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Abstract: The multistep development of cancer involves the cooperation between multiple molecular
lesions, as well as complex interactions between cancer cells and the surrounding tumour microenvi-
ronment. The search for these synergistic interactions using experimental models made tremendous
contributions to our understanding of oncogenesis. Yet, these approaches remain labour-intensive
and challenging. To tackle such a hurdle, an integrative, multidisciplinary effort is required. In
this article, we highlight the use of logical computational models, combined with experimental
validations, as an effective approach to identify cooperative mechanisms and therapeutic strategies
in the context of cancer biology. In silico models overcome limitations of reductionist approaches by
capturing tumour complexity and by generating powerful testable hypotheses. We review represen-
tative examples of logical models reported in the literature and their validation. We then provide
further analyses of our logical model of Epithelium to Mesenchymal Transition (EMT), searching for
additional cooperative interactions involving inputs from the tumour microenvironment and gain of
function mutations in NOTCH.

Keywords: cooperative oncogenesis; logical computational model; signalling pathways; tumour
microenvironment; epithelium to mesenchymal transition

1. Oncogenesis: A Dynamic Process of Multifactorial Nature
1.1. Cooperative Oncogenesis

The development of omics technologies has permitted the identification of numerous
mutations in tumours across a large number of cancer types, thousands of genes upreg-
ulated or downregulated, as well as altered epigenetic modifications [1]. Some of these
alterations are drivers of oncogenesis. They have been classified as oncogenes or tumour
suppressors, depending on whether they are constitutively activated by gain-of-function
(GoF) mutations or inactivated by loss-of function (LoF) mutations, respectively. In contrast,
other alterations are likely non-oncogenic with no selective advantage. The search for
critical drivers of oncogenesis revealed that only a small number of solid tumours arise
from mutations in single loci [2]. Most often, a sequence of randomly occurring mutations
in oncogenes or tumour-suppressor genes is required for the series of events leading to
traits associated with malignant cancer phenotypes [3]. These genomic alterations dis-
rupt the functioning of intertwined signalling networks [4]. Estimates of the number of
mutations causing the large majority of malignant cancer in human vary from 3 to 12,
depending on the cancer type, and could be even larger in organs with rapid turnover [5].
According to this multiple-hit hypothesis, in vitro experiments using cell lines, as well as
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in vivo models of cancer, such as those established in Drosophila, confirmed that at least
two cooperating mutations are required to initiate oncogenesis [6–10]. In this article, we
define how two factors cooperate when the presence (or absence) of both is required to
produce a given outcome.

In addition to intracellular cooperative mechanisms, the success or failure of oncoge-
nesis depends on interactions between tumour cells and the Tumour Microenvironment
(TME), which includes the Extracellular Matrix (ECM), as well as non-cancerous stromal
cells present within, or adjacent to, the tumour. While a healthy state of the microenviron-
ment can help protect against tumorigenesis and invasion, a non-healthy microenviron-
ment, reshaped by cancer cells, becomes an accomplice to tumour cells supporting their
survival, invasive, and metastatic abilities [11]. Cooperative behaviours are also observed
between groups (clones) of tumour cells carrying different genetic alterations, including
evidence supporting the requirement of interactions between distinct clones for tumour
progression [12,13]. In addition, clonal cooperativity has been reported between cancer
cells with no discernible genetic differences to influence their aggressiveness, suggesting
a key role of epigenetic modifications [14,15]. Mechanisms of cooperativity in play likely
involve paracrine signalling between clones of cells [12,14].

Thus, while tumour progression is dictated by the cooperative action of multiple
intracellular molecular alterations, it also depends on the synergy between cancer cells
and between cancer cells and the TME. Therefore, identifying the cooperative determi-
nants responsible for the emergence of cancer phenotypes is of the utmost relevance for
developing efficient therapeutic approaches. Still, the search for these factors faces major
challenges. Even though some oncogenes and tumour-suppressors may be more frequently
mutated or commonly deregulated in some carcinomas, tumours display very distinct
patterns of mutations and signalling activities, even within the same tumour type [16].
Moreover, altered activity of a signalling pathway does not necessarily reflect mutations
in genes encoding for components of that pathway [17]. Moreover, many genes can act
as either oncogenes or tumour suppressor genes in different experimental settings. The
opposite effects of these “chameleon” genes depend on signalling networks whose activity
is defined by the genomic context (different genetic background) and by the state of the
microenvironment [18]. Thus, cooperative interactions are likely highly dynamic during
tumour evolution, owing to the emergence of novel mutations, epigenetic alterations, and
signals present in the TME.

1.2. Experimental Assessment of Cooperative Oncogenesis and Current Limitations

Providing evidence of cooperativity between two molecular alterations, or between
two cell populations, requires that the phenotypic outcomes induced by the presence of
both differ from the behaviour produced by each one alone. Established cancer cell lines
have been valuable models to determine the role of particular molecular lesions in dictat-
ing the malignant cancer phenotypes [19]. However, the large majority of these in vitro
models fail to recapitulate the multistep development of cancer initiation and progression.
Moreover, despite extensive technological developments, the complex interactions between
cancer cells and the TME can hardly be fully reconstituted. Circumventing some of these
difficulties, experimental genetic models have been developed to assess the interplay be-
tween distinct molecular lesions and between cancer cells and the TME during cancer
progression. Among those, diverse mice models have been generated via a variety of
methods, including chemical or physical mutagenesis (gamma rays, X-rays, UV-light, and
particle radiation), viral infection, insertion of transgenes, homologous recombination, and,
more recently, genome editing by the CRISPR technology [20]. These models can mirror
complex mutational patterns observed in tumour samples, as well as interactions taking
place within a microenvironment. However, these approaches remain time-consuming
and costly, mostly calling for highly trained personnel and advanced infrastructure. In
contrast, the fruit fly Drosophila melanogaster is a cheap in vivo model, which can be ge-
netically modified and maintained with comparatively basic training and infrastructure.
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It displays high levels of conservation in core cancer relevant genes and signalling path-
ways. It supports easy and fast generations of lines carrying multiple mutated transgenes
recapitulating mutational patterns observed in cancer samples as well as genetic modifier
screens [10,21]. In addition, genetic tools developed in Drosophila allow assessment of how
genetically engineered cancer cells interact with their wild type neighbours or cooperate
for their survival and expansion [10]. Yet, as the fly lacks similarities in telomere and telom-
eric maintenance strategies compared to human and do not possess fibroblasts, adaptive
immune systems, and vasculature, the role of these players can hardly be evaluated in
Drosophila cancer models.

Research using these experimental models made tremendous contributions to our un-
derstanding of oncogenesis. Yet, these approaches remain labour-intensive and challenging
to accurately anticipate causative combinations of molecular lesions and microenvironment
interactions in tumour initiation and cancer progression. To overcome such a hurdle, an
integrative, multidisciplinary effort is required, combining assets of different approaches
to characterise the interplay of multiple regulatory components in cancer complexity.

2. Computational Modelling Approaches to Pinpoint Cooperative Interactions
in Oncogenesis

Computational models can simulate the complex dynamics driven by intricate sig-
nalling pathways with feedbacks and cross-talks. As such, they are effective tools to
help decipher cooperative mechanisms in the context of cancer biology. To explain can-
cer phenotypes at the molecular level, these models integrate interactions documented
in the literature and data generated using high throughput omics technologies (e.g., ge-
nomics, epigenomics, transcriptomics, metabolomics, proteomics, and others). Different
formalisms, from systems of differential equations to logical models, can be used to portray
molecular interactions [22–24]. In this review, we focus on discrete, logical models.

2.1. Basics of Logical Modelling

Unlike differential equations, logical models do not require precise values for the
concentrations of molecular species, gene expression levels, or kinetic constants that are
mostly lacking in the literature. Logical models allow the integration of a variety of
regulatory and signalling interactions between a relatively large number of components. In
addition, these models support non-deterministic asynchronous dynamics, making them
biologically more plausible than deterministic trajectories.

Briefly, logical models include collections of nodes (or variables), which can represent
almost anything, including gene activity, presence, activity of a protein, or the state of a
cell. Each node is associated with a discrete variable, which is a logical (often Boolean
i.e., binary) abstraction of its level of activity (1 for active, 0 for non-active). Yet, these
models handle multi-valued variables, which are critical to convey distinct thresholds to
different functional effects. Nodes are linked to each other by signed arcs (arrows con-
necting variables), which indicate regulatory relationships between these variables (i.e.,
inhibitions or activations). Figure 1A illustrates a regulatory graph associated to a simple
Boolean model. Finally, the value of each variable is defined by a logical regulatory rule,
which depends on the variables influencing that variable, i.e., its regulators (Figure 1B).
Input nodes that embody external signals are maintained constants (this is the case of the
node S in the Figure 1). The values of the model variables define the model states, and the
model dynamics are illustrated by the sequences of states, which can be represented by the
so-called state transition graphs (Figure 1C). Given a state, its successors are determined by
the logical rules. Some variables are called to change their values due to their regulators,
while some remain stable. The asynchronous updating mode performs these updates inde-
pendently, leading to non-deterministic dynamics (i.e., alternative, concurrent trajectories).
As the number of states is finite, model dynamics are necessarily trapped into attractors,
which are either stable states (states in which all the variables are stable), or complex
attractors (sets of states in which the model dynamics evolves indefinitely, denoting an
oscillatory behaviour). Properties of interest mostly relate to the model attractors: their
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characterisation and their reachability from given initial conditions. For example, with the
simple model of Figure 1, there are two stable states occurring when the input node is set
to value 1. They are both reachable from some states, and one can evaluate the reachability
probability of each. To do so, a Monte Carlo approach, consisting of N (asynchronous)
simulation runs starting from an initial state and counting the number R of runs ending in
e.g., the stable state (0111), provides R/N as a good approximation of this probability [25].
Finally, the logical modelling enables an easy assessment of the impact of perturbations,
where LoF or GoF are defined by blocking the value of the corresponding variable to 0 or
1, respectively. Figure 1D provides an illustration of a perturbation that leads to the loss
of a stable state. We refer to [26] and references therein for further detail on the logical
formalism

Figure 1. A simple logical (Boolean) model and its dynamics. (A) The regulatory graph, where nodes represent model
components (three internal and one input nodes), green arrowhead edges denote activations, and red blunt edges denote
inhibition; (B) Each node value is defined by a logical rule, i.e., the input is maintained constant at its current value, A is
activated (A = 1) if S, its activator, is present and C, its inhibitor is absent, otherwise it is de-activated (A = 0), etc.; (C) The
state transition graph representing the dynamics of the unperturbed model; each node represents a model state with the
values of the components [A,B,C,S]; arrowhead edges represent transitions, and trajectories are defined by successions of
transitions; when S = 0, there is a single stable state (0110), all trajectories converge to it; when S = 1, there are 2 stable states
(0111) and (1001); starting from state (0001), both stable states are reachable, (0111) with probability 0.2514, and (1001) with
probability 0.7486; (D) The state transition graph when the value of A is blocked to zero, which mirrors a LoF (KO) of A,
showing that when S = 1, a stable state is lost.

2.2. Logical Models and Their Contribution to Cooperative Oncogenesis

Since Kauffman’s seminal work, Boolean models and their attractors, embodying cel-
lular phenotypes, have been considered relevant to explore tumorigenesis [27,28]. Whereas
early Boolean models were conceptual representations of genetic networks, the remarkable
development of omics technologies allowed the identification of interaction networks and
the construction of effective, logical models. Meanwhile, the modelling formalism evolved
to better account for the behaviour of regulatory networks [26,29,30]. Computational
methods have been developed to map omics data to models, or to train logical models
on data, thus enabling model contextualisation [31–34]. Here, we review representative
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examples of logical models reported in the literature that supported the identification of
cooperative mechanisms in oncogenesis. This overview also illustrates the lively activity of
the research community involved in logical modelling.

Basically, the procedure to uncover cooperative mechanisms between X and Y from a
computational model consists of comparing the outcomes of that model in three conditions:
when X alone is altered, when Y alone is altered, and when both are altered. Novel
outcomes in the third condition reveal cooperativity. Altering a model component entails
fixing the value of the corresponding variable, conveying the presence of a signal or the
mutation of the corresponding molecular component.

Several modelling works focused on networks controlling cell proliferation and cell
death, as dysregulated balance between these processes is a well-known hallmark of
cancer. Grieco et al. proposed a logical model assessing the involvement of specific
components of the MAPK signalling network in controlling cell fate decisions between
proliferation, growth arrest, and apoptosis in the context of bladder cancer [35]. Exploring
the impact of different combinations of external signals and of network perturbations,
their model predicts a cooperation between EGFR overexpression and the loss of p53 or
of p14 in inducing proliferation. In contrast, an overexpression of EGFR or an FGFR3
activating mutation, combined with a stimulus of the TGFB receptor, would lead to growth
arrest and apoptosis. Still, regarding bladder cancer, and considering the same cellular
responses, a logical model focusing on the E2F pathway was developed by Remy et al. to
explain patterns of genetic alterations (co-occurrences and mutual exclusivities) observed in
tumour data [36]. The authors identified diverse. predicted cooperative genetic interactions
supporting tumour aggressiveness or invasion. For instance, since FGFR3 and PI3K
mutations co-occur in the literature, the authors explored the difference in proliferation for
the three mutants in the model: overexpression of PI3K alone, of FGFR3 alone and of both
PI3K and FGFR3. They did not find cooperation between both mutants in uncontrolled
growth. Instead, it appeared that a third mutation, the deletion of CDKN2A, was necessary
to unquestionably increase proliferation. Accordingly, co-occurring FGFR3 activating
mutations and CDKN2A deletions have been reported in the literature and several datasets.
In addition, the model of Remy et al. suggests that, to obtain a significant increase in
proliferation in the context of a FGFR3 GoF and CDKN2A LoF mutations, a third (activating)
mutation in p21CIP is required. These predictions were supported by datasets from the
TCGA database, which provides genomic data from over 20.000 primary cancer and
matched normal samples. Among the five tumours carrying mutations in FGFR3 and
p21CIP, four also display a homozygous deletion of the CDKN2A gene. With this model,
the authors could also predict the temporal order of gene alterations favouring proliferation.
For instance, the co-occurrence of E2F2 amplification and p53 LoF would be beneficial for
the tumour cell when mutations in p53 appear first. More recently, Rossato et al. built a
Boolean model of TGFB signalling to identify cooperating mutations that would explain
the dual role of TGFB signalling in promoting cell cycle arrest or apoptosis at early stages of
cancer, but proliferation at later stages [37]. Model simulations indicate that simultaneous
LoF of SMAD2/3, p38MAPK and p53 are required to trigger a proliferative phenotype.

Another hallmark of tumour cells that has motivated a substantial number of logical
models is the Epithelial to Mesenchymal Transition (EMT), a representative example of
cancer cell plasticity [38]. This process not only involves a switch between the two ex-
treme phenotypes, epithelial and mesenchymal, but also the transition to a spectrum of
incomplete EMT phenotypes. These hybrid phenotypes, which co-express epithelial and
mesenchymal markers, have been proposed to provide pluripotent abilities to cancer cells,
resistance to chemotherapeutic drugs, and increased aggressive potential [39]. A model
of EMT, driven by TGFB, was published by Steinway et al. [40]. Model prediction and
experimental validation in hepatocellular carcinoma cell lines indicates that the concomi-
tant activation of the WNT and SHH signalling are required to induce a mesenchymal
phenotype downstream of TGFB. Relying on this model, a control network strategy was
then used to screen single and multiple perturbations suppressing TGFB-driven EMT. The
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authors observed that single perturbations may favour hybrid EMT phenotypes, while
multiple interventions, involving SMAD inhibition, restore an epithelial phenotype. As-
sessment of model predictions in HCC cell lines, confirmed that a combined targeting
strategy could prevent ECad expression and cell migration. Combinatorial interventions
would thus be required to fully suppress invasive properties of tumour cells [41].

Analogously, Cohen et al. built a logical model of cancer to investigate EMT sensitivity
to different perturbations and validated it against lung cancer transcriptomics data [42].
Single LoF or GoF and double mutants were systematically generated and analysed to
identify mutant combinations altering the probability of reaching a metastatic phenotype.
From this analysis, a synergy emerged between NOTCH GoF and p53 LoF, which, together,
lead to metastatic phenotype in 100% of the runs, whereas the probability to reach this
phenotype for the single Notch GoF and for the p53 LoF is below 36%. Méndez-López
et al. presented a Boolean model, demonstrating that the dynamic interplay between nine
key regulatory components can explain the temporal sequence by which epithelial cells
transit through a senescent state to acquire a mesenchymal stem-like phenotype [43]. In
agreement with experimental data reported in the literature, this model indicates that
cellular inflammation, simulated by the constant overactivation of NFKB, results in a
higher likelihood of reaching a mesenchymal stem-like state. Still focusing on EMT, and
using cell adhesion properties as read-outs for the acquisition of EMT phenotypes, we
recently published a model, which accounts for the epithelial, hybrid, and mesenchymal
phenotypes acquired by cancer cells [44]. Main outcomes of this model, and novel analyses
that lead to the identification of cooperative mechanisms underlying the EMT process, are
described in the next section.

Computational models also allow exploring drug effects, predicting therapeutic strate-
gies [32], and the references therein. For example, Flobak et al. defined a logical model
of the cellular network controlling growth in gastric cancer, including two output nodes,
anti-survival and pro-survival, serving as phenotypic read-outs [45]. Searching for pairs of
inhibitors of cell growth, the model predicted five synergistic inhibitions involving seven
components. Among those, four cooperative inhibitions were confirmed experimentally,
by comparing the effect on cell growth of treating the AGS gastric cancer cell line with
chemical inhibitors of the seven proteins, in single or combinatorial formulations, using cell
growth real-time assays. To identify targeted combinatorial therapies in colorectal cancer
(CRC), Eduati et al. looked for dynamic interactions between different signalling pathways
and cell-specific drug responses [31]. By measuring a set of phosphoproteins under differ-
ent combinations of stimuli and inhibitors, they could instantiate cell line-specific logical
models of underlying signalling networks, reflecting the heterogeneity of 14 CRC cell lines.
This study shows that, unlike genomic features, which have limited predictive power of
sensitivity to kinase inhibitors, the dynamics of signalling pathways can determine the
efficacy of targeted drug treatments. In particular, the authors could validate the combined
blockade of MEK and GSK3 as a strategy to overcome resistance to MEK inhibitors, a
scenario that could not be found based on associations with genomic data.

So far, most models have been defined on the basis of extensive literature reviews,
and/or from information on interactions stored in dedicated databases. These models are
somewhat “generic,” as they intend to represent an “average cell,” and thus do not account
for tumours and patient heterogeneity. Hence, software tools, such as CellNOptR [34,46]
and PRUNET [47], have been defined to contextualise models using high-throughput data,
leading to cell type specific models (Ref. [47] provides an overview of these tools). To
personalise logical models, Béal et al. recently proposed an approach integrating mutation
data, copy number alterations (CNA), transcriptomic, and proteomic data to models [33].
The authors illustrated the value of their framework using a generic model of cancer
signalling pathways [48] and breast cancer data from the METABRIC project, including
RNA expression data, mutation profiles, CNA and clinical data [49,50]. As illustrated in
Figure 1, of [33] data need to be appropriately processed through functional inference (in
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the case of discrete genomic data, such as mutations or CNA) and through discretisation
and normalisation (in the case of e.g., expression data).

Finally, it is important to note the coordinated effort in the computational biology
community to establish a standard format to store and exchange models [51], to define
computational methods handling ever larger models, as well as to develop several software
tools available to the community (e.g., see [26]). The Consortium for Logical Model and
Tools aims to promote these developments [52]. As an illustration of these activities, the
CoLoMoTo notebook provides a computational framework combining several tools [53]. A
tutorial presenting a workflow to predict mutations enabling tumour cell invasion from a
specific model illustrates the use of this notebook [54].

3. Logical Modelling Predicts Cooperative Signals Governing Phenotypes Amid the
EMT Continuum

Using a logical model of the EMT cellular network, we have identified cooperative sig-
nals controlling cancer-associated phenotypes amid the EMT continuum [44]. This in silico
model encompasses 39 intracellular nodes, including EMT transcription factors, epithelial
(ECad and miR200) and mesenchymal (SNAIL, SLUG, ZEB, TCF/LEF, BCat) markers
and known EMT signalling pathways (RAS, NOTCH, WNT, TGFB, JAK/STAT, Hippo,
Integrins and AKT). These components are controlled by 10 inputs from the tumour mi-
croenvironment (HGF, EGF, ECM stiffness, TGFB, IL6, DELTA, ROS, WNT and the ligands
for RPTP and FAT4). The model includes 2 read-outs typically affected during EMT, notably
Adherens Junctions (AJs) stability and Focal Adhesions (FAs) remodelling (Figure 2). It
robustly recapitulates the phenotypic diversity observed in the EMT continuum, including
pure epithelial (E) and mesenchymal (M) phenotypes, as well as 6 incomplete EMT phe-
notypes, among which are 3 hybrid (H) ones that co-express epithelial and mesenchymal
markers (Table 1). Model predictions indicate that the FAK-SRC complex cooperates with a
stiff ECM to upregulate SNAIL and to induce a full mesenchymal phenotype. Experimental
validations using the MCF10A and MDCK cell lines with conditional SRC activation, grown
on collagen gels of different Young’s moduli, which mirror a soft ECM surrounding normal
mammary epithelial cells or a stiffer matrix reported for stroma adjacent to transformed
cells, confirmed that SNAIL expression was significantly higher in SRC overactivating
cells grown on stiff gels compared to those plated on soft ones. Moreover, while SRC
overactivating cells grown on stiff gels were isolated and accumulated poorly ECad at the
cell membrane, those plated on soft gels maintained epithelial features characterised by
the presence of cell-cell contacts at ‘tip-like” junctions and membrane-associated ECad. In
addition, model simulations revealed that FAK-SRC cooperates with RPTP, which mediates
homophilic cell-cell adhesion, to gain a hybrid H3 phenotype, reminiscent to the one dis-
played by cancer cells that migrate collectively [39]. According to this prediction, forcing
PTPR-kappa expression in MCF10A with conditional SRC activation using the (CRISPR)-
based activation system could significantly restore cell aggregation. Thus, our model can
uncover cooperative mechanisms leading to the acquisition of EMT phenotypes [44].

3.1. RPTP_L Cooperates with Inputs from the Microenvironment in EMT

To further extend our search for cooperative interactions involved in EMT dynamics,
we analysed the phenotypes displayed by the model when switching single inputs or
combinations of multiple inputs using GINsim (version 3.0, http://ginsim.org, accessed
date 2 May 2021), a software dedicated to the definition and analysis of logical models [55].
When several phenotypes arise, we performed simulations starting from an epithelial state
(E1) to evaluate the reachability probability of each, using the GINsim built-in functionality
called Avatar, which performs a modified Monte Carlo simulation [25]. To ensure the
convergence of estimated probabilities, 105 runs were performed.

http://ginsim.org
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Figure 2. Regulatory network of cell adhesion properties controlled by the micro-environment during EMT. Inputs from the
TME are denoted in grey, epithelial markers are indicated in green, whereas mesenchymal markers are in dark brown. Oval
nodes denote Boolean components, rectangular ones denote multi-valued components. Green arrows denote activatory
interactions, red blunt arrows denote inhibitory interactions. Two model read-outs provide the states of Adherens Junction
(AJ) assembly and of Focal Adhesion (FA) recycling.

Table 1. The attractors of the logical EMT model identify eight phenotypes characterised by the values of the read-out
components AJ and FA. The first column indicates the phenotypes and their classification into: epithelial, hybrid, unknown,
or mesenchymal based on the values of the read-outs AJ and FA. The second and third columns indicate the values of the
read-outs AJ and FA, respectively. The last column describes each phenotype.

Phenotypes
Adherens
Junctions

(AJs)

Focal Adhesions
(FAs) Description

Epithelial 2 0 AJ assembly due to ECad-BCat
interaction at the membrane

Hybrid

2 1

AJ assembly due to ECad-BCat
interaction at the membrane,

combined with a weak ability to
recycle FAs

1 2

Failure to assemble AJs while
maintaining ECad expression,

combined with an intermediate ability
to recycle FAs

2 3

AJ assembly due to Ecad-Bcat
interaction at the membrane,

combined with a high ability to
recycle FAs

Unknown 0 0
Lack of either epithelial or

mesenchymal markers, undefined
phenotype
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Table 1. Cont.

Phenotypes
Adherens
Junctions

(AJs)

Focal Adhesions
(FAs) Description

Mesenchymal

0 1

Failure to assemble AJs and to express
epithelial markers, combined with the
expression of mesenchymal markers

and a weak ability to recycle FAs

0 2

Failure to assemble AJs and to express
epithelial markers, combined with the
expression of mesenchymal markers

and an intermediate ability to
recycle FAs

0 3

Failure to assemble AJs and to express
epithelial markers, combined with the
expression of mesenchymal markers

and a high ability to recycle FAs

The underlying biological assumptions of our model were that, in the context of a
non-tumorigenic TME, the ECM remains soft, growth factors (HGF and EGF), inflamma-
tory signals (IL6, TGFB and ROS), DELTA and WNT are absent, whereas the RPTP ligand
(RPTP_L) is present, as RPTPs display tumour suppressive capabilities [56]. Accordingly,
when all the input nodes are set to 0, except RPTP_L that is fixed to 1, the epithelial phe-
notype E1 is stable (Figure 3A). We have previously reported synergistic effects involving
RPTP in EMT [44]. Since fixing all inputs to 0, including RPTP_L, does not permit to leave
the E1 phenotype, we searched for cooperative effects between the loss of RPTP_L and
other inputs from the TME.

Figure 3. The EMT logical model predicts cooperation between RPTP_L and other microenvironment signals. Probabilities
of the reachable phenotypes starting from an E1 phenotype, when switching single or multiple microenvironmental signals.
(A–D) ROS (A) or IL6 (B) or TGFB (C) or ECM (D) is set up to 0 or 1, in the presence (=1) or absence (=0) of RPTP_L.
(E,F) HGF (E) or EGF (F) is set up to 0 or 1, in the presence (=1) or absence (=0) of RPTP_L and of a stiff ECM. In each
condition, inputs that are not indicated are fixed to 0.

When fixing DELTA or WNT to 1 in the presence of RPTP_L, the model retains the
E1 phenotype. Accordingly, mouse prostate cells expressing a constitutive active form of
the DELTA receptor NOTCH are unable to metastasise [57]. The loss of RPTP_L is not
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sufficient to induce EMT in the presence of DELTA or WNT, as with DELTA or WNT set to
1, the model maintains an E1 phenotype in the absence of RPTP_L (Table S1).

The model predicts that ROS and IL6 are sufficient to induce EMT phenotypes. It
reaches a unique M2 mesenchymal phenotype in the presence of ROS (Figure 3A), mirroring
the invasive ability observed when epithelial cells are exposed to oxidative conditions [58]
and the M1 mesenchymal and H1 hybrid phenotypes in about the same proportions with
IL6 sets up at 1 (Figure 3B). We do not observe synergistic effects between the loss of
RPTP_L and ROS or IL6, as identical phenotypes were reached by fixing these inputs to 1
in the presence, or in the absence, of RPTP_L (Figure 3A,B).

In contrast, our model predicts that the loss of RPTP_L enhances the migrating abilities
of mesenchymal cells induced by the presence of TGFB (Figure 3C). Fixing TGFB to 1 in
the presence of RPTP_1 leads to a unique M1 mesenchymal phenotype, reminiscent to the
increased mobile phenotypes acquired by epithelial cells treated with TGFB [59]. However,
the model shifted to the M2 mesenchymal phenotype in the absence of RPTP_L (Figure 3C)

Moreover, the model anticipates that RPTP_L cooperates with a stiff ECM to support
the gain of the H3 hybrid phenotype (Figure 3D). Stiffening of the ECM, simulated by fixing
ECM to 1, is capable of generating EMT phenotypes, with the gain of M3 mesenchymal and
H3 hybrid phenotypes, each in about 25% of the cases. The remaining 50% of the simulation
runs, showing a maintenance of the E1 phenotype. Consistent with this prediction, growing
the non-transformed human mammary epithelial cell line MCF10A on a stiff matrix is
sufficient to induce a partial EMT phenotype [60]. However, the H3 hybrid phenotype
could no longer be reached when fixing RPTP_L to 0.

Furthermore, the loss of RPTP_L could also synergise with growth factors (Figure 3E,F).
In the presence of RPTP_L, fixing HGF or EGF to 1 does not permit the model to leave the
E1 phenotype. In contrast, in the absence of RPTP_L, the model reaches the H2 hybrid
phenotype in over 70% of the cases, as well as the M2 mesenchymal phenotype with a
lower probability. Surprisingly, while our model predicts that the presence of HGF is not
sufficient to induce EMT phenotypes (in the presence of RPTP_L), untransformed epithelial
cells treated with HGF have been shown to undergo EMT [61,62]. These data were gathered
using cells grown on plastic, which are far stiffer than even the stiffest living tissue. We
thus simulated a stiff ECM in the presence of HGF or EGF. With ECM and HGF or EGF set
to 1, together with RPTP_L, the model reaches the H3 and M3 phenotypes, reminiscent of
the effect of a stiff ECM alone (Figure 3, compare E and F with D). Strikingly, the loss of
RPTP_L also cooperates with growth factors and ECM stiffening, as the model reaches a
unique M3 mesenchymal phenotype in the presence of a stiff ECM and HGF or EGF when
RPTP_L is set up to 0. Taken together, our model suggests that microenvironment inputs
are, for many of them, unable or poorly potent to induce EMT phenotypes on their own,
but while in synergy with RPTP_L, they become powerful EMT triggers.

3.2. NOTCH Cooperates with Inputs from the Tumour Microenvironment in EMT

In agreement with experimental observations [57,63], the model indicates that fixing
DELTA to 1 (Table S1), or simulating a NOTCH GoF mutation (NOTCH E1) (Figure 4),
does not permit the model to leave the E1 phenotype. Yet, GoF mutations in NOTCH have
been reported in patients with solid cancers [64]. As NOTCH has been shown to play a
critical role in EMT [65], we searched for accomplices of NOTCH in EMT dynamics, by
performing systematic analyses of the model behaviour upon switching inputs one by one
in the presence of a NOTCH E1 mutation (Table S1).
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Figure 4. The EMT logical model predicts cooperation between a NOTCH GoF mutation and microenvironment signals.
Probabilities of the reachable phenotypes, starting from an E1 phenotype, in the presence or absence of a NOTCH GoF
mutation (NOTCH E1) when switching microenvironmental signals. (A–D) ROS (A) or IL6 (B) or TGFB (C) or ECM (D)
is set up to 0 or 1, in the presence (=1) or absence (=0) of NOTCH E1. (E,F) HGF (E) or EGF (F) is set up to 0 or 1, in the
presence (=1) or absence (=0) of NOTCH E1 and of RPTP_L. In each condition, inputs that are not indicated are fixed to 0.

Starting from an E1 phenotype, with NOTCH E1, and fixing DELTA or WNT to 1,
together with RPTP_L, does not permit to leave the E1 phenotype (Table S1). NOTCH does
not cooperate with ROS in EMT. Indeed, with ROS fixed to 1, the model reaches identical
phenotypes without or with the NOTCH E1 mutation (Figure 4A). In contrast, the model
is no longer able to attain a H2 hybrid phenotype when IL6 is set to 1 in the presence of
NOTCH E1 (Figure 4B). Similar to ROS, NOTCH does not cooperate with TGFB (Figure 4C).
Noteworthy, with the NOTCH E1 mutation, the model loses the ability to reach a H3 hybrid
phenotype when ECM is fixed to 1 (Figure 4D, compare with Figure 4D). However, when
HGF or EGF are set to 1 (together with RPTP_L), NOTCH E1 does not permit to leave the
E1 phenotype (Figure 4E,F). Thus, all input-dependent hybrid phenotypes are hindered by
the presence of a NOTCH GoF mutation.

To confirm these observations, we tested if NOTCH E1 could also eliminate the H2
hybrid phenotypes reached when HGF or EGF are set to 1 in the absence of RPTP_L. Indeed,
the model could only reach the M2 mesenchymal phenotype in these simulations. As the
loss of RPTP_L alone does not affect the outcome of a NOTCH GoF mutation, this indicates
that the effect of NOTCH E1 in promoting a mesenchymal phenotype is dependent on both:
the loss of RPTP L and the presence of HGF or EGF. Taken together, the model predicts
that a NOTCH GoF mutation cooperates with microenvironment inputs to convert hybrid
phenotypes into mesenchymal ones.

3.3. NOTCH Cooperates with Secondary Mutations in EMT

To further extend our search for cooperative interactions between NOTCH and other
model variables in EMT, we performed a systematic analysis of the phenotypes compatible
with the 80 LoF and GoF single mutants and by the 78 combinations of double mutants
involving a NOTCH GoF mutation (Table S2). This analysis was carried out through a
Python script available upon request. This script interacts with GINsim (more precisely
with the Java toolkit bioLQM [66]) to define model perturbations, and to get the stable
states of perturbed models. Cooperating mutations should display the acquisition of
phenotypes not observed in either single mutants or the loss of a phenotype observed in
both single mutants.

The model predicts that the E1 phenotype is compatible with single GoF mutations in
NOTCH (NOTCH E1), RAF (RAF E1), MEK (MEK E1) and ERK (ERK E1). However, this
phenotype is lost in double mutants involving NOTCH E1, suggesting that NOTCH and
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RAS signalling cooperate to prevent the maintenance of an E1 phenotype (Tables 2 and S2).
In agreement with these predictions, expressing a constitutive active form of NOTCH or
low levels of oncogenic RAS is not sufficient to transform the immortalized HMLE breast
cell line, while co-expressing both induces efficient colonies in soft agar and tumours in
nice mice [63].

Table 2. NOTCH GoF mutations cooperate with RAS, STAT3, PI3K, Hippo, and WNT signalling in EMT. The first column
indicates each phenotype and their classification into the epithelial, hybrid, unknown, or mesenchymal based on the values
of the read-outs AJ and FA. The second and third columns indicate the values of the read-outs AJ and FA, respectively.
The remaining 20 columns correspond to phenotypes of the unperturbed model or when a single GoF (E1), a LoF (KO)
mutation or double mutations involving a NOTCH GoF mutation is introduced. Tick symbol indicates the presence of the
corresponding phenotype, whereas grey cells indicate its absence.
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In addition, NOTCH E1 and STAT3 E1 synergise to impede the E1 phenotype (Table 2).
STAT3 and NOTCH signalling are known to crosstalk in EMT by activating each other [67,68].
Yet, our model proposes that additional cooperative mechanisms are in play between NOTCH
and STAT3 to trigger EMT.

In addition, we found five mutants cooperating with NOTCH E1 to support hybrid
phenotypes. Single NOTCH E1 and PI3K LoF mutants (PI3K KO) are each compatible
with the gain of the H3 hybrid phenotype. In contrast, this phenotype is lost in the double
mutant (Tables 2 and S2). Consistent with these predictions, neither a constitutive NOTCH
activation, nor a PI3K overactivation caused by a null mutation in its upstream negative
regulator Pten, induce distal metastases in a mouse model for prostate cancer. In contrast,
distal metastases are observed in Pten-null mice overactivating NOTCH [57,69].

In addition, the model predicts that NOTCH cooperates with YAP_TAZ and WNT
signalling to generate hybrid phenotypes, as the single mutants NOTCH E1, LATS E1,
YAP_TAZ KO, DVL KO and CK1 KO give rise to the H1, H2 and H3 phenotypes, while
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these phenotypes are absent in the double mutants involving NOTCH E1. Hybrid states
have been proposed to endow cells with cancer stem cell (CSC) properties [65], suggesting
that the cooperation between NOTCH and YAP_TAZ or WNT signalling supports the
acquisition of stemness properties. Accordingly, NOTCH, YAP_TAZ, and WNT signalling
have all been implicated in endorsing CSC properties [70]. NOTCH could cooperate with
YAP or WNT signalling by synergistically regulating common target genes, as previously
reported in other contexts [71–73].

4. Conclusions and Prospects

Treatment regiments using small molecule inhibitors, mostly targeting intracellular
kinases, have improved the clinical outcomes in patients with cancer [74]. Still, clinical
trials in oncology have one of the lowest success rates among all diseases [75]. Among
the factors that explain this lack of success is our poor knowledge of a multitude of
interconnected cell-autonomous and non-cell-autonomous determinants, which, upon
changing conditions (acquisition of mutations, alterations in the TME) can cooperate or
antagonise each other to generate cancer phenotypes. In this context, computational models
can efficiently overcome the limitations of reductionist approaches in cancer research by
capturing tumour complexity and by generating powerful hypotheses.

Logical models of interaction networks have proven to help identify individual factors
that may work jointly in generating cancer phenotypes (see Section 2.2). Our search
for cooperativity in EMT, between RPTP_L, NOTCH, and other inputs from the TME
(Figure 5A), or between NOTCH and other model variables (Figure 5B), serves as an
illustration of the predictive power of logical models. Indeed, we could recapitulate
synergistic behaviours already reported experimentally and propose novel cooperative
mechanisms that remain to be confirmed. Computational models can identify “gene-
chameleons” behaving in an opposite way during oncogenesis. An example could be
RPTPs. Our model anticipates that the loss of RPTP_L synergises with growth factors, ECM
stiffening, and TGFB to promote EMT (Figure 3). However, we have also reported a critical
role of RPTP in supporting an H3 hybrid phenotype, typical of collective cell migration
behaviour [44]. This mode of migration appears more efficient in establishing metastases
than individual migrating cancer cells, and this correlates with worse patient outcomes [76].
Hence RPTP could fulfil a cancer-promoting function in this context. Accordingly, RPTPs
have been classified as both tumour suppressors and oncogenes [77].

In silico models may also reveal that, depending on the identity of its accomplice,
an oncogene can give rise to different phenotypes. Our model simulations predict that
a NOTCH GoF mutation synergises with IL6, ECM stiffening, or growth factors in the
absence of RPTP_L to convert hybrid phenotypes into mesenchymal ones (Figure 4). In
contrast, NOTCH E1 cooperates with PI3K, YAP_TAZ, or WNT signalling to induce hybrid
phenotypes (Table 2). Hence, treatments with single agents targeting NOTCH signalling
could be detrimental for patients, as in the presence of high levels of IL6, growth factors, or
a stiff ECM, NOTCH inhibitors could trigger hybrid phenotypes, therefore favouring the
acquisition of cells with CSCs properties.

In addition, logical models are suitable to seek translational goals by proposing timely
combinations of targets for therapeutic benefit, before the transition to the next tumoral
stage. Generic or tissue specific models can be built to encompass key regulatory circuits
and biomarkers involved in carcinogenesis and core cellular decisions (e.g., cell division,
survival, adhesion properties, differentiation). These models could be implemented in clin-
ical settings, for personalised medicine, as predictors of effective therapeutic regimens [78].
Genomic, transcriptomic, and proteomic datasets are being obtained from patient tumour
biopsies. These data can be used to train logical models in order to recapitulate tumour be-
haviours and to predict molecular targets, reverting detrimental phenotypes to non-cancer
ones. These predictions can subsequently be tested on organoids, derived from the same
tumour material, before clinical practice (Figure 6).
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Figure 5. Diagrams summarising cooperative interactions predicted by our EMT model (A) Cooperative interactions
between RPTP_L and other inputs from the TME in the absence of a NOTCH Gof mutation (black edges) or in the presence
of a NOTCH GoF mutation (grey edges) using reachability analysis starting from the E1 phenotype (see Table S1). Coloured
rectangles associated with each input provide the value of the input, green for the value 1 (active) and red for 0 (non-active).
All remaining inputs are set to 0. (B) Cooperative interactions between a NOTCH GoF mutation (NOTCH E1) and other
internal variables of the model, by systematic analysis of the phenotype compatible with the different conditions. Coloured
edges connecting two variables indicate the phenotypes lost in double mutants but observed in both single mutants: green
edges for the epithelial E1 phenotype, light blue edges for the hybrid H1 phenotype; darker blue edges for the hybrid H2
phenotype and magenta edges for the hybrid H3 phenotype. Coloured rectangles associated with each variable provide the
type of mutations: green for a GoF mutation, red for a LoF mutation.

Figure 6. Scheme to establish personalised chemotherapeutic drug regiments using logical modelling. A tumour biopsy
is processed to gather genomic, transcriptomic, and proteomic datasets and to establish cultured organoids. A logical
model, including the biomarkers identified in the tumour datasets, is trained to recapitulate the tumour state. Starting from
this state, systematic model perturbations allow predictions of drug combinations, which can revert the tumour state to
a non-tumour state and overcome possible drug resistance mechanisms. Predicted drug combinations are validated in
patient-derived organoid before safe clinical practice.
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There exists a variety of mathematical formalisms to build dynamical models of
cellular networks, from more quantitative systems of differential equations to qualitative,
discrete logical models. Each approach presents its own benefits and limitations, and the
choice of a modelling framework greatly depends on the size of the system to be studied,
on available data, on questions to be addressed, etc. Here, we have focused on the logical
formalism, a popular framework for the analysis of large networks. It goes beyond the
scope of this review to discuss advantages and limitations of this modelling framework or
to compare it with other approaches. For such a discussion, we refer to e.g., [24,79].

Finally, it is worth noting that the EMT model, as other cellular models mentioned
in this review, consider cells in a fixed environment. To appropriately account for the
interplay between cells and their environment, and to assess the dynamics of populations
of cells, it is necessary to rely on multi-scale modelling approaches. Software tools have
been developed to enable the definition of such models, still in a discrete framework. For
example, EpiLog defines logical models over hexagonal grids of communicating cells [80],
and PhysiBoSS combines an agent-based framework with a Boolean modelling of the
intra-cellular networks [81].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22094897/s1, Table S1: The EMT logical model predicts cooperation between RPTP_L,
microenvironment signals and NOTCH E1, Table S2: Phenotypes compatible with the 80 LoF and GoF
single mutants and by the 78 combinations of double mutants involving a NOTCH GoF mutation.
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CDKN2A Cyclin-Dependent Kinase inhibitor 2A
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ECad E-cadherin
ECM Extracellular Matrix
EGF Epidermal Growth Factor
EGFR Epidermal Growth Factor Receptor
EMT Epithelial-to-Mesenchymal Transition
ERK Extracellular-signal-Regulated Kinase
FA Focal Adhesion
FAK Focal Adhesion Kinase
FAT4 Protocadherin Fat 4
FAT4_L Protocadherin Fat 4 ligand
FGFR3 Fibroblast Growth Factor Receptor 3
GoF Gain of Function
HCC Hepatocellular Carcinoma
HGF Hepatocyte Growth Factor
IL6 Interleukin 6
JAK Janus Kinase
LATS Large Tumour Suppressor kinase
LEF Lymphoid enhancer-binding factor
LoF Loss of Function
MAPK Mitogen-Activated Protein Kinase
MDCK Madin-Darby Canine Kidney
miR200 miR-200 superfamily of miRNAs
p14 ARF tumour suppressor
p21CIP Cyclin–Dependent Kinase Inhibitors p21
p38MAPK p38 Mitogen-Activated Protein Kinases
p53 Tumour protein P53
PI3K PhosphoInositide 3-Kinase
ROS Reactive oxygen species
RPTP Receptor-type tyrosine-protein phosphatase
RPTP_L Receptor-type tyrosine-protein phosphatase ligand
RPTP-kappa Receptor-type tyrosine-protein phosphatase kappa
SHH Sonic hedgehog
SLUG Zinc finger protein SNAI2
SNAIL Zinc finger protein SNAI1
SRC Proto-oncogene tyrosine-protein kinase
STAT Signal Transducer and Activator of Transcription
TAZ Transcriptional co-activator with PDZ binding motif
TCF Transcription Factor 7
TCGA The Cancer Genome Atlas
TGFB Transforming growth factor beta
TME Tumour Microenvironment
WNT Protein Wnt
YAP Yes-Associated Protein
ZEB Zinc finger E-box-binding homeobox
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