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Abstract

In this paper we study the uncertainty principle (UP) connecting a func-
tion over a finite field and its Mattson-Solomon polynomial, which is a kind
of Fourier transform in positive characteristic. Three versions of the UP over
finite fields are studied, in connection with the asymptotic theory of cyclic
codes. We first show that no finite field satisfies the strong version of UP,
introduced recently by Evra, Kowalsky, Lubotzky, 2017. A refinement of
the weak version is given, by using the asymptotic Plotkin bound. A naive
version, which is the direct analogue over finite fields of the Donoho-Stark
bound over the complex numbers, is proved by using the BCH bound. It is
strong enough to show that there exist sequences of cyclic codes of length n,
arbitrary rate, and minimum distance Ω(nα) for all 0 < α < 1/2. Finally, a
connection with Ramsey Theory is pointed out.
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1. Introduction

The uncertainty principle (UP) is a very famous inequality in Physics
[7], and Signal Processing [3] (see [16] for a general very recent survey on
the UP). It compares the supports of functions and of their complex-valued
Fourier transforms. In a paper of 2017 [4], a connection between UP and
the asymptotic performance of cyclic codes was pointed out. Note that the
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existence of an asymptotically good family of cyclic codes is a problem open
for more than half a century [13]. The reference [4] is an attempt to motivate
further research into, and eventually solve this very hard problem. In a recent
note [11], a connection with Ramsey Theory and the Szemerédi Theorem was
derived.

In the present paper, we replace the classical Discrete Fourier transform
([3, §2]) by a vectorial version of the Mattson-Solomon polynomial ([10, Ch.8,
§6]). In contrast with all the results in [16], this transform takes its values in
a finite field. We study three versions of the UP for this kind of transform.

The strong version of the UP over finite fields is defined in [4] by analogy
with the bound of [14] for the classical Fourier transform. Exploiting the
connection with the theory of MDS codes, we show that no finite fields may
satisfy the strong UP.

The weak version of the UP is a similar and weakened statement de-
pending on two real parameters λ and ε. In [4] it is shown that a finite
field satisfying this UP enjoys sequences of asymptotically good cyclic codes.
Here, we show that, if this version holds over Fq, then λ < q−1

q
.

The third version is the straight analogue of the Donoho-Stark bound of
[3] and we call this the naive version. It allows us to construct sequences of
cyclic codes with nonzero rate and minimum distance growing like a power
α of the length with 0 < α < 1/2.

Finally, with similar arguments, we give an alternate proof of the results
of [11], based on the familiar BCH bound and a generalization based on the
Hartmann-Tzeng bound on the minimum distance of cyclic codes ([8, Th.
4.5.6]).

The material is organized as follows: the next section collects background
material; Section 3 is about the strong version; Section 4 contains numerical
results related to the weak version; Section 5 is dedicated to the naive ver-
sion of UP; Section 6 deals with the Ramsey Theory connection; Section 7
concludes the article. An Appendix building on the naive version shows the
existence of cyclic codes of all rates with minimum distance Ω(nα), for all
0 < α < 1/2.

2. Background

Throughout the paper, Fq denotes a finite field of cardinality q, where q
is a prime power.
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2.1. Linear codes and asymptotics

The (Hamming) weight of x ∈ Fnq is denoted by wH(x). The minimum
nonzero weight d of a linear code is called the minimum distance. A linear
code is a subspace of Fnq . Its parameters are written as [n, k, d] where k is
its dimension as an Fq-vector space. If Cn is a sequence of linear codes of
parameters [n, kn, dn], the rate R and relative distance δ are defined as

R := lim inf
n→∞

kn
n

and δ := lim inf
n→∞

dn
n
.

A family of codes is said to be good iff it contains a sequence with rate and
relative distance such that R · δ 6= 0. The binary entropy function H(x)
of the real variable x is defined (see [10, p.308]) for 0 < x < 1,

H(x) := −x log2(x)− (1− x) log2(1− x).

2.2. Cyclic Codes

Consider the quotient ring R(Fq, n) := Fq[x]/(xn − 1). We will identify
each class of R(Fq, n) with the unique polynomial of degree less than n con-
tained in it. The ring R(Fq, n) is principal, and we denote by C(f) the ideal
with generator f. It is well-known that every ideal of R(Fq, n) has a unique
monic generator of minimal degree, and this is a divisor of xn−1. Whenever
we will consider and ideal C(f), we will implicitly assume that f is such gen-
erator. The polynomials of R(Fq, n) are in one-to-one correspondence with
the vectors of Fnq , by the map

ϕ : f := (f0, f1, . . . , fn−1) 7→ f(x) :=
n−1∑
i=0

fix
i.

The (Hamming) weight of a polynomial is the (Hamming) weight of the
corresponding vector. A cyclic code is an ideal in R(Fq, n) or its preimage
in Fnq via ϕ.

The zeros of C(f) are the roots of f in the algebraic closure of Fq. The
dimension of C(f) is n − deg(f), and deg(f) equals the number of zeros of
C(f) (see for example [10, Chap. 7]). The well-known BCH-bound [10,
Chap., Th. 8] states that if among the zeros of f there exists δ−1 consecutive
powers of a primitive n-th root of unity and (m, q) = 1, then the minimum
distance of C(f) is at least δ.
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2.3. Mattson-Solomon polynomial

Let ζ be a primitive root of unity of order n in the algebraic closure Fq of
Fq. The Mattson-Solomon polynomial ([10, Chap. 8]) associated with a
vector f := (f0, f1, . . . , fn−1) is the following polynomial in Fq[z]:

f̂(z) :=
n∑
i=1

Fiz
n−i,

where Fi := f(ζ i) is the evaluation of f(x) in ζ i. It is sometimes called a
discrete Fourier transform of f . In the following, we will prefer the vectorial
version of the Mattson-Solomon polynomial, which is

f̂ := (F1, F2, . . . , Fn) = (f(ζ), f(ζ2), . . . , f(ζn)).

2.4. An invariant of fields

We introduce here, following [4], the invariant of fields

µ(Fq, n) := min{d(C(f)) + dimC(f) | f ∈ R(Fq, n), f 6= 0}.

By the Singleton bound, µ(Fq, n) ≤ n+1 for any n. Moreover, equality holds
if n is prime and q is a primitive root modulo n or if q is a power of n ([4,
Propositions 4.3. and 4.4.]).

Remark 1. Note that µ(Fq, n) = n+1 if and only if all cyclic codes of length
n over Fq are MDS.

Remark 2. Note that, as observed in [4], if we consider the complex field C
instead of Fq, then the uncertainty principle for simple cyclic group
(proved for example in [6, 14]) may be reformulated as follows: µ(C, p) = p+1
for any prime p.

In next sections we aim to investigate analogues of the uncertainty prin-
ciple over finite fields.

3. Strong version of UP

The following version of UP is the one stated in [4].
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Definition 1. A finite field Fq satisfies the (strong) uncertainty principle
if, for all primes p, we have µ(Fq, p) = p+ 1.

As we have already mentioned, in [4, Prop. 4.3] it is shown that µ(Fq, p) =
p + 1 if q is primitive mod p (under this hypothesis, there exists exactly 3
cyclic codes of length p over Fq and of positive dimension, that are all trivial
MDS codes). We show below that is almost the only case.

Theorem 1. Assume the MDS conjecture [10, Res. Prob. 11.4]. If q is not
primitive modulo p and if p > q + 2 then µ(Fq, p) ≤ p.

Proof. By the hypothesis we know that there are polynomials f |xp − 1 in
R(Fq, p) such that 1 < deg(f) < p − 1. Let [p, k, d] be the parameters of
the cyclic code C(f). Let g ∈ C(f) of weight d. The code C(g) ⊆ C(f) is
certainly not the repetition code, since k > 1. Its parameters [p, k′ ≤ k, d]
satisfy d+k′ ≥ µ(Fq, p) and if, arguing by contradiction, µ(Fq, p) > p, we see
that d ≥ p−k′+1, entailing that C(g) is MDS. But we know, by [10, Chapt.
11], that MDS codes of parameters [N,K,D] with 1 < K < N − 1 only exist
for lengths at most q + 2. This is the so-called MDS Conjecture that is now
proved in many cases [1, 2]. Note that codes of parameters [N, 1, N ] and
[N,N − 1, 2] exist for all lengths N.

Remark 3. A similar (slightly weaker) result holds unconditionally, since it
is well-known that nontrivial MDS codes have length at most 2q − 2 (see for
example [8, Corollary 7.4.4]). So, with the same arguments we can prove
that µ(Fq, p) ≤ p if q is not primitive modulo p and if p > 2q − 2.

Corollary 1. No finite field satisfies the (strong) uncertainty principle.

Proof. Suppose that Fq satisfies the (strong) uncertainty principle. Then
Theorem 1 would imply that all p > q + 2 (or eventually > 2q − 2, if we
refer to Remark 3) are necessarily such that q is primitive modulo p. But
we know that this is not possible: it is enough to consider all primes p such
that q is a quadratic residue (so that q cannot be primitive modulo p) and
observe that, by quadratic reciprocity, these correspond to p being in some
non-empty set of residue classes modulo 4q (so that they are infinitely many
by Dirichlet’s theorem).
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4. Weak version of UP

The following is Definition 5.3 in [4].

Definition 2. Let 0 < ε < λ ≤ 1. A finite field Fq satisfies the (ε, λ)-
uncertainty principle, if

µ(Fq, p) > λp (1)

ordp(q) < εp, (2)

for infinitely many primes p, where ordp(q) is the order of q in F∗p.

In [4, Th. 5.4] it is shown that finite fields satisfying this definition enjoy
sequences of asymptotically good cyclic codes. Intuitively, (1) guarantees
to get codes with a large minimum distance, whereas (2) guarantees to get
codes with a large dimension.

In the following table, we show some values of µ(F2, p), for small primes
p, omitting those for which 2 is primitive modulo p.

p 7 17 23 31 41 43 47 71 73 79 89 97
µ(F2, p) 7 14 19 20 30 28 35 47 37 55 45 64

In the following proposition, we get a restriction on possible values of λ
for finite fields satisfying the principle above.

Proposition 1. If Fq satisfies the (ε, λ)-uncertainty principle then λ < q−1
q
.

Proof. By combining [4, Th. 5.4] with the same argument as in the proof of
Theorem 1, we see that under the hypothesis, there are sequences of cyclic
codes of length p over Fq, of rate R and relative distance δ such that

pλ < µ(Fq, p) < pδ + pR.

In particular this implies that

λ < min{δ + αq(δ) | δ ∈ (0, 1)},

where αq(δ) is the largest possible rate of a code of relative distance δ. But
we know, by the asymptotic Plotkin bound [8, Th.2.10.2], that

• for 0 < δ < q−1
q
, we have αq(δ) < 1− qδ

q−1 , and
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• for q−1
q
≤ δ < 1, we have αq(δ) = 0.

It follows that the function δ + αq(δ) is smaller than or equal to f(δ) where

• f(δ) = 1− δ
q−1 , for 0 < δ < q−1

q
, and

• f(δ) = δ for q−1
q
≤ δ < 1.

Thus the minimum of f(δ) for δ ∈ (0, 1) is met at δ = q−1
q
, and equals

q−1
q
.

5. Naive version of UP

We prove here a finite field version of a result due to Donoho et al. [3] in
characteristic zero. Throughout this section we assume (n, q) = 1 and we let
ζ denote a primitive root of unity of order n in the algebraic closure of Fq.

Proposition 2 (Naive UP). For any f 6= 0 in Fnq ,

wH(f) · wH(f̂) ≥ n,

where f̂ := (f(ζ), f(ζ2), . . . , f(ζn)) is the vectorial version of the Mattson-
Solomon polynomial.

Proof. Let w := wH(f). By the BCH bound, f̂ cannot have w consecutive
zeros.

Suppose first that w divides n. Partition the set {1, . . . , n} into n/w
intervals of consecutive indices of length w. In each of these intervals there is
at least one index where f̂ is nonzero. Thus, we have exhibited n/w nonzeros
of f̂ . The desired inequality follows in that case.

Equality holds if f̂ has exactly one nonzero for each interval. Moreover,
these nonzeros must be equally spaced, since otherwise there would be more
than w consecutive zeros between some pairs of nonzero elements of f̂ .

If w does not divide n, then there is no way of distributing fewer than
dn/we nonzero elements among n places without leaving a gap of at least w
consecutive zeros. Thus wH(f̂) ≥ dn/we.

Remark: The constant n is best possible in view of the example of f equal
to the all-one vector (in this case wH(f̂) = 1). Note also that a sharper bound

7



has been very recently proved in [5] by using van Lint-Wilson bound [9].

This can be reformulated in terms of cyclic codes as follows: for any
f ∈ R(Fq, n), f 6= 0,

d(C(f)) · dimC(f) ≥ n.

This allows to prove the following result, whose proof is technical and
relegated to an appendix.

Theorem 2. For every real number 0 < α < 1/2 there are sequences of
cyclic codes of rate R with minimum distance Ω(nα).

Remark: for R ≤ 1/2, the square root bound on the minimum distance
of quadratic residue codes (see for example [10, Chap. 16, Th. 1]) gives
an explicit construction of cyclic codes with asymptotic minimum distance
bounded below by the square root of the length. However, for R > 1/2 our
result is the best, to our knowledge.

6. Connection with Ramsey Theory

In [11] a connection between the uncertainty problem over finite fields and
Ramsey Theory is pointed out. We give here a slight generalization, and a
reinterpretation in terms of Coding Theory. We require a pair of definitions.

Definition 3. An arithmetic progression of length m in Z/nZ is any
subset of the form {a+ kb | k ∈ {0, . . . ,m− 1}} with b 6= 0.

Definition 4. The Szemerédi function rm(n) is the largest size of a subset
of Z/nZ not containing an arithmetic progression of length m.

Proposition 3. For p prime such that (q, p) = 1, we have

µ(Fq, p) ≥ min{m+ p− rm(p) | 1 ≤ m ≤ p}.

Proof. Let f ∈ R(Fq, p). If f has weight m, then, by BCH bound again,
among the zeros of f there cannot be m consecutive powers of an p-th prim-
itive root of unity. So {i | f(ζ i) = 0, ζp = 1, ζ 6= 1} is a subset of Z/pZ not
containing an arithmetic progression of length m. Hence the number of zeros
of f is bounded above by rm(p). Then

µ(Fq, p) = min{wH(f) + wH(f̂) | f ∈ R(Fq, p), f 6= 0}
≥ min{wH(f) + p− rwH(f)(p) | f ∈ R(Fq, p), f 6= 0}
≥ min{m+ p− rm(p) | 1 ≤ m ≤ p}.
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Remark: if p is not prime, Proposition 3 is not true. For example, µ(F2, 9) =
6, but min{m + 9 − rm(9) | 1 ≤ m ≤ 9} = 8. This is due to the fact that
powers of 9-th primitive root of unity may be 3-rd root of unity.

Remark: to our best knowledge, the function rm(p) is only known for m
fixed and p → ∞ [15]. The fact that then rm(p) = o(p) is the celebrated
Szemerédi Theorem. Any result on rm(p) when m grows proportionally to p
with p→∞ would impact on the UP over finite fields.

We can generalize further by replacing arithmetic progression by their 2D
analogues that is to say sets of the shape

A(δ, s) = {a+ kb+ rc | k ∈ {0, . . . , δ − 2} and r ∈ {0, . . . , s}},

for b, c coprime with n. Define then the function rδ,s(n) as the largest size of
a subset of Z/nZ not containing an A(δ, s).

Proposition 4. For p prime such that (q, p) = 1, we have

µ(Fq, p) ≥ min{δ+s−1 +p− rδ,s(p) | δ ∈ {2, . . . , p} and s ∈ {0, . . . , p− δ}}.

Proof. The proof is the same as that of Proposition 3, up to the replacement
of the BCH bound by the Hartmann-Tzeng bound [10, p. 206].

7. Conclusion and Open Problems

In reaction to the recent papers [4] and [12], we have considered the
uncertainty principle when the Fourier transform takes its values over finite
fields. Exploring the connection with MDS codes, we prove that no finite
field satisfies the strong version of UP introduced in [4]. The weak version
remains conjectural and we prove that it can only hold if λ < q−1

q
. This

should not discourage the researchers to try and prove the weak version of
UP for some values of λ respecting this bound.

The analogue of the DFT UP of Donoho-Stark [3], which we called naive
UP, allowed us to construct long cyclic codes of length n and minimum
distance Ω(nα), where 0 < α < 1/2. The proof is technical and relegated to
an appendix. More suggestively, the arguments used to prove the naive UP
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yields an alternative proof of the results of [12], based on the BCH bound
on the minimum distance of cyclic codes. A generalization based on the
Hartmann-Tzeng bound has been sketched out.

More generally, it would be worthy to generalize all these results to abelian
codes.
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Appendix: Proof of Theorem 2

We construct a sequence of q-ary cyclic codes of rate 0 < R < 1,
and designed minimum distance. Let p be an arbitrary prime, and write
n = qp − 1. If x is an indeterminate then, from finite field theory [10,
Chap. 4, Th. 10], we know that

xn − 1 =
∏
a∈F∗

q

(x− a) ·
s∏
i=1

fi,

where fi runs over all irreducible polynomials in x of degree p, and where
n = q − 1 + sp. Let gI =

∏
i∈I fi with |I| = s′ = bs(1 − R)c. Then the

dimension of the cyclic code C(gI) of generator g is n − ps′, and it can be
checked that

n− s′p
n

→ R
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when p→∞.
We need to control the intersections of the C(gI)’s when I varies.

Lemma 1. Let r 6= 0 be an arbitrary vector in Fnq , of Hamming weight ≤ nα

for some 0 < α < 1. There at most Λn polynomials gI with |I| = s′ such that

r ∈ C(gI), where Λn = 2

(
n−n1−α

p

)
H(R)

.

Proof. The number N of indexes I such that r ∈ C(gI), equals the number
of s′-sets of fi’s which divide r(x) in polynomial notation.

Let ζ be a primitive n-th root of unity in the algebraic closure K of Fq,
and r̂ = (r(ζ), r(ζ2), . . . , r(ζn)). We have

N ≤
(
bZ(r)

p
c

s′

)
,

where
Z(r) := |{ω ∈ K | ωn = 1 and r(ω) = 0}| = n− wH(r̂).

By Proposition 2, wH(r̂) ≥ n1−α, so that Z(r) ≤ n− n1−α. Thus

N ≤
(⌊n−n1−α

p

⌋
s′

)
≤ 2

(
n−n1−α

p

)
H(R)

,

where the upper bound is a consequence of [10, Chap. 10, Lemma 8].

Proof of Theorem 2. The number of possible gI ’s is(
s

s′

)
∼ 2sH(R)√

2πsR(1−R)

for s→∞, by Stirling’s approximation of the factorial.
If this number is greater than the product of Λn by the volume of the

Hamming ball of radius nα in length n, then there are codes C(gI) with
minimum distance greater than nα.

The volume of the Hamming ball of radius nα is bounded above by

(1 + bnαc)
(

n

bnαc

)
(q − 1)bn

αc
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(see the proof of [8, Lemma 2.10.3]), which is bounded above by a quantity
asymptotically equivalent to

2nH(nα−1)+log2(n
α)+nα log2(q−1)√

2πnα(1− nα−1)

∼ 1√
2π
· n−nα(α−1)+

α
2 · enα−n2α−1 · (q − 1)n

α

for n→∞. So, applying Lemma 1, the mentioned inequality happens if

2

(
−(qp−1)1−α+(q−1)

p

)
H(R)
· (qp − 1)−(q

p−1)α(α−1)+α
2 ·

·e(qp−1)α−(qp−1)2α−1 · (q − 1)(q
p−1)α ·

(
qp − q
p

)1/2

≤ 1√
R(1−R)

.

We can write the last inequality as efα,q,R(p) ≤ 1√
R(1−R)

, with

fα,q,R(p) = (1− α) ln(qp − 1)(qp − 1)α − ln(2)H(R)
qp

p(qp − 1)α
+ o(pqαp)

for p → ∞, so that fα,q,R(p) → −∞ for p → ∞ if α < 1/2, and it grows to
∞ otherwise.
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