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Abstract
Macroscopic poroelasticity and effective medium theory are two independent approaches which can be used to analyze
the role of pores, cracks, and fluid on elastic properties. Macroscopic poroelasticity belongs to the macroscopic frame-
work of thermodynamics whereas effective medium theory expresses the medium properties in terms of microstructural
characteristics (pore and crack shape, etc.) and component properties (fluid properties, solid grain properties, etc.). In
this paper, we review the fundamental assumptions and results of both approaches, and show that they are complemen-
tary but do not apply over the same range of conditions. A compilation of data is reported, in various dry and saturated
rocks, to show the validity of the Gassmann equation and the dispersion between unrelaxed modulus –where effective
medium model applies- and relaxed modulus –where poroelasticity applies.
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1. Introduction

Sedimentary rocks are of major economic importance since they constitute the hydrocarbon natural
reservoirs, and also the storage reservoirs (CO2, hydrogen, nuclear waste, etc.). Sedimentary rocks may
have porosities up to some 40% with pore sizes in the range from 10 nm to 100 mm. Pore shapes are
irregular. The overall physical properties strongly depend on the pore space geometry.

Igneous rocks’ porosity is usually very small. In granites, for instance, it is less than 5% and micro-
cracks are dominant. The case of basalts is very different, however; porosities can be much higher (large
pores can exist due to gas exsolution) while cracks may also be present.

Elastic waves provide the most important way to ‘‘see’’ the deep crustal layers and thus to get some
information on the in-situ rocks. It follows that elastic properties of rocks are of key importance to
investigate them. While the porosity associated with cracks is usually very small, microcracks play a
major role in determining the macroscopic elastic properties of a rock. The fact that microcracks can
alter the effective elastic properties of a rock substantially, in spite of their very small pore volume, was
noted very early by Simmons and Brace [1] and Walsh [2]. When fluids are present, elastic properties
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are also strongly modified and some knowledge of pore volume and fluid nature can be obtained from
the elastic parameters. The Gassmann equation [3] and Biot theory [4] have been much used in geophy-
sics for that reason.

Two independent approaches are useful to analyze the role of pores and cracks on elastic properties.
They are independent, and some confusion arose from the fact that this independence has not always
been acknowledged. The first, sometimes called Biot theory because Biot has been a pioneer in the mat-
ter, is called ‘‘macroscopic poroelasticity’’ in this paper. It can be seen as a formally analog theory to
‘‘thermoelasticity.’’ The system exchanges fluid mass with a reservoir in the present case, whereas it
exchanges heat in the case of thermoelasticity. Macroscopic poroelasticity and thermoelasticity belong
to the macroscopic framework of thermodynamics. Because this framework is very powerful, general
relations between elastic parameters can easily be derived, which are very useful. Note that there is
another way to derive poroelasticity from a microscopic model [5, 6]. Different assumptions are used in
that case. They are more complex and controversial so this is not examined here.

In this paper, we refer to what we call a ‘‘second approach’’ as that of effective media with the goal
of calculating the elastic constants. Effective media theory has been well known for a long time in solid
state physics where it has been used for many different properties such as electrical properties, magnetic
properties, etc., and goes back to Maxwell. The specific interest of that second approach is to express
the medium properties in terms of microstructural characteristics (pore and crack shape, etc.) and com-
ponent properties (fluid properties, solid grain properties, etc.). Macroscopic thermodynamics postulate
the elastic constants but cannot calculate them. The importance of effective media theory is to express
these constants in terms of microstructural parameters, something that a macroscopic theory cannot
achieve. A key contribution to effective properties of cracked and porous rocks is that of Kachanov [7,
8]. Both approaches are complementary, but they do not apply over the same range of conditions.
Ignoring this last point is sometimes a cause of misunderstanding.

2. Poroelasticity: a macroscopic theory

2.1. Fundamental assumptions

Rocks are mixture of minerals and pores or cracks, sometimes fluid-saturated. In order to build a
macroscopic thermodynamic theory, the real rock has to be ‘‘homogenized.’’ This is the first assump-
tion. Any rock is heterogeneous at the microscale (that of a grain, a pore, etc.). The classical concept of
the ‘‘3 Ms,’’ for the micro-, mini-, and macro-scale is used in any theory of homogenization. What we
call a ‘‘point’’ in the medium at the mini-scale is indeed a representative elementary volume (REV). The
real rock (all real rocks are microheterogeneous) is replaced by an average homogeneous one. This
assumption is a key simplification. At the mini-scale, the rock is a continuous (equivalent) homogeneous
medium so that solid mechanics and thermodynamics apply. At any ‘‘point’’ in this equivalent medium,
the material properties are defined by an average over a REV. This implies (within this theory) that it is
not possible to analyze what is going on inside a ‘‘point.’’ Investigating non-homogeneous systems is
out of our theoretical and experimental capabilities (within the framework of macroscopic poroelasti-
city). Attempts to use macroscopic poroelasticity for investigating the micro-scale contradict the above
key assumption.

A second basic assumption is to consider fully saturated rocks. At any ‘‘point’’ in this equivalent
medium, fluid pressure is defined in a unique way: it is defined as the equilibrium pressure of an ima-
gined fluid reservoir to which the REV is connected (so that each pore in the REV experiments the same
fluid pressure). The REV becomes a ‘‘point.’’ Hence, poroelasticity is not applicable if the REV is not
isobaric (exactly as thermoelasticity is not applicable if the REV is not isothermal). An isobaric state
should exist within a REV both in the drained and the undrained deformation regimes. This does not
imply that the pores have to be connected, as an example an isobaric state within a REV exists (in the
quasi-static regime) when pores have all the same shape, orientation and spacing. This last result follows
from mechanics. Note that when high-frequency waves are present and when the rock contains cracks/
pores of various shapes/orientations, the various pores/cracks within a given REV do not, in general,
experiment the same fluid pressure, so that poroelasticity cannot be used.

However, a third key assumption of poroelasticity is to consider rocks where all pores (and cracks)
are connected. Finally, a fourth assumption excludes any chemical interaction between fluid and solid.
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2.2. Basic definitions

Going back to original papers is often very useful. Yet it is not easy to go through the papers of Biot.
The understanding of poroelasticity was improved a lot thanks to Rice [9, 10]. Following Rice, poroelas-
ticity is a theory that belongs to classical macroscopic thermodynamics. Biot was a pioneer but it is bet-
ter to give the name ‘‘poroelasticity’’ to a theory that is not identical to ‘‘Biot’s theory,’’ assuming that
one calls ‘‘Biot theory’’ the papers that Biot (and collaborators) published on the topic of porous rock
deformation (we restrict ourselves below to analysis of quasi-static linear isotropic isothermal poroelasti-
city, but this can be extended as in [11]). Very often, one calls ‘‘Biot’s theory’’ the collection of the whole
set of Biot’s papers on the subject. The above distinction is useful because there are some points in some
Biot papers that are ambiguous. Not only Rice and Cleary [9], but Biot himself (in most cases) were care-
fully considering homogeneous systems only. It is true, however, that in a few papers, Biot took a micro-
scopic point of view [12] that can be, and has been, questioned. It is interesting to note that in his book,
de Boer [13, p. 296] wrote that ‘‘without any foundation, Biot and Willis distribute the fluid pressure,
which is equal to the pore fluid pressure, over the partial solid and fluid phases.’’ On the next page [13,
p. 297], de Boer concludes that ‘‘the essential disadvantage of Biot model lies, however, in the fact that
the corresponding theory is not developed from the fundamental axioms and principles of mechanics
and thermodynamics.’’ This remark does not apply if one refers to ‘‘poroelasticity’’ in the strict thermo-
dynamics sense as defined by Rice [10]. This is precisely why we choose to refer to ‘‘poroelasticity’’ in this
paper and not to ‘‘Biot theory.’’ That, as emphasized by de Boer, does not mean that the role of Biot in
this story has not been a major one.

The key point is to consider the rock as a macroscopic homogeneous thermodynamic system, sub-
mitted to an external stress sij (it could be an isotropic pressure, P, in simple cases), saturated by a fluid
of volumic mass rf. The fluid variables are ‘‘m’’ and ‘‘p’’: ‘‘m’’ is the fluid mass, per unit volume of rock
in the reference state (if Vp is the total pore volume for a rock volume V0, m = rfVp=V0); ‘‘p’’ is the fluid
pressure as defined previously. More precisely, what is important is the variation of mass, so that the
variable z is introduced instead of m: z = (m� m0)=rof . The quantity rf

o is the fluid mass per unit volume
in the reference state and m0 is the value of m in the reference state. The variable v (volume of fluid per
unit volume of rock Vp=V0) is by definition equal to the porosity F = Vp=V0. This is true of course in the
saturated case only, which is the situation that we are investigating. Two basic regimes, drained and
undrained, can be easily defined. The ‘‘drained’’ regime is a constant ‘‘p’’ regime while the ‘‘undrained’’
regime is a constant ‘‘m’’ regime (equivalent to constant ‘‘z’’ regime). The benefit of Maxwell relations is
obtained when using the appropriate thermodynamics potentials with either ‘‘p’’ or ‘‘m’’ as a main vari-
able. Two bulk moduli are defined for the porous rock, the drained modulus Kd and the undrained mod-
ulus Ku. The first corresponds to a deformation at constant ‘‘p’’; the second to a deformation at constant
‘‘m’’. For a porous rock volume V, they can be written as

1=Kd = � (1=V )(dV=dP)p ð1Þ

1=Ku = � (1=V )(dV=dP)m ð2Þ

where P denotes the isotropic pressure. Both moduli depend on the component properties (i.e., the bulk
modulus of the solid mineral Ks and that of the fluid Kf) and on the porosity F. Note that m = rfF.
When the rock is made of different minerals (isolated pores can be considered as equivalent to mineral
inclusions), Ks can be considered as an equivalent solid modulus. Poroelasticity cannot give the moduli
values, nor make explicit how they can be expressed in terms of Ks and Kf. Three important remarks are
that (i) only the porosity F and the fluid unit volume mass rf are to be considered because m (= rfF) is
one of the key variables, the pore shape does not appear in m and does not matter in poroelasticity; (ii)
because shear is insensitive to fluid, the shear modulus m is unique and identical in drained or undrained
deformation in poroelasticity (no chemical interaction between fluid and solid); (iii) when the rock is
submitted to an identical compression on the external surface and in the pores, i.e., differential pressure
Pd = constant, or dP =dp, the rock deforms ‘‘as if’’ there were no pores, which means that the apparent
bulk modulus is Ks. Because the equivalent rock is homogeneous, this implies the following equations:

(1=V )(dV=dP)Pd
= � 1=Ks ð3aÞ
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(1=V p)(dV p=dP)Pd
= � 1=Ks ð3bÞ

Let us introduce the free elastic energy f(eij, z) per unit volume of rock. In the simple case of an exter-
nal isotropic stress (pressure P), one obtains

df = � Pdekk + pdz ð4Þ

Note the analogy with thermoelasticity. The term (p dz) is the equivalent in poroelasticity of (s dT)
in thermoelasticity, where T is the temperature and s the entropy/unit volume.

In addition to f, other thermodynamic potentials can be introduced from Legendre transforms, such
as

h ekk, pð Þ= f � pz ð5Þ

dh = � Pdekk � zdp ð6Þ

g P, zð Þ= f + ekkP ð7Þ

dg = ekkdP + pdz ð8Þ

This thermodynamics framework allows the use of classical Maxwell relations for partial derivatives
of conjugate variables (such as P, ekk, and p, z respectively). Here P, p, ekk, and z are first partial deriva-
tives of the above potentials, and the second crossed derivatives of the potentials are equal.

Note that, in the framework of linear poroelasticity (which is the case here), the elastic moduli are
constant. This implies that Kd does not depend on p, which means that it has the same value as Kd in
the dry rock (if, as assumed, there is no chemical interaction). That remark could be of interest to mea-
sure Kd or to check if there is no chemical effect.

2.3. Constitutive relations

Using the variable p for the stress–strain relations, the classical constitutive relations of linear elasticity
are extended in poroelasticity [11]:

sij = Kd � 2m=3ð Þekkdij + 2meij � (bp)dij or, for an isotropic stress, P = � Kdekk + bp ð9Þ

where b is the Biot coefficient.
Similarly, using the variable m for the stress–strain relations, the classical constitutive relations of lin-

ear elasticity become in poroelasticity [11]:

sij = Ku � 2m=3ð Þekkdij + 2meij � (BKuz)dij or, for an isotropic stress, P = � Kuekk + BKuz ð10Þ

where B is the Skempton coefficient.
Both parameters, the Biot coefficient b and the Skempton coefficient B, are new parameters. They are

the coefficients that control the fluid effect in the constitutive equations. From (9) and (10), one obtains

b = (dP=dp)ekk = Kd(dekk=dp)P ð11Þ

B = rf
0 (dekk=dm)P = (rf

0=Ku)(dP=dm)ekk
ð12Þ

2.4. Biot coefficient

Any volume increment dV can be expressed as

dV = (dV=dP)pdP + (dV=dp)Pdp

When applying this result at constant differential pressure, dp = dP, and from (3), one obtains

1=Vð Þ(dV=dP)Pd = � 1=Ks = 1=Vð Þ(dV=dP)p + 1=Vð Þ(dV=dp)P ð13Þ
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1=Ks = 1=Kd � 1=Vð Þ(dV=dp)P ð14Þ

Using (11), the above equation becomes

1=Ks = 1=Kd � (dekk=dp)P = 1� bð Þ=Kd or b = 1� Kd=Ksð Þ ð15Þ

2.5. Skempton coefficient

Using (9) and (10) together, one obtains

P 1� Ku=Kdð Þ= � Ku=Kdð Þbp + BKuz ð16Þ

For an undrained deformation where m is constant, (16) results in

(dp=dP)m = 1� Kd=Kuð Þ=b ð17Þ

However, (8) implies the following Maxwell relation:

(dp=dP)m = rf
0(dekk=dm)P ð18Þ

This last quantity is B, from (12), so that

B = 1� Kd=Kuð Þ=b ð19Þ

From (16) one can also define the specific storage coefficient under fixed stress conditions:

Ss = (dz=dp)P = b= B Kdð Þ ð20Þ

2.6. Fluid mass variation

Another important equation expresses the fluid mass variation z(ekk, p). Combining, from (6), a
Maxwell relation, and (11), one obtains

(dz=dekk)p = (dP=dp)ekk = b ð21Þ

This implies that z ekk, pð Þ= bekk + Ap. The constant A is obtained from the undrained case where z = 0
and p is given by (16) and (10):

z = bekk + b2= Ku � Kdð Þ
� �

p ð22Þ

From (22) one can define the specific storage coefficient under fixed strain conditions:

Se = (dz=dp)ekk = b= BKuð Þ ð23Þ

In addition, from (21), the fluid volume change v – v0 is obtained from m = rfv = rf Vp=V0

� �
:

v� v0 = Dv = Dm=rf
o � v0Drf=rf

o = z� v0Drf=rf
o = b ekk + ½b2= Ku � Kdð Þ �Fo=Kf�p ð24Þ

by noting that Drf=rf
o = p=Kf

2.7. The Gassmann equation

This is a well-known equation that can be derived from (24), in the particular case p = P = � Ksekk, and
Dv=vo = ekk, because the homogeneous rock deforms as if there were no pores:

v� v0 = Foekk = bekk + ½b2= Ku � Kdð Þ �Fo=Kf� �Ksekkð Þ ð25Þ

Thus, (25) becomes the Gassmann equation [3]:
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Ku = Kd + b2½Fo=Kf + (b�Fo)=Ks��1 ð26Þ

An equivalent way to obtain the Gassmann equation is to use (24) and (3) to obtain

1=Ks = � 1=Vp(dVp=dp)(Pd) = � Vo=Vp(dv=dp)(Pd) = � 1=F(dv=dp)(Pd)

with (from (24)) (dv=dp)(Pd) = � b=Ks + ½b2= Ku � Kdð Þ �Fo=Kf�).
Note that using (25) and (26), it is possible to derive (dv=dp)P. Then using (15), one obtains

(dv=dp)P = 1=Kd � (1+ Fo)=Ks ð27Þ

In the anisotropic case, Equation (26) has been extended by Brown and Korringa [14]. An important
point is the issue of homogeneity. As Rice [10] or Brown and Korringa [14] have noted, there could exist
an additional bulk modulus if the system is not homogeneous. It does not exist in the macroscopic
approach developed above but it can be considered using the microscopic model of Cheng [5]. The fact
is that porous rocks are never perfectly homogeneous (even Fontainebleau sandstone). In general, one
considers them as statistically homogeneous (this is what we have done for the rocks we have investi-
gated). Yet all the data we obtained fit reasonably well within the macroscopic poroelastic framework.
One should not forget that a basic approximation is made: one looks at the ‘‘homogenized’’ rock as if it
was a ‘‘homogeneous’’ rock. However, there is no other way if one wants to benefit from the powerful
results of macroscopic thermodynamics.

2.8. Formal analogy between poroelasticity and thermoelasticity

It is interesting to compare poroelasticity with thermoelasticity. Biot knew thermoelasticity. It is striking
to see how similar these theories are. Because the same general relations of classical thermodynamics
hold in both cases, one has similar relations between isothermal KT and adiabatic KS bulk modulii on
the one hand and between drained Kd and undrained Ku bulk modulii on the other hand. Indeed, the
two parameters ‘‘s’’ (entropy per unit volume) and ‘‘T’’ (temperature) in thermoelasticity are formally
equivalent to ‘‘m’’ (fluid mass per unit volume) and ‘‘p’’ (fluid pressure) in poroelasticity. The various
relations between compressibilities in both cases follow directly from Maxwell relations, using the key
concept of thermodynamic potential.

3. Effective elasticity: a microscopic theory

3.1. Important basic results

Using that second approach, rock elastic properties (i.e., stiffness and compliances) are calculated in
terms of microstructural characteristics. The rock is heterogeneous, down to the microscopic scale, but
statistical homogeneity is assumed. The fundamental assumptions of macroscopic poroelasticity intro-
duced in the previous section are deleted. Note that this second approach has nothing in common with
the microscopic model of Cheng [5]. The goal here is to derive the elastic constants and not derive poroe-
lasticity from a microscopic model. Furthermore, one wants to explore the behavior if the fundamental
assumptions of poroelasticity are not met. In the general area of solid mechanics/materials science, effec-
tive elasticity began to attract attention in the 1950s, with classical works of Mackenzie [15], Eshelby
[16], and Bristow [17] on solids with spherical pores, ellipsoidal inhomogeneities, and microcracks,
respectively. In rock mechanics, problems of this kind were first addressed by Walsh [2, 18]. Theoretical
investigations into the effective elastic properties of cracked solids have been reviewed by Kachanov [8,
19]. For the typically irregular microstructure of rocks, the main difficulty lies in finding a quantitative
characterization of the microstructure, i.e., identifying microstructural parameters in terms of which the
effective elastic properties can be expressed. Microstructural defects in the form of both cracks and
pores are important, but a key finding is that the dominant influence on the effective elastic properties
of rocks comes from cracks, not pores. This is demonstrated, for example, by the experimental results of
Fortin et al. [20] on isotropic compaction of a porous sandstone of 25% porosity. In these experiments
the porosity decreased by several per cent. As an example, Figure 1 reports a decrease of 5% as the
effective pressure is increased from 110 to 180 MPa; during this loading the P wave velocity (and, thus,
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the elastic stiffness) decreased from 3.9 to 3.65 km/s. This decrease is due to the development of new
cracks. These cracks contributed to porosity in a negligible way (of the order of 0.1%), but were found
to reduce the stiffness significantly whereas the porosity decrease should result in the reverse. The pres-
ence or absence of cracks of negligible volume accounts for a substantial difference in elastic properties.

Ultrasonic and seismic frequencies differ by six orders of magnitude. Frequency effects are known to
exist in rocks, due mainly to the presence of fluids. At ultrasonic frequencies (106 Hz), fluid flow cannot
‘‘follow’’ the load so that the fluid pressure generally differs from pore to pore. This invalidates the fun-
damental local equilibrium assumption of poroelasticity theory according to which the REV is isobaric.
In this case, the elastic moduli are ‘‘unrelaxed’’ moduli and classical poroelasticity does not apply. At
lower frequencies, fluid pressure has the time to equilibrate between pores on the scale of an REV and
poroelasticity applies, the elastic moduli becoming the ‘‘relaxed’’ moduli of poroelasticity. The critical
frequency at which this local relaxation of pore pressure differences becomes effective varies in a broad
range between 1 kHz and 1 MHz and depends, in particular, on the crack aspect ratio [21, 22].

3.2. Calculation of elastic moduli

In order to calculate the effective moduli, one has to start with a basis step. The REV is assumed to con-
tain a given cavity (to be specified), and the rock is assumed to be statistically homogeneous. If an iso-
lated cavity is placed in a solid under stress, the calculation of effective moduli has been made for simple
shapes (spheres, ellipsoids). The results can be found in [23].

If there are N identical cavities in a volume V, several additional assumptions are required. The sim-
plest one is the non-interaction approximation. In that case, the extra strain is then simply given by the
sum of the contributions from all cavities. We follow this assumption in the following as it was shown to
be very good for cracks. Other assumptions can be found in [23].

3.3. Cracked rocks

Because Mark Kachanov has greatly contributed to investigating cracks’ effects, and because these are
of particular importance for rocks, we give more attention to that case.

For a crack, displacement of the material points on its surface S will contribute an extra strain Deij to
the overall strain per unit reference volume V, which is given by the surface integral over S of
uinj + niuj

� �
(see [8]), where u is the displacement vector generated by applied stress s. For a flat (pla-

nar) the crack normal n is constant and Deij = binj + nibj

� �
S=2V , where b = \u+ � u�. is the average

displacement discontinuity vector over S. This extra strain results into an extra compliance DSijkl to be

Figure 1. Porosity and P-wave velocity evolutions as a function of effective pressure in a porous sandstone (modified after Fortin
et al. [20]). Pore collapse and grain crushed begin at an effective pressure of 120 MPa, leading to a porosity reduction and a decrease
of the P-wave velocity.
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added to the uncracked rock compliance S0
ijkl. Depending on crack orientation, the crack effect induces

anisotropy.
For m cracks, each assumed to be circular with a radius am, Kachanov [7] introduced the second rank

crack density tensor

aij = 1=Vð ÞSm am
3

� �
nm

in
m

j ð28Þ

The linear invariant akk = r is the scalar crack density, and the unique parameter in isotropic cases.
The fourth rank tensor:

bijkl = 1=Vð ÞSm am
3

� �
nm

in
m

jn
m

knm
l ð29Þ

was identified by Kachanov as a second crack density parameter. It plays a relatively minor role in dry
rock or in the presence of highly compressible pore fluids in the sense that b enters in effective elastic
compliances with a relatively small factor. For liquid-saturated rocks, however, the contribution to the
overall elastic properties arising from the parameter b may become important so that it is a key factor
for rocks saturated with water or oil.

For dry cracks, one obtains

DSdry
ijkl = h½1=4(dikajl + dilajk + djkail + djlaik)� (v0=2)bijkl�

Where

h = 32(1� v0
2)=3(2� v0)E0 ð31Þ

(see [24]), where E0, n0, and K0 are the Young modulus, the Poisson ratio, and the bulk modulus of the
matrix, respectively.

For fluid-saturated cracks, the coupling between the stress and the fluid pressure is characterized by a
parameter:

df = 4pA E0=K0ð Þ(1� n2
0) K0=Kf � 1ð Þ ð32Þ

It involves the average crack aspect ratio A = w=a (w is the average crack aperture) as an important
parameter. Clearly, df will in general be different for different cracks. The parameter df is zero in the limit
A! 0; this limit corresponds to closed cracks that are allowed to slide without friction. For a highly
compressible fluid (air), df ! ‘; this limit recovers the case of traction-free cracks. Note that the fluid
bulk modulus value Kf is constrained to be smaller than that of the solid matrix K0, which is indeed the
situation of fluids in rocks. In the following, we assume that the values of df and A are approximately
the same for all cracks. The result of the calculation in that case is [24]:

DSsat
ijkl = h½1=4(dikajl + dilajk + djkail + djlaik)�Cbijkl� ð33Þ

In the case of isotropy, i.e., for random crack orientations, one recovers a result of Budiansky and
O’Connell [25]. We emphasize that the extra compliances DSijkl are the ‘‘unrelaxed’’ compliances (that mea-
sured at high frequencies, not that of poroelasticity). Here the tensor b is seen to enter with the multiplier:

c = ½1� (1� n2
0)df= 1+ dfð Þ� ð34Þ

instead of the factor (n0=2) for the dry case. The fact that the parameter c depends on the ratio K0A=Kf

of an ‘‘apparent’’ bulk modulus (K0A) of the matrix to the bulk modulus of the pore fluid Kf accounts
for the relative importance of the b-tensor under saturated, unrelaxed conditions.

3.4. Dispersion and attenuation due to fluids

For fluid-saturated rocks, if A is low enough so that df;0, then c;1. The results is that the difference
between (29) and (26) is large. The ‘‘unrelaxed’’ compliances are obtained from (29) with c = 1. These
are valid when the REV is not isobaric, typically at ultrasonic frequencies.
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On the other hand, ‘‘relaxed’’ compliances (i.e., undrained moduli) are obtained from the Gassmann
equation (or Brown–Korringa equation in the anisotropic case) using (26). These are valid at low fre-
quencies (typically below 1 kHz).

The dispersion (and attenuation) that results between high-frequency compliances and low-frequency
compliances can be calculated from the above equations [24]:

Shfijkl � Slfijkl = h(1� n0=2)(aijakl=amm � bijkl)=(1 + df) ð35Þ

Experimental data have provided evidence of the dispersion effect in many rocks.

4. Experimental evidence

A specific apparatus (Figure 2) installed at École normale supérieure (ENS) Paris allows the measure-
ment of (i) the elastic moduli over a broad frequency range (0.004–300 Hz) using the forced-oscillation
method and (ii) the ultrasonic wave velocities P and S (1 MHz). The measurements are taken under
hydrostatic pressure (0–100 MPa). Water (Kf =2.2 GPa) or glycerin (Kf = 4.36) can be used as the pore
fluid. The apparatus enables to perform two modes of stress oscillations: (i) hydrostatic, using the con-
fining pump (range 0.004–2 Hz); (ii) axial, using a piezoelectric actuator (range 0.004–100 Hz). For
hydrostatic oscillations, the confining pressure oscillates with an amplitude of about 0.2 MPa around a
mean value to induce a strain oscillation amplitude in the order of 1026. The volumetric strain, ekk, is
measured from strain gages and the bulk modulus is calculated as

K = � DP=ekk ð36Þ

For the axial mode, a piezoelectric actuator induces axial-stress oscillations. The oscillating axial
stress (Dsax) is measured from axial strain gauges (ealu) glued on the lower end platen (Figure 2) made
out of aluminum by Dsax = Ealuealu, where Ealu is the Young’s modulus of aluminum. Young’s modulus
(E) and Poisson’s ratio (n) of the sample can then be calculated by E = Dsax=eax and n = � erad=eax,
where eax and erad are the axial and radial strains of the sample measured by strain gauges. The bulk

Figure 2. Experimental apparatus installed at ENS Paris. Elastic properties of a sample of 80 mm in length and 40 mm in diameter
can be measured under pressure. The P and S wave ultrasonic transducers are mounted on the top and bottom end platens. Drained
or undrained boundary conditions of the sample can be achieved through microvalves installed in the top and bottom end platens.
Figure from Borgomano et al. [26].
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modulus of the sample can be deduced as K=E=(3 1� 2nð Þ); this last equation only holds under the
assumption of elastic isotropy. One of the main advantages of the forced-oscillation method is to mea-
sure the elastic moduli under small perturbations (strain amplitude in the order of 1026) at a given pres-
sure, as it is well known that in rocks elastic moduli varies with pressure [2, 18].

4.1. Validity of poroelasticity and the Gassmann equation

Figure 3 shows the evolution of the bulk modulus with frequency in the case of a Lavoux limestone
(Figure 3(a)) and a Vosgian sandstone (Figure 3(b)). When the rock is dry (black dots), the bulk modu-
lus is constant with frequency, as expected. When the rock is fluid-saturated, one needs to be careful
with the fluid-flow boundary conditions of the sample: the cylindrical sample is jacketed, thus the lateral
boundary is impermeable in terms of fluid flow. However, the top and bottom faces of the sample are
connected to the pore fluid lines (Figure 2). Two cases can be considered: (1) the pore fluid is allowed to
flow between the sample and pore fluid lines; (2) the fluid mass in the sample is kept constant through
‘‘closed’’ piloted micro-valves installed in the end pieces (green pieces on Figure 2). In this last case the
dead volume induced by the microvalve is approximately 20 ml (Borgomano et al. [26]).

The evolution of the bulk modulus with frequency, in the case of open boundary condition, is shown
in Figure 3 in blue dots. A clear transition can be seen from a drained regime to an undrained regime
[27, 28]. The characteristic frequency for the drained–undrained transition is [29]

f1 =
4kKd

hL2
ð37Þ

where k is the permeability, L is the length of the sample, and h is the viscosity of the pore fluid. In the
case of closed boundary conditions (red dots in Figure 3(b)), the bulk modulus is constant for the fre-
quencies investigated in this experiment and is equal to the undrained bulk modulus.

These experiments allow one (i) to measure the dry and drained bulk moduli, (ii) to check that the
dry bulk modulus is equal to the drained bulk modulus, and (iii) to measure the undrained bulk modu-
lus. Note that in the case of open boundary condition, the undrained bulk modulus can only be mea-
sured if the drained–undrained characteristic frequency, f1, is much lower than the relaxed–unrelaxed
characteristic frequency f2 defined in (39) (Pimienta et al. [31]). A compilation of data using this experi-
mental approach is given in Table 1 for various sandstones and limestones.

The validity of Gassmann equation is highlighted in Figure 4. The ratio Ku=Kd on the y-axis is
deduced from direct measurements (Table 1). The prediction of Ku=Kd from the Gassmann equation
(26) is given on the x-axis. Overall, there is a good match between the direct measurements and the
Gassmann equation, taking into account the error bar of the experimental data. One can discuss the
bulk moduli of the solid mineral Ks, which is not measured in Table 1 but estimated from the mineral
composition. However, according to the Gassmann equation the undrained bulk modulus is dominated

Figure 3. (a) Evolution of the bulk modulus with frequency in a Lavoux limestone in the dry and glycerin-saturated cases. The
effective pressure was 2.5 MPa. (Data from Borgomano et al. [30].) ). (b) Evolution of the bulk modulus with frequency in a Vosgian
sandstone, in the dry and glycerin-saturated cases. The effective pressure was 5 MPa. In the saturated case, open boundary and
closed boundary conditions are investigated. (Data from Borgomano et al. [26].)
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at the first order by the value of the drained bulk modulus and the fluid bulk modulus and only at the
second order by the value of Ks.

4.2. Dispersion effects due to cracks

To illustrate dispersion effects due to cracks, one can define the dispersion for a saturated rock as

D =
KHF � Ku

Ku
, ð38Þ

where Ku is the undrained modulus and KHF is the ‘‘high-frequency’’ bulk modulus deduced from ultra-
sonic wave velocities (frequency ;1 MHz). Here Ku is defined in the framework of the poroelasticity
theory (relaxed state), whereas KHF is an unrelaxed modulus which can be interpreted in the framework
of effective medium model [8]. As shown by Adelinet et al. [34] and Fortin et al. [35], two main para-
meters control the dispersion, D: (i) the ratio crack porosity/total porosity and (ii) the mean crack aspect
ratio. Using the data of Table 1, Figure 5 shows the evolution of the dispersion versus effective pressure

Figure 4. Measurements versus Gassmann prediction, using the data of Table 1.

Figure 5. Dispersion between the high-frequency bulk modulus and the undrained bulk modulus (in %) versus effective pressure,
using the data of Table 1.
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for various sandstones and limestones. The dispersion can reach value up to 40%, however, as shown in
Figure 5, as the effective pressure increases, the dispersion decreases, as pre-existing cracks are closed.

Some rocks such as the Lavoux limestone, characterized by a bimodal porosity, show no dispersion
even at low pressure [30]. Indeed, in this particular case, micro- and macro-pores have the same aspect
ratio and no dispersion is expected. Another implication is to use the dispersion D (38) to distinguish
between samples with or without pre-existing cracks. For example, Regnet et al. [36] measured dry and
saturated ultrasonic wave velocity in microporous limestones; they estimated the undrained bulk modu-
lus using the Gassmann equation, and computed the dispersion D to select the samples without pre-
existing cracks.

Another way to observe the dispersion of elastic moduli due to cracks is to measure the elastic moduli
with frequency. Figure 6 shows an example obtained on Berea sandstone [37] saturated with glycerin.
Elastic modulus increases with frequency. In the relaxed regime, relevant to poroelasticity, the bulk mod-
ulus increases from the drained modulus to the undrained modulus, the characteristic frequency is f1=
0.2 Hz. Note that f1 (36) depends on intrinsic properties of the rock (permeability, drained bulk modu-
lus) and of the fluid (viscosity) but also on the size of sample. As the frequency increases above 1 Hz, the
elastic modulus increases again from a relaxed state (where pore pressure is equilibrated at a VER scale)
to an unrelaxed state (where each inclusion is individually undrained, i.e., the pore pressure inside the
inclusion will mainly depends on its shape). The unrelaxed state is relevant of effective medium approach
and the characteristic frequency f2 is [21]

f2 =
KsA

3

h
ð39Þ

where A is the crack aspect ratio and h is the fluid viscosity. The characteristic frequency f2 depends
only on intrinsic properties of the rocks and the fluid. For the case of Berea sandstone (Figure 6), f2 =
10 Hz, h = 1 Pa.s–1 , which give a mean crack aspect ratio of ;10–3. Note that characteristic frequency
f2 can be rescaled for water as a pore fluid: with water as a pore fluid, the characteristic frequency is

10Hz
hglycerin

hwater
= 10kHz, which correspond to sonic measurements. This implies that one needs to be care-

ful when interpreting sonic measurements with the Gassmann equation, as this last equation only holds
in the relaxed regime.

5. Conclusions

Macroscopic poroelasticity and effective medium theory are two independent approaches which can be
used to analyze the role of pores, cracks, and fluid on elastic properties. Macroscopic poroelasticity
belongs to the macroscopic framework of thermodynamics and can be used to define the drained and
undrained moduli. In this framework, one can deduce the Gassmann equation, which gives a good esti-
mation of the seismic velocity in saturated rocks from the dry measurement, the total porosity, and the
fluid bulk modulus. Effective medium theory expresses the medium properties in terms of microstruc-
tural characteristics (pore and crack shape, etc.) and component properties (fluid properties, solid grain
properties, etc.). Effective medium theory can be used for fluid-saturated rocks and applies when each

Figure 6. Evolution of the bulk modulus in a Berea sandstone saturated with glycerin at an effective pressure of 5 MPa. (Data from
Chapman et al. [37].)
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inclusion is individually undrained; this is an unrelaxed state. Experimental results show (i) the validity
of the Gassmann equation and (ii) that the dispersion between an unrelaxed modulus and a relaxed
modulus can reach up to 40%. The dispersion is interpreted as a squirt flow from crack to pore, and
the dispersion decreases as the effective pressure is increased, i.e., as pre-existing cracks are closed. The
frequency characteristic between the relaxed and unrelaxed states often occurs at log frequency, which
implies that the use of the Gassmann equation for sonic measurement needs to be done with caution.
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