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Abstract

This paper aims at proposing a sufficient matrix inequality condition to carry out the global
exponential stability of the wave equation under an event-triggering mechanism that updates a
damping source term. The damping is distributed in the whole space but sampled in time. The well-
posedness of the closed-loop event-triggered control system is shown. Furthermore, the avoidance
of Zeno behavior is ensured provided that the initial data are more regular. The interest of the
results is drawn through some numerical simulations.

Keywords: Wave equation, Event-triggering mechanism, Global exponential stability, Matrix
inequality

Introduction

The wave equation arises in fluid dynamics, acoustics and electromagnetics and models the evolution
and the propagation of wave’s amplitude (water waves, sound waves, seismic waves or light waves).
In two space dimensions, it can be a model to study the vibration of a stretched elastic membrane
like the skin of a drum and in one space dimension, it is called the vibrating cord or string equation.
The stabilization and analysis of stability of the wave equation are well-studied in the literature. The
multiplier method used by [6] and [20], a micro-local analysis approach by [19] and a backstepping
method by [26] are used to characterize the stability and prove some controllability and stabilization
results of this equation. In the present article, we focus on the stabilization problem, and more
especially on the digital implementation of the control law. A natural choice is the periodic update
of the control. However an alternative way is to design a triggering strategy, which determines
through the occurrence of some events when the control needs to be updated. It allows thus
efficient use of communication and computational resources: it is the event-based control strategy
[16].

Event-triggered control can be defined as controls updated aperiodically, only when some trig-
gering conditions occur. Systems with event-based sampling are much harder to analyze than
systems with periodic sampling because the time-varying nature of the closed-loop system cannot
be avoided. Many difficulties that arise in the context of event-based control are due to the intro-
duction of discontinuities when updating the control. Several works have been developed in this
area for finite-dimensional networked control systems: see for instance the seminal works [1, 3]
or the most recent ones [16], [22] (for nonlinear system), [28] (with observers), [21] (with high gain
approach) and the references therein. As far as infinite dimensional systems are concerned, there
exist few designs of event-based control strategies in the literature. Nevertheless, in [30, 24, 12]
and [13, 8, 4] event-based control strategies were considered for parabolic and hyperbolic Partial
Differential Equation (PDE).

Two approaches are considered in the event-triggered control framework: the emulation problem
and the co-design problem. The emulation problem is addressed if only the event-triggering rules
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are designed ([22, 13, 12]). The joint design of the control law and the event-triggering conditions
is referred in the literature as co-design (as for example, in [25, 17]). In the current paper we are
concerned with the first case, that is the emulation context. More precisely, we focus on proposing
an event-triggered mechanism ensuring the exponential stability of the linear wave equation by
means of a classical damping term, here sampled in time.

A fundamental issue when dealing with event-triggered controllers is to avoid any situation where
the mechanism could induce infinitely many updates of the control in a bounded time interval,
corresponding to the occurence of a Zeno phenomenon. A solution proposed in the literature
to avoid Zeno behavior for infinite dimensional systems (see for example, [10, 11, 13, 4, 18] for
examples) consists in adding to the event-triggering condition a term exponentially decreasing and
depending on the initial condition of the natural energy of the system. However, although this
additional term allows the avoidance of Zeno behavior, it is restrictive in practice since it depends
on the initial energy and a maximal decay rate. Actually, in the current paper, we follow another
route in order to guarantee the absence of Zeno phenomenon. A simpler event-triggering mechanism
is considered here, using only the error variable between the value of the state at the last triggering
instant and the current one. Using an adequate Lyapunov functional, related to the energy of the
system, the exponential stability of the closed-loop system under event-triggered control is proven.
Furthermore, the avoidance of Zeno behavior, is guaranteed by showing the absence of accumulation
points in the sequence of time updates. The stability condition proposed is expressed under the
form of matrix inequality. The feasibility of such a inequality is also studied. The main results
presented in this paper can be viewed as complementary results to those developed in [29, 4].

The paper is organized as follows. Section 1 describes the context and the PDE system that
we are concerned with. We present in Section 2 the main results on the proposed event-triggering
mechanism. Hence, the well-posedness of the associated closed-loop system, the exponential stabil-
ity and the avoidance of the Zeno phenomenon are ensured. Section 3 provides a numerical example
to illustrate the effectiveness of the approach. Conclusions and perspectives are given in Section 4.

Notation.

The gradient and the Laplacian of the function z are respectively denoted by ∇z = (∂x1
z, . . . ∂xN

z)

and ∆z =
∑N
i=1 ∂

2
xi
z where ∂xi

z = ∂z
∂xi

. Given an open set Ω ⊂ RN , L2(Ω) is the Hilbert space of

square integrable scalar functions endowed with the norm ‖z‖ = (
∫

Ω
|z(x)|2dx)

1
2 . We also define

the Sobolev spaces H1
0 (Ω) = {z ∈ L2(Ω),∇z ∈

(
L2(Ω)

)N
, z = 0 on ∂Ω}, equipped with the norm

‖z‖H1
0 (Ω) = ‖∇z‖ and H2(Ω) = {(z,∇z) ∈

(
L2(Ω)

)N+1
, ∂xj

∂xi
z ∈ L2(Ω)}, which is the set of

all function such that
∫

Ω

(
|z|2 + |∇z|2 + |∆z|2

)
dx is finite. We will often write

∫
Ω
g(t) instead of∫

Ω
g(x, t)dx to ease the reading. Finally, a real symmetric positive definite matrix M is denoted

M � 0 and in a partitioned matrix, the symbol ? stands for symmetric blocks.

1 Problem formulation

Consider a damped wave equation ∂2
t z(x, t)−∆z(x, t) = −α∂tz(x, t), ∀(x, t) ∈ Ω× R+,
z(x, t) = 0, ∀(x, t) ∈ ∂Ω× R+,
z(x, 0) = z0(x), ∂tz(x, 0) = z1(x), ∀x ∈ Ω,

(1)

where α > 0 is the damping coefficient and Ω is an open bounded domain in RN , with smooth
boundary ∂Ω.

We are interested by an event-triggered implementation of the control term −α∂tz, so that
the control signal applied to the plant is updated only at certain instant {tk}k∈N, defined by a
mechanism. We assume that the control action is held constant between two successive events.
Moreover, differently from classical periodic sampling techniques, the inter-sampling time tk+1− tk
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is not assumed to be constant. The closed-loop system can then be described as follows: ∂2
t z −∆z = −α∂tz(tk), in Ω× [tk, tk+1), k ∈ N
z = 0, on ∂Ω× R+,
z(·, 0) = z0, ∂tz(·, 0) = z1, in Ω.

(2)

Note that tk, k = 0, 1, · · · , are the triggering instants that satisfy

0 = t0 < t1 < · · · < tk < tk+1 < · · · .

Hence, the problem we intend to solve can be summarized as follows.

Problem 1.1. Design a triggering condition in order to guarantee:

1. the well-posedness of the closed-loop system (2),

2. the exponential stability of the system (2),

3. the avoidance of Zeno behavior.

To address Problem 1.1, as a stepping stone, we exploit and expand the results about the
continuous-time version of system (2), that is, system (1).

Indeed, the well-posedness and exponential stability of system (1) have been widely studied in
the literature. For instance, in [6, Theorem 2.3 and Theorem 3.4], [20] using the Hille-Yossida’s
theorem, the authors prove that for any initial conditions (z0, z1) ∈ H1

0 (Ω)× L2(Ω), there exists a
unique weak solution to (1) satisfying

z ∈ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)).

Moreover it is proved, thanks to a multiplier technique, that the system is exponentially stable.
More precisely, there exist C > 0 and δ > 0 such that, for any initial condition in H1

0 (Ω)× L2(Ω),
the weak solution z to (1) satisfies, for all t > 0,

E(t) ≤ CE(0)e−δt,

where the energy E is defined as the sum of the kinetic and potential energies

E(t) =
1

2

(
‖∂tz(t)‖2 + ‖∇z(t)‖2

)
. (3)

2 Event-triggering strategy

In order to expand the event-triggering strategy developed in the context of finite-dimensional
systems, as for example in [27, 22, 15], let us introduce the following error deviation between the
speed at the last triggering instant and the current one, for all x ∈ Ω and t ∈ [tk, tk+1):

ek(x, t) = ∂tz(x, t)− ∂tz(x, tk). (4)

From there, we can characterize the event-triggering rule we propose to study as:

tk+1 = inf
{
t ≥ tk, ‖ek(t)‖2 > 2γE(t)

}
, (5)

where γ > 0 is a design parameter. The idea consists in measuring the deviation of the damping
between the last sampled state and the current one and authorize it to be in a γ proportion of the
current energy. In other words, between two triggering instants, ‖ek(t)‖2 ≤ 2γE(t) holds, and soon
as this becomes false, an update event is generated.

Remark 2.1. The triggering rule (5) is a static rule since it is based on the use of the state of the
system and does not contain an internal dynamical variable as in [15, 10, 11]. This event-triggering
rule is also different from that one considered in [13, Definition 2], [9, Definition 3 ], [18, 4] in the
sense that no term built from the initial condition of the energy is added.
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Using (4), the closed-loop system under consideration can be written as follows: ∂2
t z −∆z = −α∂tz + αek, in Ω× [tk, tk+1),
z = 0, on ∂Ω× R+,
z(·, 0) = z0, ∂tz(·, 0) = z1, in Ω.

(6)

In the following we separate the study of the well-posedness of system (6), from the exponential
stability of the closed-loop system and the guarantee of the avoidance of Zeno behavior.

2.1 Well-posedness

Let us begin by defining the maximal time T under which the system (2) subjected to the event-
triggering law (5) has a solution:{

T = +∞ if (tk) is a finite sequence,
T = lim sup

k→+∞
tk if not. (7)

From there, one can understand that later in the article, the proof of the absence of Zeno behavior
will actually be stemming from the proof that T = +∞ since no accumulation point of the sequence
(tk)k≥0 will be possible.

In this section, leveraging on some regularity of the solutions to the wave equation we prove the
following theorem.

Theorem 2.1. Let Ω be an open bounded domain of class C2. For any initial conditions (z0, z1) ∈
H2(Ω) ∩ H1

0 (Ω) × H1
0 (Ω), there exists a unique strong solution to (2) under the event-triggering

mechanism (5), satisfying

z ∈ C0([0, T );H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, T );H1

0 (Ω)). (8)

Proof. We will proceed verbatim as in [4]. First of all, we show by induction the well-posedness on
every sampled interval [tk, tk+1]. From the definition (7) of T , this will allow to obtain a unique
solution in the class (8).

• Initialization. On the first time interval [0, t1], the control system (2) reads ∂2
t z −∆z = −αz1, in Ω× [0, t1),
z = 0, on ∂Ω× (0, t1),
z(·, 0) = z0, ∂tz(·, 0) = z1, in Ω,

(9)

that is a simple wave equation with initial data (z0, z1) ∈ H2(Ω)∩H1
0 (Ω)×H1

0 (Ω) and source
term f(t, x) = −αz1(x). Since z1 ∈ H1

0 (Ω), then f ∈ L1(0, t1;H1
0 (Ω)). Thus from [6, Theorem

2.2] it follows that there exists a unique solution satisfying

z ∈ C([0, t1];H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, t1];H1

0 (Ω)).

• Heredity. Let k ∈ N be fixed and assume that

z ∈ C([tk, tk+1];H2(Ω) ∩H1
0 (Ω)) ∩ C1([tk, tk+1];H1

0 (Ω)).

Consider now the closed-loop system (2) over the next time interval [tk+1, tk+2]:
∂2
t z −∆z = −αz2k+3, in Ω× [tk+1, tk+2],
z = 0, on ∂Ω× [tk+1, tk+2],
z(·, tk+1) = z2k+2, in Ω,
∂tz(·, tk+1) = z2k+3, in Ω,

where we have denoted by z2k+2 and z2k+3 the position and velocity function values of the wave
at tk+1 given by the previous system over [tk, tk+1]. This is again a wave equation with source
term which belongs to L1([tk+1, tk+2];L2(Ω)) since we assumed z ∈ C1([tk, tk+1];H1

0 (Ω)) and
∂tz(tk+1) = z2k+3. Therefore, applying again [6, Theorem 2.2] we conclude to the existence
and the uniqueness of the solution z in the same functional spaces on next time interval
[tk+1, tk+2].
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By induction, this regularity holds for any k ∈ N. Therefore, from the extension by continuity at
the update instants tk, one can conclude that system (2), or equivalently system (6), has a unique
solution in the class (8).

The fact that Theorem 2.1 holds means that we solved item 1 of Problem 1.1. �

2.2 Exponential stability

In this section we address item 2 of Problem 1.1, that is, we propose sufficient conditions in order
to ensure the exponential stability of system (2)-(5). The following result can be stated.

Theorem 2.2. Given the damping parameter α > 0, assume there exist positive scalars ε, γ, λ1, λ2, δ
such that the following matrix inequality holds:

Φ :=


−λ1 + αεδ δε αε

2 0
? φ22

α
2 0

? ? −λ2 0
? ? ? φ44

 ≺ 0 (10)

with
φ22 = ε− α+ δ + λ2γ, φ44 = δ − ε+ λ1C

2
Ω + λ2γ,

and CΩ the constant in the Poincaré inequality (see Lemma A.2 in Appendix). Then, for any
initial condition (z0, z1) ∈ H2(Ω) ∩ H1

0 (Ω) × H1
0 (Ω), the closed-loop system (2) or (6) under the

event-triggering mechanism (5) is exponentially stable with decay rate δ. In other words, there exists
K > 0 such that

E(t) ≤ KE(0)e−2δt ∀t > 0. (11)

Furthermore, if the above matrix inequality holds with δ = 0, then the closed-loop system is expo-
nentially stable with a small enough decay rate.

Proof. Let be ε > 0 and define the following Lyapunov functional candidate:

V (t) :=
1

2

∫
Ω

|∂tz(x, t)|2dx +
1

2

∫
Ω

|∇z(x, t)|2dx +
αε

2

∫
Ω

|z(x, t)|2dx + ε

∫
Ω

z(x, t)∂tz(x, t)dx.

To see the relationship between V (t) and E(t) note first that E(t) ≤ V (t) and then by Cauchy-
Schwarz, Young and Poincaré’s inequalities (see Lemmas A.1 and A.2 in Appendix), it follows:

V (t) ≤ E(t) +
αε

2
‖z(t)‖2 + ε‖z(t)‖‖∂tz(t)‖

≤ E(t) +
αε

2
‖z(t)‖2 +

ε

2

(
CΩ‖∂tz(t)‖2 +

1

CΩ
‖z(t)‖2

)
≤ E(t) +

ε

2
CΩ‖∂tz(t)‖2 +

C2
Ωε

2

(
α+

1

CΩ

)
‖∇z(t)‖2,

or equivalently
V (t) ≤

(
1 + εCΩ + εαC2

Ω

)
E(t) = CrE(t).

Hence we have
E(t) ≤ V (t) ≤ CrE(t). (12)

Moreover, we want to ensure that:

V̇ (t) + 2δV (t) ≤ 0, ∀t ≥ 0.

Thus let us start by computing the time-derivative of V along the trajectories of (2):

V̇ (t) = Ė(t) + αε

∫
Ω

z(t)∂tz(t) + ε

∫
Ω

|∂tz(t)|2 + ε

∫
Ω

z(t)∂2
t z(t). (13)
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From now on, the dependence of the intervals in terms of the mute variable x is ghosted in order
to ease the reading. Let us recall that from (6) one has for all (x, t) in Ω× R+:

∂2
t z(x, t) = ∆z(x, t)− α∂tz(x, t) + αek(x, t). (14)

In addition to this, one needs to express the time-derivative of the energy Ė(t). Then one gets

Ė(t) =

∫
Ω

∂2
t z(t)∂tz(t) +

∫
Ω

∇∂tz(t)∇z(t),

which gives by using (14) and the Green formula:

Ė(t) = −α
∫

Ω

|∂tz(t)|2 + α

∫
Ω

ek(t)∂tz(t). (15)

Gathering (14), (15) and (13) we obtain:

V̇ (t) + 2δV (t) = αεδ

∫
Ω

|z(t)|2 + (δ − ε)
∫

Ω

|∇z(t)|2 + αε

∫
Ω

z(t)ek(t) + α

∫
Ω

∂tz(t)ek(t)

+ (ε− α+ δ)

∫
Ω

|∂tz(t)|2 + 2δε

∫
Ω

z(t)∂tz(t),

so that

V̇ (t) + 2δV (t) =

∫
Ω

ψ>(x, t)M1ψ(x, t)dx, (16)

with ψ =
(
z ∂tz ek ∇z

)>
and a symmetric matrix

M1 =


αεδ δε αε

2 0
? ε− α+ δ α

2 0
? ? 0 0
? ? ? δ − ε

 .

Actually we want to satisfy V̇ (t) + 2δV (t) ≤ 0 or equivalently
∫

Ω
ψ>(t)M1ψ(t) ≤ 0 subject to some

constraints.
The first constraint comes from the Poincaré’s inequality ‖z(t)‖2 ≤ C2

Ω‖∇z(t)‖2 (see Lemma
A.2 in Appendix) and it is equivalent to∫

Ω

ψ>(t)M2ψ(t) ≥ 0, with M2 = diag(−1, 0, 0, C2
Ω).

The second constraint comes from the event-triggering law that imposes ‖ek(t)‖2 ≤ 2γE(t), ∀t ∈
[tk, tk+1), i.e., while no triggering event occurs. This last inequality can be written ‖ek(t)‖2 ≤
γ
(
‖∂tz(t)‖2 + ‖∇z(t)‖2

)
or equivalently∫
Ω

ψ(t)>M3ψ(t) ≥ 0, with M3 = diag(0, γ,−1, γ).

Using the S-procedure [5, Section 2.6.3], one therefore wants to satisfy the following condition:

V̇ (t) + 2δV (t) + λ1

∫
Ω

ψ(t)>M2ψ(t) + λ2

∫
Ω

ψ(t)>M3ψ(t) ≤ 0 (17)

for any two positive scalars λ1 and λ2.
Since one has (16) then it reads:∫

Ω

ψ>(x, t)(M1 + λ1M2 + λ2M3)ψ(x, t)dx ≤ 0, (18)

Hence, by defining Φ as Φ = M1 + λ1M2 + λ2M3, the satisfaction of relation (10) means that
relation (18) and (17) are also satisfied, and therefore one obtains

V̇ (t) + 2δV (t) ≤ 0, ∀t ∈ R+.

That corresponds to have V (t) ≤ e−2δtV (0). By taking (12) into account, it follows that E(t) ≤
CrE(0)e−2δt. The proof of Theorem 2.2 is complete. �
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Before studying the avoidance of Zeno behavior in the next section, let us provide some insights
regarding the matrix inequality (10). First, we can use a change of variable γ̄ = λ2γ and search
both λ2 and γ̄ as decision variables of Φ ≺ 0 or more precisely of:

Φ :=


−λ1 + αεδ δε αε

2 0
? ε− α+ δ + γ̄ α

2 0
? ? −λ2 0
? ? ? φ44

 ≺ 0 (19)

with
φ44 = δ − ε+ λ1C

2
Ω + γ̄.

The negativity of Φ is a sufficient condition allowing to ensure the exponential stability of the closed
loop. In the following proposition we show that there always exists a solution (λ1, λ2, γ̄, δ) such
that (19) is satisfied.

Proposition 2.1. Given α > 0, condition (10) of Theorem 2.2 or equivalently condition (19) enjoys
the following properties

(i) Given δ = 0, condition (19) is always feasible;

(ii) There always exists a positive scalar δ 6= 0 such that (19) is feasible.

Proof. Let us denote by M0 the matrix corresponding to −Φ in the case δ = 0:

M0 :=


λ1 0 −αε2 0
0 −ε+ α− γ̄ −α2 0
−αε2 −α2 λ2 0

0 0 0 ε− λ1C
2
Ω − γ̄

 .

Condition (19) reads M0 � 0, which corresponds to:

λ1 > 0, λ2 > 0 (20)

α− ε− γ̄ > 0⇐⇒ ε < α− γ̄ (21)

ε− λ1C
2
Ω − γ̄ > 0⇐⇒ ε > λ1C

2
Ω + γ̄ (22)

and by using the Schur complement [5] on the first 3× 3 block we get:(
λ1 0
0 −ε+ α− γ̄

)
− α2

4λ2

(
ε
1

)(
ε 1

)
> 0 (23)

By appling the elimination lemma to (23) one gets that it is equivalent to

(
1 −ε

)(λ1 0
0 −ε+ α− γ̄

)(
1
−ε

)
> 0

which is always satisfied provided that λ1, ε and γ̄ satisfy (20) and (21). Therefore one can conclude
that if one can choose λ1, ε, γ̄ satisfying (20), (21) and (22) there always exists λ2 > 0 such that
(23) holds. In summary there exists a solution such that M0 � 0 holds. Furthermore, the tuning
parameter γ is easily recovered from γ̄ and λ2.

Consider now δ 6= 0, then one can write Φ as follows:

Φ = −M0 + δ


αε ε 0 0
ε 1 0 0
0 0 1 0
0 0 0 0

 . (24)

Since there exist ε, γ̄, λ1, λ2 such that −M0 ≺ 0, it follows that there always exists δ > 0 such that
Φ ≺ 0.
The proof of Proposition 2.1 is complete. �
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2.3 Avoidance of Zeno behavior

In this section, we address the third item of Problem 1.1, namely we prove that we avoid Zeno
behavior.

Before proving that this phenomenon cannot occur, let us show that the natural energy (3) of
the closep-loop system has a useful property stated as follows.

Lemma 2.1. Under the event-triggering mechanism (5) there exists a constant C > 0 such that
for all t ∈ [0, T ) :

E(0)e−2Ct ≤ E(t) ≤ E(0)e2Ct. (25)

Proof. Let us recall that the time-derivative of E(t) used in the proof of Theorem 2.2 satisfies (15)
so that one gets

|Ė(t)| ≤α‖∂tz(t)‖2 + α‖ek(t)‖‖∂tz(t)‖ (26)

From the definition (7) of T , since t ∈ [0, T ), either there exists k such that t ∈ [tk, tk+1) if the
sequence (tk)k≥0 is not finite, or t may be greater than the last tk and the definition of (5) allows
to call tk+1 = T .
Using the event-triggering law (5) one gets for t ∈ [tk, tk+1) :

‖ek(t)‖2 ≤ 2γE(t)

and since ‖∂tz(t)‖2 ≤ 2E(t) we get :

|Ė(t)| ≤ 2αE(t) + α
√

2γE(t)
√

2E(t)

|Ė(t)| ≤ 2αE(t) + 2α
√
γE(t) or equivalently

|Ė(t)| ≤ 2CE(t) with C = α(1 +
√
γ). (27)

It follows that −2CE(t) ≤ Ė(t) ≤ 2CE(t).
Gronwall’s Lemma applied on [tk, t] (Lemma A.3 in Appendix) to both inequalities gives

E(tk)e−2C(t−tk) ≤ E(t) ≤ E(tk)e2C(t−tk). (28)

Then taking t = tk+1, it becomes :

E(tk)e−2C(tk+1−tk) ≤ E(tk+1) ≤ E(tk)e2C(tk+1−tk).

Inferring what it gives for E(tk), one can deduce

E(tk−1)e−2C(tk+1−tk−1) ≤ E(tk+1) ≤ E(tk−1)e2C(tk+1−tk−1)

and since t0 = 0, by induction we get:

E(0)e−2Ctk+1 ≤ E(tk+1) ≤ E(0)e2Ctk+1 .

Then inequality (28) yields:

E(0)e−2Ctke−2C(t−tk) ≤ E(t) ≤ E(0)e2Ctke2C(t−tk),

showing that (25) holds for all t ∈ [0, T ). � �

We can now state the following result about the avoidance of Zeno behavior. The idea is to
consider the maximal time T under which we proved that the system (2) subjected to the event-
triggered law (5) has a solution. From the definition of T in (7), one can verify that if T < +∞,
then T is an accumulation point of the sequence (tk)k≥0 and a Zeno phenomenon occurs. Thus,
avoiding Zeno phenomenon is a consequence of proving that T = +∞.

Theorem 2.3. There is no Zeno Phenomenon for the system (6) under the event-triggering mech-
anism (5). Equivalently, the maximal time defined by (7) is actually T = +∞.
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Proof. By taking inspiration from the reasoning as in [27, 15] the proof is based on the study of
the function ϕ defined on [tk, tk+1) by

ϕ : t 7→ ϕ(t) =
‖ek(t)‖2

2γE(t)
. (29)

Let us estimate the time-derivative of ϕ :

ϕ̇(t) =

∫
Ω

ėk(t)ek(t)

γE(t)
− Ė(t)‖ek(t)‖2

2γ (E(t))
2 . (30)

We have from (4), (6) and the Cauchy Schwartz’s inequality, ∀t ∈ [tk, tk+1);∫
Ω

ėk(t)ek(t)

=

∫
Ω

∆z(t)ek(t)− α
∫

Ω

∂tz(t)ek(t) + α‖ek‖2,

≤ ‖ek(t)‖‖∆z(t)‖+ α‖ek(t)‖‖∂tz(t)‖+ α‖ek(t)‖2.

Since for any (z0, z1) ∈ H2(Ω) ∩H1
0 (Ω)×H1

0 (Ω), the closed-loop system (6) with (5) has a unique
solution satisfying z ∈ C0([0, T );H2(Ω) ∩ H1

0 (Ω)), then there exists a constant C1 > 0 such that
∀t ∈ [0, T )

‖∆z(t)‖ ≤ ‖∆z(t)‖L∞(0,T ;L2(Ω)) ≤ C1, (31)

where C1 depends on ‖z0‖H2(Ω) and ‖z1‖H1
0 (Ω).

Then using ‖∂tz(t)‖2 ≤ 2E(t) and (5) it follows:∫
Ω

ėk(t)ek(t)

γE(t)
≤ ‖ek(t)‖‖∆z(t)‖

γE(t)
+
α‖ek(t)‖‖∂tz(t)‖

γE(t)
+ α
‖ek(t)‖2

γE(t)

≤
C1

√
2γE(t)

γE(t)
+
α
√

2γE(t)
√

2E(t)

γE(t)
+ αϕ(t),

which leads to: ∫
Ω

ėk(t)ek(t)

γE(t)
≤ C1

√
2√

γE(t)
+

2α
√
γ

+ αϕ(t). (32)

Using (27) we get:

−Ė(t)‖ek(t)‖2

2γ (E(t))
2 ≤ α(1 +

√
γ)ϕ(t). (33)

Gathering the terms (32) and (33) we have:

ϕ̇(t) ≤ C1

√
2√

γE(t)
+

2α
√
γ

+ α(2 +
√
γ)ϕ(t) ≤ C1

√
2√

γE(t)
+

2α
√
γ

+ α(2 +
√
γ).

Recall that from the event-triggering law (5), an event occurs if ϕ(t) > 1, and as long as ϕ(t) ≤ 1,
no update event is trigerred. Hence it follows:

ϕ̇(t) ≤ A+
B√
E(t)

(34)

with A =
2α
√
γ

+ α(2 +
√
γ) and B = C1

√
2

γ
.

Using Lemma 2.1 one gets

∀t ∈ [0, T ), E(t) ≥ E(0)e−2Ct ≥ E(0)e−2CT ,

9



and (34) becomes ϕ̇(t) ≤ A+ BeCT√
E(0)

. Then ∀k ∈ N, integrating on [tk, tk+1] knowing that ϕ(tk) = 0

and ϕ(tk+1) = 1 we obtain :

1 ≤

[
A+

BeCT√
E(0)

]
(tk+1 − tk). (35)

Let tk → T as k → +∞ in (35), then we get a contradiction if T 6= +∞ and then we need to
consider T = +∞. That leads to the absence of any accumulation points. Therefore, the avoidance
of Zeno behavior is guaranteed. �

2.4 Main result

The main result to solve Problem 1.1 is obtained by combining Theorems 2.1, 2.2 and 2.3. This is
summarized below.

Theorem 2.4. Let α > 0 be a damping parameter. For any initial conditions (z0, z1) ∈ H2(Ω) ∩
H1

0 (Ω)×H1
0 (Ω), system (2) under the event-triggering rule (5) satisfies the following properties:

1. There exists a unique strong solution satisfying (8).

2. The closed-loop exponential stability is ensured provided that the relation (10) is feasible.

3. The absence of accumulation points on the sequence of triggering instants ensures the avoid-
ance of Zeno behavior.

3 Numerical simulation

We illustrate the efficiency of the event-triggering law proposed in this paper by considering the
example of a one dimentional wave equation on Ω = (0, π).

We compare the behavior of the continuous-time version of the closed-loop system versus the
event-triggered closed-loop version. In other words we compare the behavior of system (1) with
the one of system (2) under the event-triggering rule (5). To do this, let us consider the initial
conditions

z0(x) = sin (x) and z1(x) = sin (2x) . (36)

and the damping coefficient α = 1.
Figure 1 depicts the numerical solution of the closed-loop system (1).
The design parameter γ in the event-triggering rule (5) plays a key role in the exponential

stability of system (2) under the mechanism (5). The choice of γ influences the number of updates
imposed by (5): the smaller γ, the more frequent the updates. A feasible solution to condition (10)
in Theorem 2.2 is: λ1 = 0.1, λ2 = 1, γ = 0.02, δ = 0.25 and ε = 0.8. As depicted on Figure 2, the
solution to system (2)-(5) converges quickly to the origin.

Now in other to better understand how the sampling acts on the exponential stability result,
we present in Figure 3, the evolution of the natural energy

E(t) =
1

2

∫ π

0

|∂tz(x, t)|2dx+
1

2

∫ π

0

|∂xz(x, t)|2dx

of the closed-loop system (2) in the following cases (recall that one considers α = 1):

• Under the continuous controller (blue line)

• Under the event-triggered controller (black dotted line) with tk given by the event-triggering
rule (5).

• Under the fixed controller f(x, t) = −∂tz(x, t0) = −z1(x) (green line).

• With the controller f(x, t) = −∂tz(x, kp) (red dashed line) under periodic sampling with
period τ = T

Nup
where Nup is the number of update observed during the time T when following

(5).
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Figure 1: Numerical solution to the closed-loop system (1) under the continuous time controller with
the damping coefficient α = 1 for the initial condition (36).

First, we remark that when the controller is fixed as f(t) = −z1, the energy evolves as the
sinusoidal z1. This corresponds to the first instant of sampling where no event occurred before.
Second, Figure 3 shows that the evolution of energy of the event-triggered control system is similar
to the one of the continuous-time controlled system and to the one under ad-hoc periodic sampling.
Nevertheless, to the best of our knowledge a proof of the exponential decay of the energy in the
case of periodic sampling does not exist. But as it can be seen, a good choice of the period τ leads
to the exponential decay of the corresponding energy. More precisely, using trial and error method,
one can find that this system becomes unstable when τ > T

Nup
.

Finally, Figure 4 depicts the evolution of the magnitude of the controller ‖f(t)‖L2(0,π) in the
continuous-time and the event-triggering frameworks. We notice that the update times are not
regular and there is a large variation in the magnitude of the continuous-time controller allowing
to conclude that the event-triggered control approach is energy efficient.

4 Conclusion

In the present paper, the exponential stabilization of the damped linear wave equation under an
event-triggering mechanism is guaranteed. A sufficient matrix inequality-based condition for the
exponential stability of the system is formulated. The avoidance of the Zeno behavior through the
absence of accumulation points in the updates sequence was proved.

This work open the door for future investigations. In particular, it would be relevant to study
other classes of PDEs, for example those appearing in vibration control theory as the beam equation
[7]. Moreover, the system could also be subjected to input nonlinearity [23] and this is also another
interesting direction of future works.

Acknowledgement The authors would like to thank Sylvain Ervedoza for interesting and
fruitful discussions on the proof of the avoidance of Zeno phenomenon.
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Figure 2: Numerical solution to the closed-loop system (2) under the event-triggering mechanism (5)
with the damping coefficient α = 1 for the initial condition (36).

Figure 3: Evolution of the energy E(t) given by (3)
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Figure 4: Evolution of the L2-norm of the continuous-time controller in blue and the event-triggered
controller (in black dashed line) with damping coefficient α = 1.

A Useful Lemmas

Lemma A.1 (Cauchy-Schwarz’s inequality [14]). For any u, v ∈ L2(Ω) it holds∫
Ω

u(x)v(x)dx ≤ ‖u‖L2(Ω)‖v‖L2(Ω).

Lemma A.2 (Poincaré’s inequality [14]). Let Ω be a bounded, connected, open subset of RN , of
class C1. There exists a constant CΩ, depending only on N and on the diameter of the domain Ω,
such that for each function z ∈ H1

0 (Ω),

‖z‖L2(Ω) ≤ CΩ‖∇z‖L2(Ω).

Lemma A.3 (Gronwall’s Inequality [2]). Let u be a real-valued continuous function defined on an
interval of the form [a,∞) or [a, b] or [a, b) with a < b. If u is differentiable in ]a, b[ and satisfies
the differential inequality

u̇(t) ≤ β(t)u(t), ∀t ∈]a, b[

then

u(t) ≤ u(a) exp

(∫ t

a

β(s)ds

)
, ∀t ∈ [a, b].
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