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EFFECTS OF HETEROGENEITY AND GLOBAL DYNAMICS OF

WEAKLY CONNECTED SUBPOPULATIONS

Derdei M. Bichara1 , Abderrahman Iggidr2,*

and Souad Yacheur2,3

Abstract. We develop a method that completely characterizes the global dynamics of models with
multiple subpopulations that are weakly interconnected. The method is applied on two classes of models
with multiple subpopulations: an epidemic model that involves multiple host species and multiple
vector species and a patchy vector-borne model. The method consists of two main steps: reducing the
system using tools of large scale systems and studying the dynamics of an auxiliary system related the
original system. The developed method determines the underlying dynamics and the “weight” of each
subpopulations with respect to the dynamics of the whole population, and how the topology of the
connectivity matrix alters the dynamics of the overall population. The method provides global stability
results for all types of equilibria, namely trivial, boundary or interior equilibria.
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1. Introduction

Mathematical models in population dynamics that incorporate age, group, or spatial heterogeneities use
network to describe the interactions between the units of the model. The overall dynamics of these models
is, naturally, driven by the interconnectedness of the sub-populations. For instance, the effects of mixing and
connectivity patterns of populations on the spread of infectious diseases have long been recognized in literature
[1, 26, 27]. The complete or partial dynamics of these types of models have been investigated in [3–5, 8, 10, 11,
19, 20, 24, 29, 34], and the references therein. However, a common point in these papers is that, a rigorous and
complete mathematical analysis of these models requires the subpopulations to be strongly connected. That is,
an irreducibility hypothesis on the network configuration is assumed in these studies [8, 9, 11, 12, 23, 29]. This
hypothesis synchronizes the dynamics in each of the involved subpopulation or patch. For instance, for epidemic
models, typically the disease dies out in all subpopulations, when the basic reproduction number is less than
one, and persists in all of them otherwise.

However, in most cases the graph that represents the connections between the subpopulations is not strongly
connected and the dynamics is not well-understood. Although it has long been assumed in the literature of
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ecological and epidemiological models of dispersal, that when the connectivity (between patches or groups)
is reducible, the dynamics in these patches or groups will be somewhat independent, a clear mathematical
formalism has been lacking. It has been pointed out in [2] the possibility to have mixed equilibria, with some
patches disease free and others with persisting disease when the patches are weakly connected. This has been
formalized in [16]. In this paper, we propose a method that gives a complete characterization of the dynamics
of a class of mathematical models that captures the interactions between subpopulations, regardless of the
topology of their connectivity matrix. Indeed, although the effects of mixing and connectivity patterns on the
dynamics of populations have long been recognized in literature [1, 2, 21, 26, 27], the extend to which these
impact the outcome is not well-understood. The method we provides answers to questions such as: What is the
underlying dynamics of each subpopulations? What is the “weight” of each subpopulations with respect to the
dynamics of the whole population? Which subpopulation is connected to which? And how the topology of the
connectivity matrix alters the dynamics of the overall population?

As a template, we use the proposed method on investigating the dynamics of two of the most complex
class of diseases with multiple subpopulations: zoonoses –infectious diseases caused by pathogens transmissible
under natural conditions from vertebrate animals to humans and vector-borne diseases models in a patchy
environment. Zoonoses represent 75% of emerging and re-emerging infectious diseases, of which 40% are vector-
borne [25]. Moreover, a class of these zoonoses is multi-host and multi-vector. That is the pathogen shared by
multiple definitive or intermediate host species and transmitted by multiple arthropod vector species. These
multifaceted aspects challenge our ability to understand and control zoonoses [36], a class of diseases that cause
over 20 billion USD of direct economic burden worldwide [25, 37]. A key factor in controlling these multi-host
and multi-vector model is assessing the contribution of each host and vector species in the disease dynamics.
Indeed, designing control programs for zoonoses that target only some host species (humans for instance) may
lead to ineffective control effort [36]. Moreover, for many zoonoses, all hosts or vector species are not created
equal [17] as different host and vector species differ in their propensity to infect or acquire infection due to their
ecological habitats or behavior. Similarly, humans and arthropods are often heterogeneously distributed across
space making the risk of malaria and other vector-borne diseases transmission highly variable [18, 31]. This high
variability leads to some areas with stable transmission and others wit unstable transmission [18]. Moreover, the
risks of transmission in areas or patches is not only tied to the clusters of mosquitoes and humans, but also on
the mobility from and to these patches [29, 31]. When the patches are weakly connected, determining the sinks
and sources of these vector-borne diseases allows informed intervention strategies that target the more prolific
patches and therefore a cost-effective control strategies.

The choice of these two types of models is also motivated by the fact that the dynamics of these models
have been well understood if the network is strongly connected [8, 11, 24, 29], a necessary step to determine the
behavior of models with weakly connected subpopulations.

In this paper, we investigate the dynamics of these two classes of model when the network connectivity is not
necessarily irreducible. Particularly, we propose a method that completely characterizes how host heterogene-
ity, vector heterogeneity, and connectivity patterns among subpopulations alter or mitigate disease dynamics.
Although we illustrate our method using epidemic models with multiple subpopulations, the framework is
applicable for all systems involving mixing of multiple subpopulations, including immunological and ecological
models. The punch of our method consists of distinguishing which group or patch acts as sink or source of
the infection, thereby providing a road-map for control strategies. Our framework also identifies the classes of
populations that are futile to target for control, unless some other group of populations have been mitigated.

The paper is organized as follows: Section 2 presents the overall method using a general model. In Section 3,
we illustrate the method on two classes of models: multi-host and multi-vector zoonoses models (Sect. 3.1) and
vector-borne models in a patchy environments (Sect. 3.2). We briefly revisit the derivation of these two models
and the basic properties before presenting the main result, which is the global stability of equilibria, regardless
of the structure of the network configuration. These equilibria could be interior (all positive components) or
mixed (nonnegative components). Section 4 provides an illustration of the method for a lower dimension system
and Section 5 collects our concluding remarks.
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2. Main result

Many problems in population dynamics such as metapopulations, multi-groups can be written as:



ẋ1 = f1(x1,x2, . . . ,xn)
ẋ2 = f2(x1,x2, . . . ,xn)
...
ẋk = fk(x1,x2, . . . ,xn)
...
ẋn = fn(x1,x2, . . . ,xn)

(2.1)

where xi is the vector of each subpopulation and fi is the function that describes how the subpopulation
evolves for itself and how it is connected with the other subpopulations. Many advances have been made in
an attempts to understand the dynamics of these types of models in different settings. The dynamics of these
models naturally depends on how these populations are interconnected. The global stability of steady states for
these models has been partially or completely investigated [5, 8, 9, 11, 14, 19, 20, 23, 24, 27, 29, 30] when the
matrix that represents the connectivity between the subpopulations, groups or patches is irreducible. Typically,
if the irreducibility hypothesis holds, there are only two equilibria, namely the trivial equilibrium and the interior
equilibrium and the trajectories either converge to the trivial equilibrium in all patches or converge towards the
interior equilibrium in all of them depending on a threshold condition. The goal of this section is to provide
a method that paves the way in understanding the global dynamics of models when the populations involved
are weakly interconnected, if the dynamics is well-understood when the network is irreducible. Suppose that
System (2.1), as a model that describes the evolution of multiple populations, is biologically grounded. That is,
the trajectories of System (2.1) remain positive and bounded.

Let M the matrix that describes the interactions between the subpopulations in (2.1). It is well known [6]
that the matrix M is irreducible if and only the corresponding directed graph is strongly connected. That leads
to our main hypothesis:

H: The global dynamics of Model (2.1) is known if M is irreducible.

If M is reducible, the corresponding graph of the network connectivity is not strongly connected. However, it
can be partitioned into connected components. Particularly, by a suitable permutation of the subpopulations,
the matrix M can take the form:

M =


M11 0 . . . 0
M21 M22 . . . 0

...
...

. . .
...

Ms1 Ms2 . . . Mss

 ,

where each block Mii is square and is either irreducible or a 1× 1 matrix. The graphs corresponding to these
Mii are called irreducible components. Notice that some or all of the Mij with i 6= j = 2, . . . , i− 1 can be equal
to 0. If Mij = 0, for all i 6= j, then the different irreducible components Mii, for 1 ≤ i ≤ s, are disconnected
and, using H, the global dynamics System (2.1) is straightforward. Now, suppose that some of the Mij with
i 6= j are non zeros.

Throughout the rest of this article, we will use the following notations. For two real matrices A and B, we
will write A ≤ B if A(i, j) ≤ B(i, j) for all i and j, A < B if A ≤ B and A 6= B, and A� B if A(i, j) < B(i, j)
for all i and j. In a similar way, we will use the same notations for real vectors.
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The key of the method consists of studying incrementally the dynamics of the model, starting with M11.
With the re-arranged graph, System (2.1) can be written as:

ẋ1 = f1(x1)
ẋ2 = f2(x1,x2)
...
ẋk = fk(x1,x2, . . . ,xk)
...
ẋs = fs(x1,x2, . . . ,xs),

(2.2)

where the xi are of appropriate dimensions. Notice the dynamics of x1 is independent of x2, x3, . . . ,xs. More-
over, since M11 is an irreducible component, its dynamics is known, by H. Let x̄1 the corresponding globally
asymptotically stable equilibrium. Now, we use a result of large decomposition system to determine the dynamics
of x2. The outcome of this system is given by the following theorem.

Theorem 2.1. Let C1 be the strongly connected graph corresponding to the irreducible component M11 and
d1 ≥ 0Rq . If the global dynamics of the system

ẋ2 = f2(d1,x2)

is known, then the dynamics of the system {
ẋ1 = f1(x1)
ẋ2 = f2(x1,x2),

(2.3)

is completely characterized.

Proof. Since C1 is a strongly connected graph, its corresponding matrix M11 is irreducible. Hence, by using
H, the global dynamics of the sub system ẋ1 = f1(x1), as a projection of System (2.1) on M11, is known.
Let d1 a corresponding equilibrium which is globally asymptotically stable (GAS), potentiality under some
conditions, denoted by H1. Now recall that the trajectories of (2.3) are bounded and that any equilibrium of
ẋ2 = f2(d1,x2) is globally asymptotically stable for any d1 ≥ 0Rq (potentiality under some conditions, denoted
by H2). By using a result of Vidyasagar [35] (Theorems 3.1 and 3.4), we conclude that the equilibrium (d1,d2)
is GAS for System (2.3), where d2 is the equilibrium of ẋ2 = f2(d1,x2) that is GAS. This ends the proof.

By successively applying Theorem 2.1 on System (2.2), a complete characterization of the equilibria of
System (2.2) will be obtained.

The most challenging part in applying Theorem 2.1 and thus characterize System (2.1), regardless of the
network configuration is the study of the global stability of equilibria for the auxiliary system

ẋj = fj(d1,d2, . . . ,dj−1,xj).

In the following section, we apply this method to two special models – namely a multi-host and multi-vector
model (Sect. 3.1) and a patchy vector-borne model (Sect. 3.2). In these two cases, we assume that the network
is weakly connected and investigate the global dynamics of their equilibria using the method described in
Theorem 2.1.

It is worthwhile to note that earlier, we assumed WLOG that, for any i, Mij 6= 0 for some j = 2, . . . , i− 1.
If Mij = 0 for some j = 2, . . . , i− 1, then we define maximal and minimal irreducible components of the graph.
Indeed, if the network is weakly connected, it is always possible to shrink the graph into a condensed graph
with meta-nodes (see Appendix A). The edges from one meta-node to another describe the edges between the
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irreducible components. The matrices Mij for i 6= j describes the edges between the meta-nodes. An irreducible
component Ci is said to be minimal (or source) if it may influence the dynamics of other Cj , with j 6= i, but not
itself influenced by these Cj , with j 6= i (see Appendix A). In other words, an irreducible component is said to
be minimal if it has no incoming edges. Otherwise, the irreducible component is called maximal. For instance,
in Model 2.2, only C1 (or M11) is minimal, since x1 influences the dynamics of x2, x3, . . . , xs, but these do
not influence the dynamics of x1. They are called maximal irreducible components. The case where there may
be more than one minimal or maximal irreducible components is treated in the following section.

3. Applications

In this section, we apply the general method to two specific cases, namely on zoonoses model and vector-borne
diseases in a patchy environment. These class of models involves the interactions of multiple subpopulations
and their global dynamics are known when their connectivity matrices are irreducible. In the following two
subsections, we successively determine the global dynamics when the network configurations are not irreducible.
Particularly, we provide the complete global dynamics of the corresponding auxiliary systems that leads to the
characterization of the general systems.

3.1. The multi-host and multi-vector model

Multi-vector zoonoses are diseases whose pathogen is shared by many host species and transmitted by one or
multiple arthropods. Hence, capturing the dynamics of these types of diseases must account for the dynamics of
all host and vector species involved, along with the infection processes. For generality’s sake, we assume that the
zoonoses’ epidemiology follows an SEIR−SI structure. Moreover, we consider m host species and p arthropod
species. The infection process is captured as follows. Susceptible hosts of species i (1 ≤ i ≤ m), denoted by
Si, are infected by infectious arthropod of species j (1 ≤ j ≤ p) through biting or landing, at a rate of aij

and an infectiousness of β�i,j . Thus the host species i’s infection rate is

p∑
j=1

ai,jβ
�
i,jSi

Iv,j
Ni

, where Ni is the total

population of host of species i. The susceptible arthropod vectors of species j, denoted by Sv,j , are infected by

infectious host of species i. Hence, the rate of infection of Sv,j is

m∑
i=1

ai,j
βi,jSv,jIi

Ni
. Susceptible hosts of species

i and vectors of species j are recruited at a rate Λi and Λv,j , respectively. Taken together, these assumptions
lead to the system



Ṡ = Λh − diag−1(Nh)diag(S)A ◦B�Iv − diag(µ)S

Ė = diag−1(Nh)diag(S)A ◦B�Iv − diag(µ+ ν)E

İ = diag(ν)E − diag(γ + µ)I

Ṙ = diag(γ)I − diag(µ)R

Ṡv = Λv − diag(Sv)(A ◦B)Tdiag−1(Nh)I − diag(µv + δv)Sv

İv = diag(Sv)(A ◦B)Tdiag−1(Nh)I − diag(µv + δv)Iv

(3.1)

where ◦ denotes the Hadamard product, S = [S1, S2, . . . , Sm]T , E = [E1, E2, . . . , Em]T are the vectors of sus-
ceptible and latent host of all species and I = [I1, I2, . . . , Im]T is the vector of infectious for all host species. For
arthropod vectors, Sv = [Sv,1, Sv,2, . . . , Sv,p]

T and Iv = [Iv,1, Iv,2, . . . , Iv,p]
T denote the vectors of susceptible

and infected respectively. To ease the notations, we denote α = γ + µ. The matrices A, B� and B are given by
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Table 1. Description of the parameters used in System (3.1).

Parameters Description

Λh = [Λ1,Λ2, . . . ,Λm]T Vector of recruitment of the hosts;
Λv = [Λv,1,Λv,2, . . . ,Λv,p]

T Vector of recruitment of the vectors;
ai,j Biting rate of vector j on Host i;
β�i,j Vector of species j’s infectiousness to Host i per biting;
µ = [µ1, µ2, . . . , µm]T Hosts’ death rate;
ν = [ν1, ν2, . . . , νm]T Hosts’ incubation rate;
α = [α1, α2, . . . , αm]T Hosts’ total infectiosity duration;
γ = [γ1, γ2, . . . , γm]T Hosts’ recovery rate;
βi,j Infectiousness of Host i to vectors of species j per biting;
µv = [µv,1, µv,2, . . . , µv,p]

T Vectors’ natural mortality rates;
δv = [δv,1, δv,2, . . . , δv,p]

T Vectors’ control-induced mortality rates.

Figure 1. Flow diagram of Model 3.1. The dashed, dotted and dash-dotted lines capture the
infection routes of vectors from all the infectious hosts. The solid lines capture the infection
routes of hosts from the vectors.

A =


a1,1 a1,2 . . . a1,p
a2,1 a2,2 . . . a2,p

...
...

. . .
...

am,1 am,2 . . . am,p

 , B� =


β�1,1 β�1,2 . . . β�1,p
β�2,1 β�2,2 . . . β�2,p

...
...

. . .
...

β�m,1 β�m,2 . . . β�m,p

 , B =


β1,1 β1,2 . . . β1,p
β2,1 β2,2 . . . β2,p

...
...

. . .
...

βm,1 βm,2 . . . βm,p

 .

These matrices capture the biting rate, vector-to-host transmission, and host-to-vector transmission, respec-
tively. The description of parameter vectors are summarized in Table 1, and a schematic description of flow of
the model is captured by Figure 1.
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System (3.1) is the model considered in [8], for a single stage of infection. The dynamics of the total host
and vector populations are given by Ṅh = Λh − µNh and Ṅv = Λv − (µv + δv)Nv. And so, these populations
are asymptotically constant as Nh → Λh

µ := N̄h and Nv → Λv

µv+δv
:= N̄v when t → ∞. By using the theory

of triangular systems, System (3.1) is equivalent to System (3.1) when Nh = N̄h and Nv = N̄v.
The set

Ω =

{
(S,E, I,Sv, Iv) ∈ R3m+2p

+ |S + E + I ≤ Λh ◦
1

µ
, Sv + Iv ≤ Λv ◦

1

µv + δv

}
is a compact attracting positively invariant set for System (3.1), where ◦ denotes the Hadamard product.
Therefore, the solutions of System (3.1) are biologically substantiated. The trivial equilibrium of System (3.1)
is the disease-free equilibrium (D.F.E) and is given by E0 =

(
S̄,02m, S̄v,0p

)
where

S̄ = Λh ◦
1

µ
and S̄v = Λv ◦

1

µv + δv
.

The basic reproduction number R0, defined as the average number of secondary cases produced by an infected
individual during its infectious period while interacting with a purely susceptible population, can be computed
using the next generation method [15, 33]. The basic reproduction number of System (3.1) with m hosts and p
vectors is given by:

R2
0(m, p) = ρ(N v)

= ρ(N h)

where

N v = diag(N̄v)
(
(A ◦B)Tdiag(ν)diag−1((µ+ ν) ◦ α)

)
diag−1(N̄h)A ◦B�diag−1(µv + δv),

and

N h = A ◦B�diag−1(µv + δv)diag(N̄v)(A ◦B)Tdiag(ν)diag−1((µ+ ν) ◦ α)diag−1(N̄h).

Indeed, by decomposing the infected compartments of (3.1) as a sum of new infection terms and transition
terms,

 Ė

İ

İv

 = F(E, I, Iv) + V(E, I, Iv)

=

 diag−1(N̄h)diag(S)A ◦B�Iv
0

diag(Sv)(A ◦B)Tdiag−1(N̄h)I

+

 −diag(µ+ ν)E
diag(ν)E − diag(α)I
−diag(µv + δv)Iv


The Jacobian matrices at the D.F.E (E0) of F(E, I, Iv) and V(E, I, Iv) are given by:

F = DF(E, I, Iv)

∣∣∣∣∣
E0

=

 0m,m 0m,m A ◦B�
0m,m 0m,m 0m,p
0p,m diag(N̄v)(A ◦B)Tdiag−1(N̄h) 0p,p
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and,

V = DV(E, I, Iv)

∣∣∣∣∣
E0

=

 −diag(µ+ ν) 0m,m 0m,p
diag(ν) −diag(α) 0m,p
0p,m 0p,m −diag(µv + δv)


Hence, we obtain

−V −1 =

 diag−1(µ+ ν) 0m,m 0m,p
diag(ν)diag−1((µ+ ν) ◦ α) diag−1(α) 0m,p

0p,m 0p,m diag−1(µv + δv)


The basic reproduction number is the spectral radius of the next generation matrix

−FV −1 =

 0m,m 0m,m Zvhdiag−1(µv + δv)
0m,m 0m,m 0m,p

Zhvdiag(ν)diag−1((µ+ ν) ◦ α) Zhvdiag(α) 0p,p

 ,

where Zhv = diag(N̄v)(A ◦B)Tdiag−1(N̄h) and Zvh = A ◦B�. Thus, the basic reproduction number is

R0 = ρ(Zhvdiag(ν)diag−1((µ+ ν) ◦ α)Zvhdiag−1(µv + δv))

= ρ(Zvhdiag−1(µv + δv)Zhvdiag(ν)diag−1((µ+ ν) ◦ α)).

The dynamics of the multi-host and multi-vector is tied on how the different units of the model are inter-
connected. That is, the connectivity between host species and vector species. For Model (3.1), the host-vector
configuration network is given by N , where:

N =

(
02m,2m A ◦B�

(A ◦B)T 0m+p,p

)
.

Indeed, it has been shown in [8] that, for System (3.1), the disease either dies out or persists in all hosts
and vectors, under the assumption that the Host-Vector network configuration is strongly connected. For the
convenience of the reader, we recall the following theorem that summarizes the results in [8].

Theorem 3.1 ([8]). If the Host-Vector connectivity configuration N is irreducible, the following hold:

1. If R2
0(m, p) ≤ 1, the DFE is GAS.

2. If R2
0(m, p) > 1, a unique interior endemic equilibrium exists and is GAS.

The connectivity matrix N is irreducible if, and only if (A ◦B)TA ◦B� and A ◦B�(A ◦B)T are irreducible.
However, for zoonoses this irreducibility assumption is not always satisfied as many host species and vector
species, though share the same pathogen, have their natural habitats far away from each others, for a direct
infection to take place. Therefore, it is important to investigate the dynamics of the disease when the network
configuration between hosts and vector species is not strongly connected.
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Figure 2. Digraph of V (C). This is the same as Figure 1, with n = p = 7, and the missing
arrows between host and vector species means the infectiousness rates between them is set to
be zero. The graph is re-arranged in terms of connected components Ci.

Throughout the rest of the paper, we consider System (3.1) in its component-wise form. That is, for i =
1, . . . ,m and j = 1, . . . , p, 

Ṡi = Λi −
p∑
j=1

ai,jβ
�
i,jSi

Iv,j
Ni
− µiSi

Ėi =
∑p
j=1 ai,jβ

�
i,jSi

Iv,j
Ni
− (µi + νi)Ei

İi = νiEi − αiIi

Ṡv,j = Λv,j −
m∑
i=1

ai,jβi,jSv,j
Ii
Ni
− (µv,j + δv,j)Sv,j

İv,j =

m∑
i=1

ai,jβi,jSv,j
Ii
Ni
− (µv,j + δv,j)Iv,j

(3.2)

The following theorem gives the main result of the paper, which characterizes the dynamics of System (3.2),
regardless of the network configuration.

Theorem 3.2.

1. If R2
0(m, p) ≤ 1, the DFE is GAS.

2. If R2
0(m, p) > 1, a unique endemic equilibrium, potentially mixed or interior, is GAS.

Theorem 3.2 provides a global result of equilibria of System (3.2). Particularly, Theorem 3.2, Item 2 arises the
possible existence of boundary equilibria and determines their global behavior. This result is obtained without
any hypothesis on the structure of the host-vector network configuration and thus generalizes the result in [8]
where host-vector configuration is irreducible.

In our model and with vector-borne diseases in general, an infection takes place if at least there is an
interaction between a vector and host. So, we define a node as unit with at least one host and one vector.

With the relaxation of the irreducibility hypothesis in mind, let us re-organize the host-vector network in a
way that makes it as a set of strongly connected component (see Fig. 2). Suppose that there are l strongly
connected components Ci, for i = 1, 2, . . . , l. If l = 1, the host-vector network is irreducible, which is dealt
with in [8] and the dynamics of the model is completely captured by Theorem 3.1. We assume that l ≥ 2.
Let V (C) = {Ci, i = 1, 2, . . . , l}, the set of all Ci. It could be shown that the basic reproduction number for
System (3.1), is:

R2
0(m, p) = max

1≤i≤l
{R2

0,Ci , Ci ∈ V (C)}.
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Figure 3. Directed graph of the condensed network V (C).

– An element Ci of V (C) is called minimal if it may influence the dynamics of other Cj , with j 6= i, but not
itself influenced by these Cj , with j 6= i. For instance, in Figure 2, C1 and C5 are minimal. The elements Cj , with
j 6= 1 and j 6= 5 are called maximal.

The following theorem provides a building-block to prove Theorem 3.2.

Theorem 3.3. Let C be a strongly connected component with m′ hosts and p′ vectors, m′ ≤ m and p′ ≤ p.
Then, for any vector (d̃, d)T ≥ 0, the System

Ṡi = Λi −
p′∑
j=1

ai,jβ
�
i,jSi

Iv,j
Ni
−

p∑
j=p′+1

ai,jβ
�
i,jSi

dj
Ni
− µiSi

Ėi =

p′∑
j=1

ai,jβ
�
i,jSi

Iv,j
Ni

+

p∑
j=p′+1

ai,jβ
�
i,jSi

dj
Ni
− (µi + νi)Ei

İi = νiEi − αiIi

Ṡv,j = Λv,j −
m′∑
i=1

ai,jβi,jSv,j
Ii
Ni
−

m∑
i=m′+1

ai,jβi,jSv,j
d̃i
Ni
− (µv,j + δv,j)Sv,j

İv,j =

m′∑
i=1

ai,jβi,jSv,j
Ii
Ni

+

m∑
i=m′+1

ai,jβi,jSv,j
d̃i
Ni
− (µv,j + δv,j)Iv,j

(3.3)

has the the following behavior

– If R2
0(m′, p′)|(3.3) > 1 or (d̃, d)T > 0, there is a unique interior endemic equilibrium that is GAS.

– If R2
0(m′, p′)|(3.3) ≤ 1 and (d̃, d)T = 0, then the DFE is GAS.

System (3.3) is called the restricted system on C at (d̃, d)T .

Remark 3.4. By denoting R2
0(m′, p′)|(3.3) the basic reproduction number of (3.3), it is straightforward to show

that:

R2
0(m′, p′)|(3.3) := R2

0(m′, p′)|(3.3)(d̃,d)T =(0
Rm−m′ ,0Rp−p′ )

,

where (3.3)(d̃,d)T=(0
Rm−m′ ,0Rp−p′ )

is System (3.3) evaluated at (d̃, d)T = (0Rm−m′ , 0Rp−p′ ).

The following result links the dynamics of System (3.3) to that of System (3.2).

Theorem 3.5. The asymptotic behavior of System (3.3) is isomorphic to that of System (3.2).

Proof. We re-arrange V (C) so that there are k minimal elements C1, C2, . . . , Ck and r − k maximal elements
Ck+1, Ck+2, . . . , Cr, with r = |V (C)|.

Let xq = (S1, S2 . . . , Si(q), E1, E2 . . . , Ei(q), I1, I2 . . . , Ii(q), Sv,1, Sv,2 . . . , Sv,j(q), Iv,1, Iv,2 . . . , Iv,j(q))
T ∈ Cq.
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Here i(q) and j(q) are the number of hosts and vectors in Cq, respectively. Therefore, given that Cq, for
1 ≤ q ≤ k, are minimal, System (3.2) could be written as:

ẋ1 = f1(x1)

ẋ2 = f2(x2)
...
ẋk = fk(xk)

ẋk+1 = fk+1(x1, . . . ,xk,xk+1, . . . ,xr)
...
ẋr = fr(x1, . . . ,xk,xk+1, . . . ,xr)

(3.4)

The first k subsystems of System (3.4) are independent of each others’s variables and the variables of the
remaining r − k subsystems. Moreover, for each q ∈ {1, . . . , k}, Cq is strongly connected and thus the corre-
sponding host-vector configuration is irreducible. Therefore, the dynamics of the subsystems ẋq = fq(xq), for
q ∈ {1, . . . , k}, are known (see Thm. 3.2) as follows:

– If R2
0,Cq ≤ 1, the corresponding disease-free equilibrium, DFEq, is GAS.

– If R2
0,Cq > 1, a unique positive endemic equilibrium x̄q is GAS.

Denoting x∗q (x∗q = x0
q if the equilibrium is the DFEq or x∗q = x̄q, if the equilibrium is endemic) the unique GAS

equilibrium for ẋq = fq(xq) (for 1 ≤ q ≤ k), the asymptotic behavior of System (3.4) can be obtained, using
Vidyasagar’s decomposition techniques [35], by studying the system

ẋk+1 = fk+1(x∗1, . . . ,x
∗
k,xk+1, . . . ,xr)

...
ẋr = fr(x

∗
1, . . . ,x

∗
k,xk+1, . . . ,xr)

(3.5)

Now, we consider System (3.5) as a new system, which is an autonomous system whose state variables are
xk+1, . . . ,xr (the x∗q , . . . ,x

∗
k are constant). System (3.5) is associated with a new network configuration V (C)

–where the input connexions from the minimal elements of V (C) have been cut.
If the new network configuration associated with System 3.5 is strongly connected, then it is equivalent to

System (3.3). Otherwise, we repeat the process. For example, this case is illustrated in Figure 4, after the first
iteration of the method on the network given in Figure 2. Indeed, in the network configuration of Figure 2, C1
and C5 are the minimal elements, and so after the first iteration, the network associated with the corresponding
System 3.5 is illustrated in Figure 4.

We identify the minimal elements (C2 in Fig. 4 is a minimal element and C4 is decoupled from the rest of
the system) on the new network V (C) and we reiterate the method. Repeating this process leads to reduce the
study of the dynamics inside one irreducible component, say s. We obtain the system:

ẋs = fs(x
∗
1, . . . ,x

∗
k,x

∗
k+1, . . . ,x

∗
s−1,xs,x

∗
s+1, . . . ,x

∗
r),

which is System (3.3) with (d̃i, di) being the corresponding coordinates of x∗q , q 6= s. This ends the proof of
Theorem 3.5.

Proof of Theorem 3.3. If (d̃, d)T = 0, the global asymptotic stability is known thanks to Hypothesis H. Partic-
ularly, if R2

0(m′, p′)|(3.3) ≤ 1, the DFE is GAS. If R2
0(m′, p′)|(3.3) > 1 and (d̃, d)T = 0, then it exists an interior

equilibrium that is GAS, by Hypothesis H.
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Figure 4. Network configuration after the first iteration of the reduction method on Figure 2.

The compact convex set Ω is positively invariant for System (3.3). Therefore System (3.3) has an equilibrium
(S∗, E∗, I∗, S∗v , I

∗
v ) in Ω thanks to Brouwer fixed-point theorem. It is clear here that S∗ � 0 and S∗v � 0. For

i = 1, 2, . . . ,m′, we have:

S∗i
Ni

 p′∑
j=1

ai,jβ
�
i,jI
∗
v,j +

p∑
j=p′+1

ai,jβ
�
i,jdj

 = (µi + νi)E
∗
i .

It then follows that E∗i > 0 if at least one dj is non-zero. Therefore I∗i =
νi
αi
E∗i > 0. The same reasoning shows

that I∗v � 0.
We consider the following candidate Lyapunov function:

V =

m∑
i=1

viVi,

where

Vi =

∫ Si

S∗i

(
1− S∗i

x

)
dx+

∫ Ei

E∗i

(
1− E∗i

x

)
dx+

νi + µi
νi

∫ Ii

I∗i

(
1− I∗i

x

)
dx+

p∑
j=1

wijVv,j

with

Vv,j =

∫ Sv,j

S∗v,j

(
1−

S∗v,j
x

)
dx+

∫ Iv,j

I∗v,j

(
1−

I∗v,j
x

)
dx, wij =

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni∑m′

l=1 al,jβl,jS
∗
v,j

I∗l
Nl

.

The derivative of the “Host” part of Vi is given by:

V̇h,i =

(
1− S∗i

Si

)
Ṡi +

(
1− E∗i

Ei

)
Ėi +

νi + µi
νi

(
1− I∗i

Ii

)
İi

= Λi − µiSi − (µi + νi)Ei −
S∗i
Si
Ṡi −

E∗i
Ei
Ėi +

νi + µi
νi

(
1− I∗i

Ii

)
İi (3.6)
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By using the endemic relation stemming from the equation of S, and some re-arrangement, equation (3.6) leads
to:

V̇h,i = µiS
∗
i

(
2− S∗i

Si
− Si
S∗i

)
+

p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

(
2− S∗i

Si
− Si
S∗i

Iv,j
I∗v,j

E∗i
Ei

)

+

p∑
j=p′+1

ai,jβ
�
i,jS

∗
i

dj
Ni

(
3− S∗i

Si
− Si
S∗i

E∗i
Ei

)
+

p′∑
j=1

ai,jβ
�
i,jS

∗
i

Iv,j
Ni

−(νi + µi)E
∗
i

Ii
I∗i
− (νi + µi)E

∗
i

I∗i
Ii

Ei
E∗i

+ (νi + µi)E
∗
i (3.7)

Moreover, by using the endemic relationship that stem from the equation of E:

(µi + νi)E
∗
i =

p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

+

p∑
j=p′+1

ai,jβ
�
i,jS

∗
i

dj
Ni
,

and some careful combinations, we obtain, from equation (3.7),

V̇h,i = µiS
∗
i

(
2− S∗i

Si
− Si
S∗i

)
+

p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

(
3− S∗i

Si
− Si
S∗i

Iv,j
I∗v,j

E∗i
Ei
− I∗i
Ii

Ei
E∗i

)

+

p∑
j=p′+1

ai,jβ
�
i,jS

∗
i

dj
Ni

(
4− S∗i

Si
− Si
S∗i

E∗i
Ei
− I∗i
Ii

Ei
E∗i
− Ii
I∗i

)
+

p′∑
j=1

ai,jβ
�
i,jS

∗
i

Iv,j
Ni

−

 p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

 Ii
I∗i
. (3.8)

Now, we will determine the derivative of vector part of Vi. That is, Vv,j where

Vv,j =

∫ Sv,j

S∗v,j

(
1−

S∗v,j
x

)
dx+

∫ Iv,j

I∗v,j

(
1−

I∗v,j
x

)
dx.

We obtain,

V̇v,j =

(
1−

S∗v,j
Sv,j

)
Ṡv,j +

(
1−

I∗v,j
Iv,j

)
İv,j =

(
Ṡv,j + İv,j −

S∗v,j
Sv,j

Ṡv,j −
I∗v,j
Iv,j

İv,j

)

= (µv,j + δv,j)S
∗
v,j

(
2−

S∗v,j
Sv,j

− Sv,j
S∗v,j

)
+

m′∑
i=1

ai,jβi,jS
∗
v,j

I∗i
Ni

(
1−

S∗v,j
Sv,j

−
I∗v,j
Iv,j

Sv,j
S∗v,j

Ii
I∗i

)

+

m∑
i=m′+1

ai,jβi,jS
∗
v,j

d̃i
Ni

(
2−

S∗v,j
Sv,j

−
I∗v,j
Iv,j

Sv,j
S∗v,j

)

−(µv,j + δv,j)Iv,j +

m′∑
i=1

ai,jβi,jS
∗
v,j

Ii
Ni

+ (µv,j + δv,j)I
∗
v,j (3.9)
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However, we have (µv,j + δv,j)I
∗
v,j =

∑m′

i=1 ai,jβi,jS
∗
v,j

I∗i
Ni

+
∑m
i=m′+1 ai,jβi,jS

∗
v,j

d̃i
Ni
.

Therefore, equation (3.9) gives:

V̇v,j = (µv,j + δv,j)S
∗
v,j

(
2−

S∗v,j
Sv,j

− Sv,j
S∗v,j

)
+

m′∑
i=1

ai,jβi,jS
∗
v,j

I∗i
Ni

(
2−

S∗v,j
Sv,j

−
I∗v,j
Iv,j

Sv,j
S∗v,j

Ii
I∗i

)

+

m∑
i=m′+1

ai,jβi,jS
∗
v,j

d̃i
Ni

(
3−

S∗v,j
Sv,j

−
I∗v,j
Iv,j

Sv,j
S∗v,j

− Iv,j
I∗v,j

)
−

 m′∑
i=1

ai,jβi,jS
∗
v,j

I∗i
Ni

 Iv,j
I∗v,j

+

m′∑
i=1

ai,jβi,jS
∗
v,j

Ii
Ni

(3.10)

Now, the overall derivative of the Lyapunov candidate is, using (3.8) and (3.10):

V̇ =

m∑
i=1

viV̇i =

m∑
i=1

vi

V̇h,i +

p∑
j=1

wijV̇v,j



=

m∑
i=1

vi

µiS∗i
(

2− S∗i
Si
− Si
S∗i

)
︸ ︷︷ ︸

Ah,i

+

p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

(
3− S∗i

Si
− Si
S∗i

Iv,j
I∗v,j

E∗i
Ei
− I∗i
Ii

Ei
E∗i

)

+

p∑
j=p′+1

ai,jβ
�
i,jS

∗
i

dj
Ni

(
4− S∗i

Si
− Si
S∗i

E∗i
Ei
− I∗i
Ii

Ei
E∗i
− Ii
I∗i

)
︸ ︷︷ ︸

Cij

+

p′∑
j=1

ai,jβ
�
i,jS

∗
i

Iv,j
Ni

−

 p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

 Ii
I∗i

+

p′∑
j=1

wij(µv,j + δv,j)S
∗
v,j

(
2−

S∗v,j
Sv,j

− Sv,j
S∗v,j

)
︸ ︷︷ ︸

Av,j

+

p′∑
j=1

wij

m′∑
i=1

ai,jβi,jS
∗
v,j

I∗i
Ni

(
2−

S∗v,j
Sv,j

−
I∗v,j
Iv,j

Sv,j
S∗v,j

Ii
I∗i

)

+

p′∑
j=1

wij

m∑
i=m′+1

ai,jβi,jS
∗
v,j

d̃i
Ni

(
3−

S∗v,j
Sv,j

−
I∗v,j
Iv,j

Sv,j
S∗v,j

− Iv,j
I∗v,j

)
︸ ︷︷ ︸

C̃ij

−
p′∑
j=1

wij

 m′∑
i=1

ai,jβi,jS
∗
v,j

I∗i
Ni

 Iv,j
I∗v,j

+

p′∑
j=1

wij

m′∑
i=1

ai,jβi,jS
∗
v,j

Ii
Ni

 (3.11)
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The terms Ah,i, Av,j , Cij and C̃ij are negative definite. So, we focus on other terms in (3.11). Moreover, by
using the expression of wij given at the beginning of the proof, the terms in Iv,j cancel in (3.11); and thus:

V̇ =

m′∑
i=1

vi

Ah,i +

p∑
j=p′+1

Cij +

p′∑
j=1

Av,j +

p′∑
j=1

wij

m∑
i=m′+1

C̃ij

+

p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

(
3− S∗i

Si
− Si
S∗i

Iv,j
I∗v,j

E∗i
Ei
− I∗i
Ii

Ei
E∗i

)
−

 p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

 Ii
I∗i

+

p′∑
j=1

wij

m′∑
i=1

ai,jβi,jS
∗
v,j

I∗i
Ni

(
2−

S∗v,j
Sv,j

−
I∗v,j
Iv,j

Sv,j
S∗v,j

Ii
I∗i

)
+

p′∑
j=1

wij

m′∑
i=1

ai,jβi,jS
∗
v,j

Ii
Ni

 (3.12)

Now, we claim that the linear terms in Ii cancel in (3.12). That is:

m′∑
i=1

vi

−
 p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

 Ii
I∗i

+

p′∑
j=1

wij

m′∑
i=1

ai,jβi,jS
∗
v,j

Ii
Ni

 = 0.

or equivalently,

m′∑
i=1

vi

−
 p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

 Ii
I∗i

+

p′∑
j=1

wij

m′∑
l=1

al,jβl,jS
∗
v,j

Il
Nl

 = 0. (E)

However, note that:

p′∑
j=1

wij

 m′∑
l=1

al,jβl,jS
∗
v,j

Il
Nl

 =

p′∑
j=1

 m′∑
l=1

wijal,jβl,jS
∗
v,j

Il
Nl

 =

m′∑
l=1

Il

 p′∑
j=1

wijal,jβl,jS
∗
v,j

1

Nl


︸ ︷︷ ︸

αil

=

m′∑
l=1

Ilαil. (3.13)

Hence, by summing over on equation (3.13), we obtain

m′∑
i=1

vi

 p′∑
j=1

wij

m′∑
l=1

al,jβl,jS
∗
v,j

Il
Nl

 =

m′∑
i=1

vi

 m′∑
l=1

Ilαil

 =

m′∑
l=1

vl

 m′∑
i=1

Iiαli

 =

m′∑
i=1

 m′∑
l=1

vlαli

 Ii

=

m′∑
i=1

 m′∑
l=1

vl

p′∑
j=1

wljai,jβi,jS
∗
v,j

I∗i
Ni

 Ii
I∗i
.

Hence, to show (E), we need to show that:

m′∑
i=1

vi

 p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

 Ii
I∗i

=

m′∑
i=1

 m′∑
l=1

vl

p′∑
j=1

wljai,jβi,jS
∗
v,j

I∗i
Ni

 Ii
I∗i
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or equivalently,

vi

p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

=

m′∑
l=1

vl

p′∑
j=1

wljai,jβi,jS
∗
v,j

I∗i
Ni
, for all i (E)′.

The vl are then solutions of Bv = 0 where

B =



♣11

∑p′

j=1 w2j

a1,jβ1,jS
∗
v,jI

∗
1

N1
. . .

∑p′

j=1 wm′j
a1,jβ1,jS

∗
v,jI

∗
1

N1∑p′

j=1 w1j

a2,jβ2,jS
∗
v,jI

∗
2

N2
♣22 . . .

∑p′

j=1 wm′j
a2,jβ2,jS

∗
v,jI

∗
2

N2
...

...
. . .

...∑p′

j=1 w1j

am′,jβm′,jS
∗
v,jI

∗
m′

Nm′

∑p′

j=1 w2j

am′,jβm′,jS
∗
v,jI

∗
m′

Nm′
. . . ♣m′m′


where

♣kk =

p′∑
j=1

wkj

− m′∑
i=1,i6=k

ai,jS
∗
v,jβi,jI

∗
i

Ni

 .

Hence, Relation (E)′ is satisfied given that the vl are the components of the solution of Bv = 0. Given the
expressions of wij , the entries of B, for i 6= j, can be written as:

♣ij =
I∗i
Ni

p′∑
k=1

wjkai,kβi,kS
∗
v,k =

I∗i S
∗
j

NiNj

p′∑
k=1

aj,kβ
�
j,kai,kβi,kI

∗
v,k∑m′

l=1 al,kβl,k
I∗l
Nl

, (3.14)

and (A ◦B�.(A ◦B)T )ij =
∑p′

k=1 aj,kβ
�
j,kai,kβi,k, for i 6= j.

The component C is a strongly connected component with m′ hosts and p′ vectors. Hence, the matrix
A◦B�(A◦B)T and (A◦B)TA◦B� are irreducible. This implies that, by construction, the matrix B is irreducible
(see Relation (3.14)).

The matrix B represents the Laplacian of the network connectivity on C and thus the positivity of v such that
Bv = 0 follows using can be proved using Gershgorin’s theorem and Perron-Frobenius Theorem for irreducible
Metzler matrices ([32], Chap. 4, Cor. 3.2). Moreover, vi = Cii, where Cii are the cofactors of B.

Therefore, equation (3.12) reduces to

V̇ =

m′∑
i=1

vi

Ah,i +

p∑
j=p′+1

Cij +

p′∑
j=1

Av,j +

p′∑
j=1

wij

m∑
i=m′+1

C̃ij

+

p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

(
3− S∗i

Si
− Si
S∗i

Iv,j
I∗v,j

E∗i
Ei
− I∗i
Ii

Ei
E∗i

)

+

p′∑
j=1

wij

m′∑
i=1

ai,jβi,jS
∗
v,j

I∗i
Ni

(
2−

S∗v,j
Sv,j

−
I∗v,j
Iv,j

Sv,j
S∗v,j

Ii
I∗i

)
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To avoid confusion, we switch the index i by l in the third term of the previous equation. Hence,

V̇ =

m′∑
i=1

vi

Ah,i +

p∑
j=p′+1

Cij +

p′∑
j=1

Av,j +

p′∑
j=1

wij

m∑
i=m′+1

C̃ij

+

p′∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

(
3− S∗i

Si
− Si
S∗i

Iv,j
I∗v,j

E∗i
Ei
− I∗i
Ii

Ei
E∗i

)

+

p′∑
j=1

wij

m′∑
l=1

al,jβl,jS
∗
v,j

I∗l
Nl

(
2−

S∗v,j
Sv,j

−
I∗v,j
Iv,j

Sv,j
S∗v,j

Il
I∗l

) (3.15)

By using the expression of wij , (3.15) becomes:

V̇ =

m′∑
i=1

vi

Ah,i +

p∑
j=p′+1

Cij +

p′∑
j=1

Av,j +

p′∑
j=1

wij

m∑
i=m′+1

C̃ij


+

m′∑
i=1

p′∑
j=1

m′∑
l=1

viwijal,jβl,jS
∗
v,j

I∗l
Nl

(
5− S∗i

Si
− Si
S∗i

Iv,j
I∗v,j

E∗i
Ei
− I∗i
Ii

Ei
E∗i
−
S∗v,j
Sv,j

−
I∗v,j
Iv,j

Sv,j
S∗v,j

Il
I∗l

)

=

m′∑
i=1

vi

Ah,i +

p∑
j=p′+1

Cij +

p′∑
j=1

Av,j +

p′∑
j=1

wij

m∑
i=m′+1

C̃ij

+Hm′ , (3.16)

where

Hm′ :=

m′∑
i=1

p′∑
j=1

m′∑
l=1

viwij β̄l,j

(
5− S∗i

Si
− Si
S∗i

Iv,j
I∗v,j

E∗i
Ei
− I∗i
Ii

Ei
E∗i
−
S∗v,j
Sv,j

−
I∗v,j
Iv,j

Sv,j
S∗v,j

Il
I∗l

)
,

with β̄l,j = al,jβl,jS
∗
v,j

I∗l
Nl

.

Now, since the matrix B is irreducible, using the arithmetic mean-geometric mean Inequality, we have that
Hm′ is definite negative [20]. Hence, it follows that (3.16), as a sum of definite-negative terms, is definite-negative.
This ends the proof.

3.2. Vector-borne models in patchy environments

Mathematical models that describe the evolution of vector-borne diseases where the environment is structured
in patches have been investigated in different settings. However, only recently the global dynamic of these models
have been established [11, 24, 29] under some hypotheses. For these models, an irreducibility hypothesis is
required to prove the uniqueness and global stability for the interior equilibrium. In [11], numerical simulations
have been used to indicate the existence and potential stability of a boundary equilibrium when the mobility
matrix is not irreducible. However, a theoretical assessment of the dynamics when the network is reducible
has been an open problem. In this subsection, we establish the global asymptotic stability of the equilibria
when the network is reducible, using the method described in Section 2. A particular case of this result is
that the irreducibility hypothesis is a sufficient but not necessary for the existence of an interior equilibrium.
Let us consider a spatially heterogeneous environment with n patches, within which there are human host and
mosquito vectors. The host populations travel between patches following a Lagrangian approach [11, 13, 28],
for which residence times is used to model human mobility. We consider an SIR-SI epidemiological structure.
Particularly, we consider the model:
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for i = 1, . . . , n,



Ṡi = Λh,i − Sh,i
n∑
j=1

lijIv,j − µh,iSh,i

İh,i = Sh,i

n∑
j=1

lijIv,j − (µh,i + γh,i)Ih,i

Ṡv,i = Λv,i − Sv,i
n∑
j=1

mijIh,j − (µv,i + δv,i)Sv,i

İv,i = Sv,i

n∑
j=1

mijIh,j − (µv,i + δv,i)Iv,i,

(3.17)

This model is equivalent to the models considered in [11, 24]. In this case, the matrices M = (mij) and
L = (lij) are compound and the values of their entries represent a complex biological cascade of events leading to
the infection, including the biting rate per patches, probability of infectiousness, infection force and the mobility
patterns of the hosts. For convenience, we recall the results when the connectivity matrix is irreducible. In this
case, the model has a sharp threshold property whether the disease either dies out from all patches or persists
in all of them depending on whether the threshold known as the basic reproduction number is below or above
unity. The basic reproduction number of System (3.17) is:

R2
0 = ρ

(
diag(S0

v)M diag−1(µh + γh) diag(S0
h)Ldiag−1(µv + δ)

)
,

where

S0
h = diag−1(µh)Λh,S

0
v = diag−1(µv + δ)Λv,M = (mij), L = (lij),

and ρ(.) the spectral radius operator.

Theorem 3.6. [11, 24] Under the assumption that the network is irreducible, we have that

1. If R0 ≤ 1, the DFE is globally asymptotically stable.
2. If R0 > 1, the DFE is unstable and it exists a unique interior equilibrium that is GAS.

Now, our goal is to investigate the dynamics when the network is reducible. In this case, we can re-structure
the network into smaller irreducible components. The components could be either maximal (i.e., sink) or minimal
(i.e., source). If the component is minimal, then its dynamics is not influenced by the rest of the network and
its dynamics is equivalent to that of Theorem 3.6. Let C, an irreducible component that has n′ patches (with
n′ ≤ n) and that is maximal. Let us consider the dynamics of the auxiliary system on that component:

for i = 1 . . . n′,



Ṡi = Λh,i − Sh,i
n′∑
j=1

lijIv,j − Sh,i
n∑

j=n′+1

lijdj − µh,iSh,i

İh,i = Sh,i

n′∑
j=1

lijIv,j + Sh,i

n∑
j=n′+1

lijdj − (µh,i + γh,i)Ih,i

Ṡv,i = Λv,i − Sv,i
n′∑
j=1

mijIh,j − Sv,i
n∑

j=n′+1

mij d̃j − (µv,i + δv,i)Sv,i

İv,i = Sv,i

n′∑
j=1

mijIh,j + Sv,i

n∑
j=n′+1

mij d̃j − (µv,i + δv,i)Iv,i

(3.18)
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Theorem 3.7. Let x∗ an equilibrium for Model (3.18). Then, x∗ is GAS for all (d̃, d) ≥ 0. Particularly, x∗ is
an interior equilibrium if R0,C > 1 or if (d̃, d)� 0.

The equilibrium x∗ can be a boundary or an interior equilibrium depending on its R0,C and the equilibrium
of states of the other irreducible components affecting the dynamics on C. That is, on the value of the vector
(d̃, d). If (d̃, d) := 0, System (3.18) has the same dynamics as System (3.17), which are provided by Theorem 3.6.
If (d̃, d)� 0, the trajectories of System (3.18) converge toward an interior equilibrium, regardless of the value
of the basic reproduction number of System (3.18).

Proof of Theorem 3.7. Let us consider the following Lyapunov candidate:

V =

n′∑
i=1

gh,i
(
Sh,i − S∗h,i lnSh,i + Ih,i − I∗h,i ln Ih,i

)
+

n′∑
i=1

gv,i
(
Sv,i − S∗v,i lnSv,i + Iv,i − I∗v,i ln Iv,i

)
,

where gv,k, for k = 1, . . . , n′ are given by

gv,k =
1

S∗v,k
∑n′

j=1mkjI∗h,j

n′∑
i=1

gh,iS
∗
h,ilikI

∗
v,k

Since C is an irreducible component with n′ patches, the coefficients gv,k are well-defined. The coefficients gh,i,
for i = 1, 2, . . . , n′ will be defined later. The derivative of V along the trajectories of System (3.18) is given by:

V̇ = Ah +Av +

n′∑
i=1

gh,i

S∗h,i n∑
j=n′+1

lijdj

(3− Sh,i
S∗h,i
− Sh,i
S∗h,i

I∗h,i
Ih,i
− Ih,i
I∗h,i

)

+

n′∑
i=1

gh,iS
∗
h,i

n′∑
j=1

lijI
∗
v,j

(
1−

S∗h,i
Sh,i

)
+

n′∑
i=1

gh,iS
∗
h,i

n′∑
j=1

lijIv,j

−
n′∑
i=1

gh,i
Ih,i
I∗h,i

S∗h,i n′∑
j=1

lijI
∗
v,j

− n′∑
i=1

gh,i
I∗h,i
Ih,i

Sh,i n′∑
j=1

lijIv,j

+

n′∑
i=1

gh,i

S∗h,i n′∑
j=1

lijI
∗
v,j

 .

+

n′∑
i=1

gv,iS
∗
v,i

n∑
j=n′+1

mij d̃j

(
3−

S∗v,i
Sv,i
− Sv,i
S∗v,i

I∗v,i
Iv,i
− Iv,i
I∗v,i

)
+

n′∑
i=1

gv,iS
∗
v,i

n′∑
j=1

mijIh,j

−
n′∑
i=1

gv,i
Iv,i
I∗v,i

S∗v,i n′∑
j=1

mijI
∗
h,j

+

n′∑
i=1

gv,iS
∗
v,i

n′∑
j=1

mijI
∗
h,j

(
2−

S∗v,i
Sv,i
− Sv,i
S∗v,i

I∗v,i
Iv,i

Ih,j
I∗h,j

)
(3.19)

where Av =

n′∑
i=1

gv,i(µv,i + δv,i)S
∗
v,i

(
2−

S∗v,i
Sv,i
− Sv,i
S∗v,i

)
and Ah =

n′∑
i=1

gh,iµh,iS
∗
h,i

(
2−

S∗h,i
Sh,i
− Sh,i
S∗h,i

)
.

Now, given the expression of gv,i, equation (3.19) can be written as:

V̇ = Ah +Av +

n′∑
i=1

gh,i

S∗h,i n∑
j=n′+1

lijdj

(3− Sh,i
S∗h,i
− Sh,i
S∗h,i

I∗h,i
Ih,i
− Ih,i
I∗h,i

)
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+

n′∑
i=1

gh,iS
∗
h,i

n′∑
j=1

lijI
∗
v,j

(
2−

S∗h,i
Sh,i
− Sh,i
S∗h,i

I∗h,i
Ih,i

Iv,j
I∗v,j

)
−

n′∑
i=1

gh,i
Ih,i
I∗h,i

S∗h,i n′∑
j=1

lijI
∗
v,j


+

n′∑
i=1

gv,iS
∗
v,i

n∑
j=n′+1

mij d̃j

(
3−

S∗v,i
Sv,i
− Sv,i
S∗v,i

I∗v,i
Iv,i
− Iv,i
I∗v,i

)
+

n′∑
i=1

gv,iS
∗
v,i

n′∑
j=1

mijIh,j

+

n′∑
i=1

gv,iS
∗
v,i

n′∑
j=1

mijI
∗
h,j

(
2−

S∗v,i
Sv,i
− Sv,i
S∗v,i

I∗v,i
Iv,i

Ih,j
I∗h,j

)
. (3.20)

We choose gh = (gh,1, gh,2, . . . , gh,n′)
T to be solution of the system Bgh = 0, where:

B =



−
n′∑
j=2

b1j b21 . . . bn′1

b12 −
n′∑

j=1,j 6=2

b2j . . . bn′2

...
...

. . .
...

b1n′ b2n′ . . . −
n′−1∑
j=1

bn′j


where, for 1 ≤ r, k ≤ n′ and r 6= k, we have:

brk = S∗h,r

n′∑
i=1

lriI
∗
v,i

mikI
∗
h,k∑n′

j=1mijI∗h,j
.

Since C is irreducible, then the matrix B is also irreducible, and therefore the system Bgh = 0 has a positive
solution gh � 0. Particularly, for any k ∈ {1, 2, . . . , n′}, gh,k satisfies the relationship

− gh,kS∗h,k
n′∑
i=1

lkiI
∗
v,i

(∑n′

j=1,j 6=kmijI
∗
h,j∑n′

j=1mijI∗h,j

)
+

n′∑
r=1,r 6=k

gh,rS
∗
h,r

n′∑
i=1

lriI
∗
v,i

mikI
∗
h,k∑n′

j=1mijI∗h,j
= 0. (3.21)

By using the expression gv,i, equation (3.21) can be written as:

−gh,jS∗h,j
n′∑
l=1

ljlI
∗
v,l +

n′∑
i=1

gv,iS
∗
v,imijI

∗
h,j = 0.

Therefore, equation (3.20) leads to:

V̇ = Ah +Av +

n′∑
i=1

gh,i

S∗h,i n∑
j=n′+1

lijdj

(3− Sh,i
S∗h,i
− Sh,i
S∗h,i

I∗h,i
Ih,i
− Ih,i
I∗h,i

)

+

n′∑
i=1

gv,iS
∗
v,i

n∑
j=n′+1

mij d̃j

(
3−

S∗v,i
Sv,i
− Sv,i
S∗v,i

I∗v,i
Iv,i
− Iv,i
I∗v,i

)
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+

n′∑
i=1

gh,iS
∗
h,i

n′∑
j=1

lijI
∗
v,j

(
2−

S∗h,i
Sh,i
− Sh,i
S∗h,i

I∗h,i
Ih,i

Iv,j
I∗v,j

)

+

n′∑
i=1

gv,iS
∗
v,i

n′∑
j=1

mijI
∗
h,j

(
2−

S∗v,i
Sv,i
− Sv,i
S∗v,i

I∗v,i
Iv,i

Ih,j
I∗h,j

)
(3.22)

The first four terms of (3.22) are definite-negative. Let us denote by N the last two sums in (3.22). By replacing
gv,i by its expression and switching the indices l and i, we obtain:

N =

n′∑
i=1

gh,iS
∗
h,i

n′∑
j=1

lijI
∗
v,j

(
2−

S∗h,i
Sh,i
− Sh,i
S∗h,i

I∗h,i
Ih,i

Iv,j
I∗v,j

)

+

n′∑
l=1

1∑n′

j=1mljI∗h,j

n′∑
i=1

gh,iS
∗
h,ililI

∗
v,l

n′∑
j=1

mljI
∗
h,j

(
2−

S∗v,l
Sv,l
− Sv,l
S∗v,l

I∗v,l
Iv,l

Ih,j
I∗h,j

)

=

n′∑
i=1

gh,iS
∗
h,i

n′∑
j=1

lijI
∗
v,j

[(
2−

S∗h,i
Sh,i
− Sh,i
S∗h,i

I∗h,i
Ih,i

Iv,j
I∗v,j

)

+
1∑n′

r=1mjrI∗h,r

n′∑
k=1

mjkI
∗
h,k

(
2−

S∗v,j
Sv,j

− Sv,j
S∗v,j

I∗v,j
Iv,j

Ih,k
I∗h,k

)
=

n′∑
i=1

gh,iS
∗
h,i

n′∑
j=1

lijI
∗
v,j

∑n′

k=1mjkI
∗
h,k∑n′

r=1mjrI∗h,r

(
4−

S∗h,i
Sh,i
− Sh,i
S∗h,i

I∗h,i
Ih,i

Iv,j
I∗v,j
−
S∗v,j
Sv,j

− Sv,j
S∗v,j

I∗v,j
Iv,j

Ih,k
I∗h,k

)
,

which is definite-positive since the network with n′ patches is irreducible. This implies V̇ is definite-negative
and therefore the equilibrium x∗ is GAS that ends the proof.

Theorem 3.7 provides the global dynamics of the auxiliary system (3.18) and therefore by using Theorem 2.1,
a complete global characterization of equilibrium of System (3.17) is obtained, regardless of the topology of the
connectivity matrix.

4. Illustrations

In this section, we illustrate the method provided in Section 2 and Section 3.1 with a particular case and
provide some numerical simulations to highlight the previous results.

4.1. Case study

We consider a model with 7 hosts and 7 vectors where the host-vector network configuration is captured
by Figure 2. For this case, Model (3.1), disregarding the equations of R that do not impact the remaining
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equations, can be written as:



Ṡ = Λh − diag−1(N̄h)diag(S)A ◦B�Iv − diag(µ)S

Ė = diag−1(N̄h)diag(S)A ◦B�Iv − diag(µ+ ν)E

İ = diag(ν)E − diag(α)Ih

Ṡv = Λv − diag(Sv)(A ◦B)Tdiag−1(N̄h)Ih − diag(µv + δv)Sv

İv = diag(Sv)(A ◦B)Tdiag−1(N̄h)Ih − diag(µv + δv)Iv,

(4.1)

where

B� =



β�1,1 0 0 0 0 0 0
β�2,1 β�2,2 0 0 0 0 0
β�3,1 0 β�3,3 β�3,4 0 0 0

0 0 0 0 β�4,5 0 0
0 0 0 0 β�5,5 0 0
0 0 0 0 0 β�6,6 0
0 0 0 0 0 0 β�7,7


, B =



β1,1 0 0 0 0 β1,6 0
β2,1 β2,2 0 0 0 0 0

0 0 β3,3 β3,4 0 0 0
0 0 0 0 β4,5 0 0
0 0 0 0 β5,5 0 0
0 0 0 0 0 β6,6 0
0 0 0 0 0 β7,6 β7,7


.

Assuming the elements of the biting matrix A are positive, it could be shown that the matrices (A ◦B)TA ◦B�
and A ◦B�(A ◦B)T are not irreducible. However, as stated earlier, we can structure the network into irreducible
components as in Figure 2. Moreover, we can notice from Figure 2 (or the condensed digraph Fig. 3), that C1
and C5 are sources of the condensed graph. That is they are nodes without incoming edges. Thus, the dynamics
in these components are independent of variables other than their own. We perform the study on these two
sources C1 and C5:
– On C1, the dynamics is given by, for i = 1, 2 and j = 1, 2,



Ṡi = Λi −
2∑
j=1

ai,jβ
�
i,jSi

Iv,j
Ni
− µiSi

Ėi =

2∑
j=1

ai,jβ
�
i,jSi

Iv,j
Ni
− (µi + νi)Ei

İi = νiEi − αiIi

Ṡv,j = Λv,j −
2∑
i=1

ai,jβi,jSv,j
Ii
Ni
− (µv,j + δv,j)Sv,j

İv,j =

2∑
i=1

ai,jβi,jSv,j
Ii
Ni
− (µv,j + δv,j)Iv,j

(C1)

The basic reproduction number of Model C1 is R2
0,C1 = ρ(NC1) where

NC1 :=

 Nv,1

µv,1+δv,1

(
a211β1,1β

�
1,1ν1

(ν1+µ1)α1N1
+

a221β2,1β
�
2,1ν2

(ν2+µ2)α2N2

)
Nv,1

µv,2+δv,2

(
a11a1,2β1,1β

�
1,2ν1

(ν1+µ1)α1N1
+

a21a2,2β2,1β
�
2,2ν2

(ν2+µ2)α2N2

)
Nv,2

µv,1+δv,1

(
a1,1a1,2β1,2β

�
1,1ν1

(ν1+µ1)α1N1
+

a21a2,2β2,2β
�
2,1ν2

(ν2+µ2)α2N2

)
Nv,2

µv,2+δv,2

(
a212β1,2β

�
1,2ν1

(ν1+µ1)α1N1
+

a222β2,2β
�
2,2ν2

(ν2+µ2)α2N2

)
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– On C5, the dynamics is given by:



Ṡ7 = Λ7 − a1,7β�1,7S7
Iv,7
N7
− µ7S7

Ė7 = a7,7β
�
7,7S7

Iv,7
N7
− (µ7 + ν7)Eh

İ7 = ν7E7 − α7I7

Ṡv,7 = Λv,7 − a7,7β7,7Sv,7
I7
N7
− (µv,7 + δv,7)Sv,7

İv,7 = a7,7β7,7Sv,7
I7
N7
− (µv,7 + δv,7)Iv,7

(C5)

The basic reproduction number for the irreducible component C5 is:

R2
0,C5 =

a27,7β7,7β
�
7,7ν7Nv,7

(δv,7 + µv,7)(µ7 + ν7)α7N7
.

Remark 4.1. If R2
0,C1 > 1 and R2

0,C5 > 1, then we could anticipate that the endemic equilibrium in the whole
network is strongly endemic.

Suppose that R2
0,C1 < 1 and R2

0,C5 > 1. Hence, the trajectories of Model (C1) converges to the DFEC1 ,

which we denote by x0
1 = (S0

1 , S
0
2 , 0, 0, 0, 0, Sv,1, Sv,2, 0, 0). Similarly, a unique GAS endemic equilibrium x̄5 =

(S̄7, Ē7, Ī7, S̄v,7, S̄v,7) for Model (C5).
Thus, applying the reduction method of Section 2, the dynamics of System 4.1 is equivalent to the model

represented by the network illustrated in Figure 4. Given the dynamics on C1 and C5, the dynamics on the the
remaining irreducible component is as follows:

– On C4, the dynamics is given by:

Ṡ6 = Λ6 − a6,6β�6,6S6
Iv,6
N6
− µ6S6

Ė6 = a6,6β
�
6,6S6

Iv,6
N6
− (µ6 + ν6)E6

İ6 = ν6E6 − α6I6

Ṡv,6 = Λv,6 − a6,6β6,6Sv,6
I6
N6
− a7,6β7,6Sv,6

Ī7
N6
− (µv,6 + δv,6)Sv,6

İv,6 = a6,6β6,6Sv,6
I6
N6

+ a7,6β7,6Sv,6
Ī7
N6
− (µv,6 + δv,6)Iv,6,

(C4)

since I0v,1 = 0 (the infected vector at equilibrium from C1). Using Remark 3.4, the basic reproduction number
on C4 is:

R2
0,C4 =

a26,6β6,6β
�
6,6ν6Nv,6

α6(µ6 + ν6)(δv,6 + µv,6)N6
.

However, it is worthwhile noticing that, regardless of the values of R2
0,C4 , the disease will be endemic in this

component. That is because the system behaves as if there is a continuous influx of infected (Ī7 � 0) into
the system (see [7]). Moreover, System (C4) has the same form as System (3.3) given in Theorem 3.3, where
d7 = 0 and d̃7 = Ī7. Thus, according to Theorem 3.3, the unique endemic equilibrium of Model (C4), x̄4 =
(S̄6, Ē6, Ī6, S̄v,6, S̄v,6), is GAS. Moreover, the component C4 is decoupled from the rest of the system (see Fig. 4).
Thus, it remains to study the system given by the following network (Fig. 5):
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Figure 5. Connected part of Figure 4.

Now, we apply the reduction method on the network configuration of Figure 5. Indeed, in Figure 5, C2 is the
minimal element and the dynamics on it is given by:



Ṡ3 = Λ3 −
4∑
j=3

a3,jβ
�
3,jS3

Iv,j
N3
− µ3S3

Ė3 =

4∑
j=3

a3,jβ
�
3,jS3

Iv,j
N3
− (µ3 + ν3)E3

İ3 = ν3E3 − α3I3

Ṡv,j = Λv,j − a3,jβ3,jSv,j
I3
N3
− (µv,j + δv,j)Sv,j

İv,j = a3,jβ3,jSv,j
I3
N3
− (µv,j + δv,j)Iv,j ,

(C2)

for j = 3, 4, since I0v,1 = 0 (the infected vector at equilibrium from C1). The basic reproduction number of
Model (C2) is:

R2
0,C2 =

ν3
α3(µ3 + ν3)N3

[
a23,3β3,3β

�
3,3Nv,3

δv,3 + µv,3
+
a23,4β3,4β

�
3,4Nv,4

δv,4 + µv,4

]
.

The dynamics of System (C2) is completely determined by R2
0,C2 , per Theorem 3.3. For our illustration, we

choose parameters such that R2
0,C2 > 1. That is, a unique strongly endemic equilibrium

x̄2 = (S̄3, Ē3, Ī3, S̄v,3, S̄v,4, Īv,3, Īv,4)

exists and is GAS. Hence, by applying our reduction method on Figure 5, the only irreducible complement left
on the network is C3, which is dealt in the next point.
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– On C3, the dynamics of disease is captured by the system:

Ṡi = Λi − ai,5β�i,5Si
Iv,5
Ni
− µiSi

Ėi = ai,5β
�
i,5Si

Iv,5
Ni
− (µi + νi)Eh

İi = νiEi − αiIi

Ṡv,5 = Λv,5 −
5∑
i=4

ai,5βi,5Sv,5
Ii
Ni
− a3,5β3,5Sv,5

Ī3
N3
− (µv,5 + δv,5)Sv,5

İv,5 =

5∑
i=4

ai,5βi,5Sv,5
Ii
Ni

+ a3,5β3,5Sv,5
Ī3
N3
− (µv,5 + δv,5)Iv,5,

(C3)

for i = 4, 5. The corresponding basic reproduction number is:

R2
0,C3 =

Nv,5
δv,5 + µv,5

[
a24,5β4,5β

�
4,5ν4

α4(µ4 + ν4)N4
+

a25,5β5,5β
�
5,5ν5

α5(µ5 + ν5)N5

]
.

As started earlier, a strongly endemic equilibrium is GAS, regardless of the value of R2
0,C3 . We denote this

equilibrium by x̄3 = (S̄4, S̄5, Ē4, Ē5, Ī4, Ī5, S̄v,5, Īv,5). This completes the asymptotic study of System (4.1). The
overall equilibrium of System (4.1) is

x∗ = (x0
1, x̄2, x̄3, x̄4, x̄5),

which is a mixed endemic equilibrium and is GAS.
To summarize, Figure 6 provides the different scenarios that would lead to different types of equilibria.

Remark 4.2. After the first iteration of the method, the local reproduction number on each irreducible com-
ponents, R2

0,Cq , may not always determine the outcome of the infection in that particular component. Indeed,

that was the case with R2
0,C3 and R2

0,C4 , where they may be below one while the disease is still endemic in their
respective irreducible components.

The green path in Figure 6 showcases the case where R2
0,C1 > 1 and R2

0,C5 > 1. In this occurrence, the
other basic reproduction numbers of other local population are irrelevant and the disease will persist in all
populations. Identifying these type of scenarios, allows to allocated the limited resources where it matters the
most. For instance, in this particular case, targeting populations of C2, C3 or C5 would have been a fruitless
effort in mitigating or eliminating the infection. Similarly, if R2

0,C1 > 1 and R2
0,C5 < 1, the basic reproduction

numbers of other local populations in C2 and C5 are irrelevant and the disease will persist in these components.
Only R2

0,C4 matters in terms of the overall outcome – red-dashed paths if R2
0,C4 ≤ 1 and blue-dashed paths if

R2
0,C4 > 1.

4.2. Numerical simulations

As highlighted in the Section 4.1, if the network connectivity is reducible, even a relatively low dimen-
sional system may lead to a rich overall dynamical behavior. Depending on the basic reproduction numbers of
some strongly connected components, the globally asymptotically stable equilibrium for the system may be a
disease-free, a boundary or an interior equilibrium, as seen in Figure 6. In the following, we run some numerical
simulations to illustrate the existence of a globally asymptotically stable boundary equilibrium, when the net-
work connectivity of the subpopulations is reducible. To that end, we consider the case studied in Section 4.1,
with seven host and seven vector subpopulations. Unless otherwise stated, the baseline parameters of the model
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Figure 6. Effects of local basic reproduction numbers on the nature of the equilibria of the
overall system.

are chosen as follows, with the corresponding units:

B� =



0.01 0 0 0 0 0 0
0.03 0.01 0 0 0 0 0
0.01 0 0.01 0.01 0 0 0

0 0 0 0 0.01 0 0
0 0 0 0 0.01 0 0
0 0 0 0 0 0.01 0
0 0 0 0 0 0 0.05


, B =



0.02 0 0 0 0 0.4 0
0.01 0.01 0 0 0 0 0

0 0 0.01 0.01 0 0 0
0 0 0 0 0.01 0 0
0 0 0 0 0.01 0 0
0 0 0 0 0 0.01 0
0 0 0 0 0 0.01 0.05



Λh =



2
3
1
1
1
3
1


, µ =

1

1500



1
1
1
1
1
1
1


, ν =

1

15



1
1
5
5
5
5
5


, α =



31/1500
31/1500
7/6000
1/600
1/375
2/1875
11/1500


,Λv =



500
1000
3000
1000
1000
200
1000


,
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Figure 7. Simulation of the dynamics of the infectious host populations.

µv =
1

15



1
1
1
1
1
1
1


, δv = 10−4



10
10
1
7
3
4
5


and aij = 1, for all i, j ∈ {1, 2, . . . , 7}.

With these values, and the expressions of the basic reproduction numbers obtained in Section 4.1, we obtain
the following inequalities: R0,C1 < 1, R0,C5 > 1, R0,C2 > 1, R0,C3 > 1 and R0,C4 < 1. Figures 7 and 8 show the
trajectories of the solutions representing the infected host and vector subpopulations, respectively. As predicted
by the analysis done above, the solutions converge to a boundary endemic equilibrium. It can be noticed that the
disease is endemic in the component C4 (I6(t)→ Ī6 > 0 and Iv6(t)→ Īv6 > 0) despite the fact that R0,C4 < 1.
In this case, the mixed-equilibrium obtained coincides with the type of equilibrium obtained in the study case.
Indeed, with these conditions on the basic reproduction numbers, the method leads to the second equilibrium
from the top on Figure 6: x∗ = (x0

1, x̄2, x̄3, x̄4, x̄5).

5. Conclusion

In this paper, we presented a procedure that provides a complete analysis of a class of large dynamical systems
that model a disease that involves the interactions of multiple populations. Indeed, typically the dynamics of
an epidemic models that incorporates multiple populations is expressed in terms sharp threshold property.
That is, a trivial equilibrium, or the disease-free equilibrium is globally asymptotically stable (GAS) and a
unique interior equilibrium exists and is GAS when the basic reproduction number is less or greater than unity,
respectively. However, all of these results, particularly that of the stability of the endemic equilibrium, required
an irreducibility of the matrix that connects the populations. Here, we provided a method that characterizes
the global dynamics of these types of model regardless of the nature of the network configuration. Particularly,
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Figure 8. Simulation of the dynamics of the infectious vector populations.

we show that the dynamics of the these weakly connected subpopulations is tied to the dynamics of auxiliary
systems and the dynamics when the network is irreducible. As a template, we considered the dynamics of two
mathematical models that describe the interaction between multiple subpopulations, for the global stability of
equilibria are known if the connectivity matrices are irreducible. For these two classes of model, we analyze the
asymptotic behavior of the the corresponding auxiliary systems, there by completely characterizing the overall
dynamics of these models. The method consists of decomposing the network into a collection of irreducible
sub-networks and investigate the dynamics of an auxiliary dynamical system witch accounts for the dynamics
on each irreducible subnetwork as well as the effects of the other subnetworks connected to the latter.

More importantly, we presented the procedure along with the natural links between the “local” basic repro-
duction numbers and the dynamics of the subnetwork with which they may be connected but not strongly
connected. The method allows also to pinpoint whether a subnetwork constitutes a source – where the infection
not only persists, but also triggers infection in other subnetworks– or a sink –where the infection is maintained
only because of its connectivity with other sources. The method consists of two main steps. The first step studies
the dynamics of the model on one irreducible component of network, which is a modified system from that of
when the network is decoupled from the rest. This auxiliary system is the reduced system on one irreducible
subnetwork. The second step consists of using a Vidyasagar’s result on triangular dynamical systems to reduce
the overall system. By successive incrementation, we complete the analysis of the system. By our method, it is
possible to show an interior equilibrium could be GAS even the connectivity matrix is reducible. Moreover, it
is also possible to show a boundary equilibrium is also GAS. We applied the method on two complex epidemic
model with multiple subpopulations (Sect. 4.1). In these models, we derived the complete dynamics of the cor-
responding auxiliary systems and deduce the overall dynamics of the initial systems, regardless of the structure
of the connectivity between these subpopulations. These results characterizes the overall global dynamics of all
types of equilibria. Although a similar result has been presented in [16] and applied in the context of SEIR
multi-group models for directly transmitted diseases, our method is simpler to implement.
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Appendix A.

In this appendix, we briefly introduce some basic elements of graph theory used in the manuscript in order
to make it as self-contained as possible.

Definition A.1. A graph is a pair G = (V, E) that consists of a set of vertices (or nodes or points) V and a set
of edges (or lines) E ⊆ V × V:
– Vertices: vi ∈ V,
– Edges: eij = (vi, vj) ∈ E .

For instance, in Figure A.1a, we have:
V = {v1, v2, v3, v4} and E = {(v1, v2), (v2, v1), (v2, v4), (v4, v2), (v3, v4), (v3, v1)}. A graph G is called undirected
if eij ∈ E =⇒ eji ∈ E .

A path is a sequence of edges (vi, vl1), (vl1 , vl2), . . . , (vlr−1
, vj), which leads form vi to vj . An undirected graph

G is called connected if there is a path between any two distinct nodes of G.

Definition A.2.
– A directed graph (digraph) G is strongly connected if for any ordered pairs (vi, vj) of vertices of G, there exists
a path which leads from vi to vj .
– A digraph is called weakly connected if there exists an undirected path between any two distinct vertices of
G.

A graph can have a matrix representation and the structure of a graph can be determined using the properties
of the corresponding matrix. A graph G(A) of A is defined to be the directed graph on n vertices {v1, v2, . . . , vn}
in which there is a directed edge leading from vi to vj if an only if aij 6= 0. For instance, the matrices A and B
that represent the graphs G(A) in Figure A.1a and G(B) in Figure A.1b are:

A =


0 2 0 0
3 0 0 4
6 0 8 1
0 5 0 0

 and B =


0 2 7 0
3 0 0 4
6 0 8 1
0 5 0 0

 .

Definition A.3. A matrix An×n is said to be reducible if there exists a permutation matrix P such that

P TAP =

(
X Y
0 Z

)
,

where X and Z are both square. Otherwise A is said to be irreducible.

The irreducibility of matrices can be characterized using associated graphs that represent the corresponding
matrices.

The following theorem links the irreducibility of matrix to the connectedness of its graph. Its proof can be
found in any standard textbook on matrix analysis (see [22], for example).

Theorem A.4. An n×n matrix A is irreducible if and only if the corresponding directed graph G(A) is strongly
connected.

For example, the matrix A that represents the graphs G(A) in Figure A.1a is reducible, whereas the matrix
B that represents the graphs G(B) in Figure A.1b is irreducible.

Per this theorem, if a matrix A is irreducible then its corresponding directed graph G(A) is strongly connected.
However, if G(A) = (V, E) is not strongly connected, it is always possible to partition V into a disjoint sets of
vertices called strongly connected components of the graph.
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Figure A.1. Examples of graphs.

Figure A.2. Decomposition of non strongly connected graph into strongly connected
components.

Definition A.5. A strongly connected component of a directed graph G(A) = (V, E) is the maximal set of
vertices C ⊆ V such that for any ordered pairs (vi, vj) of vertices of C, there exists a path which leads from vi
to vj .

For instance, the graph G(A) in Figure A.1a is not strongly connected as its corresponding matrix is not irre-
ducible. However, it is possible to decompose G(A) into a set of irreducible components as shown in Figure A.2.
Particularly, Figure A.2a decompose the vertices of Figure A.1a into two irreducible components C1 and C2
(shaded sets of vertices). Figure A.2b shows the condensed graph in terms of the irreducible components. The
irreducible component C1 is called source (a node without incoming edges) and C2 is called sink (a node without
outgoing edges).
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