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This paper aims at proposing a sufficient matrix inequality condition to carry out the global exponential stability of the wave equation under an event-triggering mechanism that updates a damping source term. The damping is distributed in the whole space but sampled in time. The wellposedness of the closed-loop event-triggered control system is shown. Furthermore, the avoidance of Zeno behavior is ensured provided that the initial data are more regular. The interest of the results is drawn through some numerical simulations.

Introduction

The wave equation arises in fluid dynamics, acoustics and electromagnetics and models the evolution and the propagation of wave's amplitude (water waves, sound waves, seismic waves or light waves). In two space dimensions, it can be a model to study the vibration of a stretched elastic membrane like the skin of a drum and in one space dimension, it is called the vibrating cord or string equation. The stabilization and analysis of stability of the wave equation are well-studied in the literature. The multiplier method used by [START_REF] Chen | Control and stabilization for the wave equation in a bounded domain[END_REF] and [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], a micro-local analysis approach by [START_REF] Lebeau | Equation des ondes amorties[END_REF] and a backstepping method by [START_REF] Smyshlyaev | Boundary stabilization of a 1-D wave equation with in-domain antidamping[END_REF] are used to characterize the stability and prove some controllability and stabilization results of this equation. In the present article, we focus on the stabilization problem, and more especially on the digital implementation of the control law. A natural choice is the periodic update of the control. However an alternative way is to design a triggering strategy, which determines through the occurrence of some events when the control needs to be updated. It allows thus efficient use of communication and computational resources: it is the event-based control strategy [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF].

Event-triggered control can be defined as controls updated aperiodically, only when some triggering conditions occur. Systems with event-based sampling are much harder to analyze than systems with periodic sampling because the time-varying nature of the closed-loop system cannot be avoided. Many difficulties that arise in the context of event-based control are due to the introduction of discontinuities when updating the control. Several works have been developed in this area for finite-dimensional networked control systems: see for instance the seminal works [START_REF] Åarzén | A simple event-based PID controller[END_REF][START_REF] Åström | Comparison of periodic and event based sampling for first-order stochastic systems[END_REF] or the most recent ones [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF], [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF] (for nonlinear system), [START_REF] Tanwani | Observer-based feedback stabilization of linear systems with event-triggered sampling dynamic quantization[END_REF] (with observers), [START_REF] Peralez | Event-triggered output feedback stabilization via dynamic high-gain scaling[END_REF] (with high gain approach) and the references therein. As far as infinite dimensional systems are concerned, there exist few designs of event-based control strategies in the literature. Nevertheless, in [START_REF] Yao | Resource-aware model predictive control of spatially distributed processes using event-triggered communication[END_REF][START_REF] Selivanov | Distributed event-triggered control of diffusion semilinear PDEs[END_REF][START_REF] Espitia | Event-triggered boundary control of constantparameter reaction-diffusion PDEs: a small-gain approach[END_REF] and [START_REF] Espitia | Stabilization of boundary controlled hyperbolic PDEs via Lyapunov-based event triggered sampling and quantization[END_REF][START_REF] Davo | Stability analysis of a 2 × 2 linear hyperbolic system with a sampled-data controller via backstepping method and looped-functionals[END_REF][START_REF] Baudouin | Event-triggered damping of a linear wave equation[END_REF] event-based control strategies were considered for parabolic and hyperbolic Partial Differential Equation (PDE).

Two approaches are considered in the event-triggered control framework: the emulation problem and the co-design problem. The emulation problem is addressed if only the event-triggering rules are designed ([22, 13, 12]). The joint design of the control law and the event-triggering conditions is referred in the literature as co-design (as for example, in [START_REF] Seuret | Lq-based event-triggered controller co-design for saturated linear systems[END_REF][START_REF] Heemels | Periodic event-triggered control[END_REF]). In the current paper we are concerned with the first case, that is the emulation context. More precisely, we focus on proposing an event-triggered mechanism ensuring the exponential stability of the linear wave equation by means of a classical damping term, here sampled in time.

A fundamental issue when dealing with event-triggered controllers is to avoid any situation where the mechanism could induce infinitely many updates of the control in a bounded time interval, corresponding to the occurence of a Zeno phenomenon. A solution proposed in the literature to avoid Zeno behavior for infinite dimensional systems (see for example, [START_REF] Espitia | Event-based stabilization of linear systems of conservation laws using a dynamic triggering condition[END_REF][START_REF] Espitia | Event-based boundary control of a linear 2×2 hyperbolic system via backstepping approach[END_REF][START_REF] Espitia | Stabilization of boundary controlled hyperbolic PDEs via Lyapunov-based event triggered sampling and quantization[END_REF][START_REF] Baudouin | Event-triggered damping of a linear wave equation[END_REF][START_REF] Kang | Event-triggered control of Korteweg-de-Vries equation under averaged measurements[END_REF] for examples) consists in adding to the event-triggering condition a term exponentially decreasing and depending on the initial condition of the natural energy of the system. However, although this additional term allows the avoidance of Zeno behavior, it is restrictive in practice since it depends on the initial energy and a maximal decay rate. Actually, in the current paper, we follow another route in order to guarantee the absence of Zeno phenomenon. A simpler event-triggering mechanism is considered here, using only the error variable between the value of the state at the last triggering instant and the current one. Using an adequate Lyapunov functional, related to the energy of the system, the exponential stability of the closed-loop system under event-triggered control is proven. Furthermore, the avoidance of Zeno behavior, is guaranteed by showing the absence of accumulation points in the sequence of time updates. The stability condition proposed is expressed under the form of matrix inequality. The feasibility of such a inequality is also studied. The main results presented in this paper can be viewed as complementary results to those developed in [START_REF] Terushkin | Sampled-data observers for semilinear damped wave equations under point measurements[END_REF][START_REF] Baudouin | Event-triggered damping of a linear wave equation[END_REF].

The paper is organized as follows. Section 1 describes the context and the PDE system that we are concerned with. We present in Section 2 the main results on the proposed event-triggering mechanism. Hence, the well-posedness of the associated closed-loop system, the exponential stability and the avoidance of the Zeno phenomenon are ensured. Section 3 provides a numerical example to illustrate the effectiveness of the approach. Conclusions and perspectives are given in Section 4.

Notation.

The gradient and the Laplacian of the function z are respectively denoted by ∇z

= (∂ x1 z, . . . ∂ x N z) and ∆z = N i=1 ∂ 2 xi z where ∂ xi z = ∂z ∂xi . Given an open set Ω ⊂ R N , L 2 (Ω)
is the Hilbert space of square integrable scalar functions endowed with the norm z = ( Ω |z(x)| 2 dx) 1 2 . We also define the Sobolev spaces H 1 0 (Ω) = {z ∈ L 2 (Ω), ∇z ∈ L 2 (Ω) N , z = 0 on ∂Ω}, equipped with the norm

z H 1 0 (Ω) = ∇z and H 2 (Ω) = {(z, ∇z) ∈ L 2 (Ω) N +1 , ∂ xj ∂ xi z ∈ L 2 (Ω)},
which is the set of all function such that Ω |z| 2 + |∇z| 2 + |∆z| 2 dx is finite. We will often write Ω g(t) instead of Ω g(x, t)dx to ease the reading. Finally, a real symmetric positive definite matrix M is denoted M 0 and in a partitioned matrix, the symbol stands for symmetric blocks.

Problem formulation

Consider a damped wave equation

   ∂ 2 t z(x, t) -∆z(x, t) = -α∂ t z(x, t), ∀(x, t) ∈ Ω × R + , z(x, t) = 0, ∀(x, t) ∈ ∂Ω × R + , z(x, 0) = z 0 (x), ∂ t z(x, 0) = z 1 (x), ∀x ∈ Ω, (1) 
where α > 0 is the damping coefficient and Ω is an open bounded domain in R N , with smooth boundary ∂Ω.

We are interested by an event-triggered implementation of the control term -α∂ t z, so that the control signal applied to the plant is updated only at certain instant {t k } k∈N , defined by a mechanism. We assume that the control action is held constant between two successive events. Moreover, differently from classical periodic sampling techniques, the inter-sampling time t k+1 -t k is not assumed to be constant. The closed-loop system can then be described as follows:

   ∂ 2 t z -∆z = -α∂ t z(t k ), in Ω × [t k , t k+1 ), k ∈ N z = 0, on ∂Ω × R + , z(•, 0) = z 0 , ∂ t z(•, 0) = z 1 , in Ω.
(2) Note that t k , k = 0, 1, • • • , are the triggering instants that satisfy

0 = t 0 < t 1 < • • • < t k < t k+1 < • • • .
Hence, the problem we intend to solve can be summarized as follows.

Problem 1.1. Design a triggering condition in order to guarantee:

1. the well-posedness of the closed-loop system (2), 2. the exponential stability of the system (2),

the avoidance of Zeno behavior.

To address Problem 1.1, as a stepping stone, we exploit and expand the results about the continuous-time version of system [START_REF] Ames | Inequalities for differential and integral equations[END_REF], that is, system [START_REF] Åarzén | A simple event-based PID controller[END_REF].

Indeed, the well-posedness and exponential stability of system (1) have been widely studied in the literature. For instance, in [6, Theorem 2.3 and Theorem 3.4], [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] using the Hille-Yossida's theorem, the authors prove that for any initial conditions (z 0 , z 1 ) ∈ H 1 0 (Ω) × L 2 (Ω), there exists a unique weak solution to (1) satisfying

z ∈ C 0 ([0, T ]; H 1 0 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)).
Moreover it is proved, thanks to a multiplier technique, that the system is exponentially stable. More precisely, there exist C > 0 and δ > 0 such that, for any initial condition in H 1 0 (Ω) × L 2 (Ω), the weak solution z to (1) satisfies, for all t > 0,

E(t) ≤ CE(0)e -δt ,
where the energy E is defined as the sum of the kinetic and potential energies

E(t) = 1 2 ∂ t z(t) 2 + ∇z(t) 2 . ( 3 
)
2 Event-triggering strategy

In order to expand the event-triggering strategy developed in the context of finite-dimensional systems, as for example in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF][START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF][START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF], let us introduce the following error deviation between the speed at the last triggering instant and the current one, for all x ∈ Ω and t ∈ [t k , t k+1 ):

e k (x, t) = ∂ t z(x, t) -∂ t z(x, t k ). (4) 
From there, we can characterize the event-triggering rule we propose to study as:

t k+1 = inf t ≥ t k , e k (t) 2 > 2γE(t) , (5) 
where γ > 0 is a design parameter. The idea consists in measuring the deviation of the damping between the last sampled state and the current one and authorize it to be in a γ proportion of the current energy. In other words, between two triggering instants, e k (t) 2 ≤ 2γE(t) holds, and soon as this becomes false, an update event is generated.

Remark 2.1. The triggering rule (5) is a static rule since it is based on the use of the state of the system and does not contain an internal dynamical variable as in [START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF][START_REF] Espitia | Event-based stabilization of linear systems of conservation laws using a dynamic triggering condition[END_REF][START_REF] Espitia | Event-based boundary control of a linear 2×2 hyperbolic system via backstepping approach[END_REF]. This event-triggering rule is also different from that one considered in [13, Definition 2], [9, Definition 3 ], [START_REF] Kang | Event-triggered control of Korteweg-de-Vries equation under averaged measurements[END_REF][START_REF] Baudouin | Event-triggered damping of a linear wave equation[END_REF] in the sense that no term built from the initial condition of the energy is added.

Using ( 4), the closed-loop system under consideration can be written as follows:

   ∂ 2 t z -∆z = -α∂ t z + αe k , in Ω × [t k , t k+1 ), z = 0, on ∂Ω × R + , z(•, 0) = z 0 , ∂ t z(•, 0) = z 1 , in Ω. (6) 
In the following we separate the study of the well-posedness of system (6), from the exponential stability of the closed-loop system and the guarantee of the avoidance of Zeno behavior.

Well-posedness

Let us begin by defining the maximal time T under which the system (2) subjected to the eventtriggering law (5) has a solution:

T = +∞ if (t k ) is a finite sequence, T = lim sup k→+∞ t k if not. ( 7 
)
From there, one can understand that later in the article, the proof of the absence of Zeno behavior will actually be stemming from the proof that T = +∞ since no accumulation point of the sequence (t k ) k≥0 will be possible.

In this section, leveraging on some regularity of the solutions to the wave equation we prove the following theorem. 

(z 0 , z 1 ) ∈ H 2 (Ω) ∩ H 1 0 (Ω) × H 1 0 (Ω)
, there exists a unique strong solution to (2) under the event-triggering mechanism (5), satisfying

z ∈ C 0 ([0, T ); H 2 (Ω) ∩ H 1 0 (Ω)) ∩ C 1 ([0, T ); H 1 0 (Ω)). (8) 
Proof. We will proceed verbatim as in [START_REF] Baudouin | Event-triggered damping of a linear wave equation[END_REF]. First of all, we show by induction the well-posedness on every sampled interval [t k , t k+1 ]. From the definition (7) of T , this will allow to obtain a unique solution in the class (8).

• Initialization. On the first time interval [0, t 1 ], the control system (2) reads

   ∂ 2 t z -∆z = -αz 1 , in Ω × [0, t 1 ), z = 0, on ∂Ω × (0, t 1 ), z(•, 0) = z 0 , ∂ t z(•, 0) = z 1 , in Ω, (9) 
that is a simple wave equation with initial data (z 0 , z

1 ) ∈ H 2 (Ω) ∩ H 1 0 (Ω) × H 1 0 (Ω) and source term f (t, x) = -αz 1 (x). Since z 1 ∈ H 1 0 (Ω), then f ∈ L 1 (0, t 1 ; H 1 0 (Ω)).
Thus from [6, Theorem 2.2] it follows that there exists a unique solution satisfying

z ∈ C([0, t 1 ]; H 2 (Ω) ∩ H 1 0 (Ω)) ∩ C 1 ([0, t 1 ]; H 1 0 (Ω)).
• Heredity. Let k ∈ N be fixed and assume that

z ∈ C([t k , t k+1 ]; H 2 (Ω) ∩ H 1 0 (Ω)) ∩ C 1 ([t k , t k+1 ]; H 1 0 (Ω)).
Consider now the closed-loop system (2) over the next time interval [t k+1 , t k+2 ]:

       ∂ 2 t z -∆z = -αz 2k+3 , in Ω × [t k+1 , t k+2 ], z = 0, on ∂Ω × [t k+1 , t k+2 ], z(•, t k+1 ) = z 2k+2 , in Ω, ∂ t z(•, t k+1 ) = z 2k+3 , in Ω,
where we have denoted by z 2k+2 and z 2k+3 the position and velocity function values of the wave at t k+1 given by the previous system over [t k , t k+1 ]. This is again a wave equation with source term which belongs to L 1 ([t k+1 , t k+2 ]; L 2 (Ω)) since we assumed z ∈ C 1 ([t k , t k+1 ]; H 1 0 (Ω)) and ∂ t z(t k+1 ) = z 2k+3 . Therefore, applying again [6, Theorem 2.2] we conclude to the existence and the uniqueness of the solution z in the same functional spaces on next time interval [t k+1 , t k+2 ].

By induction, this regularity holds for any k ∈ N. Therefore, from the extension by continuity at the update instants t k , one can conclude that system (2), or equivalently system [START_REF] Chen | Control and stabilization for the wave equation in a bounded domain[END_REF], has a unique solution in the class [START_REF] Davo | Stability analysis of a 2 × 2 linear hyperbolic system with a sampled-data controller via backstepping method and looped-functionals[END_REF].

The fact that Theorem 2.1 holds means that we solved item 1 of Problem 1.1.

Exponential stability

In this section we address item 2 of Problem 1.1, that is, we propose sufficient conditions in order to ensure the exponential stability of system (2)-( 5). The following result can be stated.

Theorem 2.2. Given the damping parameter α > 0, assume there exist positive scalars ε, γ, λ 1 , λ 2 , δ such that the following matrix inequality holds: andC Ω the constant in the Poincaré inequality (see Lemma A.2 in Appendix). Then, for any initial condition (z 0 , z 1 ) ∈ H 2 (Ω) ∩ H 1 0 (Ω) × H 1 0 (Ω), the closed-loop system (2) or (6) under the event-triggering mechanism (5) is exponentially stable with decay rate δ. In other words, there exists

Φ :=     -λ 1 + αεδ δε αε 2 0 φ 22 α 2 0 -λ 2 0 φ 44     ≺ 0 ( 10 
)
with φ 22 = ε -α + δ + λ 2 γ, φ 44 = δ -ε + λ 1 C 2 Ω + λ 2 γ,
K > 0 such that E(t) ≤ KE(0)e -2δt ∀t > 0. ( 11 
)
Furthermore, if the above matrix inequality holds with δ = 0, then the closed-loop system is exponentially stable with a small enough decay rate.

Proof. Let be ε > 0 and define the following Lyapunov functional candidate:

V (t) := 1 2 Ω |∂ t z(x, t)| 2 dx + 1 2 Ω |∇z(x, t)| 2 dx + αε 2 Ω |z(x, t)| 2 dx + ε Ω z(x, t)∂ t z(x, t)dx.
To see the relationship between V (t) and E(t) note first that E(t) ≤ V (t) and then by Cauchy-Schwarz, Young and Poincaré's inequalities (see Lemmas A.1 and A.2 in Appendix), it follows:

V (t) ≤ E(t) + αε 2 z(t) 2 + ε z(t) ∂ t z(t) ≤ E(t) + αε 2 z(t) 2 + ε 2 C Ω ∂ t z(t) 2 + 1 C Ω z(t) 2 ≤ E(t) + ε 2 C Ω ∂ t z(t) 2 + C 2 Ω ε 2 α + 1 C Ω ∇z(t) 2 ,
or equivalently

V (t) ≤ 1 + εC Ω + εαC 2 Ω E(t) = C r E(t). Hence we have E(t) ≤ V (t) ≤ C r E(t). (12) 
Moreover, we want to ensure that:

V (t) + 2δV (t) ≤ 0, ∀t ≥ 0.
Thus let us start by computing the time-derivative of V along the trajectories of (2):

V (t) = Ė(t) + αε Ω z(t)∂ t z(t) + ε Ω |∂ t z(t)| 2 + ε Ω z(t)∂ 2 t z(t). (13) 
From now on, the dependence of the intervals in terms of the mute variable x is ghosted in order to ease the reading. Let us recall that from (6) one has for all (x, t) in Ω × R + :

∂ 2 t z(x, t) = ∆z(x, t) -α∂ t z(x, t) + αe k (x, t). (14) 
In addition to this, one needs to express the time-derivative of the energy Ė(t). Then one gets

Ė(t) = Ω ∂ 2 t z(t)∂ t z(t) + Ω ∇∂ t z(t)∇z(t),
which gives by using ( 14) and the Green formula:

Ė(t) = -α Ω |∂ t z(t)| 2 + α Ω e k (t)∂ t z(t). (15) 
Gathering ( 14), ( 15) and ( 13) we obtain:

V (t) + 2δV (t) = αεδ Ω |z(t)| 2 + (δ -ε) Ω |∇z(t)| 2 + αε Ω z(t)e k (t) + α Ω ∂ t z(t)e k (t) + (ε -α + δ) Ω |∂ t z(t)| 2 + 2δε Ω z(t)∂ t z(t), so that V (t) + 2δV (t) = Ω ψ (x, t)M 1 ψ(x, t)dx, (16) 
with ψ = z ∂ t z e k ∇z and a symmetric matrix

M 1 =     αεδ δε αε 2 0 ε -α + δ α 2 0 0 0 δ -ε     .
Actually we want to satisfy V (t) + 2δV (t) ≤ 0 or equivalently Ω ψ (t)M 1 ψ(t) ≤ 0 subject to some constraints.

The first constraint comes from the Poincaré's inequality z(t) 2 ≤ C 2 Ω ∇z(t) 2 (see Lemma A.2 in Appendix) and it is equivalent to

Ω ψ (t)M 2 ψ(t) ≥ 0, with M 2 = diag(-1, 0, 0, C 2 Ω ).
The second constraint comes from the event-triggering law that imposes e k (t) 2 ≤ 2γE(t), ∀t ∈ [t k , t k+1 ), i.e., while no triggering event occurs. This last inequality can be written e k (t

) 2 ≤ γ ∂ t z(t) 2 + ∇z(t) 2 or equivalently Ω ψ(t) M 3 ψ(t) ≥ 0, with M 3 = diag(0, γ, -1, γ).
Using the S-procedure [5, Section 2.6.3], one therefore wants to satisfy the following condition:

V (t) + 2δV (t) + λ 1 Ω ψ(t) M 2 ψ(t) + λ 2 Ω ψ(t) M 3 ψ(t) ≤ 0 ( 17 
)
for any two positive scalars λ 1 and λ 2 . Since one has ( 16) then it reads:

Ω ψ (x, t)(M 1 + λ 1 M 2 + λ 2 M 3 )ψ(x, t)dx ≤ 0, (18) 
Hence, by defining Φ as Φ = M 1 + λ 1 M 2 + λ 2 M 3 , the satisfaction of relation [START_REF] Espitia | Event-based stabilization of linear systems of conservation laws using a dynamic triggering condition[END_REF] means that relation [START_REF] Kang | Event-triggered control of Korteweg-de-Vries equation under averaged measurements[END_REF] and ( 17) are also satisfied, and therefore one obtains

V (t) + 2δV (t) ≤ 0, ∀t ∈ R + .
That corresponds to have V (t) ≤ e -2δt V (0). By taking [START_REF] Espitia | Event-triggered boundary control of constantparameter reaction-diffusion PDEs: a small-gain approach[END_REF] into account, it follows that E(t) ≤ C r E(0)e -2δt . The proof of Theorem 2.2 is complete.

Before studying the avoidance of Zeno behavior in the next section, let us provide some insights regarding the matrix inequality [START_REF] Espitia | Event-based stabilization of linear systems of conservation laws using a dynamic triggering condition[END_REF]. First, we can use a change of variable γ = λ 2 γ and search both λ 2 and γ as decision variables of Φ ≺ 0 or more precisely of:

Φ :=     -λ 1 + αεδ δε αε 2 0 ε -α + δ + γ α 2 0 -λ 2 0 φ 44     ≺ 0 (19) with φ 44 = δ -ε + λ 1 C 2 Ω + γ.
The negativity of Φ is a sufficient condition allowing to ensure the exponential stability of the closed loop. In the following proposition we show that there always exists a solution (λ 1 , λ 2 , γ, δ) such that ( 19) is satisfied.

Proposition 2.1. Given α > 0, condition (10) of Theorem 2.2 or equivalently condition (19) enjoys the following properties (i) Given δ = 0, condition (19) is always feasible;

(ii) There always exists a positive scalar δ = 0 such that (19) is feasible.

Proof. Let us denote by M 0 the matrix corresponding to -Φ in the case δ = 0:

M 0 :=     λ 1 0 -αε 2 0 0 -ε + α -γ -α 2 0 -αε 2 -α 2 λ 2 0 0 0 0 ε -λ 1 C 2 Ω - γ    .
Condition ( 19) reads M 0 0, which corresponds to:

λ 1 > 0, λ 2 > 0 (20) α -ε -γ > 0 ⇐⇒ ε < α -γ (21) ε -λ 1 C 2 Ω -γ > 0 ⇐⇒ ε > λ 1 C 2 Ω + γ ( 22 
)
and by using the Schur complement [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF] on the first 3 × 3 block we get:

λ 1 0 0 -ε + α -γ - α 2 4λ 2 ε 1 ε 1 > 0 ( 23 
)
By appling the elimination lemma to [START_REF] Prieur | Wave equation with cone-bounded control laws[END_REF] one gets that it is equivalent to

1 -ε λ 1 0 0 -ε + α -γ 1 -ε > 0
which is always satisfied provided that λ 1 , ε and γ satisfy ( 20) and [START_REF] Peralez | Event-triggered output feedback stabilization via dynamic high-gain scaling[END_REF]. Therefore one can conclude that if one can choose λ 1 , ε, γ satisfying ( 20), ( 21) and ( 22) there always exists λ 2 > 0 such that (23) holds. In summary there exists a solution such that M 0 0 holds. Furthermore, the tuning parameter γ is easily recovered from γ and λ 2 .

Consider now δ = 0, then one can write Φ as follows:

Φ = -M 0 + δ     αε ε 0 0 ε 1 0 0 0 0 1 0 0 0 0 0     . ( 24 
)
Since there exist ε, γ, λ 1 , λ 2 such that -M 0 ≺ 0, it follows that there always exists δ > 0 such that Φ ≺ 0. The proof of Proposition 2.1 is complete.

Avoidance of Zeno behavior

In this section, we address the third item of Problem 1.1, namely we prove that we avoid Zeno behavior. Before proving that this phenomenon cannot occur, let us show that the natural energy (3) of the closep-loop system has a useful property stated as follows.

Lemma 2.1. Under the event-triggering mechanism (5) there exists a constant C > 0 such that for all t ∈ [0, T ) :

E(0)e -2Ct ≤ E(t) ≤ E(0)e 2Ct . ( 25 
)
Proof. Let us recall that the time-derivative of E(t) used in the proof of Theorem 2.2 satisfies (15) so that one gets

| Ė(t)| ≤α ∂ t z(t) 2 + α e k (t) ∂ t z(t) (26) 
From the definition (7) of T , since t ∈ [0, T ), either there exists k such that t ∈ [t k , t k+1 ) if the sequence (t k ) k≥0 is not finite, or t may be greater than the last t k and the definition of ( 5) allows to call t k+1 = T . Using the event-triggering law (5) one gets for t ∈ [t k , t k+1 ) :

e k (t) 2 ≤ 2γE(t)
and since ∂ t z(t) 2 ≤ 2E(t) we get :

| Ė(t)| ≤ 2αE(t) + α 2γE(t) 2E(t) | Ė(t)| ≤ 2αE(t) + 2α √ γE(t) or equivalently | Ė(t)| ≤ 2CE(t) with C = α(1 + √ γ). (27) 
It follows that -2CE(t) ≤ Ė(t) ≤ 2CE(t).

Gronwall's Lemma applied on [t k , t] (Lemma A.3 in Appendix) to both inequalities gives

E(t k )e -2C(t-t k ) ≤ E(t) ≤ E(t k )e 2C(t-t k ) . (28) 
Then taking t = t k+1 , it becomes :

E(t k )e -2C(t k+1 -t k ) ≤ E(t k+1 ) ≤ E(t k )e 2C(t k+1 -t k ) .
Inferring what it gives for E(t k ), one can deduce

E(t k-1 )e -2C(t k+1 -t k-1 ) ≤ E(t k+1 ) ≤ E(t k-1 )e 2C(t k+1 -t k-1 )
and since t 0 = 0, by induction we get:

E(0)e -2Ct k+1 ≤ E(t k+1 ) ≤ E(0)e 2Ct k+1 .
Then inequality [START_REF] Tanwani | Observer-based feedback stabilization of linear systems with event-triggered sampling dynamic quantization[END_REF] yields:

E(0)e -2Ct k e -2C(t-t k ) ≤ E(t) ≤ E(0)e 2Ct k e 2C(t-t k ) ,
showing that ( 25) holds for all t ∈ [0, T ).

We can now state the following result about the avoidance of Zeno behavior. The idea is to consider the maximal time T under which we proved that the system (2) subjected to the eventtriggered law (5) has a solution. From the definition of T in [START_REF] Crépeau | Control of a clamped-free beam by a piezoelectric actuator[END_REF], one can verify that if T < +∞, then T is an accumulation point of the sequence (t k ) k≥0 and a Zeno phenomenon occurs. Thus, avoiding Zeno phenomenon is a consequence of proving that T = +∞. Theorem 2.3. There is no Zeno Phenomenon for the system (6) under the event-triggering mechanism (5). Equivalently, the maximal time defined by ( 7) is actually T = +∞.

Proof. By taking inspiration from the reasoning as in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF][START_REF] Girard | Dynamic triggering mechanisms for event-triggered control[END_REF] the proof is based on the study of the function ϕ defined on [t k , t k+1 ) by

ϕ : t → ϕ(t) = e k (t) 2 2γE(t) . (29) 
Let us estimate the time-derivative of ϕ :

φ(t) = Ω ėk (t)e k (t) γE(t) - Ė(t) e k (t) 2 2γ (E(t)) 2 . (30) 
We have from ( 4), ( 6) and the Cauchy Schwartz's inequality, ∀t ∈ [t k , t k+1 );

Ω ėk (t)e k (t) = Ω ∆z(t)e k (t) -α Ω ∂ t z(t)e k (t) + α e k 2 , ≤ e k (t) ∆z(t) + α e k (t) ∂ t z(t) + α e k (t) 2 .
Since for any (z 0 , z 1 ) ∈ H 2 (Ω) ∩ H 1 0 (Ω) × H 1 0 (Ω), the closed-loop system ( 6) with ( 5) has a unique solution satisfying z ∈ C 0 ([0, T ); H 2 (Ω) ∩ H 1 0 (Ω)), then there exists a constant

C 1 > 0 such that ∀t ∈ [0, T ) ∆z(t) ≤ ∆z(t) L ∞ (0,T ;L 2 (Ω)) ≤ C 1 , (31) 
where C 1 depends on z 0 H 2 (Ω) and z 1 H 1 0 (Ω) . Then using ∂ t z(t) 2 ≤ 2E(t) and ( 5 2γ (E(t))

2 ≤ α(1 + √ γ)ϕ(t). (33) 
Gathering the terms (32) and (33) we have:

φ(t) ≤ C 1 √ 2 γE(t) + 2α √ γ + α(2 + √ γ)ϕ(t) ≤ C 1 √ 2 γE(t) + 2α √ γ + α(2 + √ γ).
Recall that from the event-triggering law [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF], an event occurs if ϕ(t) > 1, and as long as ϕ(t) ≤ 1, no update event is trigerred. Hence it follows:

φ(t) ≤ A + B E(t) (34) 
with

A = 2α √ γ + α(2 + √ γ) and B = C 1 2 γ .
Using Lemma 2.1 one gets ∀t ∈ [0, T ), E(t) ≥ E(0)e -2Ct ≥ E(0)e -2CT , and (34) becomes φ(t) ≤ A + Be CT √ E(0)

. Then ∀k ∈ N, integrating on [t k , t k+1 ] knowing that ϕ(t k ) = 0 and ϕ(t k+1 ) = 1 we obtain :

1 ≤ A + Be CT E(0) (t k+1 -t k ). ( 35 
)
Let t k → T as k → +∞ in (35), then we get a contradiction if T = +∞ and then we need to consider T = +∞. That leads to the absence of any accumulation points. Therefore, the avoidance of Zeno behavior is guaranteed.

Main result

The main result to solve Problem 1.1 is obtained by combining Theorems 2.1, 2.2 and 2.3. This is summarized below.

Theorem 2.4. Let α > 0 be a damping parameter. For any initial conditions (z 0 , z 1 ) ∈ H 2 (Ω) ∩ H 1 0 (Ω) × H 1 0 (Ω), system (2) under the event-triggering rule (5) satisfies the following properties: 1. There exists a unique strong solution satisfying (8).

2. The closed-loop exponential stability is ensured provided that the relation [START_REF] Espitia | Event-based stabilization of linear systems of conservation laws using a dynamic triggering condition[END_REF] is feasible.

3. The absence of accumulation points on the sequence of triggering instants ensures the avoidance of Zeno behavior.

Numerical simulation

We illustrate the efficiency of the event-triggering law proposed in this paper by considering the example of a one dimentional wave equation on Ω = (0, π).

We compare the behavior of the continuous-time version of the closed-loop system versus the event-triggered closed-loop version. In other words we compare the behavior of system (1) with the one of system (2) under the event-triggering rule (5). To do this, let us consider the initial conditions z 0 (x) = sin (x) and z 1 (x) = sin (2x) .

and the damping coefficient α = 1. Figure 1 depicts the numerical solution of the closed-loop system (1). The design parameter γ in the event-triggering rule (5) plays a key role in the exponential stability of system (2) under the mechanism [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]. The choice of γ influences the number of updates imposed by (5): the smaller γ, the more frequent the updates. A feasible solution to condition [START_REF] Espitia | Event-based stabilization of linear systems of conservation laws using a dynamic triggering condition[END_REF] in Theorem 2.2 is: λ 1 = 0.1, λ 2 = 1, γ = 0.02, δ = 0.25 and ε = 0.8. As depicted on Figure 2, the solution to system (2)-( 5) converges quickly to the origin. Now in other to better understand how the sampling acts on the exponential stability result, we present in Figure 3, the evolution of the natural energy

E(t) = 1 2 π 0 |∂ t z(x, t)| 2 dx + 1 2 π 0 |∂ x z(x, t)| 2 dx
of the closed-loop system (2) in the following cases (recall that one considers α = 1):

• Under the continuous controller (blue line)

• Under the event-triggered controller (black dotted line) with t k given by the event-triggering rule (5).

• Under the fixed controller f (x, t) = -∂ t z(x, t 0 ) = -z 1 (x) (green line).

• With the controller f (x, t) = -∂ t z(x, kp) (red dashed line) under periodic sampling with period τ = T Nup where N up is the number of update observed during the time T when following (5). First, we remark that when the controller is fixed as f (t) = -z 1 , the energy evolves as the sinusoidal z 1 . This corresponds to the first instant of sampling where no event occurred before. Second, Figure 3 shows that the evolution of energy of the event-triggered control system is similar to the one of the continuous-time controlled system and to the one under ad-hoc periodic sampling. Nevertheless, to the best of our knowledge a proof of the exponential decay of the energy in the case of periodic sampling does not exist. But as it can be seen, a good choice of the period τ leads to the exponential decay of the corresponding energy. More precisely, using trial and error method, one can find that this system becomes unstable when τ > T Nup . Finally, Figure 4 depicts the evolution of the magnitude of the controller f (t) L 2 (0,π) in the continuous-time and the event-triggering frameworks. We notice that the update times are not regular and there is a large variation in the magnitude of the continuous-time controller allowing to conclude that the event-triggered control approach is energy efficient.

Conclusion

In the present paper, the exponential stabilization of the damped linear wave equation under an event-triggering mechanism is guaranteed. A sufficient matrix inequality-based condition for the exponential stability of the system is formulated. The avoidance of the Zeno behavior through the absence of accumulation points in the updates sequence was proved.

This work open the door for future investigations. In particular, it would be relevant to study other classes of PDEs, for example those appearing in vibration control theory as the beam equation [START_REF] Crépeau | Control of a clamped-free beam by a piezoelectric actuator[END_REF]. Moreover, the system could also be subjected to input nonlinearity [START_REF] Prieur | Wave equation with cone-bounded control laws[END_REF] and this is also another interesting direction of future works.
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A Useful Lemmas

Lemma A.1 (Cauchy-Schwarz's inequality [START_REF] Evans | Partial differential equations[END_REF]). For any u, v ∈ L 2 (Ω) it holds Ω u(x)v(x)dx ≤ u L 2 (Ω) v L 2 (Ω) .

Lemma A.2 (Poincaré's inequality [START_REF] Evans | Partial differential equations[END_REF]). Let Ω be a bounded, connected, open subset of R N , of class C 1 . There exists a constant C Ω , depending only on N and on the diameter of the domain Ω, such that for each function z ∈ H 1 0 (Ω),

z L 2 (Ω) ≤ C Ω ∇z L 2 (Ω) .
Lemma A.3 (Gronwall's Inequality [START_REF] Ames | Inequalities for differential and integral equations[END_REF]). Let u be a real-valued continuous function defined on an interval of the form 
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 21 Let Ω be an open bounded domain of class C 2 . For any initial conditions

Figure 1 :

 1 Figure 1: Numerical solution to the closed-loop system (1) under the continuous time controller with the damping coefficient α = 1 for the initial condition (36).

Figure 2 :

 2 Figure 2: Numerical solution to the closed-loop system (2) under the event-triggering mechanism (5) with the damping coefficient α = 1 for the initial condition (36).
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 34 Figure 3: Evolution of the energy E(t) given by (3)

  [a, ∞) or [a, b] or [a, b) with a < b. If u is differentiable in ]a, b[ and satisfies the differential inequality u(t) ≤ β(t)u(t), ∀t ∈]a, b[ then u(t) ≤ u(a) exp t a β(s)ds , ∀t ∈ [a, b].

  ) it follows:

	Ω	ėk (t)e k (t) γE(t)	≤	e k (t) ∆z(t) γE(t)	+	α e k (t) ∂ t z(t) γE(t)	+ α	e k (t) 2 γE(t)
			≤	C 1 2γE(t) γE(t)	+	α 2γE(t) 2E(t) γE(t)	+ αϕ(t),
	which leads to:							
			Ω	ėk (t)e k (t) γE(t)	≤	C 1 γE(t) √ 2	+	2α √ γ	+ αϕ(t).	(32)
	Using (27) we get:							
				-Ė(t) e k (t) 2