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We report on the first LED-pumped femtosecond 
regenerative amplifier. It is based on a Cr:LiSAF crystal 
pumped by 2240 blue LEDs via a Ce:YAG luminescent 
concentrator. The amplifier was seeded by pulses from a 
Ti:sapphire oscillator at 835 nm temporally stretched 
from 90 fs to 100 ps. At the output of the regenerative 
amplifier, we obtain 1 mJ pulse energy at a 10 Hz 
repetition rate, given by the frequency of the LED 
pumping module. After compression, we obtain 100-fs 
pulses with a spectral bandwidth of 10 nm at 835 nm. © 2021 Optical Society of America 
OCIS codes: (140.7090) Ultrafast lasers; (140.3280) Laser amplifiers; 
(160.6990) Transition-metal-doped materials; (230.3670); Light-emitting 
diodes; (140.5560) Pumping. 
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      During the last two decades, LEDs have seen a dramatic improvement of their performance and a drastic cost reduction, making them one of the most efficient and affordable lighting sources. Combined with luminescent concentrators [1], they allow to reach irradiances up to 10 kW/cm2 [2], more than one order of magnitude higher than LEDs. Pumped by blue LEDs, Ce:YAG concentrators [3] and Ce:LuAG concentrators [2] provide high brightness 100 mJ-class-sources between 530 nm and 650 nm, right in the "yellow gap" where semiconductors are less efficient than in other wavelength ranges (like blue or near infrared). This offers new opportunities for pumping broadband laser materials from the transition metal ion family, since their absorption band is close to the yellow gap. Ti:sapphire, alexandrite or Cr:LiSAF are part of this category. Compared to other pump sources, LED-pumped luminescent concentrators combine a unique set of properties: as rugged and cost effective as flashlamps, as stable, long-lifetime and reliable as semiconductors. In addition, their complexity is much less than frequency-doubled Nd:doped green laser often used for Ti:sapphire pumping.       Laser performances of Ti:sapphire [2], alexandrite [4] and Cr:LiSAF [5] have recently been investigated under LED-pumping showing a broad tunability in the near infrared, essential for 

femtosecond lasers. Therefore, LED-pumped luminescent concentrators open the road to new femtosecond laser systems.        LED-pumped luminescent concentrators have their best performance in quasi-continuous-wave at low repetition rate, a regime where LEDs can be driven far above their nominal power specified in continuous-wave (3-4 times higher for pulse durations in the µs range). At low repetition rates, the concentrators do not require specific cooling that could affect its reflective properties based on total internal reflections. These characteristics push us to consider pulsed amplifiers (often pumped in pulsed regime) instead of mode-locked oscillators (generally pumped in CW) for a LED-pumped crystal inserted in a femtosecond laser chain. Moreover, we believe that one of the main interests of LED-pumping for femtosecond systems is access to high pulse energy at a low cost. We therefore focus this demonstration on an amplifier system.       Our previous works demonstrate that Cr:LiSAF has a gain above Ti:sapphire and alexandrite under similar LED-pumping conditions with Ce-doped concentrators. This is the reason why we select Cr:LiSAF in order to build the first LED-pumped femtosecond regenerative amplifier presented in this paper.       An overview of the experimental setup is presented in Fig. 1, in a chirped pulse amplification configuration (CPA). A mode-locked femtosecond Ti:sapphire oscillator  (Mai Tai from Spectra-Physics) produces infrared seed-pulses at a repetition rate of 80 MHz, centered at 835 nm with a full width at half maximum (FWHM) spectral bandwidth of 10 nm. Assuming a sech2 temporal profile, the pulse duration is measured to be approximately 90 fs at FWHM. These pulses are temporally stretched up to 100 ps in an Offner type stretcher using two concave and convex mirrors (silver coating of up to 96% reflectivity at 835 nm) and a diffraction grating (1400 lines/mm, gold coating). The stretched pulses (with an energy of 1.25 nJ) are sent to the LED-pumped Cr:LiSAF regenerative amplifier described in the following. To ensure an efficient pulse injection in the amplifier, the waist radius is adjusted to match the cavity mode of the amplifier, using a two-lens afocal system (with focal lengths of 750 mm and 400 mm) placed between the stretcher and the amplifier. In the last part of the setup, the pulses are recompressed with two reflective diffraction gratings (1480 lines/mm, gold coating). 
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and 865 nm (Fig. 7). This means that Cr:LiSAF could allow the amplification of pulses much shorter than 100 fs and that, in our case, we are limited by the oscillator duration.       Cr:LiSAF femtosecond regenerative amplifiers have been reported previously. They can be sorted in two categories depending on the pump source. Under CW pumping, with gas lasers [12,13] or laser diodes [13,14], the reported performances are µJ pulses at kHz repetition rates. The best performance to date was reported in [15] with 10 µJ pulses at 6 kHz compressed to 170 fs. Diode-pumped setups are advantageous for high repetition rates but exhibit relatively low small-signal gains: typically below 1.1 per roundtrip. This induces a large buildup time around 1 µs [13-15] corresponding to approximately 200 roundtrips [15].  The second category is flashlamp-pumped [16-18]. These setups are well suited to produce high pulse energy: in the mJ range and up to 15 mJ [18]. Moreover, the small-signal-gain is much higher, leading to 35 roundtrips typically. However, the repetition rates are 1 Hz [17, 18] or a few Hz (6 Hz) [16], limited by the flashlamp lifetime and by thermal issues in the Cr:LiSAF rods. The pulse durations after compression in these setups are around 100 fs. The difference in pulse duration between diode and flashlamp-pumping configurations can be attributed to the spectral gain narrowing that depends on the number of roundtrips. The performances reported here in terms of gain, buildup time, output energy, and pulse duration are close to the flashlamp-pumped Cr:LiSAF regenerative amplifiers.        However, the potential of LED-pumped regenerative amplifiers is far beyond the flashlamp-pumped amplifiers. The lifetime of the pump source is much longer, thanks to the redundancy offered by thousands of LEDs in the setup and to the robustness of Ce:YAG. The repetition rate of 10 Hz is already higher than in flashlamp-pumped Cr:LiSAF regenerative amplifiers previously demonstrated and can be further increased. LED-pumped luminescent concentrators can operate at repetition rates up to 200 Hz without deleterious effect on the performance of the pump energy, thanks to the excellent thermo-optical properties of Ce:YAG [19]. In our setup, the repetition rate is currently limited by the heating of the Cr:LiSAF crystal due to the absence of adequate cooling. Thermal management of the heat generated in the Cr:LiSAF could be greatly improved by a better mechanical contact with a well-designed heat sink.       The results in terms of free running spectrum and tunability indicate that the LED-pumped Cr:LiSAF amplifier can be used for pulses with a larger spectral bandwidth, leading to shorter pulse durations around 70 fs. In addition, energy scaling could be easily achieved since LEDs are low cost devices and Ce:YAG luminescent concentrators with larger sizes are available.       In conclusion, we demonstrate the first LED-pumped femtosecond amplifier. It includes a Cr:LiSAF crystal. The performances of the presented system are in line with previously reported results of flashlamp-pumped regenerative amplifiers, but with semiconductor-base-pumping reliability. This represents the first step, and we expect a wide potential for improvement, including the increase of the repetition rate, the reduction of the pulse duration and above all, the energy scaling. We believe that this work opens the route to a new generation of compact ultrashort laser sources operating in the 10-to-100 Hz range with sub-100-fs pulses and energies in the 10 mJ range.  
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