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Abstract10

In this paper, we study the Independent Set (IS) reconfiguration problem in graphs. An IS11

reconfiguration is a scenario transforming an IS L into another IS R, inserting/removing vertices one12

step at a time while keeping the cardinalities of intermediate sets greater than a specified threshold.13

We focus on the bipartite variant where only start and end vertices are allowed in intermediate ISs.14

Our motivation is an application to the RNA energy barrier problem from bioinformatics, for which15

a natural parameter would be the difference between the initial IS size and the threshold.16

We first show the para-NP hardness of the problem with respect to this parameter. We then17

investigate a new parameter, the cardinality range, denoted by ρ which captures the maximum18

deviation of the reconfiguration scenario from optimal sets (formally, ρ is the maximum difference19

between the cardinalities of an intermediate IS and an optimal IS). We give two different routes to20

show that this problem is in XP for ρ: The first is a direct O(n2)-space, O(n2ρ+2.5)-time algorithm21

based on a separation lemma; The second builds on a parameterized equivalence with the directed22

pathwidth problem, leading to a O(nρ+1)-space, O(nρ+2)-time algorithm for the reconfiguration23

problem through an adaptation of a prior result by Tamaki [20]. This equivalence is an interesting24

result in its own right, connecting a reconfiguration problem (which is essentially a connectivity25

problem within a reconfiguration network) with a structural parameter for an auxiliary graph.26

We demonstrate the practicality of these algorithms, and the relevance of our introduced27

parameter, by considering the application of our algorithms on random small-degree instances for28

our problem. Moreover, we reformulate the computation of the energy barrier between two RNA29

secondary structures, a classic hard problem in computational biology, as an instance of bipartite30

reconfiguration. Our results on IS reconfiguration thus yield an XP algorithm in O(nρ+2) for the31

energy barrier problem, improving upon a partial O(n2ρ+2.5) algorithm for the problem.32
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1 Introduction40

Reconfiguration problems. Reconfiguration problems informally ask whether there exists,41

between two configurations of a system, a reconfiguration pathway entirely composed of legal42

intermediate configurations, connected by legal moves. In a thoroughly studied sub-category43
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YY:2 Parameterized Independent Set Reconfiguration

of these problems, configurations correspond to feasible solutions of some optimization44

problem, and a feasible solution is legal when its quality is higher than a specified threshold.45

Examples of optimization problems for which reconfiguration versions have been studied46

include Dominating Set, Vertex Cover, Shortest Path or Independent Set, which47

is our focus in this article. Associated complexities range from polynomial (see [23] for48

examples) to NP-complete (for bipartite independent set reconfiguration [13]), and even49

PSPACE-complete for many of them [13, 9]. Such computational hardness motivates the50

study of these problems under the lens of parametrized complexity [18, 14, 15, 9], in the51

hope of identifying tractable sub-regimes. Typical parameters considered by these studies52

focus on the value of the quality threshold (typically a solution size bound) defining legal53

configurations and the length of the reconfiguration sequences.54

Directed pathwidth. Directed pathwidth, originally defined in [1] and attributed to55

Robertson, Seymour and Thomas, represents a natural extension of the notions of path-56

width and path decompositions to directed graphs. Like its undirected restriction, it may57

alternatively be defined in terms of graph searching [24], path decompositions [4, 6] or vertex58

separation number [11, 20]. An intuitive formulation can be stated as the search for a visit59

order of the directed graph, using as few active vertices as possible at each step, and such that60

no vertex may be deactivated until all its in-neighbors have been activated. Although an FPT61

algorithm is known for the undirected pathwidth [2], it remains open whether computing62

the directed pathwidth admits a FPT algorithm. XP algorithms [20, 11] are known, and have63

been implemented in practice [19, 12].64

RNA energy barrier. RNAs are single-stranded biomolecules, which fold onto themselves65

into 2D and 3D structures through the pairing of nucleotides along their sequence [22].66

Thermodynamics then favors low-energy structures, and the RNA energy barrier problem67

asks, given two structures, whether there exists a re-folding pathway connecting them that68

does not go through unlikely high-energy intermediate states [17, 21]. Interestingly, the69

problem falls under the wide umbrella of reconfiguration problems described above, namely70

the reconfiguration of solutions of optimization problems (here, energy minimization). An71

important specificity of the problem is that the probability of a refolding pathway depends72

on the energy difference between intermediate states and the starting point rather than the73

absolute energy value. Another aspect of this problem is that, since some pairings of the74

initial structure may impede the formation of new pairings for the target structure, it induces75

a notion of precedence constraints, and may therefore also be treated as a scheduling problem,76

as carried out in [8, 10].77

Problem statement. In our work, we focus on independent set reconfigurations where78

only vertices from the start or end ISs (L and R) are allowed within intermediate ISs. This79

amounts to considering the induced subgraph G[L ∪ R], bipartite by construction. We write80

α(G) for the size of a maximum independent set of G (recall that α(G) can be computed in81

polynomial time on bipartite graphs).82

Bipartite Independent Set Reconfiguration (BISR)
Input: Bipartite graph G = (V, E) with partition V = L ∪ R; integer ρ

Parameter: ρ

Output: True if there exists a sequence I0 · · · Iℓ of independent sets of G such that
I0 = L and Iℓ = R;
|Ii| ≥ α(G) − ρ, ∀i ∈ [0, ℓ];
|Ii △ Ii+1| = 1, ∀i ∈ [0, ℓ − 1].

False otherwise.
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Figure 1 Example of a bipartite independent set reconfiguration from vertices in L (blue) to R

(red). Selected vertices at each step have a filled background. All intermediate ISs have size at least
3, and the optimal IS has size 5, so this scenario has a range of 2; it can easily be verified that it is
optimal.

Figure 1 shows an example of an instance of BISR and a possible reconfiguration pathway.83

We introduce the cardinality range (or simply range) ρ = max1≤i≤ℓ α(G) − |Ii| as a natural84

parameter for this problem, since it measures a distance to optimality. As mentioned above,85

the related parameter in RNA reconfiguration is the barrier, denoted k, and defined as86

k = max1≤i≤ℓ |L| − |Ii|. Intuitively, k measures the size difference from the starting point87

rather than from an “absolute” optimum. Note that k = ρ − (α(G) − |L|), so one has88

0 ≤ k ≤ ρ. Both parameters are obviously similar for instances where L is close to being a89

maximum independent set, which is generally the case in RNA applications, but in theory90

the range ρ can be arbitrarily larger than the barrier k.91

Our results. We first prove that in general, the barrier k may not yield any interesting92

parameterized algorithm, since BISR is Para-NP-hard for this parameter. We thus focus on93

the range parameter for Bipartite Independent Set Reconfiguration, and prove that94

it is in XP by providing two distinct algorithmic strategies to tackle it.95

Our first algorithmic strategy stems from a parameterized equivalence we draw between96

BISR and the problem of computing the directed pathwidth of directed graphs. Within this97

equivalence, the range parameter ρ maps exactly to the directed pathwidth. This allows to98

apply XP algorithms for Directed Pathwidth to BISR while retaining their complexity,99

such as the O(nρ+2)-time, O(nρ+1)-space algorithm from Tamaki [20] (with n = |V |). This100

equivalence between directed pathwidth and bipartite independent set reconfiguration is itself101

an interesting result, as it connects a structural problem, whose parameterized complexity is102

open, with a reconfiguration problem of the kind that is routinely studied in parameterized103

complexity [18, 14, 15, 9].104

We also present another more direct algorithm for BISR, with a time complexity of105

O(n2ρ
√

nm) (with m = |E|) but using only O(n2) space. It relies on a separation lemma106

involving, if it exists, a mixed maximum independent set of G containing at least one vertex107

from both parts of the graph. In the specific case of bipartite graphs arising from RNA108

reconfiguration, we improve the run-time of the subroutine computing a mixed MIS to O(n2)109

(rather than O(
√

nm)), with a dynamic programming approach.110

IPEC 2021



YY:4 Parameterized Independent Set Reconfiguration

We present benchmark results for both algorithms, on random instances of general111

bipartite graphs as well as instances of the RNA Energy Barrier problem. The approach112

based on directed pathwidth yields reasonable solving times for RNA strings of length up113

to ∼ 150.114

Outline. To start with, Section 2 presents some previously known results related to BISR,115

as well as some alternative formulations or parameters. Then, Section 3 shows that BISR116

is in fact equivalent to the computation of directed pathwidth in directed graphs. We first117

present a parameterized reduction from bipartite independent set reconfiguration to an118

input-restricted version, on graphs allowing for a perfect matching. Then, this version of119

the problem is shown to be simply equivalent to the computation of directed pathwidth on120

general directed graphs.121

Section 4 presents our direct algorithm for bipartite independent set reconfiguration.122

More precisely, Section 4.2 presents the separation lemma on which the divide-and-conquer123

approach of the algorithm is based, while Section 4.3 details the algorithm and its analysis.124

To finish, Section 5 explains some optimizations specific to RNA reconfiguration instances,125

and presents our numerical results.126

2 Preliminaries127

Previous results. Bipartite Independent Set Reconfiguration was proven NP-128

complete in [13], through the equivalent k-Vertex Cover Reconfiguration problem.129

Formulated in terms of RNAs, and restricted to secondary structures (i.e. the subset of130

bipartite graphs that can be obtained in RNA reconfiguration instances), it was independently131

proven NP-hard in [17]. To the authors’ knowledge, its parameterized complexity remains132

open.133

Independent set reconfiguration in an unrestricted setting (allowing vertices which are134

outside from the start or end independent sets, i.e. in possibly non-bipartite graphs) when135

parameterized by the minimum allowed size of intermediate sets has been proven W[1]-hard136

[18, 9], and fixed-parameter tractable for planar graphs or graphs of bounded degree [14].137

Whether this more general problem is in XP for this parameter remains open. We note that138

in this setting, parameter ρ seems slightly less relevant since it involves computing a maximal139

independent set in a general graph (i.e. testing if there exists a reconfiguration from ∅ to ∅140

with range ρ is equivalent to deciding if α(G) ≥ ρ).141

As for algorithms for BISR, the closest precedent is an algorithm by Thachuk et al. [21].142

It is restricted to RNA secondary structure conflict graphs, and additionally to conflict143

graphs for which both parts L and R are maximum independent sets of G. In this restricted144

setting, although it is not stated as such, [21] provides an XP algorithm with respect to the145

barrier parameter k which then coincides with the range parameter ρ that we introduce.146

Restriction to the monotonous case. A reconfiguration pathway for bipartite inde-147

pendent set reconfiguration is called monotonous or direct if every vertex is added148

or removed exactly once in the entire sequence. The length of a monotonous sequence is149

therefore necessarily: ℓ = |L ∪ R| = |L| + |R|.150

Theorem 2 from [13] tells us that if G, ρ is a yes-instance of bipartite independent set151

reconfiguration, then there exists a monotonous reconfiguration between L and R respecting152

the constraints. We will therefore restrict without loss of generality our study to this simpler153

case. In the more restricted set studied in [21], this was also independently shown.154

Hardness for the barrier parameter. In the general case where L is not necessarily155

a maximal independent set, the range and barrier parameters (respectively ρ and k =156
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ρ − (α(G) − |L|) may be arbitrarily different. The following result motivates our use of157

parameter ρ for the parameterized analysis of BISR.158

▶ Proposition 1. BISR is Para-NP-hard for the energy barrier parameter (i.e. NP-hard even159

with k = 0).160

Proof. We use additional vertices in R to prove this result. Informally, such a vertex may161

always be inserted first in a realization: it improves the starting IS from |L| to |L| + 1, so the162

lower bound on the rest of the sequence is shifted from |L| − k to |L| − (k − 1), effectively163

reducing the barrier without simplifying the instance. Thus, we build a reduction from the164

general version of BISR: given a bipartite graph G with parts L and R and an integer ρ,165

we construct a new instance G′ with parts L′ = L and R′ equal to R ∪ NR and ρ′ = ρ. NR166

is composed of |L| − (α(G) − ρ) isolated vertices (we can assume without loss of generality167

that this quantity is non-negative, otherwise (G, ρ) is a trivial no-instance), completely168

disconnected from the rest of the graph.169

Note that α(G′) = α(G)+|NR| = |L|+ρ, so the barrier in (G′, ρ′) is k = ρ−(α(G′)−|L|) =170

0. A realization for (G, ρ) can be transformed into a realization for (G′, ρ) by inserting171

vertices from NR first, and conversely, vertices from NR can be ignored in a realization for172

(G′, ρ) to obtain a realization for (G, ρ). Therefore, since BISR is NP-Complete, it is also173

Para-NP-hard w.r.t the barrier k. ◀174

Permutation formulation and ρ-realizations. An equivalent representation of a mono-175

tonous reconfiguration pathway I0 . . . Iℓ from L to R for a graph G is a permutation P of176

L ∪ R. The i-th vertex of the permutation is the vertex that is processed (i.e. added or177

removed) between Ii−1 and Ii (this formulation lightens the representation of a solution,178

from a list of vertex sets to a list of vertices). Given a subset X of vertices, we write179

δ(X) = |L ∩ X| − |R ∩ X| and I(X) = (L \ X) ∪ (R ∩ X) = L∆X for the set obtained from180

L after processing vertices from X. Then |I(X)| = |L| − δ(X). We say that X is licit if I(X)181

is an independent set. For any prefix p of P of length i, we write V (p) (or simply p if the182

context is clear) for the set of vertices appearing in p, and Ii = I(V (p)). Permutation P is183

licit if V (p) is licit for each prefix p of P ; note that P is licit if and only if f ∀r ∈ R, the184

neighborhood N(r) of r in G appears before r in P . Thus, permutation P is a ρ-realization185

that is licit and such that for each prefix p, |I(p)| ≥ α(G) − ρ (i.e. δ(V (p)) ≤ ρ + |L| − α(G).186

3 Connection to Directed Pathwidth187

3.1 Definitions188

Parameterized reduction. In this section, we provide a definition of directed pathwidth,189

and then prove its parameterized equivalence to the bipartite independent set reconfiguration190

problem. We say two problems P1 and P2 are parametrically equivalent when there exists191

both a parameterized reduction from P1 to P2 and another from P2 to P1. A parameterized192

reduction [5] from problem P to problem Q is a function φ from instances of P to instances193

of Q such that (i) φ(x) is a yes-instance of Q ⇔ x is a yes-instance of P, (ii) φ(x) can be194

computed in time f(k) · |x|O(1), where k is the parameter of x, and (iii) if k is the parameter195

of x and k′ is the parameter of φ(x), then k′ ≤ g(k) for some (computable) function g.196

Interval representation. Our definition of directed pathwidth relies on interval embeddings.197

Alternative definitions can be found, for instance in terms of directed path decomposition or198

directed vertex separation number [24, 20, 11].199

IPEC 2021
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▶ Definition 2 (Interval representation). An interval representation of a directed graph H200

associates each vertex u ∈ H with an interval Iu = [au, bu], with au, bu integers. An interval201

representation is valid when (u, v) ∈ E ⇒ au ≤ bv. I.e, the interval of u must start before202

the interval of v ends. If m, M are such that ∀u, m ≤ au, bu ≤ M , we define the width of an203

interval representation as maxm≤i≤M |{u|i ∈ Iu}|204

▶ Definition 3 (directed pathwidth). The directed pathwidth of a directed graph H is the205

minimum possible width of a valid interval representation of H. We note this number dpw(H).206

Nice interval representation. An interval representation is said to be nice when no more207

than one interval bound is associated to any given integer, and the integers associated to208

interval bounds are exactly [1 . . . 2 · |V (H)|]. Any interval representation may be turned into209

a nice one without changing the width by introducing new positions and “spreading events”.210

See Appendix B for more details.211

Directed graph from perfect matching. Given a bipartite graph G allowing for a212

perfect matching M , we construct an associated directed graph H in the following way: the213

vertices of H are the edges of the matching, and (l, r) → (l′, r′) is an arc of H iff (l, r′) ∈ G.214

Alternatively, H is obtained from G, M by orienting the edges of G from L to R, and then215

contracting the edges of M . We will denote this graph H(G, M), and simply call it the216

directed graph associated to G, M . Such a construction is relatively standard and can be217

found in [7, 26], for instance.218

3.2 Directed pathwidth ⇔ Bipartite independent set reconfiguration219

Perfect matching case. Our main structural result is the following. Its proof, relying on220

interval representations, is quite straightforward and postponed to appendix B:221

▶ Proposition 4. Let G be a bipartite graph allowing for a perfect matching M , and let222

H(G, M) be the directed graph associated to G, M . Then G allows for a ρ-realization iff223

dpw (H(G, M)) ≤ ρ.224

Conversely, given any directed graph H, there exists a bipartite graph G allowing for a perfect225

matching M such that H = H(G, M) is the directed graph associated to G, M and G allows226

for a ρ-realization iff dpw(H) ≤ ρ.227

The first half of Proposition 4 is a parameterized reduction from an input-restricted228

version of bipartite independent set reconfiguration to directed pathwidth. The229

restriction is on bipartite graphs allowing for a perfect matching. The second half is a230

parameterized reduction in the other direction. In both cases, the parameter value is directly231

transferred, which allows to retain the same complexity when transferring an algorithm from232

one problem to the other.233

Non-perfect-matching case. In the case where G does not allow for a perfect matching,234

we construct an equivalent instance G′ allowing for a perfect matching M ′, through the235

addition of new vertices. Specifically, with a bipartite graph G with sides L, R, a maximum236

matching M of G, and the set U of unmatched vertices in G, we extend G with |U | new237

vertices in two sets NL, NR, giving a new graph G′, with sides L′ = L ∪ NL, R′ = R ∪ NR,238

in the following way (M ′ is initialized to M):239

For each u ∈ L ∩ U , we introduce a new vertex r(u) ∈ NR, connect it to all vertices of240

L′, and add the edge (u, r(u)) to M ′.241

Likewise, for each v ∈ R ∩ U , we introduce l(v) ∈ NL, connect it to all vertices of R′ and242

add (v, l(v)) to M ′.243
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Note that M ′ is a perfect matching of the extended bipartite graph G′.244

▶ Proposition 5. With G, G′ defined as above, we have that G allows for a ρ-realization iff245

G′ allows for a ρ-realization.246

Proof. First note that by König’s Theorem, α(G′) = |M ′| = |M | + |U | = α(G), so it suffices247

to ensure that any realization for G can be transformed into a realization for G′ where248

independent sets are lower-bounded by the same value, and vice versa.249

Let P be any ρ-realization of G, then P ′ = NL · P · NR is a ρ-realization for G′, with250

NL and NR laid out in any order. Indeed, P ′ satisfies the precedence constraint, and any251

intermediate set I in P ′ satisfies one of the following cases: L ⊆ I, R ⊆ I, or I is an252

intermediate set from P , so in any case it has size at least α(G) − ρ = α(G′) − ρ.253

Conversely, because of the all-to-all connectivity between NL and R and between L and254

NR, a realization for G′ needs to have NL before any vertex from R, and have NR after all255

vertices from L. Without loss of generality, it is therefore of the form NL · P · NR with P a256

realization of G, and G allows for a ρ-realization. ◀257

The construction above in fact yields a parameterized reduction from bipartite inde-258

pendent set reconfiguration to its input-restricted version on bipartite graphs, allowing259

for a perfect matching. This input-restricted version is in turn parametrically equivalent to260

directed pathwidth by Proposition 4. Hence the following corollary:261

▶ Corollary 6. Bipartite Independent Set Reconfiguration is parametrically equival-262

ent to Directed Pathwidth263

4 An XP algorithm for independent set reconfiguration264

4.1 Definitions265

We use the permutation representation of reconfiguration scenarios, i.e. licit permutations of266

vertices. Note that the intersection, as well as the union, of two licit set of vertices are licit.267

Given a realization P of G and a set of vertices X, we write P ∩ X for the sub-sequence of268

P consisting of the vertices of X, without changing the order. Likewise, P \ X denotes the269

sub-sequence of P consisting of vertices not in X.270

A mixed maximum independent set I of G is an independent set of G of maximum271

cardinality containing at least a vertex from both parts. Note that not every bipartite graph272

contains such a set. A separator X is a subset of L ∪ R such that I(X) is a mixed maximum273

independent set of G.274

4.2 Separation lemma275

The separation lemma on which our algorithm is based is proved using the following “mod-276

ularity” property of the imbalance functions. Interestingly, it is almost the same property277

(sub-modularity), on a different quantity (the in-degrees of vertices) on which rely the XP278

algorithm for directed pathwidth [20].279

▶ Lemma 7 (modularity). The function associating a licit subset to its corresponding inde-
pendent set I(X) verifies:

|I(X)| + |I(Y )| = |I(X ∪ Y )| + |I(X ∩ Y )|

IPEC 2021



YY:8 Parameterized Independent Set Reconfiguration

Proof. We have I(X) = (L\X)∪ (R∩X). Therefore, |I(X)| = |L\X|+ |R∩X| = |L|− |L∩280

X|+|R∩X|. Furthermore, |(X ∪Y )∩L| = |(X ∩L)∪(Y ∩L)| = |X ∩L|+|Y ∩L|−|X ∩Y ∩L|,281

and likewise for R. The result stems from a substraction of one equation to the other, and282

an addition of |L|. ◀283

Based on this “modularity”, the following separation lemma is shown by “re-shuffling” a284

solution into another one going through a mixed MIS.285

▶ Lemma 8 (separation lemma). Let X be a separator of G. If P is a ρ-realization for G,286

then (P ∩ X) · (P \ X) is also a ρ-realization for G.287

Proof. Let P be a ρ-realization for G and P ′ = (P ∩ X) · (P \ X) a reshuffling, where X is288

processed first.289

Consider p′ a prefix of P ′. There are two cases:290

1. p′ is included in (or equal to) P ∩ X. In this case, ∃p prefix of P such that: p′ = p ∩ X.291

We therefore have |I(p′)| = |I(p)| + |I(X)| − |I(p ∪ X)|, and since |I(X)| is a maximum292

independent set of G, |I(p′)| ≥ |I(p)| ≥ α(G) − ρ.293

2. P ∩ X is included in p. In that case, ∃p prefix of P such that p′ = p ∪ X. We have,294

likewise, |I(p′)| = |I(p)| + |I(X)| − |I(p ∩ X)| and conclude the same way.295

◀296

The separation allows for a divide-and-conquer approach: if we identify a separator X297

in G, i.e. a licit subset of G such that I(X) is a mixed independent set, then we may298

independently solve the problem of finding a ρ-realization from L to I(X) and then from299

I(X) to R. If no solution is found for one of them, then the converse of Lemma 8 implies300

that no ρ-realizations exists for G. The algorithm of the following section is based on this301

approach.302

4.3 XP algorithm303

Algorithm details. We present here a direct algorithm for Bipartite Independent Set304

Reconfiguration, detailed in Algorithm 1. The main function Realize is recursive. Its305

sub-calls arise either from a split with a mixed MIS I (in which case it is called on a smaller306

graph but with the same parameter), or from the loop over all possible starting points in the307

case where no separator is found (lines 13-18), in which case the parameter does reduce. The308

overall runtime is dominated by this loop, and is analyzed in Proposition 9 below.309

Mixed MIS algorithm. The sub-routine allowing to find, if it exists, a maximum independ-310

ent set intersecting both L and R is based on concepts from matching theory [16], namely311

the Dulmage-Mendelsohn decomposition [3, 16], as well as the decomposition of bipartite312

graphs with a perfect matching into elementary subgraphs [16](part 4.1). Its full details are313

described in Appendix A.314

▶ Proposition 9. Algorithm 1 runs in O(|V |2ρ
√

|V ||E|) time, while using O(|V |2) space,315

where ρ is the difference between the minimum allowed and maximum possible independent316

set size, along the reconfiguration.317

Proof. Let us start with space: throughout the algorithm, one needs only to maintain a318

description of G and related objects (independent set I, maximum matching M , associated319

directed graph H(G, M)) for which O(|V |2) is enough.320

As for time, let C(n1, n2, ρ) be the number of recursive calls of the function Realize of321

Algorithm 1 when initially called with |L| = n1, |R| = n2, and some value of ρ. We will show322
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Algorithm 1 XP algorithm for Bipartite Independent Set Reconfiguration
Input : bipartite graph G (with sides L and R), integer ρ

Output : a ρ-realization for G, if it exists

1 Function Realize(G, ρ):

2 if |R| > |L| then swap L and R

3 if ρ < 0 then return ⊥
4 if L = ∅ then return R in any order

5 // Trying to find a separator (cf Algorithm 2)
6 I = MixedMIS(G)
7 if I ̸=⊥ then
8 S = (L \ I) ∪ (R ∩ I) // intermediate point.
9 return Realize(G[S], ρ)· Realize(G[V \ S], ρ)

10 else
11 for ℓ ∈ L do
12 if Realize(G \ {ℓ}, ρ − 1)̸=⊥ then
13 return (ℓ)· Realize(G \ {ℓ}, ρ − 1)
14 return ⊥

by induction that C(n1, n2, k) ≤ (n1 + n2)2ρ. Since each call involves one computation of a323

maximum matching, this will prove our result.324

Given (n1, n2, k), suppose therefore that ∀n′
1 < n1, n′

2 < n2, ρ′ < ρ we have C(n′
1, n′

2, ρ′) <325

(n′
1 + n′

2)2ρ
326

1. If G allows for a mixed maximum independent set, the instance is split into two smaller327

instances, yielding C(n1, n2, k) = C(n′
1, n2, k′)+C(n′′

1 , n′′
2 , k′′) with n′

1+n′′
1 = n1 and n2 =328

n′
2 + n′′

2 . And C(n1, n2, k) ≤
(
(n′

1 + n′
2)2ρ + (n′′

1 + n′′
2)2ρ

)
≤ (n′

1 + n′′
1 + n′

2 + n′′
2)2ρ ≤329

(n1 + n2)2ρ.330

2. else, we have the following relations: if n1 ≤ n2 then C(n1, n2, ρ) = n1 ·C(n1 −1, n2, ρ−1),331

and if n2 < n1, then C(n1, n2, ρ) = C(n2, n1, ρ). Let us treat the first case, as the second332

one falls back to it when applying the inversion:333

C(n1, n2, ρ) = n1 · C(n1 − 1, n2, ρ − 1)334

≤ n · n2(ρ−1) by induction hypothesis335

≤ n2ρ
336
337

◀338

The exponential part (O(n2ρ)) of the worst case complexity of Algorithm 1 is in fact339

tight, as it is met with a complete bi-clique Kn,n with sides of size n. Indeed, in this case,340

no mixed MIS is found in any of the recursive calls.341

5 Benchmarks and Applications342

In this section, we report benchmark results for both algorithmic approaches. We first explain343

some details about the algorithm we implemented for directed pathwidth. Then, we present344

a general benchmark of our algorithms on random (Erdös-Rényi) bipartite graphs. Last, we345

give some background related to RNA bioinformatics and the application of our algorithm346
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Figure 2 (top panel) Average run-time (seconds, log-scale) of our algorithms on random Erdös-
Rényi bipartite graphs, with a probability of connection such that the average degree of a vertex is
5 (i.e p = 5/n). (bottom panel) Average parameter value of generated instances, as a function of
input size.

to the barrier energy problem.347

348

5.1 Implementation details349

Directed pathwidth. We implemented and used an algorithm from Tamaki [20], with a350

runtime of O(nρ+2). This algorithm was originally published in 2011 [20]. In 2015, H.Tamaki351

and other authors described this algorithm as “flawed” in [11], and replaced it with another352

XP algorithm for directed pathwidth, with a run-time of O( mn2ρ

(ρ−1)! ).353

Upon further analysis from our part, and discussions with H. Tamaki and the corresponding354

author of [11], it appears a small modification allowed to make the algorithm correct. In a355

nutshell, the algorithm involves pruning actions, and these need to be carried out as soon as356

they are detected. In [20], temporary solutions were accumulated before a general pruning357

step. With this modification, the analysis presented in [20] applies without modification, and358

yields a time complexity of O(nρ+2). The space complexity is unchanged at O(nρ+1). For359

completeness, a detailed re-derivation of the results of [20] is included in Appendix C360

Mixed-MIS algorithm implementation. On Figure 2, the “m-MIS”-curve, corresponds361

to our mixed-MIS-based algorithm in O(n2ρ
√

|V ||E|). Compared to the algorithm presented362

in Algorithm 1, a more efficient rule is used in the non-separable case: we loop over all363

possible r ∈ R and add N(r) · r to the schedule (instead of a single vertex ℓ ∈ L).364

5.2 Random bipartite graphs365

Benchmark details. Figure 2 shows, as a function of the number of vertices, the average366

execution time of both our algorithms (top panel), as well as the distribution of parameter367

values (ρ - bottom panel), on a class of random bipartite graphs. These graphs are generated368

according to an Erdös-Rényi distribution (each pair of vertices has a constant probability369

p of forming an edge). We use a connection probability of d/n, dependent on the number370
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Figure 3 Conflict bipartite graph (D) associated with an instance of the RNA Energy-Barrier
problem, consisting of an initial (A) and final (B) structure, both represented as an arc-annotated
sequence (C). The sequence of valid secondary structures, achieving minimum energy barrier can be
obtained from the solution given in Figure 1.

of vertices. It is such that the average degree of vertices is d. The data of our benchmark371

(Figure 2) has been generated with d = 5.372

Comments on Figure 2. The difference in trend between the execution times of the two373

algorithms is quite coherent with the difference in their exponents (nρ+2 vs. n2ρ+2.5).374

5.3 Computing energy barriers in RNA kinetics375

In this section, we give more detail about how our algorithms may apply to a bioinformatics376

problem, the RNA barrier energy problem. We present benchmark results, on a random377

class of RNA instances, showing the practicality of our approach.378

RNA basics. RiboNucleic Acids (RNAs) are biomolecules of outstanding interest for379

molecular biology, which can be represented as strings over an alphabet Σ := {A, C, G, U}380

(in this context, n denotes the length of the string). Importantly, these strings may fold on381

themselves to adopt one or several conformation(s). A conformation is typically described382

by a set of base pairs (i, j), i < j. Then, a standard class of conformations to consider in383

RNA bioinformatics are secondary structures, which are pairwise non-crossing (∄(i, j), (k, l) ∈384

S such that i ≤ k ≤ j ≤ l, in particular, they involve distinct positions). In this section,385

we more precisely work on the problem of finding a reconfiguration pathway between two386

secondary structures (i.e conflict-free sets of base pairs). The reconfiguration may only involve387

secondary structures, and remain of energy as low as possible. We work with a simple energy388

model consisting of the opposite of number of base pairs in a configuration (−Nbps). The389

RNA Energy-Barrier problem can then be stated as such:390

RNA Energy-Barrier
Input: Secondary structures L and R; Energy barrier k ∈ N+

Output: True if there exists a sequence S0 · · · Sℓ of secondary structures such that
S0 = L and Sℓ = R;
|Si| ≥ |L| − k, ∀i ∈ [0, ℓ];
|Si △ Si+1| = 1, ∀i ∈ [0, ℓ − 1].

False otherwise.

Bipartite representation. Given two secondary structures L and R, represented as sets of391

base pairs, we define a conflict graph G(L, R) such that: the vertex set of G(L, R) is L ∪ R;392
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Figure 4 Execution time of our algorithms on random RNA reconfiguration instances (top panel).
On the bottom panel, the distribution of the parameter value (ρ) is plotted against the length of the
RNA string. Error bars (top panel) are obtained using a bootstrapping method.

and two vertices (i, j), (k, l) are connected if they are crossing (see Figure 3). Since base393

pairs in both L and R are both pairwise non-crossing, G(L, R) is bipartite with parts L394

and R. In this context, a maximum independent set of G(L, R) is a minimum free-energy395

structure of the RNA, and we write MFE(L, R) = α(G(L, R)). We then see how the RNA396

Energy-Barrier problem is simply Bipartite Independent Set Reconfiguration397

restricted to a specific class of bipartite graphs: the conflict graphs of secondary structures,398

with a range of ρ = k + MFE(L, R) − |L|.399

Problem motivation. Since the number of secondary structures available to a given RNA400

grows exponentially with n, RNA energy landscapes are notoriously rugged, i.e. feature many401

local minima, and the folding process of an RNA from its synthesis to its theoretical final state402

(a thermodynamic equilibrium around low energy conformations) can be significantly slowed403

down. Consequently, some RNAs end up being degraded before reaching this final state.404

This observation motivates the study of RNA kinetics, which encompass all time-dependent405

aspects of the folding process. In particular, it is known (Arrhenius law) that the energy406

barrier is the dominant factor influencing the transition rate between two structures, with an407

exponential dependence.408

Related works in bioinformatics. The problem was shown to be NP-hard by Maňuch et409

al [17]. Thachuk et al [21] also proposed an XP algorithm in O(n2k+2.5) parameterized by410

the energy barrier k, restricted to instances such that the maximum independent set of411

G(L, R) has cardinality equal to |L| and |L| = |R|.412

Benchmark details. Figure 4 shows (top panel) the average execution time of our al-413

gorithms on random RNA instances. The bottom panel shows the parameter distribution as414

a function of the length of the RNA string. Random instances are generated according to415

the following model: two secondary structures L, R are chosen uniformly at random (within416

the space of all possible secondary structure). Base pairs are constrained to occur between417

nucleotides separated by a distance of at least θ = 5.418
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5.4 RNA specific optimizations419

Dynamic Programming and RNA. Given two secondary structures L and R, a mixed420

MIS of G(L, R) is a maximum conflict-free subset of L∪R, containing at least a base pair from421

L and R. As is the case for many algorithmic problems involving RNA, the fact that RNAs422

are strings and that base pairs define intervals suggests a dynamic programming approach423

to the mixed maximum independent set problem in RNA conflict graphs. Subproblems will424

correspond to intervals of the RNA string. Let us start with a simple dynamic programming425

scheme allowing to compute an unconstrained MIS.426

Unconstrained MIS DP scheme. A maximum conflict-free subset of L ∪ R can be427

computed by dynamic programming, using the following DP table: for each 1 ≤ i ≤ j ≤ n,428

let MCFi,j be the size of a maximum conflict-free subset of all base pairs included in [i, j].429

▶ Lemma 10. MCF1,n can be computed in time O(n2)430

Proof. We have the following recurrence formula:431

MCFi,i′ = 0, ∀i′ < i432

MCFi,j = max
{

MCFi+1,j

max(i,k)∈L∪R 1 + MCFi+1,k−1 + MCFk+1,j

433

434

Note that the last max is over at most two possible pairs (i, k) (1 from L and 1 from R), per435

the fact that L and R are both conflict-free. ◀436

Mixed MIS DP scheme. The following modifications to the DP scheme above allow to437

compute a mixed MIS of G(L, R) while retaining the same complexity. In addition to the438

interval, we index the table by Boolean α and β which, when true, further restricts the439

optimization to subsets with > 0 pair from L (iff α = True) or R (iff β = True):440

MCF α,β
i,i′ =

{
0 if (α, β) = (False, False)
−∞ otherwise

, ∀i′ < i441

MCF α,β
i,j = max


MCF α,β

i+1,j

max
(i,k)∈E

α′,α′′,β′,β′′∈B4

1 + MCF α′,β′

i+1,k−1 + MCF α′′,β′′

k+1,j

∣∣∣∣∣ if ¬α ∨ α′ ∨ α′′ ∨ ((i, k) ∈ L)
and ¬β ∨ β′ ∨ β′′ ∨ ((i, k) ∈ R)

442

443

Through a suitable memorization, the system can be used to compute in O(n2) the maximum444

cardinality MCF True,True
1,n of a subset over the whole sequence. A backtracking procedure is445

then used to rebuild the maximal subset.446

6 Conclusion447

Our work so far sheds a new light on both Bipartite Independent Set Reconfiguration448

and Directed Pathwidth problems. The former can thus be solved with a parameterized449

algorithm, having important applications in RNA kinetics since the range parameter is450

particularly relevant in this context. We hope the newly drawn connection will help settle the451

fixed parameter tractability of computing the directed pathwidth. A slightly more accessible452

open problem would be to design an FPT algorithm for BISR in the context of secondary453

structure conflict graphs (i.e. those graphs arising in RNA reconfiguration).454

IPEC 2021



YY:14 Parameterized Independent Set Reconfiguration

References455

1 János Barát. Directed path-width and monotonicity in digraph searching. Graphs and456

Combinatorics, 22(2):161–172, 2006.457

2 Hans L Bodlaender. Fixed-parameter tractability of treewidth and pathwidth. In The458

Multivariate Algorithmic Revolution and Beyond, pages 196–227. Springer, 2012.459

3 Jianer Chen and Iyad A Kanj. Constrained minimum vertex cover in bipartite graphs:460

complexity and parameterized algorithms. Journal of Computer and System Sciences, 67(4):833–461

847, 2003.462

4 David Coudert, Dorian Mazauric, and Nicolas Nisse. Experimental evaluation of a branch-and-463

bound algorithm for computing pathwidth and directed pathwidth. Journal of Experimental464

Algorithmics (JEA), 21:1–23, 2016.465

5 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin466

Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,467

2015.468

6 Joshua Erde. Directed path-decompositions. SIAM Journal on Discrete Mathematics, 34(1):415–469

430, 2020.470

7 Komei Fukuda and Tomomi Matsui. Finding all the perfect matchings in bipartite graphs.471

Applied Mathematics Letters, 7(1):15–18, 1994.472

8 Marinus Gottschau, Felix Happach, Marcus Kaiser, and Clara Waldmann. Budget minimization473

with precedence constraints. CoRR, abs/1905.13740, 2019. URL: http://arxiv.org/abs/474

1905.13740, arXiv:1905.13740.475

9 Takehiro Ito, Marcin Kamiński, Hirotaka Ono, Akira Suzuki, Ryuhei Uehara, and Katsuhisa476

Yamanaka. Parameterized complexity of independent set reconfiguration problems. Discrete477

Applied Mathematics, 283:336–345, 2020.478

10 Jeff Kinne, Ján Manuch, Akbar Rafiey, and Arash Rafiey. Ordering with precedence constraints479

and budget minimization. CoRR, abs/1507.04885, 2015. URL: http://arxiv.org/abs/1507.480

04885, arXiv:1507.04885.481

11 Kenta Kitsunai, Yasuaki Kobayashi, Keita Komuro, Hisao Tamaki, and Toshihiro Tano.482

Computing directed pathwidth in o(1.89n) time. Algorithmica, 75(1):138–157, 2016.483

12 Yasuaki Kobayashi, Keita Komuro, and Hisao Tamaki. Search space reduction through484

commitments in pathwidth computation: An experimental study. In International Symposium485

on Experimental Algorithms, pages 388–399. Springer, 2014.486

13 Daniel Lokshtanov and Amer E Mouawad. The complexity of independent set reconfiguration487

on bipartite graphs. ACM Transactions on Algorithms (TALG), 15(1):1–19, 2018.488

14 Daniel Lokshtanov, Amer E Mouawad, Fahad Panolan, MS Ramanujan, and Saket Saurabh.489

Reconfiguration on sparse graphs. Journal of Computer and System Sciences, 95:122–131,490

2018.491

15 Daniel Lokshtanov, Amer E Mouawad, Fahad Panolan, and Sebastian Siebertz. On the492

parameterized complexity of reconfiguration of connected dominating sets. arXiv preprint493

arXiv:1910.00581, 2019.494

16 László Lovász and Michael D Plummer. Matching theory, volume 367. American Mathematical495

Soc., 2009.496

17 Ján Maňuch, Chris Thachuk, Ladislav Stacho, and Anne Condon. Np-completeness of497

the energy barrier problem without pseudoknots and temporary arcs. Natural Computing,498

10(1):391–405, 2011.499

18 Amer E Mouawad, Naomi Nishimura, Venkatesh Raman, Narges Simjour, and Akira Suzuki.500

On the parameterized complexity of reconfiguration problems. Algorithmica, 78(1):274–297,501

2017.502

19 Hisao Tamaki. A directed path-decomposition approach to exactly identifying attractors of503

boolean networks. In 2010 10th International Symposium on Communications and Information504

Technologies, pages 844–849. IEEE, 2010.505

http://arxiv.org/abs/1905.13740
http://arxiv.org/abs/1905.13740
http://arxiv.org/abs/1905.13740
http://arxiv.org/abs/1905.13740
http://arxiv.org/abs/1507.04885
http://arxiv.org/abs/1507.04885
http://arxiv.org/abs/1507.04885
http://arxiv.org/abs/1507.04885


L. Bulteau, B. Marchand and Y. Ponty YY:15

20 Hisao Tamaki. A polynomial time algorithm for bounded directed pathwidth. In Petr Kolman506

and Jan Kratochvíl, editors, Graph-Theoretic Concepts in Computer Science, pages 331–342,507

Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.508

21 Chris Thachuk, Jan Manuch, Arash Rafiey, Leigh-Anne Mathieson, Ladislav Stacho, and509

Anne Condon. An Algorithm for the Energy Barrier Problem Without Pseudoknots and510

Temporary Arcs. In Biocomputing 2010, pages 108–119. World Scientific, oct 2009. doi:511

10.1142/9789814295291_0013.512

22 Ignacio Tinoco Jr and Carlos Bustamante. How rna folds. Journal of molecular biology,513

293(2):271–281, 1999.514

23 Jan van den Heuvel. The complexity of change. Surveys in combinatorics, 409(2013):127–160,515

2013.516

24 Boting Yang and Yi Cao. Digraph searching, directed vertex separation and directed pathwidth.517

Discrete Applied Mathematics, 156(10):1822–1837, 2008.518

25 Zan-Bo Zhang and Dingjun Lou. Bipartite graphs with a perfect matching and digraphs.519

arXiv preprint arXiv:1011.4359, 2010.520

26 Zan-Bo Zhang, Xiaoyan Zhang, and Xuelian Wen. Directed hamilton cycles in digraphs521

and matching alternating hamilton cycles in bipartite graphs. SIAM J. Discret. Math.,522

27(1):274–289, 2013. doi:10.1137/110837188.523

A Mixed MIS in bipartite graphs524

Our Divide-and-Conquer strategy to the BISR problem relies on the computation of maximum525

independent sets containing at least one vertex in each part of the input bipartite graph.526

We informally call mixed bipartite maximum independent set (Mixed-MIS) the problem527

of deciding whether an input bipartite graph G has a maximum independent set intersecting528

both of its parts. It is trivially polynomial, as one may check for each pair (l, r) ∈ L × R,529

whether I ′ ∪ {l, r} is a maximum independent set of G; with I ′ maximum independent set of530

G′, and G′ obtained from G by removing l, r as well as their neighborhoods.531

As a maximum independent set of a bipartite graph may be derived from a maximum532

matching, this simple strategy yield a O(|V |2 ·
√

|V ||E|) algorithm for our Mixed-MIS533

problem.534

We present here a more efficient strategy, based on a decomposition taking place in two535

rounds. It results into Algorithm 2. The first round is based on the Dulmage-Mendelsohn536

decomposition of bipartite graphs. It yields a partition of the vertices of G into three sets537

D, A, C, defined as such: for each vertex v of D, there exists a maximum matching in which538

v is not matched, A = N(D) is the union of the neighborhoods of the vertices of D, and539

C = V \ (D ∪ A) contains the remaining vertices. D, A, C verify the following result:540

▶ Theorem 11 (Dulmage-Mendelsohn decomposition, Proposition 2.1 of [3], theorem 3.2.4 of541

[16]). Given G bipartite graph and D, A, C defined as above, we have that:542

543

a. D is the intersection of all maximum independent sets of G.544

A is the intersection of all minimum vertex covers of G.545

the subgraph G[C] induced by C has a perfect matching, which may be deduced from546

restricting any maximum matching of G to C.547

548

b. In addition, D may be computed from any maximum matching M of G using the following549

characterization ([3], lemma 2.2): D = W where W is composed of the vertices left550

unmatched by M , as well as all vertices connected to an unmatched vertex through an551

alternating path of even length.552
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This decomposition may allow to conclude in some cases (see Algorithm 2). In general,553

however, a second round of decomposition is needed. In this second round, the set C,554

which allows for a perfect matching M , is further decomposed into elementary sub-graphs555

(section 4.1 of [16], theorem 4.1.1 and exercise 4.1.5) and [25]. It consists in computing556

the strongly connected components of a directed graph H(M, C) associated to M and C557

(same construction as in Section 3). The vertices of H are the edges of the matching, and558

(l, r) → (l′, r′) iff l is connected to r′ in C. The strongly connected components of H constitute559

a decomposition of G into elementary sub-graphs. A bipartite graph is elementary iff the560

sides L, R are the only minimum vertex covers/maximum independent sets [16](theorem561

4.1.1). If it is not elementary, then a mixed maximum independent set may be obtained by562

ordering the elementary sub-graphs {(Li, Ri)}1≤i≤p along a topological order induced by563

H(C, M). Any set of the form (∪i≤tRi) ∪ (∪i>tLi) for some t > 1 is then a mixed maximum564

independent set of C.565

The discussion above results in Algorithm 2, whose run-time is dominated by the compu-566

tation of maximum matching in O(
√

|V ||E|).567

Algorithm 2 Mixed bipartite maximum independent set
Input : a bipartite graph G with sides L and R. We suppose w.l.o.g that

|L| ≥ |R|.
Output : If it exists, a Maximum Independent Set I of G intersecting both L and

R.

1 // Compute a maximum matching of G

2 M = MaximumMatching(G) ▷ O(
√

|V | · |E|)

3 // Compute a Maximum Independent Set I from M (König’s theorem).
4 I = MaximumIndependentSet(G, M) ▷ O(|E|)

5 if (I ∩ L ̸= ∅) and (I ∩ R ̸= ∅) then return I

6 // Now |I| = max(|L|, |R|) and I = L or I = R

7 D, A, C = DulmageMendelsohn(M, G) ▷ O(|E|)

8 if |L| > |R| then
9 if R \ A ̸= ∅ then

10 pick r ∈ R \ A //A is the intersection of all minimum vertex covers
11 G′ = G \ {r ∪ N(r)}
12 M ′ = MaximumMatching(G’)
13 I ′ = MaximumIndependentSet(G’,M’)
14 return I ′ ∪ {r}
15 else return ⊥; // Not possible, L is the only MIS
16 if |L| = |R| then
17 // L and R are two MIS. So necessarily D = ∅, A = ∅, C = G

18 (L1, R1), . . . , (Lp, Rp) = elementarySubgraphsDec(M, C) ▷ O(|V |2)
19 if p=1 then return ⊥
20 else
21 Topological sort of the SCCs of H

22 s=TopologicalSort({(Li, Ri)}) ▷ O(|V | + |E|)
23 (Li, Ri) = s[0] // first in topological sort
24 return Ri ∪ (∪j ̸=iLj)
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B Delayed proofs568

B.1 Making an interval representation nice569

Let {(au, bu) | u ∈ V } be an interval representation for a directed graph H with vertex set570

V . We explain here how to turn it into a nice interval representation:571

If an integer n is such that au0 = · · · = aul
= bv0 = · · · = bvp

= n, we may modify the572

representation as such:573

Interval bounds associated to integers > n are increased by p + l − 1, to make room for574

“spreading” au1 . . . auℓ
, bv1 . . . bvp .575

∀i, aui
is set to n + i and bvi

to l + i.576

None of these modifications change the way intervals intersect one another, leaving the width577

unchanged. The representation is then “packed” into [1 . . . 2.|V (H)|] by taking the interval578

bounds in order and setting them to their final position.579

B.2 Proof of Proposition 4:580

Proof. We start with the first statement, the equivalence between dpw(H(G, M)) ≤ ρ581

and the existence of a ρ-realization for G. First note that, since G allows for a perfect582

matching, we have |L| = |R|, and by König’s theorem, if K is a minimum vertex cover of G,583

|K| = |L| = |R|. Since α(G) = |L| + |R| − |K| we have α(G) = |L| = |R|. I.e. L and R are584

maximum independent sets of G.585

⇒ If G allows for a ρ-realization, then ∃P ordering of the vertices of G such that every586

prefix Xi of P verifies |I(Xi)| = |L| − δ(Xi) = α(G) − δ(Xi) ≥ α(G) − ρ. Therefore587

δ(Xi) = |Xi ∩ L| − |Xi ∩ R| ≤ ρ.588

Consider a vertex (l, r) of H(G, M), with (l, r) an edge of M . We associate to (l, r) the589

interval [a(l,r), b(l,r)] where a(l,r) is such that P [a(l,r)] = l. i.e, it corresponds to the step590

in the reconfiguration where l is removed. Likewise, b(l,r) is such that P [b(l,r)] = r.591

For any edge (l, r) → (l′, r′) of H, necessarily (l, r′) ∈ G, which implies that in the592

reconfiguration sequence, l has to be removed before r′ is added. l appears therefore593

earlier than l in P , and a(l,r) ≤ b(l′,r′). The intervals we have defined therefore form a594

valid interval representation of H.595

In addition, the intervals intersecting a given position i correspond to pairs (l, r) where,596

at step i, l has already been removed while r is yet to be added.597

Since the decrease in independent set size incurred by the removal of l is compensated598

by the addition of its match r, the number of intervals intersecting position i is exactly599

δ(Xi), the imbalance of the i-prefix of P , which by hypothesis is ≤ ρ.600

⇐ Suppose the directed graph H(G, M) associated to G, M has directed pathwidth ≤ ρ.601

Consider an optimal nice interval representation for H.602

In this representation, a vertex (l, r) of H is associated to an interval [a(l,r), b(l,r)]. Thanks603

to the structure of nice interval representation, we simply define a permutation P of604

L ∪ R with, ∀(l, r) P [a(l,r)] = l and P [b(l,r)] = r.605

If (l, r′) is an edge of G, with r the match of l and l′ the match of r′, then the construction606

above ensures that l is before r′ in P . For two matched vertices, this is also immediate.607

Then, as for two matched vertices l, r, the removal of l is compensated by the addition of r,608

for any prefix Xi of P , the imbalance δ(Xi) is exactly the number of intervals intersecting609

position i. By assumption, we therefore have δ(Xi) ≤ ρ and P is a ρ-realization.610

For the second part of the statement, given a directed graph H, we construct a bipartite611

graph G with sides L, R allowing for a perfect matching M in the following way: for each612
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vertex u ∈ H we introduce two vertices (lu, ru) in G. We assign lu to L and ru to R, connect613

lu and ru and add the edge to the matching M . We now add an edge from lu to rv in G for614

any (u, v) ∈ E(H). G now verifies H = H(G, M), and by the result above, dpw(H) ≤ ρ iff615

G allows for a ρ-realization.616

◀617

C Re-derivation of Tamaki’s algorithm for directed pathwidth618

For completeness, we include here a re-derivation of the results of [20], with the slight619

modification mentioned in the main text related to pruning. It results in an algorithm with a620

O(nρ+2) complexity, slightly different from the O(nρ+1) announced in [20]. The re-derivation621

follows the same strategy as in the original article, and re-uses most of the notations.622

C.1 Commitment lemma - shortest non-expanding extensions623

(SNEKFEs)624

Notations and definitions. In a directed graph, d–(u) denotes the in-degree of a node625

u. We work with layouts of vertices, i.e. ordered sequences of vertices, not necessarily626

containing all vertices. A partial layout σ is called feasible/valid if ∀ prefix p of σ we have627

d–(p) = |N–(p)| ≤ k. A partial layout which is completable into a valid full layout (for628

the entire digraph G) is called strongly feasible or just completable into a full solution. An629

extension τ of σ is a valid partial layout with σ as one of its prefixes. A shortest non-expanding630

extension of σ is an extension τ such that d–(τ) ≤ d–(σ) and ∀ρ s.t.V (σ) ⊊ V (ρ) ⊊ V (τ),631

d–(ρ) > d–(σ). In the rest of this note, we will write SNEKFE for shortest non-expanding632

extension.633

Lemma 1 - Commitment Lemma - shortest non-expanding extensions. If σ is634

completable into a full solution, and τ is a SNEKFE of σ, then τ is also completable into a635

full solution.636

In fact, a more general version is true: ρ could be allowed to be equal in d– to τ before
rising again. The proof relies on the fact that, for any two subsets X, Y of vertices of G:

d–(X ∪ Y ) + d–(X ∩ Y ) ≤ d–(X) + d–(Y )

Proof. If σ is completable into a full solution, then ∃F such that σ · F is a valid layout for637

G. Let us reshuffle F into (τ \ σ) · F ′. Within both parts, the ordering of elements is the638

same as in F . τ · F ′ is now a complete layout for G. Is it valid ?639

Consider a prefix P of τ · F ′. If P is contained within τ , d–(P ) ≤ k by the validity of τ .640

Else, if P contains some of F ′, then P = P ′ ∪ τ for P ′ a certain prefix of σ · F . As for641

P ′ ∩ τ , which we call ρ it verifies V (σ) ⊂ V (ρ) ⊂ V (τ) and therefore d–(ρ) ≥ d–(σ) ≥ d–(τ)642

by definition of a SNEKFE, with the equality only potentially happening if ρ = σ or ρ = τ .643

We therefore have:644

d–(P ) = d–(P ′ ∪ τ)645

≤ d–(P ′) + d–(τ) − d–(ρ)646

≤ d–(P ′) ≤ k647
648

τ ·F ′ is therefore a valid complete layout for G, and τ is completable into a full solution. ◀649

Let us now describe more precisely what SNEKFEs might look like. We show that they650

can only be of three types, and formalize it into the next lemma. Its proof relies on the651
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fact that, by adding a single vertex u to a partial layout σ, we may only decrease d–(σ) by652

at most 1, since d–(σ) = |N–(σ)|. We obtain this decrement of 1 if u is a predecessor to a653

vertex of σ, and does not introduce any new predecessor itself when added.654

Lemma 2 - SNEKFE types. a SNEKFE τ of a partial layout σ may only be of three655

types:656

type-(i): single-vertex “decreasing” extension: τ = σ · u for some vertex u and d–(σ · u) =657

d–(σ) − 1658

type-(ii): single-vertex “non-decreasing” extension: τ = σ · u for some vertex u and659

d–(σ · u) = d–(σ)660

type-(iii): several vertices “shortcut” extension: τ adds strictly more than one vertex to σ661

and d–(τ) = d–(σ).662

Proof. For single vertex extensions, the two possible types follow from the observation above663

that the addition of one vertex to a layout can only decrease d– by at most 1.664

For SNEKFEs composed of more than one vertex, observe that if d–(τ) < d–(σ), then665

by considering the prefix ρ of τ obtained by removing just 1 vertex to τ , we would have666

d–(ρ) ≤ d–(τ) + 1 ≤ d–(σ). This stems from the observation above that d– may only decrease667

by at most 1 when adding a vertex. ρ would be a non-expanding extension of σ shorter than668

τ , yielding a contradiction. ◀669

C.2 Algorithm670

In this section, we restrict ourselves to a pure description of the algorithm, delaying the671

justification of its correctness and complexity to the “Analysis” section below.672

Tree of prefixes (trie). We will build a tree of prefixes of all possible layouts. We prune673

the tree during its construction thanks to the commitment lemma, as justified in the next674

section. We call Si the ith level of the tree of prefixes. I.e. the elements of the tree of length675

i. S0 = {∅}.676

Algorithm. Si+1 is generated in the following way given Si:677

678

For each σ ∈ Si:679

1. We generate all feasible immediate extensions to σ and add them to the tree. I.e the680

node σ now has the following children set: {σ · u s.t d–(σ · u) ≤ k}681

2. If some of these immediate extensions verify d–(σ · u) ≤ d–(σ), then they are SNEKFEs682

of σ. In that case, we do the following:683

a. We choose 1 arbitrarily and prune the others.684

b. If the chosen element verifies d–(σ · u) = d–(σ) − 1 (the only possibility if d–(σ · u) <685

d–(σ)), then we in addition look for a prefix η of σ verifying d–(η) = d–(σ · u) and686

d–(ρ) > d–(η) ∀ρ s.t. η ⊑ ρ ⊑ σ · u, ρ ̸= η, ρ ̸= σ · u.687

If such an η is found, then any part of tree branching off the path from η to σ · u is688

removed. Note that this might shorten the overall loop over σ ∈ Si.689

End Algorithm690

C.3 Analysis691

This section will be composed of three parts. In the first one, we define an invariant property692

(“internally pruned”) for trees of prefixes of layouts of vertices. In the second one, we show693

that, in the algorithm presented in the previous section, the tree of prefixes verifies the694

invariant at all times, and prove the correctness of the algorithm. Finally, in the third part,695
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we analyze the size of trees of prefixes verifying the invariant, proving that each level Si of696

such a tree has a size ≤ nk, yielding a complexity analysis of the algorithm.697

C.3.1 Internally pruned trees of prefixes698

Definition - Internally pruned. A tree T of prefixes of layouts of vertices (such as the699

one used in the algorithm in the previous section) is said to be internally pruned if for all700

pairs (σ, τ) of nodes of T such that τ is a shortest non-expanding extension of σ, all nodes701

on the path from τ (included) to σ (excluded) in T have degree exactly 2. I.e. there are no702

sub-parts of the tree rooted on the path from τ (included) to σ (excluded)703

704

705

We use the term “internally” to emphasize the fact that, in a context where we apply706

the definition of “internally pruned” to a partially constructed T within the algorithm of707

the previous section, More (“external”) pruning of the tree might be achieved further in the708

construction of the tree, as new SNEKFEs are discovered (see below for the justification of709

why new SNEKFEs are indeed discovered at step 2.b of the algorithm).710

C.3.2 Invariant and correctness711

Lemma 3 - Invariant. Throughout the execution of the algorithm presented in the previous712

section, the tree T of prefixes of layouts of vertices remains “internally pruned” at all times713

Proof. The tree T starts off with one node for the empty sequence. It is therefore internally714

pruned.715

716

Suppose now that the tree of prefixes T is internally pruned at an intermediate step717

in the algorithm, then the next building step always consists in considering a leaf σ and718

executing step 1. and 2. of the algorithm. Several cases may arise:719

If all of the immediate extensions are such that {d–(σ) < d–(σ · u) ≤ k}, then no new720

SNEKFEs are generated when adding them to the tree. (if σ · u is a SNEKFE of some721

η up the tree, then σ is shorter and also non-expanding). After the addition of the722

immediate extension, the tree is therefore still internally pruned.723

If one of these immediate extensions verifies d–(σ · u) = d–(σ) but none of them verify724

d–(σ · u) < d–(σ), then one of these extensions is a SNEKFE of σ, and is kept while725

the others are pruned. However, this is the only SNEKFE introduced by the extension.726

Therefore, the pruning of immediate extensions other than the selected one is enough to727

keep the tree internally pruned.728

If one of the immediate extensions verifies d–(σ ·u) = d–(σ)−1, then one of the immediate729

extensions is selected and the others are pruned, as in the previous case. However, in730

addition, σ · u might be a new shortest non-expanding extension of a node η up the tree.731

If this is the case, then there is only one such η, per the definition of shortest non-expanding732

extensions.733

We argue that the conditions used in the algorithm indeed detect such an η.734

If σ · u is a SNEKFE of η, then the conditions described in the algorithm (that d–(σ · u) =735

d–(η), and d–(ρ) > d–(η) for any ρ on the path from η to σ · u) are verified.736

Conversely, if the conditions are verified, then suppose η has a shorter non-expanding737

extensions τ . τ cannot be on the path from η to σ · u as that would imply d–(τ) > d–(η).738

Since τ is shorter than σ · u, τ has been generated in a previous step of the algorithm. At739
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this point, step 2.b of the algorithm would have pruned the path to σ, which cannot be740

visited, leading to a contradiction.741

742

Therefore, the potentially newly introduced SNEKFE is detected, and the corresponding743

pruning is carried out, leaving the tree internally pruned744

Therefore, after each extension of the tree throughout the algorithm, the tree remains745

internally pruned. ◀746

We quickly finish this sub-section with a proof of correctness of the algorithm.747

Lemma 4 - correctness. If the graph G allows for a full k-feasible solution, then there is748

such a solution among the leaves of the tree of prefixes T generated by the algorithm.749

Proof. Denote the set of full solutions S, and suppose all solutions are absent from T .750

∀σ ∈ S, there is some (possibly empty) prefix of σ in T .751

We pick σ ∈ S allowing for the largest prefix η ∈ T , i.e:752

σ = argmax
σ′∈S

[
max

η⊑σ′,η∈T
|η|

]
Take η the largest prefix of σ belonging to T . If the path from η to σ has been pruned,753

it is because η is on the path from η′ to τ , with τ shortest non expanding extension of η′,754

and τ is not a prefix of σ.755

The path from η to σ is pruned only when τ is visited. Hence τ ∈ T , otherwise, the path756

from757

Per the commitment lemma, τ is the prefix of a full solution σ′′. But |τ | > |η|, contra-758

dicting the choice of σ. ◀759

C.3.3 Signature analysis760

We show here that, at any point in the algorithm, thanks to the pruning, ∀i, |Si| = O(nk).761

Definition - signature . Consider σ ∈ Si for some i, within the internally pruned tree762

generated by the algorithm, valid partial layout. We call signature of σ the set of vertices763

obtained from V (σ) by removing, given any pair (η, ρ) of prefixes of σ such that ρ is a764

SNEKFE of η, all vertices in ρ \ η.765

Given σ ∈ Si, its signature can be easily computed by looking at the path from the root766

to σ: any vertex chosen out of several available possibilities is part of the signature, while767

any vertex that was the only possibility at the point of its choosing isn’t.768

Lemma 5 - Same signature same sequence. If sgn(σ) = sgn(τ) within the pruned tree769

of layouts and |τ | = |σ| then σ = τ770

Proof. When starting at the root and building τ and σ by going down the tree, at every771

node, there are two cases:772

Either the next move is part of a SNEKFE. In this case there are no choices to be made,773

the added vertex is not part of the signature, and is the same for σ and τ .774

Or the next move is not part of a SNEKFE. In this case, several choices are possible, and775

the next added vertex will be part of the signature. Since the signatures of σ and τ are776

the same, the same vertex is added to σ and τ .777

At the end of this process, σ and τ are therefore identical. ◀778

Lemma 6 - overall strictly decreasing = SNEKFE only. Consider τ ∈ Si for some i779

partial valid layout, and σ a prefix of τ such that:780
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d–(σ) > d–(τ)781

For any ρ such that σ ⊑ ρ ⊑ τ , ρ ̸= τ , we also have d–(ρ) > d–(τ).782

Then, the suffix τ \ σ of τ corresponding to σ can be entirely partitioned into SNEKFEs. In783

particular, none of its elements are part of the signature of τ .784

Proof. We prove the lemma by induction on the length of the suffix τ \ σ. If |τ \ σ| = 1,785

then τ = σ · u and d–(τ) = d–(σ) − 1. τ is a type-(i) SNEKFE of σ and the lemma is true.786

If |τ \ σ| > 1 and we assume the lemma true ∀l < |τ \ σ|, then let us distinguish two cases787

related to the first element v of τ \ σ:788

if σ · v is a type-(i) or type-(ii) SNEKFE of σ, then we apply the induction hypothesis to789

the suffix τ \ (σ · v) of τ and we have the result.790

else, if d–(σ · v) > d–(σ), we know, since d–(τ) < d–(σ) and the d–-curve only decreases791

by steps of −1, that there must exist ρ such that d–(ρ) = d–(σ), σ ⊑ ρ ⊑ τ , and792

d–(ρ′) > d–(σ) for any ρ′ such that σ ⊑ ρ′ ⊆ ρ (ρ is the shortest prefix of τ which contains793

σ and has the same d– value). ρ is then a type-(iii) SNEKFE of σ by Lemma 4, and we794

may apply the induction hypothesis to τ \ σ795

◀796

Lemma 7 - Signature size. ∀σ ∈ Si for some i partial layout of vertices, |sgn(σ)| ≤ d–(σ)797

Proof. The proof is by induction on |σ|. Suppose |sgn(σ)| ≤ d–(σ), and consider the798

extension σ · u, where u is a vertex.799

If σ · u is not a SNEKFE of σ, then |sgn(σ · u)| = |sgn(σ) ∪ {u}| = |sgn(u)| + 1 ≤800

d–(σ) + 1 ≤ d–(σ · u)801

If σ is a type-(ii) SNEKFE of σ, then sgn(σ) = sgn(σ · u) and d–(σ · u) = d–(σ).802

If σ · u is a type-(i) SNEKFE of σ, then consider η, the closest node (up the tree)803

such that d–(η) < d–(σ · u), and η · v its successor on the path to σ · u. We have804

d–(η) < d–(σ · u) ≤ d–(η · v), by definition of η. The path from η · v to u is either805

a type-(iii) SNEKFE or overall-decreasing. Therefore sgn(σ · u) = sgn(η · v). and806

|sgn(σ ·u)| = |sgn(η)|+1 ≤ d–(η)+1 by induction hypothesis, and |sgn(σ ·u)| ≤ d–(σ ·u).807

◀808

In particular, ∀σ partial layout, d–(σ) ≤ k. Since two different elements of Si need809

different signatures, we get the following corollary:810

Corollary. ∀i, at any point in the algorithm, |Si| = O(nk)811

The overall complexity of the algorithm is therefore O(nk+O(1)). More precisely, it is812

O(nk+2). (there are n levels of the tree to fill, ≤ nk nodes per level and O(n) work per node813

to generate the next level).814

D Detailed RNA reconfiguration example815

We provide in Figure 5 the intermediate sets of base pairs, and associated RNA secondary816

structures, for our running example, described in Figures 1 and 3.817
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Figure 5 Optimal (min barrier) refolding scenario between two RNA secondary structures. In
each intermediate state, the conflict graph is given, featuring the selected independent set of base
pairs (filled nodes), and the corresponding secondary structure.
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