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Abstract—Fault injection attacks are considered one of the ma-
jor threats to cyber-physical systems. The increasing complexity
of embedded microprocessors involves complicated behaviours in
presence of such attacks. Realistic fault models are required to
study code vulnerabilities and be able to protect digital systems
from these attacks. However, inferring fault models using only
limited observations of faulty microprocessors is difficult. In
this article, we present experiments that show the difficulty of
characterizing and modelling the fault injection effects. From
there, we propose a complete approach for fault analysis to build
proper fault models at different system levels, which will help in
designing suitable countermeasures at reasonable cost.

Index Terms—fault injection, software, RTL, hardware, mi-
croarchitecture.

I. INTRODUCTION

With the widespread use of embedded systems in different
areas of life, protecting these systems against malicious use
becomes crucial. Digital systems contain sensitive informa-
tion that can be effectively protected through cryptographic
algorithms, often implemented in software on an embedded
microprocessor. Such implementations, however, might be
vulnerable to attacks that aim at extracting this sensitive
information.

The protection task should even have a high priority, as the
attack techniques and equipment are always improving. Fault
injection is one of these attack techniques. In the context of
hardware security, it can be defined as a powerful physical
attack, possibly non-invasive, where the attacker has physical
access to the device or its environment. The attacker will try to
change the normal behaviour of the device during a program
execution by injecting a fault, then observing the erroneous
behaviour. The injection process can be done in different ways:
exposing the device to radiations, laser beam, intense light
or an electromagnetic (EM) pulse, inducing variations in the
power supply, injecting a glitch in the clock signal, changing
the environmental conditions such as the temperature, etc [1].
The resulting fault could reveal an interesting behaviour that
could be further exploited as a vulnerability.

Securing components, such as microprocessors and micro-
controllers, against fault attacks, requires a thorough under-
standing of faults: on the one hand, this means characterizing,
studying, and analyzing the faults that could lead to exploitable
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code vulnerabilities. On the other hand, it also requires design-
ing countermeasures at different levels, hardware and software,
with an acceptable cost.

To build appropriate countermeasures, designers need re-
alistic fault models that provide proper characterization of
the fault effects. However, with the increasing complexity of
microprocessors, fault effect characterization based on a single
level of analysis, such as assembly level or Register-Transfer
level (RTL), is difficult and limits the understanding of the
fault. As a consequence, the fault model development becomes
a complex task: the models are a high-level approximation,
sometimes unrealistic, and the development and evaluation of
the countermeasures are not optimized.

For the sake of designing countermeasures, several research
studies have been conducted based only on a single level
of fault characterization, such as Instruction-Set Architecture
(ISA) level in [2], [3] or RTL [4]. However, because of
the incomplete fault model, this could lead to either under-
engineer or over-engineer the protections. In the former case,
a security threat may still be present and hence exploitable; in
the latter, this means unnecessarily adding cost and possibly
decreasing performance.

Other studies tried to propose analysis by performing fault
injection using more than one technique, in order to have a
better overview of the observed faulty behaviours. Moro et
al. [5], for example, carried out EM injection campaigns on
a microcontroller and compared the observed behaviours with
the results given by software simulation based on software
fault models. Dureuil et al. [6] tried to generalize fault models
as a result of performing laser and EM injections on RAMs
and Flash memories of smart cards, they then simulated
faults at the application level in order to provide a so-called
“vulnerability rate” for such faults. A similar approach has
been followed by Werner et al. [7]: the authors carried out laser
fault injection along with software fault simulation. However,
they focused mostly on performing multi-fault attacks rather
than proposing new or more thorough fault models. In these
works, the authors provide fault characterization at the soft-
ware level, i.e. ISA and/or high level applications, benefiting
from observed faulty behaviours produced by physical fault
injections. Hence, they did not provide complete details of
analyzing the fault at the microarchitectural level in order to
show how the fault occurred internally. Therefore, they could
not assess the realism of their fault models.



Finally, in [8], Laurent et al., suggested that fault injec-
tions using typical software fault models (such as instruction-
skip and test-inversion) are no longer enough to characterize
the observed faulty behaviours, in particular when targeting
complex microprocessors that have a large number of internal
elements, i.e. registers and combinational logic. In their work,
they provided a comprehensive analysis to assess software
fault models by performing RTL fault simulation on a RISC-
V microprocessor [9]. However, physical fault injections were
not performed to validate the realism of their proposed RTL
fault models. Moreover, different microprocessors should be
taken into account in order to generalize the assumptions of
their work.

In this article, we present experiments that illustrate the
difficulty of characterizing fault effects resulting from physical
injections. In particular, we show that some of the obtained
faulty behaviours are strongly related to the microarchitecture
of the target. On the basis of this evidence, we propose
a complete methodology to address such issues and bridge
the gap between previous studies by providing a cross-layer
analysis of code and microarchitectural vulnerabilities while
performing fault injections at three distinct levels: hardware/-
physical, RTL, and software levels. We aim at providing a full
picture of fault characterization at multiple description levels,
by taking into consideration microarchitectural specifications.
This will help in assessing the realism of already existing fault
models, eliminate unrealistic models, and possibly propose
new ones. Such methodology will also help in designing
countermeasures at an appropriate cost.

The rest of the article is organized as follows: Section II
describes the experimental setup. The results and the analysis
are presented in Section III. Section IV explains the proposed
methodology and the article is concluded along with the
perspectives in Section V.

II. EXPERIMENTAL SETUP

Physical fault injection experiments have been performed
in order to see if the obtained faulty behaviours can be
easily characterized and if they are consistent when making
modification to the target codes.

The following subsections present the fault injection tech-
nique we used, the target board, and the target program.

A. Clock Glitch Fault Injection

Applying perturbations to the clock signal that is fed to the
microprocessor is an effective type of physical fault injection
technique. During a normal execution, at every rising edge
of the clock, an instruction is fetched by the microprocessor,
while another instruction (previously fetched) is being decoded
or executed in another stage of the pipeline. Fig. 1 shows a
normal behaviour when having a regular clock signal.

When performing clock fault injection, a glitch is injected
just before or after the rising edge of the clock. This glitch
would appear as a new clock cycle for the microprocessor.
Therefore, a new instruction is fetched and the instruction
previously decoded is executed. However, as the glitch disrupts
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Fig. 1. Normal behaviour with a regular clock signal.

the regular behaviour of the clock signal, a timing violation
will possibly occur, leading to various kinds of faulty be-
haviours.

When performing fault injection by clock glitch, the follow-
ing parameters must be tuned:

o Delay: the time between the rising edge of the trigger
signal used for synchronization and the rising edge of
the targeted clock cycle;

« Shift: the time between the rising edge of the glitch and
the rising edge of the targeted clock cycle.

o Width: the duration of the glitch itself.

Fig. 2 shows the glitch parameters with respect to a clock
signal. It is worth mentioning that shift and width values
should not be too large or too short. With too small values, the
glitch will not be detected by the microprocessor, while too
large values will allow the instructions to be executed normally
without a fault.
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Fig. 2. Clock glitch parameters

B. Target Board

The board that is used for the experiments is a CW1173
ChipWhisperer-Lite [10]. It embeds a 32-bit microcontroller,
which includes an ARM Cortex-M4 core [11]. The board is
connected to a control PC through a USB cable. This board
has a dedicated environment for side channel analysis, voltage
and clock glitch of the target ARM core. We will leverage the
clock glitch capabilities of this setup in the experiments.

The Cortex-M4 core supports the Thumb-2 instruction set
[12]. It includes a pipeline with three stages: fetch, decode and
execute. Up to two 16-bit instructions can be fetched at the
same time. It also has a prefetch unit with a maximum size
of six instructions.

C. Target Program

The injection is performed into inline assembly instructions
within a C program. To ease the process of the injection, the
program is divided into three parts as follows:



o Prologue: instructions for the initialization and the record-
ing of the state before the injection happens.

o Target: instructions targeted by the fault injection as well
as extra instructions that would allow observing any
propagation effect.

o Epilogue: instructions for reading registers’ state [RO-
R12] and APSR! register (i.e., Negative (N), Zero (Z),
Carry (C) and Overflow (V) flags); the values are trans-
ferred through serial commands to the control PC.

Two series of NOP instructions are used to isolate the three
parts. Three cases can occur as a result of the fault injection
as follows:

o Crash: this class contains the cases where the fault
injection causes a crash, a reset, or a failure when getting
the final state from the board through the serial channel.

« Silent: this corresponds to the case when the outcome of
the injection is identical to the golden state. We use the
term golden state to refer to the outcome of a normal
behaviour (i.e., without any injection).

o Fault: when a successful fault has occurred and can be
observed as a result of the fault injection.

In the injection campaign, we used specific instructions in
the target part as shown in listing 1. This allows observing
multiple things. Firstly, it shows if the resulting faulty be-
haviours are related to these instructions or not and hence,
being able or not to characterize the faults. Secondly, it
helps to understand if software characterization at the ISA
level is sufficient to build realistic fault models based on
the observations. For this reason, we used instructions that
explicitly have effects on different architectural elements, such
as the APSR flags. The glitch parameters were tuned to
inject the fault in the first two instructions of the target part:
CMP and BNE. The remaining instructions aim at observing
possible propagation effects.

The campaign consists in repeating the clock glitch fault
injection 10000 times for the same shift, width and delay
parameters. A single glitch is injected during each program
execution. The registers R2 and R11 used in the experiment
were initialized in the prologue to different values. Therefore,
in a golden run, the zero flag remains clear, the branch is
taken, and the instruction at line three is not executed.

CMP R2, R11 //r2-rll then updates NZCV
BNE labelx //if (Z!=1):

1
2 Jump to labelx
3 ADD R10, R11, R2 //rl0 =
4
5

rll + r2
labelx:
ADD R3, rll + r2

R11, R2 //r3

Listing 1. Target part in the target program

III. RESULTS AND ANALYSIS

The results of the injection campaign are shown in Fig. 3.
The x-axis presents the different observed faulty behaviours,
while the y-axis shows their percentages over the successful

! Application Program Status Register

faults i.e. without Crash and Silent cases. Complex faulty
behaviours could appear as a combination of simpler models
even if we only performed single fault injections. For example,
the result of a single fault could be an instruction-skip and
corruption of RO at the same time.
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Fig. 3. Observed faults after the first campaign

During this campaign, Silent cases were only three over
10000 and the same number was for the Crash category. Thus,
99.94 % of the injections were successful. The following faults
have been observed:

o Skip: it can be either a single or a double-skip. In other
words, either we skip the CMP instruction only, the
BNE instruction only, or both. If APSR flags have not
been updated, then we assume that the CMP instruction
was skipped. If APSR flags have been updated correctly
and the ADD instruction on line 3 is executed, then we
assume that the BNE instruction was skipped. If APSR
flags have not been updated and the ADD instruction on
line 3 is executed, then we assume that both instructions
were skipped.

¢ RO corruption: this occurs when the value of RO is
different from its golden value. Among these corrupted
values, we noticed the following: O (i.e., the value of RO
becomes 0), right shift by 8 or 12 bits and other values
with no obvious relation with the original value of RO.

o RI1 Reset: R1 value becomes 0.

e APSR corruption: one or more of APSR flags have
different values from the golden ones.

o Propagation effect on R10: it is caused by executing
the ADD instruction on line 3. In this campaign, this
instruction is always executed when having a successful
fault. This can be explained as the consequence of two
events. The first explanation is that the BNE instruction
was skipped. The second explanation is that the Zero flag
was corrupted. This leads to the branch not being taken
as in a normal case, where the Zero flag is 0. Instead,
as a result of the injection, the Zero flag was set to 1.
These two cases could not be discriminated as both of
them might even occur together.

A second campaign has been carried out with the same
fault injection parameters (i.e., shift, width and delay) and



initialization values but with a duplicated CMP instruction as
shown in listing 2.

CMP
CMP

R2, R11
R2, R11
BNE labelx
ADD R10, R11, R2
labelx:
ADD R3,

1o O O N

R11, R2

Listing 2. Target part in the second campaign

The second campaign has been performed in order to see
if the faulty behaviours were consistent and to improve the
understanding of the induced errors. In particular, its objective
was to gain insight about the reason for the propagation effect
on R10 as described above. In this campaign, there were no
Silent cases while Crash occurred 7 times. Thus, 99.93 % of
the injections were successful. This makes the two campaigns
comparable in terms of population. The results are shown in
Fig. 4. In addition to skip and APSR corruption, the following
behaviours were observed:

o RO corruption: again we observed occurrences of reset,
right shift by 4, 8 or 12 bits and setting to other values,
but with larger variability when compared to the previous
campaign.

e R2 corruption: R2 has a large value that is different from
the golden one.

« Propagation effect on R10: since we target only the first
two instructions, this can not be caused by a skip or other
perturbation of the BNE instruction. Therefore, this is
necessarily caused by corruption of the Zero flag.

o Propagation effect on R3: as a result of the corrupted
value in R2, R3 has a wrong value at the end, since it is
the sum of R11 and R2.
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Fig. 4. Observed faults after the second campaign

These experimental results led to the following observations
and questions:

o Small changes in the target program have large conse-

quences on the observed faults: some faulty behaviours

disappear such as the R1 Reset. New faults appear, for
example, corruption in R2, which leads to a propagation
effect on R3. And finally, different corrupted values are
observed.

« Faulty behaviours may appear with different percentages.
However, we have found that the occurrence probability
of a specific behaviour can be improved by fine adjust-
ments of the glitch parameters.

e Some registers that are not used in the program end up
being corrupted as well: RO and R1 in the first campaign,
RO in the second campaign. A question arises about what
would be the proper fault model to account for this effect.
In particular, such errors may have several causes: it
might be related to the instruction opcode (i.e., a fault
during the instruction fetch) or to the execution stage of
the pipeline.

e One might think that duplicating CMP will work as a
countermeasure for APSR corruption, but it did not as the
injection affects two instructions, which might be related
to the microarchitectural feature of having the possibility
to fetch two instructions at the same tame. Hence, the
corruption of APSR might still be occurred as a result
of either corruption in the second CMP or corruption in
the first and skipping the second. However, we cannot
ensure that a single-skip in one of the CMP instructions
has occurred as executing one of them, either properly or
improperly, will mask the single-skip effect. Thus, at this
step we can only say that either double-skip or APSR
corruption have occurred.

e The corruption of APSR flags can be due to several
causes: a change in the registers values while executing
CMP, an error that occurred when updating the APSR
flags, a fault in a control signal related to the APSR
flags... All these hypotheses cannot be answered without
a better knowledge of the microarchitecture, which will
help in having a suited fault model at the end.

e Most importantly, there is no explanation at this level
for the corrupted values found in the registers: 0, shift,
seemingly random values, etc. We believe that some of
these values are related to the microarchitecture, which
will affect how a corrupted instruction will be executed.

The aforementioned faults could be exploited as vulnerabili-
ties in a security application. For example, an APSR corruption
can lead to test-inversion where tests are considered very
important in the control flow of critical applications.

To sum up, we saw how fault characterization is difficult
based on a single level of analysis. These results show the
difficulty of building consistent fault models that allow de-
signers to predict the fault injection effects and design efficient
and cost-effective countermeasures. Thus, additional research
is necessary. In the next section, we propose a methodology
that takes into consideration multiple levels of analysis by
including software and RTL fault simulations as well as
physical fault injections. This will help in explaining the
observed points and answering the above-mentioned questions.



IV. PROPOSED METHODOLOGY

This section provides a full description of the proposed
methodology to infer fault models that will help in designing
fair cost hardware and software countermeasures. It deals with
three different levels of understanding in order to provide a
cross-layer fault analysis.

Fig. 5 depicts the proposed methodology. It is centered
around a comparison between the obtained results that are
stored in three databases (hardware, RTL and software
databases) in order to make decisions about the consistency
and applicability of RTL and software fault models. In other
words, starting form the observations obtained at the lowest
level of abstraction (i.e., hardware level), it will be possible
to optimize fault models at the RTL level, for example, by
removing RTL faults that do no correspond to observable
faulty outputs. Then, by using these RTL models, the models at
software level will be optimized in a similar way, by adjusting
them to not include behaviours that cannot be observed at RTL
or hardware level. The following subsections explain each of
these parts in more details.

Low
level
Glitch generators + EM fault injection

High
level

SW fault
model

Software l
contexts
SW fault
injection

RTL fault
model

Injection
parameters

RISC-V
(FPGA
and ASIC)

Hardware [ and
fault injection ARM

processors

RTL fault
injection

Fig. 5. Proposed Methodology.

A. Hardware Fault Injection

In this step, which is currently in progress as described
in previous sections, the goal is to perform physical fault
injections using a variety of injection techniques. Among
these methods: EM fault injection, voltage and clock glitch
injections using dedicated printed circuit boards and suitable
generators. In each injection campaign, the following proce-
dure will be applied:

e Define a wide range of software contexts as target
programs for the injection process. Faults are going
to be injected while executing these programs on one
of the hardware targets, for instance, microcontrollers,
Application Specific Integrated Circuit (ASIC) and Field-
Programmable Gate Array (FPGA).

« Define the set of injection parameters. For example, in the
case of clock glitch attacks, the range of values for the
shift and the width of the glitch, as well as the delay, as

described and explained in the previous sections. These
parameters as well as the target board layout must be
taken into account when describing the fault model.

o Get a snapshot of the fault injection: the registers and
memory states will be read at the beginning and at the end
of the program execution (using a serial communication
link with the host PC or a debugger for example). Then
it will be compared with the configuration of a golden
run. The faulty behaviours will be stored in a database
(HW DB in Fig. 5). This step will allow us to observe
the relation between the observed faulty behaviours and
the instructions in the target part. In other words, the
aim is to assess if there is a direct relation (i.e., the effect
corresponds to the target instructions), an indirect relation
(i.e., the effect is a result of a propagation effect), or no
relation at all, which may require further analysis.

o Thanks to the analysis of the observed faulty behaviours,
a fault model inference process will be followed by
generalizing the obtained faulty behaviours.

B. RTL Fault Injection

In order to understand what is exactly happening internally
at the microarchitectural level and be able to know the origin of
a fault, fault simulation campaigns are going to be performed
on the RTL description of the microprocessor. This will help
in characterizing further the hardware faulty behaviours.

With RTL fault simulation, it is possible to inject faults in a
very precise manner into the microarchitecture. For instance,
inter-stage pipeline registers, multiplexers and different arith-
metic units that are involved in executing an instruction in the
pipeline stages can be targeted. The injection will consist in
forcing the corresponding signals, according to fault models
such as single or multiple bit-flips, bit-sets and bit-resets.

As in the previous step, the resulting faulty behaviours will
be stored in a dedicated database and then be compared with
those obtained from the physical injections. This comparison
will help in two aspects, as shown visually in Fig. 6. On
the one hand, this aims at explaining at the hardware level
the faulty behaviours obtained from physical injections, and
hence, making the fault effect characterization easier. On
the other hand, it also helps in validating and assessing the
realism of the obtained RTL fault models. Hence, it provides
a full overview to the hardware designer to build the required
countermeasures.
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Fig. 6. Relation between hardware faulty behaviour and RTL fault model.

C. Software Fault Injection

Software faults will be injected into different target pro-
grams as mutants. This can be done by performing modi-



fication, deletion or addition of instructions in the original
program. They may correspond to a large variety of faulty
behaviours modeled at the ISA level. In other words, classic
fault models such as instruction skip, instruction replacement,
instruction corruption, register value corruption, test-inversion,
etc, will be injected into the programs by modifying the
instructions. In addition to that, other faulty behaviours must
be generated using more complex fault models which take into
consideration the modern design of some hardware blocks.
This includes, for instance, forwarding and speculative execu-
tion. In this case, dedicated techniques shall be employed to
model the advanced architectural characteristics and the related
faults at the ISA level.

The expected faulty outputs will again be stored in a
corresponding database. Then, a comparison process similar to
the one mentioned earlier will take place between the RTL and
software faulty results. In this step, an RTL model validates
the consistency of a software model, whereas a software model
will be usable to describe the occurrence and explain an RTL
model at the application level, which makes the fault effect
characterization at this level easier.

Once the links between the three levels are established
and formalized, a software developer can design the most
suitable countermeasures for a given context. For sure, coun-
termeasures will be studied carefully at both levels: hardware
and software. Therefore, the proper ones will be applied
by taking into account their cost and their effect on the
performance. Thus, if a countermeasure can be implemented at
both hardware and software levels with comparable efficiency,
only the software instance may be taken into account as
software countermeasures are usually less expensive and easier
to implement. Therefore, the “cross-layer” aspect can be
extended later on to the design of countermeasures.

V. CONCLUSION AND PERSPECTIVES

In this article, we presented the existing problems in ana-
lyzing and understanding fault attacks in complex microar-
chitecture. We highlighted this by providing experimental
evidence of intrisically microarchitectural faults, using clock
glitch as the fault injection technique. Then, we proposed
a new methodology to provide a cross-layer analysis for
characterizing faulty behaviours. This can be used to build
realistic fault models at different levels such as RTL and
software. Hence, this gives the possibility to design suited
countermeasures at the most appropriate cost.

Although we have just performed simple clock glitch injec-
tion campaigns on simple software contexts, we were able
to observe a variety of faulty behaviours. We believe that
by applying other injection techniques on different software
contexts, a larger set of faulty behaviours will be obtained,
which will enrich the whole analysis. However, automating the
analysis of the faulty behaviours and the comparison among
the three different databases obtained at the different layers is
necessary to move forward in this research direction.
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