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Abstract Modeling high-dimensional multivariate distributions is a computation-
ally challenging task. In the discrete case, Bayesian networks have been successfully
used to reduce the complexity and to simplify the problem. However, they lack
of a general model for continuous variables. In order to overcome this problem,
[9] proposed the model of copula Bayesian networks that parametrizes Bayesian
networks using copula functions. We propose a new learning algorithm for this
model based on a PC algorithm and a conditional independence test proposed by
[4]. This test being non-parametric, no model assumptions are made allowing it
to be as general as possible. This algorithm is compared on generated data with
the parametric method proposed by [9] and proves to have better results.

Keywords Continuous Bayesian Networks, Non-parametric Learning, Copula
Theory

1 Introduction

Modeling multivariate continuous distributions is an important task in statistics
and machine learning with many applications in science and engineering. How-
ever, high-dimensional distributions are hard to manipulate and may lead to in-
tractable computations. In addition, apart from simple parametric models such as
the Gaussian distribution, univariate distributions usually don’t have multivariate
equivalents leading to difficulties in building multivariate models.
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Probabilistic graphical models are used to compactly represent such multivari-
ate distributions. In particular, Bayesian networks (BN) use a directed acyclic
graph (DAG) and a set of conditional probability distributions (CPD) to encode
the joint distribution. This representation reduces the complexity by taking ad-
vantage of conditional independencies and allows efficient inference and learning
algorithms. However, BNs lack of a general model for continuous variables: dis-
cretizations or Gaussian models are often used despite no theoretical restrictions
on CPD models. On the one hand, discretizations need to be determined and are
limited in the number of bins that can be used. Gaussian models on the other
hand allow efficient inference and learning algorithms but lack of expressiveness.

According to Sklar (theorem 1), any multivariate distribution is related to its
univariate marginals by means of a copula function. Thus, the copula function
allows to model the dependence structure between continuous variables by ruling
out the marginal behavior of each variable. From a constructive perspective, this
allows to dissociate the choice of the marginals and the choice of a dependence
structure. In practice however, copulas are limited to only a few variables and
constructing or manipulating high-dimensional ones is difficult.

In order to take advantage of these two frameworks, many graphical models for
copulas have been proposed such as pair-copula construction [7], Vine model [2]
or cumulative distribution networks [13]. One encouraging model is the Copula
Bayesian Network (CBN) [9] which parametrizes a BN with a set of local con-
ditional copula functions giving it the same graphical properties. Consequently,
this allows to use similar methods than in the classical case to learn them. In this
regard, [9] proposed a learning method based on the well known BIC score coupled
with a TABU search.

The main contribution of this paper is a new learning algorithm for CBNs. This
learning algorithm relies on a PC-algorithm coupled with a continuous conditional
independence (CI) test proposed by [4] that uses Bernstein copula estimators. The
method is compared with the BIC score method in terms of structural scores and
time complexity on generated data sets.

The paper is organized as follows. Section 2 describes copulas and some of
their useful properties. Section 3 introduces the CBN framework proposed by [9].
Section 4 presents in details the two learning algorithms for CBNs, that is our
algorithm and the method proposed in [9]. Section 5 compares the algorithms on
generated data from known structures in terms of structure learning and time
complexity. Section 6 concludes the paper.

2 Copulas

Let R be the extended set of real numbers defined as R � RY t�8,�8u and I be
the unit segment r0, 1s. Let X � pX1, . . . , Xdq be an n-dimensional random vector

and x � px1, . . . , xdq a vector of Rd denoting a realization of X. Before giving
the definition of a multivariate (cumulative) distribution function, the notion of
H-volume needs to be introduced.

Definition 1 (H-Volume) Let a and b be two points of Rd such that for each
i, ai   bi. The d-box B is the set

�d
i�1rai, bis. Giving a function H defined on a



Constraint-Based Learning for Non-Parametric Continuous Bayesian Networks 3

subset of Rd containing B, the H-volume of B is the quantity:

VHpBq �
¸
vPV

p�1qNpvqHpvq

where V �
�d
i�1tai, biu is the set of the vertices of the d-box and where Npvq �

card ti|vi � aiu.

As an example, let H : pu, vq Ñ uv be a function defined on R2 and let a � pa1, a2q
and b � pb1, b2q be two points of R2. These points define the 2-box ra1, b1s�ra2, b2s
whose H-volume is given by

VHpra1, b1s � ra2, b2sq � Hpa1, a2q �Hpb1, b2q �Hpa1, b2q �Hpa2, b1q

� a1a2 � b1b2 � a1b2 � a2b1

� pa1 � b1qpa2 � b2q,

which is the area of the 2-box. In fact, for the particular case of H : uÑ
±d
i�1 ui,

the H-volume of a d-box is the usual notion of volume in an Euclidean space.

Definition 2 (Distribution Function) The distribution function H : Rd Ñ I
of a random vector X is given by

Hpx1, . . . , xdq :� P pX1 ¤ x1, . . . , Xd ¤ xdq ,

Equivalently, a function H is a distribution function if it satisfies the following
properties:

1. H is right-continuous in each of its variables,

2. For each d-box B � Rd, VHpBq ¥ 0,
3. Hpx1, . . . , xdq � 0 if there exists i such that xi � �8,
4. Hp�8, . . . ,�8q � 1.

In the case d � 1, the H-volume is given by VHpra, bsq � Hpbq � Hpaq and then
the property VHpra, bsq ¥ 0 means that the function H is increasing. For d ¡ 1,
this may be considered as an extension of the definition of an increasing function
for multivariate functions.

The distribution function of a subset of component variables may be obtained
from marginal distributions.

Definition 3 (Marginal distribution) Let H be a d-dimensional distribution
function and j � pj1, . . . , jkq a sub-vector of p1, . . . , dq with 1 ¤ k ¤ d � 1. The
j-marginal of H is the distribution function Hj : Rk Ñ I defined by:

Hjpx1, . . . , xkq � Hpy1, . . . , ydq,

where yi � xi if i P tj1, . . . , jku, and yi � �8 otherwise.

In particular, the 1-dimensional marginal distribution1 Fi, for each component Xi,
is obtained by the formula Fipxiq � Hp�8, . . . , xi, . . . ,�8q.

1 When it is clear from context, the index i will be dropped in order to alleviate notations.
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(b) Density function

Fig. 1: Vizualisation of a two-dimensional gaussian copula with a correlation pa-
rameter ρ � 0.8.

When variables are independent, the joint distribution can be expressed in
terms of its univariate marginals:

Hpx1, . . . , xdq �
d¹
i�1

Fipxiq. (1)

Thus, giving any set of arbitrary marginal distributions Fi, a joint distribution
can be constructed by taking their product. Copula functions allow to achieve the
same objective but with dependent variables.

Definition 4 (Copula) Let U � pU1, . . . , Udq be a random vector whose compo-
nents are uniformly distributed on I. A copula function C : Id Ñ I is a distribution:

Cpu1, . . . , udq � PpU1 ¤ u1, . . . , Ud ¤ udq

The relation between the joint distribution and its univariate marginals is a central
result of copula theory due to [25]:

Theorem 1 (Sklar 1959) Let H be any multivariate distribution function over
a random vector X, there exists a copula function C such that

H px1, . . . , xdq � C pF1px1q, . . . , Fdpxdqq . (2)

Furthermore, if each Fipxiq is continuous then C is unique.

As the marginals encode the individual behavior of each variables, the copula
function C encodes the dependence between these variables. This is interesting
from a constructive perspective since the choice of marginals can be separated
from the choice of the dependence structure.

The independent copula, denoted Π, can be derived from (1) and the previous
theorem and has for expression Π puq �

±d
i�1 ui. More generally, Sklar’s theorem

may be used to construct new copulas from known multivariate distributions by
inverting (2) :

Cpu1, . . . , udq � HpF�1
1 pu1q, . . . , F

�1
d pudqq (3)

where ui � F pxiq. However, if a marginal distribution is not strictly increasing, it
may be non-invertible and the quasi-inverse is used instead.
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Definition 5 (Quasi-Inverse) The quasi-inverse (or quantile function) of a 1-
dimensional distribution function F : R Ñ I is the function F�1 on I defined
by

F�1
pyq � inf tx|F pxq ¥ yu � sup tx|F pxq ¤ yu .

If F is continue and strictly increasing, F�1 is the classic inverse function.

Then taking H � ΦR, the multivariate standard gaussian distribution with corre-
lation matrix R, the gaussian copula [21] can be extracted using (3) :

CGpu1, . . . , udq � ΦRpφ
�1
pu1q, . . . , φ

�1
pudqq (4)

where φ is the univariate standard gaussian distribution. A representation of a
two-dimensional gaussian copula is given on Figure 1a.

Copula functions are invariant under increasing transformations of random
variables. Indeed, let tψiu be a family of such transformations and let Ui � ψipXiq,
then

H 1
pu1, . . . , udq � C 1

pF 1
1pu1q, . . . , F

1
dpudqq.

By definition of marginal distributions,

F 1
i puiq � PpUi ¤ uiq � PpψipXiq ¤ uiq

� PpXi ¤ ψ�1
i puiqq � F pψ�1

i puiqq

and injecting it in the previous equation, it gives that

H 1
pu1, . . . , udq � PpU1 ¤ u1, . . . , Ud ¤ udq

� PpX1¤ ψ�1
1 pu1q, . . . , Xd ¤ ψ�1

d pudqq

� Hpψ�1
1 pu1q, . . . , ψ

�1
d pudqq

� CpF1pψ
�1
1 pu1qq, . . . , Fdpψ

�1
d pudqqq

� CpF 1
1pu1q, . . . , F

1
dpudqq,

proving that C 1 � C. A multivariate gaussian distribution Φpx1, . . . , xdq with
mean µ and covariance matrix Σ can be reparameterized as a standard one using
the transformations ψipxiq �

xi�µi

σ2
i

. These transformations being increasing, they

don’t affect the copula according to the last property and this explains why the sim-
plest parameterization can be used when defining the gaussian copula. Moreover,
using this last property with ψi � Fi, we have that H 1pu1, . . . , udq � Cpu1, . . . , udq
which allows to work directly with the copula function and to look at the depen-
dence structure. However, in many applications the Fi’s are usually unknown and
empirical distributions are used instead :

Definition 6 (Rank variables) Let X be a set of random variables and D �

txrmsu1¤m¤n a sample containing n realizations of X. The rank variables U are
defined by:

U � pF emp1 pX1q, . . . , F
emp
d pXdqq,

where F empj puq �
1

n

°n
i�1 1Xi

j¤u
for u P r0, 1s is the empirical distribution of Xj .

The associated sample, called rank sample, is given by R � turmsu1¤m¤n where

urms �
�
F emp1 px1rmsq, . . . , F

emp
d pxdrmsq

�
.
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Fig. 2: A sample distributed according to X � expp0.5q, Y � expp0.5q and the
associated rank variables. While the two random variables are independent, looking
at the sample it seems that they are dependent. However, the copula exhibits
clearly the independence and what can be mistaken to be a dependence is in fact
due to a marginal behavior.

Figure 2 shows a sample of a 2-dimensional random vector and the associated rank
variables.

If a distribution function is continuous, its joint density is obtained by deriving

it : hpxq � BdHpx1,...,xdq
Bx1...Bxd

. A copula density function2 can be equivalently defined by

derivation cpu1, . . . , udq �
BdCpu1,...,udq

Bu1...Bxd
. As the univariate marginals of a copula

function are distributed uniformly over I, that is Cpuiq � ui, then the univariate
copula densities are identically equal to 1 over I. Now using Sklar’s theorem, the
joint density can be related to the copula density:

hpx1, . . . , xdq �
BdHpx1, . . . , xdq

Bx1 . . . Bxd

�
BdCpF1px1q, . . . , Fdpxdqq

BF1px1q . . . BF pxdq

d¹
i�1

BFipxiq

Bxi

� c pF1px1q, . . . , Fdpxdqq
d¹
i�1

fipxiq. (5)

This formula will be used extensively in the next section to define CBNs. Similarly
to the Sklar’s theorem, the last relation can be inverted to obtain a copula density:

c pu1, . . . , udq �
h
�
F�1pu1q, . . . , F

�1pudq
�

d±
i�1

fi pF�1puiqq

. (6)

The gaussian copula being continuous, a density can be obtained from derivation
of equation (4). A representation of a two-dimensional gaussian copula density is
given on Figure 1b. While the gaussian copula has been used in order to illustrate
the different notions about copula theories there exists many other parametric
copulas and the interested reader can refer to [15], [21] for an exhaustive list.

2 By abuse of terminology, the copula density is often named copula.
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(b) M � 1000

Fig. 3: Approximation of gaussian copula by an empirical Bernstein copula with
different size of samples.

This section ends with the introduction of the empirical Bernstein copula [23],
a non-parametric copula estimator, which is at the center of the learning method
introduce later. Its definition relies on the empirical copula [8]:

Definition 7 (Empirical copula) Given a sample D of size n and R the asso-
ciated rank sample, the empirical copula is defined as

Ĉnpuq �
1

n

ņ

m�1

d¹
i�1

1tuirms ¤ uiu.

The Bernstein copula is a smoothed version of the empirical copula using Bernstein
polynomials:

Definition 8 (Empirical Bernstein copula) The empirical Bernstein copula
on a sample D of size n and associated rank sample R is defined as:

ĈBK,npuq �
Ķ

v1�0

. . .
Ķ

vd�0

Ĉn
�v1
K
, . . . ,

vd
K

	 d¹
i�1

Bvi,Kpuiq (7)

where K is a bandwidth parameter and Bi,npxq �
�n
i

�
xip1�xqn�i are the Bernstein

polynomials.

Despite his name, the empirical Bernstein copula is truly a copula if and only if
n is a multiple of K. For this reason, certain instances of the data set may be
ignored. As for any copula, a density function can be defined for the Bernstein
copula by deriving equation (7):

Theorem 2 (Bernstein copula density) The Bernstein copula density has for
expression

ĉBpuq �
1

n

ņ

m�1

�
Kd

Ķ

v1�0

. . .
Ķ

vd�0

1purms P Svq
d¹
i�1

Bvi,K�1puiq

�
, (8)

where

Sv �

�
v1
K
, . . . ,

v1 � 1

K

�
� � � � �

�
vd
K
, . . . ,

vd � 1

K

�
and v � pv1, . . . , vdq.
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Finally, K is chosen such that it minimizes the mean square error (MSE) of the
density estimator, that is such that }ĉB � c}

2 with }.} the L2 norm and c the true

copula density. This is achieved by taking KMSE � t1�n2{pd�4qu [23]. The figure 3
shows the approximation of a Gaussian copula by an empirical Bernstein copula.

3 Copula Bayesian Networks

A BN structure G is a DAG whose vertices X � tX1, . . . , Xdu represent random
variables. Let Pai � pPai1, . . . ,Paiki

q be the ki parents of Xi in G and NDi be the
variables that are non-descendants of Xi in the graph. A multivariate probability
distribution P over variables X, is said to factorize according to G, if it can be
expressed as the product

P pX1, . . . , Xdq �
d¹
i�1

P pXi|Paiq.

and G then encodes the set of independencies :

IpGq � tpXi K NDi|Paiqu.

A BN is a pair B � pG, P q where G is defined as previously and P factorizes
over G. To each node Xi of the BN structure is associated its corresponding CPD
P pXi|Paiq that appears in the factorization of the joint distribution P . In the
discrete case, CPDs are most often represented via conditional probability tables
(CPT) while in the continuous case, they are represented via linear gaussian model
[19] fpxi|paiq � N pβi0 � βTi pai;σ

2
i q. Although gaussian distributions allow fast

probabilistic computations and estimation, they lack of expressiveness and some
distributions, like rare events ones, cannot be well approximated by such models.
The CBN model introduced by [9] tries to address this problem by using copula
functions to parametrize the BN.

In order to do so, the first step is to use (5) in the Bayes formula for fpxi|paiq:

fpxi|paiq �
fpxi,paiq

fppaiq

�
cpF pxiq, F ppai1q, . . . , F ppaiki

qqfpxiq
±ki
j�1 fppaijq

cpF ppai1q, . . . , F ppaiki
qq
±ki
j�1 fppaijq

� RcipF pxiq, F ppai1q, . . . , F ppaiki
qqfpxiq

where

RcipF pxiq, F ppai1q, . . . , F ppaiki
qq �

cpF pxiq, F ppai1q, . . . , F ppaiki
qq

cpF ppai1q, . . . , F ppaiki
q
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and ki � |pai|. Consequently, if fpxq that is supposed to be strictly positive,

factorizes on G as fpxq �
d±
i�1

fpxi|paiq, it is the same for the copula density :

cpF px1q, . . . , F pxdqq �
fpxq±d
i�1 fpxiq

�

±d
i�1 fpxi|paiq±d
i�1 fpxiq

�

±d
i�1RcipF pxiq, F ppa1q, . . . , F ppaKi

qqfpxiq±d
i�1 fpxiq

�
d¹
i�1

RcipF pxiq, F ppa1q, . . . , F ppaKi
qq.

Like with BNs, the converse is also true :

Theorem 3 (Elidan 2010) Let G be a DAG over X. In addition, let tcipF pxiq,
F ppai1q, . . . , F ppaiki

qqu be a set of strictly positive copula densities associated with
the nodes of G that have at least one parent. If IpGq holds then the function

hpF px1q, . . . , F pxdqq �
d¹
i�1

RcipF pxiq, tF ppaikquqfpxiq,

is a valid density over X.

This leads to the definition of a CBN as given by [9] :

Definition 9 (Copula Bayesian Network) A Copula Bayesian Network is a
triplet C � pG, ΘC , Θf q that encodes the joint density fpxq. ΘC is a set of local
copula densities functions ci pF pxiq, tF ppaikquq that are associated with the nodes
of G that have at least one parent. Θf is the set of parameters representing the
marginal densities fpxiq. fpxq is parametrized as

fpxq �
d¹
i�1

RcipF pxiq, tF ppaikquqfpxiq. (9)

We finish this section by giving a simple example of CBN illustrated by figure 4.
This CBN encodes a joint density function over variables X1, X2 and X3. Each
node represents a random variable to which is associated its marginal density
function fi and a local copula density function ci. The set of local copulas and
marginals are respectively given by ΘC � tc1, c2, c3u and Θf � tf1, f2, f3u. The
structure of the CBN encodes the factorization of the joint density f :

fpx1, x2, x3q � Rc1pF px1qqRc2pF px2q, F px1qqRc3pF px3, x2qqf1px1qf2px2qf3px3q

� rfpx1qs rc2pF px2q, F px1qqfpx2qs rc3pF px3q, F px2qqfpx3qs .

The simplification here is due to the fact that the univariate copula densities are
identically equal to 1 over I. The parametrization of marginals and copulas is
not specified and could be any model. For example, the local copulas could be
Gaussian and the marginal densities from an exponential distribution.
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X1

c1pu1q � 1

fpx1q

X2

c2pu2, u1q

fpx2q

X3

c3pu3, u2q

fpx3q

Fig. 4: A CBN with three variables X1, X2 and X3.

4 Learning

CBNs have the same local properties as the (classical) BNs allowing to use sim-
ilar algorithms in order to learn the structure of a CBN. Those algorithms can
be roughly divided into two classes: score based methods and constrained based
methods. For score based method, the learning task is viewed as a model selection
and a scoring function is used to measure how good the model fit the dataset. The
space of all DAG structures being superexponential, this score is often maximized
using local search methods such as hill-climbing, gradient ascent, simulated an-
nealing, TABU list, etc. Constrained-based methods on the other hand look at the
graph as a set of (conditional) independences and use CI tests, such as χ2 in the
discrete case, to obtain information about the underlying structure. We present
one method of each kind in this section and compare them in the next section.

4.1 Score based method (CBIC)

In [9], a score-based method is used to learn the structure of a CBN. The proposed
score is the well-known Bayesian information criterion (BIC) [24]. Its expression
on a CBN structure G is given by :

SBICpG : Dq � `pD : θ̂,Gq � 1

2
logpnq|ΘG |,

where ` is the log-likelihood, θ̂ are the maximum likelihood parameters estima-
tors (MLE) and |ΘG | is the number of free parameters associated with the graph
structure. Using the factorization of the joint density (9), we have :

`pD : Gq �
ņ

m�1

log fpx1rms, . . . , xdrmsq

�
ņ

m�1

log
d¹
i�1

RipF pxirmsq, tF ppaiki
rmsquqfpxirmsq

�
ņ

m�1

ḑ

i�1

logRipF pxirmsq, tF ppaiki
rmsquq �

ņ

m�1

ḑ

i�1

log fpxirmsq

and switching to the rank sample, this reduces to

`pD : Gq �
ņ

m�1

ḑ

i�1

logRi puirms, πi1rms, . . . , πiki
rmsqq
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where ui � F pxiq and πij � F ppaijq. [9] uses several copula models in order to
define the Rci ’s but we only retain the most expressive one which is the Gaussian
copula model parametrized by a full correlation matrix Σ. Finding directly the
MLE for Σ may be difficult in high dimension and this is why a proxy is used.
It relies on the relation Σij � sinpπ2 τijq between Kendall’s tau τij and correlation
matrix Σij that holds for every elliptical distribution [20]. The τij are given by
[10]

τ pXi, Xjq �
2

npn � 1q

n�1̧

m1�1

ņ

m2¡m1

sign
�
pXirm1s �Xirm2sqpXjrm1s �Xjrm2sq

	
.

However, the matrix obtained by this process is not necessarily a correlation ma-
trix, that is a positive semi-definite (PSD) matrix, and regularization techniques
may be needed to obtain one [22]. Finally, the BIC score is maximized using a
TABU list algorithm with random restarts [11].

4.2 Continuous PC algorithm (CPC)

The PC algorithm introduced by [26] and on which relies our method can be
divided in three main steps : skeleton learning, v-structures search and constraint
propagation. Starting from the complete non-oriented graph on X, the skeleton
search consists in removing edges using CI tests between pairs of variables pX,Y q
conditioned on subset Z of common neighbors. If the test finds an independence
X |ù Y | Z, the edge between the two corresponding variables is removed and
the conditioning set is recorded as the separating set between X and Y noted
SepsetpX,Y q. Once this first step is completed, the triplets X � Z � Y such
that X and Y are not neighbors and Z is not in SepsetpX,Y q, are oriented as
X Ñ Z Ð Y which is called a v-structure. Finally, the remaining non-oriented
edges are oriented under the constraint that no new v-structures are added into
the graph unless it implies adding an oriented cycle. The PC algorihtm is reported
on Algorithm (1), for further details, see page 84 of [26].

The CI test, which is based on Hellinger’s distance, is taken from [4,5] and [27].
Taking two random variables X, Y and Z � tZ1, . . . , Zdu a set of random variables;
and with CX,Y,Z a copula and cX,Y,Z its density, the article proposes to test:

X |ù Y |Z ðñ P
�
cX,Y,Z �

cX,Z � cY,Z
cZ



� 1 (10)

The Hellinger’s distance is then used as a measure of the conditional indepen-
dence [4] 3.:

HpX,Y |Zq �

»
r0,1sd�2

�
1 �

d
cX,Zpx, zq � cY,Zpy, zq

cX,Y,Zpx, y, zq � cZpzq

�2

cX,Y,Zpx, y, zqdxdydz. (11)

3 Equations 10, 11 and 12 were only valid for |Z| � 1 in [4,28] due to the omission of cZ in
the denominators. The derivation of the test statistics still follows the step described in [4]
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Algorithm 1: PC algorithm [26]

Input: Data set D
Result: Structure C.
// Initialisation

1 C Ð complete undirected graph on X
2 nÐ 0

// Skeleton search
3 while |AdjacenciespXqzY |   n or n � nmax do
4 foreach X P X do
5 foreach Y P AdjacenciespXq do
6 foreach Z P AdjacenciespXqzY and |Z| � n do
7 if X |ù Y |Z then
8 Delete edge X � Y from G
9 Add Z to SepsetpX,Yq

10 end

11 end

12 end

13 end

14 end
// V-structure search

15 foreach triple of nodes pX,Y, Zq such that X � Z and Z � Y and not X � Y do
16 if Z R SepsetpX,Yq then
17 Orient X � Z � Y as X Ñ Z Ð Y
18 end

19 end
// Constraint propagation

20 foreach edges in G that can be oriented do
21 Rule 1 : if X Ñ Y , Y � Z , X and Z are not adjacent then orient Y � Z as

Y Ñ Z.
22 Rule 2 : if X � Z and X Ñ Y Ñ Z then orient X � Z as X Ñ Z.
23 Rule 3 : if X � Z, X � Y Ñ Z and X �W Ñ Z such that Y and W are not

adjacent, then orien X � Z as X Ñ Z.

24 end

The copula CX,Y,Z is estimated using the empirical Bernstein copula pCX,Y,Z that
has been introduced in section 2. The Hellinger distance is then estimated by [4]:

pH �
1

n

ņ

m�1

�
1 �

dpcX,Zpxrms, zrmsq � pcY,Zpyrms, zrmsqpcX,Y,Zpxrms, yrms, zrmsq � pcZpzrmsq
�2

(12)

where pxrms, yrms, zrmsq is a realization of the variables pX,Y,Zq in the database
of M instances from the true copula C. Based on this estimation of the distance, [4]
proposes a BRT statistic for CI test4 for any dimension of Z. Under the assumption
H0 : X |ù Y |Z, it can be proven that BRT � N p0, 1q.

Our contribution is a PC algorithm using a continuous CI test relying on the
BRT to learn CBNs. This method follows the same idea from the work of [28]
which proposes a learning procedure to factorize a joint distribution and then
learn a mixture of Gaussians for the CPDs. However, in the case of [28], the
structure learning and parameter learning models being different, this can lead to
non-consistent results. In our case, copulas are at the core of the model since they
are used to parametrize the CBN and using a copula based CI test makes perfect
sense.

4 For the expression of BRT, we refer to theorem 1 of [4].
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Fig. 5: Structure of the Alarm network structure used to compare the CPC and
CBIC algorithms.

5 Experimental Results

This section presents the results of the comparison between CPC and CBIC meth-
ods5. The CBIC method used for experiments is an improved version [18] that uses
the decomposition of the BIC score as a sum of mutual information (see page 802
of [17]). However, the maximum likelihood parameters are still computed as de-
scribed above and the score maximization still relies on a TABU list method. The
experiments have been carried out with the C++ libraries aGrUM [12], which allows
to build graphical models, and OpenTURNS [1] which allows to model continuous
multivariate probabilistic distributions.

5.1 Simulation setup

The two algorithms have been tested on data generated either from the Alarm
network structure [3], which is represented on figure 5, or from random Bayesian
networks. While the Alarm network is a discrete BN, only its structure is used here
in order to generate data from it. It is used in order to have a real-world structure
whereas random structures are used for more generality. The random structures
are generated following [14] which proposes to build a MCMC converging to a
uniform distribution over the set of DAGs with a given number of node and arc.

5 While linear Gaussian model is the standard when learning BNs with continuous variables,
it has not been compared to our model since it turns out to be less efficient than the CBIC
method [9].
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Fig. 6: Samples from Gaussian, Student and Dirichlet copula densities. The cor-
relation parameter of the Gaussian copula is set to ρ � 0.8, the Student copula
is taken with ν � 5 degrees of freedom and correlation parameter ρ � 0.8, the
Dirichlet copula parameters are set to α � p1{3, 2{3, 1q.

For a random DAG with d nodes, it will contains 1.2� d arcs in order to have the
same arc density than the Alarm structure. Once a structure is selected (ALARM
or random), the local copulas of the CBN are parametrized using three models:
Gaussian, Student or Dirichlet. These have been chosen in order to build worst-case
scenarios for our algorithm and compare its performances with the CBIC algorithm
when dealing with Gaussian or Student data. In turn, the Dirichlet copula has
been chosen in order to challenge our algorithm because of its restrained support
(see Figure (6)). Moreover, the three models have been parametrized such that it
induces strong correlations between variables. Gaussian and Student copulas are
parameterized such that their correlation matrices have off-diagonal parameters all
set to ρ � 0.8 and the number of degrees of freedom ν is set to 5 for Student copulas.
As for Dirichlet copulas, they are parameterized with α � p 1

d�1 ,
2
d�1 , . . . ,

d
d�1 , 1q.

Figure (6) shows a parametrization for the two dimensional case. The obtained
CBNs are then sampled using the forward sampling procedure described in [17].
In short, the factors Ri associated to each node Xi are sampled using the inverse
transform method and following a topological order over the variables X, that is
when Xi Ñ Xj then Xi   Xj .

5.2 Skeleton performances

The structural performances of the two learning algorithms have been computed
by comparing the skeleton of the learned graph with the skeleton of the reference
structure that has been used to generate the data. Precision (P) is the proportion
of learned edges that are actually in the reference structure while recall (R) is the
proportion of edges that are in the reference structure that have been recovered.
The F-score is then defined as F � 2PR{pP�Rq. If the reference skeleton has been
perfectly retrieved, the value of the F-score is 1. Figure 7 shows the evolution of
the F-score with respect to the sample size for the Alarm structure while Figure 8
shows the evolution of the F-score with respect to the size of the random structures
using a sample of size M � 104. The case of Alarm structure, CBIC converges
faster than CPC but giving enough data, CPC has a higher F-score value, even
for Gaussian data. As for the random structures, the CPC method has also better
results and is even almost always retrieving the skeleton of reference in the case of
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Fig. 7: Evolution of the F-score for CBIC (dotted green line) and CPC (dot-dashed red line)
methods with respect to the size of the dataset. The results are averaged over 5 restarts with
different data sets generated from the ALARM network structure.
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Fig. 8: Evolution of the F-score for CBIC (dotted green line) and CPC (dot-dashed red line)
methods with respect to the dimension of the random graphs. The results are averaged over 2
different random graphs of the same dimension and over 5 different data sets of size M � 10000.
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Fig. 9: Evolution of the SHD for CBIC (dotted green line) and CPC (dot-dashed red line)
methods with respect to the size of the dataset. The results are averaged over 5 restarts with
different data sets generated from ALARM network structure.

Dirichlet data. It can also be observed that CPC is not sensitive to the model that
generated the data, illustrating the strength of a non-parametric method. Finally,
looking at the standard deviation, CPC seems to be more stable than CBIC.

5.3 CPDAG performances

In order to score the oriented structure, structural hamming distance [6] has
been used. This metric works on the completed partially directed acyclic graphs
(CPDAG) that represents the Markov class equivalences of the DAG [17] and
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Fig. 10: Evolution of the SHD for CBIC (dotted green line) and CPC (dot-dashed red line)
methods with respect to the dimension of the random graphs. The results are averaged over 2
different random graphs of the same dimension and over 5 different data sets of size M � 10000.

counts the numbers of elementary operations that are needed to obtain the refer-
ence structure from the estimated one. Those transformations are edge insertions,
deletions and flipping. Figure 9 shows the evolution of the F-score with respect
to the sample size for the Alarm structure while Figure 10 shows the evolution
of the F-score with respect to the size of the random structures using a sample
of size M � 104. The same observations can be made from the SHD evolution
than from the F-score evolution. Indeed, for the Alarm structure, CBIC converges
faster than CPC but CPC seems to converge to a lower SHD value. However, this
time CPC needs a lot more data to do so. Moving to random structures, CPC
has always better or equivalent performances than CBIC. In particular, CPC has
better results for Dirichlet data and its results are, once again, independent from
the generative model. Finally, CBIC is less stable than CPC looking at standard
deviation but also on average.

5.4 Time complexity

The learning time with respect to the number of nodes in random structures has
been used to compare the time complexities of the two methods. The results are
obtained using samples of size M � 104 and are shown on figure 11.
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Fig. 11: Learning time in seconds for CBIC (dotted green line) and CPC (dot-dashed red
line) methods with respect to the dimension of the random graphs. The results are averaged
over 2 different random graphs of the same dimension and over 5 different data sets of size
M � 104.
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While the CBIC method is faster for small structures, it is the CPC that is
faster for large ones. However, the scale being logarithmic it has to be noted that
the difference in learning time is in fact almost negligible in the case of small
structures unlike for large ones where the difference can be hours.

6 Conclusion and Future Work

CBN is a promising model for dealing with continuous data in the BN context
and for dealing with high-dimensional copula functions. One of the strength of
the model is that it allows to use similar techniques used to learn the structure of
classical BNs for the structure of a CBN. In this regard, [9] proposed a paramet-
ric method using the BIC score. In turn, we proposed a constraint based method
which uses a PC algorithm and a non-parametric CI test, thus making no assump-
tions on the model that generated the data. The experimental part illustrated this
last property since, unlike CBIC method, CPC can deal with data far from the
Gaussian model such as Dirichlet data. In addition, the time complexity of CBIC
growing fast, it makes it impractical to learn high dimensional structures (¡ 50
nodes).

Concerning future works, we plan to test our method on application cases
in order to complete the results presented here. However, in real world data sets,
variables are often both discrete and continuous. For this reason, it would be inter-
esting to extend CBNs and the learning methods to mixed data. [16] introduced a
hybrid CBN model which uses transformations in order to obtain continuous vari-
ables from discrete ones. Then, it could be easy to extend the learning methods
presented here.
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