supplementary Information, Supplementary Table 1. for the complete list of performances).298

Table 2. Statistical measure of the performance of the classifiers and AUC. The sensitivity and specificity obtained for the best
performing classifier - refractive index threshold association is given in bold.

Classifier Λ0 Λ1 Λ2 Λ3

AUC 0.6976 0.7307 0.7264 0.7127
RI-Threshold 1.9 1.8 2.1 2.0 2.1 2.2 2.1 2.2
TPR - FPR 0.3013 0.3006 0.3395 0.3307 0.3697 0.3113 0.3480 0.3295

Sensitivity-% 62 76 54 69 67 51 78 62
Specificity-% 68 54 80 64 70 80 57 71

The classification maps involving each classifier and their respective best performing thresholds are exposed in Figure 12.299

These images show the improvement in classification with the use of morphological dilatation. Moreover, they highlight the300

difficulties of good prediction at the outer margins. Low performance at the outer margins may come from the non-conformity301

of the information in these areas between the terahertz image and the histology picture. The most convincing hypothesis for302

this non-conformity is the tissue deformation imposed by the histological routine.303

Figure 12. TS#2 tissue sample classification maps at 550-GHz for Λ0, Λ1, Λ2, Λ3 and their respective first two best
thresholds. “Not applicable” refers to regions where the binary pathology classification and the binary terahertz classification
image do not match spatially. The values listed in each box are respectively standing for the refractive index threshold, the true
positive rate and the false positive rate.

7.3 TS#3304

In contrast to the two previous samples, the TS3 sample was taken from an 83 years old patient with an invasive lobular305

carcinoma. On Figure 13, the pathology image with some enlightened pathology areas, the pathology mask, the terahertz image306

at 550-GHz, and the refractive index map are shown.307

The ROC curves plotted in Figure 14 indicate a lower efficiency towards classification than the efficiencies for TS#1 and308

TS#2. The cause may be found in the distribution of cancer cells within the malignant zone, in comparison to previously tested309
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Figure 13. Sample TS#3. (i). Pathology image and correlated view of the respective zones a, b, c and d; (ii). Pathology mask;
(iii). Raw terahertz image at 550-GHz; (iv). Refractive index map at 550-GHz.

samples. While for other cases the malignant zone was densely populated, cancer cells are found in small quantity and in310

an inhomogeneous manner over TS#3. Additionally, the histology routine may have alter the tissue morphology as stated in311

section 5.4 Image Discrepancies Issues.312
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Figure 14. Left: receiver operating characteristic for the different classification methods, at 550-GHz applied to TS#3. The
black line stands for T PR = FPR. Right: Refractive index threshold as a function of the T PR−FPR measure for the different
classifiers.

The AUC values and the performances for each classifier are given in Table 3 (see Supplementary Information, Supplemen-313

tary Table 1. for the complete list of performances). Despite the lower efficiency the most accurate classifying strategy remains314

Λ3 when associated with a refractive index threshold of 2.3. The T PR−FPR measure is by around 0.28 with a sensitivity315

of 53% and a specificity of 76%. As already indicated these performances are below the ones reached for other study cases.316

Λ2 classifier offers a greater specificity of 85% but simultaneously concedes 11% upon sensitivity, thus falling below the317

critical threshold of half the number of malignant pixels correctly classified. The weak density of cancer cells within a lobular318

carcinoma slice may lead one to opt for Λ0 classifier operating in association with a low refractive index threshold to maximize319
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the sensitivity, despite a concomitant loss in specificity.320

Table 3. Statistical measure of the performance of the classifiers and AUC. The sensitivity and specificity obtained for the best
performing classifier - refractive index threshold association is given in bold.

Classifier Λ0 Λ1 Λ2 Λ3

AUC 0.6478 0.6631 0.6695 0.6693
RI-Threshold 2.0 1.9 2.2 2.1 2.3 2.2 2.3 2.4
TPR - FPR 0.2215 0.2080 0.2484 0.2148 0.2690 0.2626 0.2845 0.2234

Sensitivity-% 55 72 49 65 42 64 53 36
Specificity-% 68 49 76 56 84 62 76 86

The corresponding classification images for TS#3 for each classifier and the correlated best refractive index threshold are321

demonstrated in Figure 15. The global classification clearly suffers from the spatial discrepancies between the fresh state322

tissue and the histological state. Even though such differences are expected to be the main roots behind classification accuracy323

weakness, the histological type of TS#3 may also trigger difficulties. It can be assumed that the classification strategy may324

provide better performances when applied on ductal carcinoma cases than on lobular ones. However, it is noted that the number325

of samples investigated does not allow to assert such a hypothesis.326

Figure 15. TS#3 tissue sample classification maps at 550-GHz for Λ0, Λ1, Λ2, Λ3 and their respective first two best
thresholds. “Not applicable” refers to regions where the binary pathology classification and the binary terahertz classification
image do not match spatially. The values listed in each box are respectively standing for the refractive index threshold, the true
positive rate and the false positive rate.

8 Conclusions327

In this paper, a new approach to support breast carcinoma margin delineation during surgeries with terahertz radiations was328

proposed. The method relies on the acquisition of the excised samples by means of a terahertz time-domain imager followed by329

a segmentation based on the extracted refractive index map at 550-GHz and its morphological dilation. Morphological dilation330

was introduced to overcome the weakness of the refractive index alone as a classifier in tissue regions sparsely populated with331

cancer cells. Dilation was used to construct a zone of influence of pixels. Hence, tissue areas close to regions identified as332

malignant were succesfully classified as cancerous despite a refractive index suggesting benign zones.333
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The performances of the classifications were assessed for three different samples. Overall, the association of a high334

refractive index threshold with a wide dilation has shown to be the most appropriate combination to maintain both method335

sensitivity and specificity at decent levels for invasive ductal carcinoma. The best performances of the methods have been336

reported to stand by about 80% in sensitivity and 82% in specificity. On the contrary, the same methodology applied onto an337

invasive lobular carcinoma showed lower performances. Various hypothesis were drawn to determine the roots for classification338

failure. While lobular carcinoma are globally less populated by cancer cells than the ductal histology type, pathology image339

alterations may also have contribute by rendering the diagnosis evaluation tedious.340

The recognition performances of malignant areas could be improved. Indeed, the terahertz classification has localized341

false negatives surrounded by true positives. Therefore, implementing an additional and simple processing that classifies as342

malignant, benign-predicted pixels that are encircled by cancerous ones would enhance the classification accuracy.343

Although investigations on higher rank classifier, i.e. for Λn with n> 3, have not been conducted, a more efficient structuring344

element could be found. Nevertheless, a high rank for a structuring element is accompanied by an equally high refractive345

index threshold. Thus, a reasonable assumption would be that the refractive index suitable for the use of these higher-ranked346

classifiers lies beyond the optical properties of biological tissues.347

This preliminary investigation towards terahertz refractive index-based morphological dilation may open the routes to348

refine strategies to improve the accuracy with which breast tumour margins are delineated. However, the field still stands in349

its early stages and suffers challenges due to pathology reference image alterations that complicate classification correctness350

assessment. Additionally, performance comparison with other classification algorithms are yet to be investigated and will be351

needed to pursue with the proposed methodology. Finally, and in authors’s opinion, the applicability of terahertz waves for352

breast carcinoma margin demarcation still requires further studies to evaluate its feasibility in the clinical environment.353

9 Methods354

Numerical procedures were conducted with in-house software, written with the MatLab development framework. The software355

follows mathematical procedures described in this paper and our preceding works.356
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