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Large Deviations Asymptotics of Rectangular Spherical Integral

In this article we study the Dyson Bessel process, which describes the evolution of singular values of rectangular matrix Brownian motions, and prove a large deviation principle for its empirical particle density. We then use it to obtain the asymptotics of the so-called rectangular spherical integrals as m, n go to infinity while m/n converges.

Introduction

In this article we shall study the asymptotics of the so-called rectangular spherical integrals, also called Berezin-Karpelevich type integrals in the literature. This type of integrals arises when one studies rectangular matrices and is the natural counterpart of the well known Harish-Chandra -Itzykson-Zuber (HCIZ) integral. The interest in spherical integrals comes from different fields. Harish-Chandra was motivated by Fourier analysis in semi-simple Lie algebras. They appear in physics as the density in matrix models such as the Ising model [START_REF] Chadha | A method of integration over matrix variables ii[END_REF][START_REF] Eynard | Counting surfaces[END_REF]44] or more generally matrix models with an external field [START_REF] Brézin | Random matrix theory with an external source[END_REF], including the famous Kontsevich matrix model [START_REF] Kontsevich | Vassiliev's knot invariants[END_REF]. Their uses in random matrix theory appeared more recently. First it was shown that spherical integral with a rank one external field gives asymptotically the famous R-transform defined by Voiculescu in free probability [START_REF] Guionnet | A Fourier view on the R-transform and related asymptotics of spherical integrals[END_REF] as an analogue of Fourier transform. This approach was generalized to the rectangular-free convolution by using rectangular spherical integrals [START_REF] Georges | Rectangular r-transform as the limit of rectangular spherical integrals[END_REF] or to the multiplicative free convolution and the S-transform [START_REF] Bouchaud | Financial applications of random matrix theory: a short review[END_REF][START_REF] Mergny | Asymptotic behavior of the multiplicative counterpart of the Harish-Chandra integral and the S-transform[END_REF].

Knowing the asymptotics of rank one spherical integrals allowed as well to investigate the large deviations for the extreme eigenvalues of random matrices. This approach was introduced in [START_REF] Guionnet | Large deviations for the largest eigenvalue of Rademacher matrices[END_REF] where it was shown that the probability that the largest eigenvalue of a Wigner matrix takes an unexpected value is the same when the entries are Rademacher or Gaussian. This universality phenomenon was shown to hold for random matrices with i.i.d. entries whose Laplace transform is bounded by the Laplace transform of a Gaussian variable with the same covariance. For more general sub-Gaussian entries, a transition appears in the rate function between large deviations towards a very large value with a heavy tail type rate function, and deviations close to the bulk which are governed by the Gaussian rate function. Such considerations were extended to unitary invariant ensembles [START_REF] Guionnet | Large deviations for the largest eigenvalue of the sum of two random matrices[END_REF], to the joint distribution of the largest eigenvalue and its eigenvector [START_REF] Biroli | Large deviations for the largest eigenvalues and eigenvectors of spiked Gaussian random matrices[END_REF], to sum of matrices, to finitely many extreme eigenvalues [START_REF] Guionnet | Asymptotics of k dimensional spherical integrals and applications[END_REF]. Indeed, the asymptotics of spherical integral could be extended to finite rank external fields [START_REF] Guionnet | Asymptotics of k dimensional spherical integrals and applications[END_REF]. For small enough matrices, the same asymptotics were shown to extend to the case where the rank goes to infinity more slowly than the dimension [START_REF] Collins | New scaling of Itzykson-Zuber integrals[END_REF] and to full rank matrices [START_REF] Collins | Asymptotics of unitary and orthogonal matrix integrals[END_REF]. However, the limit differs when the rank of both matrices are of the same order and the matrices do not have small norms. Such a limit can as well be used to prove large deviation principles for the empirical measure of the eigenvalues of random matrices [START_REF] Belinschi | Large deviation principles via spherical integrals[END_REF] and more generally study the asymptotics of matrix models with an external field [START_REF] Brézin | Random matrix theory with an external source[END_REF][START_REF] Guionnet | First order asymptotics of matrix integrals; a rigorous approach towards the understanding of matrix models[END_REF].

The formula for the asymptotics of HCIZ integrals was foreseen by Matytsin [START_REF] Matytsin | On the large-N limit of the Itzykson-Zuber integral[END_REF] and then proven rigorously in [START_REF] Guionnet | First order asymptotics of matrix integrals; a rigorous approach towards the understanding of matrix models[END_REF][START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF][START_REF] Guionnet | Addendum to: "Large deviations asymptotics for spherical integrals[END_REF]. Matytsin used the description of Spherical integrals as invariant eigenfunctions of the Laplacian. The approach of [START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF] is kind of dual and based on a representation of spherical integrals as the density of a Dyson Brownian motion conditioned at time one, a representation which allows to use large deviations techniques and martingales. In this paper, we follow the same route for the rectangular case but prove a more general large deviation principle for conditioned Dyson Brownian motions. In fact, the result in [START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF] relies on the matrix model, and only concerns the case β = 1 or 2 whereas we can deal in this paper with all cases β 1. The extension of [START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF] to the rectangular case is a natural step, which however posed significant difficulties for the proof of the lower bound if one uses the methods of [START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF], due to additional singularity of the drifts. We should also mention the heuristics proposed in this setting in [START_REF] Forrester | Hydrodynamical spectral evolution for random matrices[END_REF] following Matystin's arguments. One key idea of this paper is to improve the large deviations lower bound by obtaining better criteria for the uniqueness of solutions to McKean-Vlasov equations with smooth fields inspired from [START_REF] Li | On the law of large numbers for the empirical measure process of generalized Dyson Brownian motion[END_REF], rather than the weaker approach developed in [START_REF] Cabanal-Duvillard | Discussions around non-commutative entropies[END_REF]. Another novelty in this paper is a quantitative estimate for the convergence to Dyson Brownian motion with very general potential by a coupling argument, see Proposition 3.5. Under more restricted assumptions, i.e. the limiting profile has square root behavior around the edge, such quantitative estimates for the convergence has been obtained in [?, ?, ?] by using the characteristic method. The quantitative estimate for the convergence allows us to efficiently control the locations of each particles and extend our result to Dyson Bessel processes which arises when one considers rectangular matrices and hence derive the limits of rectangular spherical integrals. We now state more precisely our main results.

The rectangular spherical integral is given by

In,m(An, Bn) = e βnRe[Tr(A * n U BnV * )] dU dV, (1.1) {e:UAVB} {e:UAVB}

where if β = 1, U ∈ O(n), V ∈ O(m) follow the Haar distribution over the orthogonal group, and An ∈ R n×m , Bn ∈ R n×m , whereas for β = 2, U ∈ U(n), V ∈ U(m) follow the Haar distribution over the unitary group, An ∈ C n×m , Bn ∈ C n×m for β = 2. We call such integrals rectangular spherical integrals and shall study their asymptotic behavior when m and n go to infinity so that the ratio m/n converges towards some 1 + α ∈ [1, ∞). This type of spherical integral arises when one studies rectangular matrices and is the natural counterpart of the well known Harish-Chandra -Itzykson-Zuber (HCIZ) integral defined when β = 2 and for two self-adjoint matrices An, Bn ∈ C n×n by

In(An, Bn) = e n Tr(AnU BnU * ) dU ,

where U follows the Haar distribution over the unitary group. This integral was shown by Harish-Chandra [START_REF] Harish-Chandra | Differential operators on a semisimple Lie algebra[END_REF] and then Itzykson and Zuber [START_REF] Itzykson | The planar approximation[END_REF] to be equal to a determinant: where U, V ∈ U(n) are n × n unitary matrices following Haar distribution, An, Bn, Cn, Dn are deterministic n × n matrices, and ν is a non-negative integer. They showed that the generalization of the above integral to the case of unequal dimensions of U, V leads to an integral which can be nonzero only if ν = 0, and predicted the following formula: for m n e τ Tr(A * n U BnV * +V D * n U * Cn)/2 dU dV = τ n(m-1) n i=1 (m -i)!(n -i)! ∆(x 2 )∆(y 2 ) n i=1 (xiyi) m-n det[Im-n(2τ xiyj)] 1 i,j n , (1.4) {e:integral1} {e:integral1}

In
where U ∈ U(n) is an n × n unitary matrix, V ∈ U (m) is an m × m unitary matrix, both follow the Haar distribution, Bn, Cn are deterministic n × m matrices, and An, Dn are deterministic m × n rectangular matrices, Im-n(x) is the Bessel function

Iκ(2y) = y κ ∞ k=0 y 2k k!(k + κ)! ,
and

x 2 = (x 2 1 , x 2 2 , • • • , x 2 n ), y 2 = (y 2 1 , y 2 2 , • • • , y 2 
n ) are eigenvalues of the matrices AnC * n , BnD * n . This formula was proven in [START_REF] Ghaderipoor | Generalization of some integrals over unitary matrices by character expansion of groups[END_REF]. We get the rectangular spherical integral (1.1) from (1.4) by taking An = Cn and Bn = Dn. Such formulas can be obtained by using the character expansion method. Another approach is based on heat flows [START_REF] Brézin | Random matrix theory with an external source[END_REF][START_REF] Mcswiggen | A new proof of Harish-Chandra's integral formula[END_REF]. Indeed, one can notice that Fourier functions X → e i Tr(AX) are the eigenfunctions of the Laplacian for any matrix A. Looking for eigenfunctions depending only on the eigenvalues of X one gets the spherical integral In(An, Xn), which in turns has to be an eigenfunction of the Laplace operator restricted to functions invariant under conjugation, namely the Dyson Laplace operator L = -∆(X) -1 i δ 2

x i ∆(X). Note however that (1.2) and (1.4) are not useful to derive asymptotics as they are given in terms of a signed sum of diverging terms. 

(δs i + δ-s i ) .
We denote by Σ the non commutative entropy

Σ(ν) = log |x -y|dν(x)dν(y) .
Then, we prove the following asymptotics for the rectangular spherical integrals:

{main1} Theorem 1.1. Let An, Bn ∈ R n×m and U ∈ O(n), V ∈ O(m)
following Haar distribution over orthogonal group for β = 1; An, Bn ∈ C n×m and U ∈ U(n), V ∈ U(m) following Haar distribution over unitary group, for β = 2, where m n and m/n → 1 + α, α 0. We assume that the symmetrized empirical singular values νn A and νn B of An and Bn converge weakly to νA and νB respectively. We moreover assume that for C = A or B, we have sup n νn C (x 2 ) < ∞, Σ(νC ) > -∞ and, if α = 0, ln |x|dνC > -∞. Then, the following limit of the rectangular spherical integral exists

lim n 1 n 2 log In,m(An, Bn) = β 2 I α (νA, μB), In,m(An, Bn) = e βnRe[Tr(A * n U BnV * )] dU dV.
It is given explicitly by This theorem will be proved in Section 5.1. We show in Proposition 5.1 that in fact the non commutative law of (An, U BnV * ) converges when(U, V ) follows the Gibbs measure with free energy In,m(An, Bn).

I α (νA, νB) = - inf { ρt } 0 t 1 1 0 u 2 s ρsdxds + π 2 3 1 0 ρ3 s dxds + α 2 4 ρs(x) x 2 dxds + (νA(x 2 -α log |x|) + νB(x 2 -α log |x|)) -(Σ(νA) + Σ(νB)) + const, (1.5 
As in [START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF], the main point is to derive a large deviation principle for the associated processes, namely Bessel Dyson processes. Indeed, let Gn be an n × m rectangular matrix with independent real (β = 1) or complex (β = 2) Gaussian entries and set

Xn = An + 1 √ n Gn.
then, we claim that the large deviation principle for the symmetrized empirical singular values of Xn gives the asymptotics of spherical integrals. In fact, denote the singular value decomposition of Xn as Xn = U BnV * . Then the joint law of (Bn, U, V ) is given by

1 Zn,m i b β(m-n+1)-1 i i<j |b 2 i -b 2 j | β e -βn 2 ( i b 2 i + a 2 i )+βnRe[Tr(A * n U BnV * )] dU dV dBn.
(1.7) {e:lawXX0} {e:lawXX0}

Assume that we have proven a large deviation principle for νn X with a good rate function I νA so that for any symmetric probability measure νB

lim n→∞ 1 n 2 log P(ν n B ∈ B(νB, δ)) = -I νA (νB) + o δ(1) (1.8) {conv10} {conv10}
where o δ (1) goes to zero as δ goes to zero. By integrating (1.7) over the ball B(νB, δ), we have

νn B ∈B(ν B ,δ) 1 Zn,m i b β(m-n+1)-1 i i<j |b 2 i -b 2 j | β e -βn 2 ( i b 2 i + a 2 i )+βnRe[Tr(A * U BV * )] dU dV dBn = 1 Zn,m e βn 2 2 (2α log |x|dν B +2Σ(ν B )-(ν A (x 2 )+ν B (x 2 ))+o δ (1)) νn B ∈B(ν B ,δ)
e βnRe[Tr(A * U BV * )] dU dV dBn.

By rearranging, we obtain the following asymptotics of the spherical integral (following the standard arguments to prove large deviations for Beta-ensembles [START_REF] Ben Arous | Large deviations for Wigner's law and Voiculescu's non-commutative entropy[END_REF]):

lim n→∞ 1 n 2 log In,m(An, Bn) = -I νA (νB) - β 2 2α log xdνB(x) + 2Σ(νB) -(νA(x 2 ) + νB(x 2 
)) + const. 

αn = m -n n + (1 - 1 β ) 1 n .
We denote the empirical particle density of (1.9) and its symmetrized version, which is also the symmetrized empirical singular values of H(t), as

ν n t = 1 n n i=1 δ s i (t) , νn t = 1 2n n i=1 (δ s i (t) + δ -s i (t) ),
We prove a large deviation principle for {ν n t } 0 t 1 , in Section 4. The rate function is given by

S α μ0 ({νt} 0 t 1 ) = sup f ∈C 2,1 b
S α ({νt, ft} 0 t 1 ), (1.10) {e:ratt} {e:ratt} where

S α ({νt, ft} 0 t 1 ) = ν1(f1) -μ0(f0) - 1 0 ∂sfs(x)dνs(x)ds - 1 2 1 0 f s (x) -f s (y) x -y dνs(x)dνs(y)ds - α 2 1 0 f s (x) x dνs(x)ds - 1 8β 1 0 (f s (x) -f s (-x)) 2 d, νs(x)ds.
If ν0 = μ0, S α μ0 ({νt} 0 t 1 ) = ∞. We then prove the following result {main2} Theorem 1.2. Fix a symmetric probability measure μ0 and an initial condition with symmetrized empirical measure νn 0 with uniformly bounded second moment converging weakly to μ0. Then, if αn converges towards α ∈ [0, ∞) when n goes to infinity so that either αn 1/βn or αn ≡ 0, the distribution of the empirical particle density {ν n t } 0 t 1 of the Dyson Bessel process (4.3) satisfies a large deviations principle in the scale n2 and with good rate function S α ν0 . In particular, for any continuous symmetric measure-valued process {νt} 0 t 1 , we have:

lim δ→0 lim inf n→∞ 1 n 2 log P({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ)) = lim δ→0 lim sup n→∞ 1 n 2 log P({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ)) = -S α μ0 ({νt} 0 t 1 ).
(1.11) {e:ulbb} {e:ulbb} Remark 1.3. In Theorem 1.2, we assumed that either αn 1/βn or αn ≡ 0. This assumption is always true for β = 1, 2 and m n. If this condition is violated, i.e. 0 < αn < 1/βn, the particles sn(t) and s-n(t) in (1.9) may collapse at 0. In this case, to make sense of (1.9), we need to specify the boundary condition when they collapse at 0. We will not discuss these conditions in this paper.

As a consequence, we deduce from the contraction principle [START_REF] Dembo | Large deviation techniques and applications[END_REF] that (1.12) holds and more precisely Corollary 1.4. For any symmetric probability measures νn A , νn B with uniformly bounded second moment converging weakly towards νA, νB, under the measure (1.7) we have

lim n→∞ 1 n 2 log P(ν n B ∈ B(νB, δ)) = -I νA (νB) + o δ(1) , (1.12 
) {conv1} {conv1}

where

I νA (νB) = inf ν1 =ν B S α νA ({νt} 0 t 1 ) .
Theorem 1.1 is deduced from Theorem 1.2 in section 5.1. The main difficulty to prove Theorem 1.2 lies in the singularity of the potential at the origin and the repulsion between the particles. To prove it, we revisit in section 3 the large deviation principle for the empirical measure of the Dyson Brownian motion of [START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF] and extend it to to all values of β greater or equal to one. Acknowledgements The research of J.H. is supported by the Simons Foundation as a Junior Fellow at the Simons Society of Fellows, and NSF grant DMS-2054835. The work of A. Guionnet is partly supported by ERC Project LDRAM : ERC-2019-ADG Project 884584. We thank O. Zeitouni for many inspiring discussions about spherical integrals, including preliminary ideas about the questions addressed in this article. Notations O(n) denotes the orthogonal group in dimension n and U(n) the unitary group in dimension n. We denote by d(•, •) the 2-Wasserstein distance defined on the space P2(R) of probability measures with finite second moment by

d(µ, ν) = inf |x -y| 2 dπ(x, y) 1/2
, where the infimum is taken over distribution on R 2 with marginal distribution µ and ν.

C 2,1 b (R × [0, 1]
) is the space of functions on R × [0, 1] with bounded first two derivatives in x and bounded derivative in t. C([0, 1], M1(R)) is the space of continuous (with respect to weak topology) measure valued process.

Decomposition

The rectangular spherical integral (1.1) is related to real (β = 1) and complex (β = 2) rectangular random matrices with nonzero mean. We consider an n × m rectangular random matrices Xn with nonzero mean, 

Xn = An + 1 √ n Gn, ( 2 
∝ i b β(m-n+1)-1 i i<j |b 2 i -b 2 j | β e -βN 2 ( i b 2 i + a 2 i )+βnRe[Tr(A * n U BnV * )] dU dV dBn.
(2.2) {e:lawU} {e:lawU} Therefore, conditioning on the singular values of Xn, i.e. the matrix Bn, the joint law of singular vectors of Xn, i.e. U, V is given by the integrand of the rectangular spherical integral (1.1)

e βN Re[Tr(A * n U BnV * )] Z β m,n dU dV. (2.
3) {e:lawU2} {e:lawU2}

We study the random matrices Xn as in (2.1) via a dynamical approach. By constructing a matrix valued real/complex Brownian motions starting from An, its value at time t = 1 has the same law as Xn.

Theorem 2.1 (Dyson Bessel Process). Take β 1. Fix m n, and let H(t) be a n × m matrix with entries given by independent real/complex Brownian motions starting from An: 

H(t) = An + 1 √ n G(t), (2.4 
j:j =i 1 si(t) -sj(t) + 1(t τa)   1 2n j:j =i 1 si(t) + sj(t) + αn 2si(t)   dt,
for 1 i n. Then the two laws P a and Q are related by a change of measure

P a = e L 1∧τa -1 2 L,L 1∧τa Q,
where the exponent is given by

Lt∧τ a - 1 2 L, L t∧τa = θ(x1(u), • • • , xn(u))| t∧τa 0 - βn 2 t∧τa 0 i α 2 n 4x 2 i (u) du - β 2 -1 t∧τa 0 1 4n k = du (x k (u) + x (u)) 2 + t∧τa 0 αn 4 k du x 2 k (u)
.

Remark 2.3. We remark that P a depends on a > 0. For any event Ω of singular value DBM, we can can lower bound its probability in the following way

P(Ω) P(Ω ∩ {sn a}) = P a (Ω ∩ {sn a}).
Proof of Proposition 2.2. The first and second derivatives of θ are given by

∂s i θ(s1, s2, • • • , sn) = β 2   j:j =i 1 si + sj + αnn si   , ∂ 2 s i θ(s1, s2, • • • , sn) = - β 2   j:j =i 1 (si + sj) 2 + αnn s 2 i   ,
(2.11) {e:dtheta} {e:dtheta}

for 1 i n. Since θ is C ∞ on sets where it is bounded below, Itô's lemma gives that if x(t) = (x1(t), . . . , xn(t)), dθ(x(t)) = dLt + 1 4n i =j ∂x i θ(x(t)) -∂x j θ(x(t)) xi(t) -xj(t) dt + i ∂ 2 x i θ(x(t)) 2βn dt, (2.12 
) {e:dL} {e:dL} where the martingale term Lt is

dLt = i ∂x i θ(x(t)) dWi(t) √ βn = i   √ β 2 √ n j:j =i 1 xi(t) + xj(t) + βn αn 2xi(t)   dWi(t),
Its quadratic variance is given by

L, L t = t 0 i   √ β 2 √ n j:j =i 1 xi(u) + xj(u) + βn αn 2xi(u)   2 du.
For the second term on the righthand side of (2.12), using (2.11) we have

1 4n i =j ∂x i θ(x(t)) -∂x j θ(x(t)) xi -xj = - β 8n i =j =k 1 (xi + x k )(xj + x k ) - βαn 8 i =j 1 xixj = - β 8n i   j:j =i 1 (xi + xj)   2 + β 8n i =j 1 (xi + xj) 2 - βαn 8 i 1 xi 2 + βαn 8 i 1 x 2 i .
(2.13) {e:term1} {e:term1}

For the last term on the righthand side of (2.12), using (2.11)we have

i ∂ 2 x i θ(x(t)) 2βn = - 1 4n i =j 1 (xi + xj) 2 - αn 4 i 1 x 2 i .
(2.14) {e:term2} {e:term2}

By plugging (2.13) and (2.14) back into (2.12), we get

dθ(x(t)) = dLt - i β 8n   j:j =i 1 (xi(t) + xj(t))   2 - βαn 8 i 1 xi(t) 2 + β 2 -1   1 4n i =j 1 (xi(t) + xj(t)) 2 + α 4 i 1 x 2 i (t)   .
(2.15) {e:df} {e:df}

We recall the stopping time τa from (2.9), then

L, L t∧τa = t∧τa 0 i   √ β 2 √ n j:j =i 1 xi(u) + xj(u) + βn αn 2xi(u)   2 du t∧τa 0 i   √ β 2 √ n j:j =i 1 2a + βn αn 2a   2 du αn 2 + 1 4 2 βn 2 (t ∧ τa) a 2 ,
which is uniformly bounded. Therefore, Novikov's theorem [2, H.10] implies the following is an exponential martingale

e L t∧τa -1 2 L,L t∧τa .
Using (2.15), more explicitly, we can rewrite

Lt∧τ a - 1 2 L, L t∧τa = θ(x1(u), • • • , xn(u)| t∧τa 0 - βn 2 t∧τa 0 i α 2 n 4x 2 i (u) du - β 2 -1 t∧τa 1 4n k = du (x k (u) + x (u)) 2 + t∧τa αn 4 k du x 2 k (u)
.

We recall that Q is the law of DBM (2.10), and denote the rescaled Brownian motions M ,

Mi(t) = xi(t) -xi(0) - t 0 1 2n j:j =i du xi(u) -xj(u) = t 0 dWi(u) √ βn = Wi(t) √ βn , then Girsanov's theorem [2, Theorem H.11] implies that Mi(t) -Mi, L t∧τa = xi(t) -xi(0) - t 0 1 2n j:j =i du xi(u) -xj(u) - t∧τa 0   1 2n j:j =i 1 xi(u) + xj(u) + αn 2xi(u)   du,
(2.16) {e:newM} {e:newM} are independent Brownian motions under the measure P a :

P a = e L 1∧τa -1 2 L,L 1∧τa Q,
Therefore, P a is the unique solution of the stochastic differential system

dsi(t) = dWi(t) √ βn + 1 2n j:j =i 1 si(t) -sj(t) + 1(t τa)   1 2n j:j =i 1 si(t) + sj(t) + αn 2si(t)   dt.
where W1, W2, • • • , Wn are independent Brownian motions.

3 Large deviations for the Dyson Brownian motion {sec-DBM} Thanks to Proposition 2.2, the law of singular value Dyson Brownian motion can be rewritten as a change of measure from the Dyson Brownian motion. The large deviations principle for Dyson Brownian motion has been proven in [START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF][START_REF] Guionnet | Addendum to: large deviations asymptotics for spherical integrals[END_REF] when β = 1 or 2 and the initial condition has finite 5 + ε moment for some ε > 0. In this section we give a shorter proof for the large deviations principle valid for any β 1 and under the assumption that the initial condition has finite second moment only. The main technical improvement comes from Propositions 3.3 and 3.4 which allow to prove the lower bound in greater generality, thanks to better approximation of our processes by processes with smooth drifts We denote the empirical particle density of the Dyson Brownian motion (2.10) as

ν n t = 1 n n i=1 δ x i (t) .
(3.1) {e:empd} {e:empd} {a:mu0} Assumption 1. We assume the probability density µ0 has bounded second moment. Moreover, as n goes to infinite, ν n 0 converges to µ0 in 2-Wasserstein distance, i.e. d(µ0, ν n 0 ) = on(1). Given a continuous measure process {νt} 0 t 1 with ν0 satisfying Assumption 1, we define the following dynamical entropy: S({νt, ft} 0 t 1 ).

S({νt, ft} 0 t 1 ) = ν1(f1) -ν0(f0) - 1 0 ∂tft(x)dνt(x)dt - 1 2 1 0 f t (x) -f t (y) x -y dνt(x)dνt(y)dt - 1 2β 1 0 (f t (x)) 2 dνtdt , (3.2 
(3.3) {e:rateSmu} {e:rateSmu} If ν0 = µ0, we set Sµ 0 ({νt} 0 t 1 ) = ∞. In this section we give a new proof of the following large deviations principle for the empirical particle density of the Dyson Brownian motion (3.1) {t:DBMLDP} Theorem 3.1. Fix a probability density µ0 and an initial condition with empirical distribution ν n 0 satisfying Assumption 1. Then, the empirical particle density {ν n t } 0 t 1 of the Dyson Brownian motion (3.1) satisfies a large deviations principle in the scale n 2 and with good rate function Sµ 0 ({νt} 0 t 1 ). In particular for any continuous measure process {νt} 0 t 1 , it holds

lim δ→0 lim sup n→∞ 1 n 2 log P({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ)) = lim δ→0 lim inf n→∞ 1 n 2 log P({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ)) = -Sµ 0 ({νt} 0 t 1 ) .
For any measure valued proces {νt} 0 t 1 such that Sµ 0 ({νt} 0 t 1 ) < ∞, by Riesz representation theorem, there exists a measurable function ∂xkt ∈ L 2 (dνt(x)dt), such that for any

f ∈ C 2,1 b ν1(f1) -ν0(f0) -∂tft(x)dνt(x)dt - 1 2 1 0 f t (x)H(νt)dνt(x)dt = 1 0 f t (x)∂xkt(x)dνtdt. (3.4) {e:f1f0} {e:f1f0}
Here H(ν) denotes the Hilbert transform of ν. Then we can rewrite the rate function Sµ 0 ({νt}

0 t 1 ) in (3.2) as Sµ 0 ({νt} 0 t 1 ) = sup f ∈C 2,1 b 1 0 f t (x)∂xkt(x)dνtdt - 1 2β 1 0 (f t (x)) 2 dνtdt = β 2 1 0 (∂xkt(x)) 2 dνtdt, (3.5 

) {e:minimizereq} {e:minimizereq}

where the equality is achieved when f t (x) = β∂xkt(x).

We collect some properties of the rate function (3.2), which were essentially proven in [START_REF] Guionnet | First order asymptotics of matrix integrals; a rigorous approach towards the understanding of matrix models[END_REF][START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF][START_REF] Guionnet | Addendum to: large deviations asymptotics for spherical integrals[END_REF]. {p:rate} Proposition 3.2. Fix a probability measure µ0 with finite second moment and bounded free entropy, i.e. Σ(µ0) > -∞. Then, Sµ 0 is a good rate function on C([0, 1], M1(R)). If Sµ 0 ({νt} 0 t 1 ) < 0, then we have (i) There exists a constant C depending only on µ0 and Sµ 0 ({νt} 0 t 1 ), such that the L2 norms of νt are uniformly bounded, (iii) We denote the velocity field ut(x) = H(νt)(x)/2 + ∂xkt(x), then it satisfies the conservation of mass equation ∂tρt + ∂x(ρtut) = 0, 0 t 1, (3.7) {e:masseq} {e:masseq} in the sense of distribution. We can rewrite the dynamical entropy (3.2) as

x 2 dνt(x) C. ( 3 
Sµ 0 ({νt} 0 t 1 ) = β 2 1 0 (u 2 t + H(νt) 2 /4)ρt(x)dxdt - 1 2 (Σ(ν1) -Σ(ν0)) = β 2 1 0 (u 2 t + π 2 12 ρt(x) 2 )ρt(x)dxdt - 1 2 (Σ(ν1) -Σ(ν0)) . (3.8 

) {Sent} {Sent}

Proof. It is proven in [START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF]Theorem 1.4] that Sµ 0 ({νt} 0 t 1 ) is a good rate function. If Sµ 0 ({νt} 0 t 1 ) < ∞, by definition we have µ0 = ν0. For Item (i), we take a test function fε(x) = x 2 /(1 + εx 2 ) with small ε > 0. Then it is easy to see that f ε (x) = 2x/(1 + εx 2 ) 2 and |f ε (x)| 10. By the definition of the dynamical free entropy (3.2), for any 0 < t 1, we have

νt(fε) -ν0(fε) - 1 4 t 0 f ε (x) -f ε (y) y -x dνs(y)dνs(x)ds - 1 2β t 0 (f ε (x)) 2 dνsds
Sµ 0 ({νs} 0 s 1 ) < 0.

(3.9) {e:bbd} {e:bbd} By our assumption that ν0 = µ0 has finite second moment, it holds that sup ε ν0(fε) < ∞. Using |f ε (x)| 10, we find for t 1,

1 4 t 0 f ε (x) -f ε (y) y -x dνs(y)dνs(x)ds 5/2.
Therefore, there exists a constant C depending only on µ0 and Sµ 0 ({νt} 0 t 1 ), such that

νt(fε) = x 2 1 + εx 2 dνt C + 1 2β t 0 (f ε (x)) 2 dνsds C + 2 β t 0 x 2 1 + εx 2 dνsds = C + 2 β t 0 νs(fε)ds.
Grönwall's inequality then implies that for all t 1 νt(fε) e and Σ(µ0), Σ(µ1) are finite, then Item (ii) and (iii) hold. This can be extended to the case where µ0 has only a finite second moment following the arguments of the proof of [15, Lemma 5.9]. We briefly recall the main steps of the proof. First recall that free convolution reduces the dynamical entropy (see [START_REF] Cabanal-Duvillard | Discussions around non-commutative entropies[END_REF]) so that if σε denotes the semi-circle law with covariance ε S µ 0 σε ({νt σε} 0 t 1 ) Sµ 0 ({νt} 0 t 1 ).

But on the other hand, H(νt σε) is uniformly bounded by 1/ √ ε. Therefore if we denote by u ε the velocity field of ν ε t = νt σε,

1 0 (u ε t ) 2 dν ε t dt 2 1 0 (u ε t -Hν ε t ) 2 dν ε t dt + 2 1 0 (Hν ε t ) 2 dν ε t dt 4 β S µ 0 σε ({ν ε t } 0 t 1 ) + 2 ε < ∞ .
Hence, we can write

S µ 0 σε ({ν ε t } 0 t 1 ) = β 2 1 0 (u ε t ) 2 dν ε t dt + β 2 1 0 (Hν ε t ) 2 dν ε t dt -β 1 0 Hν ε t u ε t dν ε t dt . (3.

11) {lk} {lk}

For the second term we used the well known formula (recall that dν ε t dx)

1 0 (Hν ε t ) 2 dν ε t = π 2 3 1 0 ( dν ε t dx ) 3 dx .
Finally for the last term of (3.11), we observe following [15, Lemma 5.9] that the continuity of t → νt implies that t → Hν ε t is continuous (thanks to the explicit formulas for the Hilbert transform of measures freely convoluted with the semi-circle laws given by Biane [START_REF] Biane | On the free convolution with a semi-circular distribution[END_REF]). Since it is bounded and u ε is in L 2 , we see that we can approximate the last term by Riemann sum. Then, recall that by definition we have

t u ε s dν ε s dx ds = - x dν ε t , to conclude that 1 0 Hν ε t u ε t dν ε t dt = 1 2 1 0 ∂tΣ(ν ε t )dt = 1 2 (Σ(ν1 σε) -Σ(µ0 σε)) .
Hence, (3.8) holds for {ν ε t } 0 t 1 . This implies that Σ(ν1 σε) is bounded since it is bounded from above as ν1 σε has bounded second moment and also from below since

β 2 1 0 (u ε t ) 2 dν ε t dt+ β 2 1 0 (Hν ε t ) 2 dν ε t dt- β 2 (Σ(ν1 σε)-Σ(ν0)) S µ 0 σε ({ν ε t } 0 t 1 ) Sµ 0 ({νt} 0 t 1 ) .
In fact, because we could have done the same reasoning on the time interval [0, t], we also see that for all s 1

Sµ 0 ({νt} 0 t 1 ) β 2 s 0 (u ε t ) 2 dν ε t dt + β 2 s 0 (Hν ε t ) 2 dν ε t dt - β 2 (Σ(νs σε) -Σ(ν0)),
which implies that Σ(νs σε) is uniformly bounded. We can finally let ε going to zero to conclude. As a consequence of (3.6), we deduce that νt has finite free entropy, i.e. Σ(νt) < +∞. We refer the reader to [START_REF] Cabanal-Duvillard | Discussions around non-commutative entropies[END_REF] for details.

Large deviations upper bound

In this section, we prove the large deviations upper bound. We recall that the exponential tightness was already proven in this setting in the proof of [START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF]Theorem 2.4]: for the sake of completeness we will recall this proof but in the new setting of the Bessel Dyson processes, see section 4. We next prove the large deviations upper bound of Theorem 

d i ft(xi(t)) = i f t (xi(t))dxi(t) + i f t (xi(t)) 2βn + ∂tft(xi(t)) dt = i   f t (xi(t)) 2βn + ∂tft(xi(t)) + f t (xi(t)) 2n j:j =i 1 xi(t) -xj(t)   dt + i f t (xi(t)) dWi(t) √ βn = dL f t + 1 4n i =j f t (xi(t)) -f t (xj(t)) xi(t) -xj(t) dt + i f t (xi(t)) 2βn dt + i ∂tft(xi(t))dt, (3.13) {e:lin0} {e:lin0}
where the martingale term is given by

dL f t = i f t (xi(t)) dWi(t) √ βn , L f , L f t = 1 βn t 0 i (f t (xi(t))) 2 dt. (3.14) {e:MLt0} {e:MLt0}
We recall the empirical particle density {ν n t } 0 t 1 from (3.1). With it, we can rewrite (3.13) as

ft(x)dν n t -ft(x)dν n 0 = L f t n + 1 4 t 0 x =y f s (x) -f s (y) x -y dν n s (x)dν n s (y)ds + 1 2βn t 0 f s (x)dν n s (x)ds + t 0 ∂sfs(x)dν n s (x)ds = L f t n + t 0 1 4 f s (x) -f s (y) x -y dν n s (x)dν n s (y) + ∂sfs(x)dν n s (x) + 1 n 1 2β - 1 4 f t (x)dν n s (x) ds.
(3.15) {e:df220} {e:df220}

As L f is bounded uniformly for f ∈ C 2,1 b , we can construct an exponential martingale using the martingale dL f t from (3.14) 

Dt = e nL f t -n 2 2 L f ,L f t , E[Dt] = E[D0] = 1. ( 3 
nL f t - n 2 2 L f , L f t = n 2 S n t ({ν n t , ft} 0 t 1 ),
where

S n t ({ν n s , fs} 0 s t ) = ftdν n t -f0dν n 0 - 1 4 t 0 f s (x) -f s (y) x -y dν n s (x)dν n s (y)ds - t 0 ∂sfs(x)dν n s (x)ds - t 0 1 n 1 2β + 1 4 f t (x)dν n s ds - 1 2β t 0 (f t (x)) 2 dν n s ds.
We also define

S n ({ν n t , ft} 0 t 1 ) = 1 n 2 nL f 1 2 - n 2 2 L f , L f 1 = S n 1 ({ν n t , ft} 0 t 1 ).
(3.17) {e:defSn} {e:defSn}

Then for {ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ), we have by uniform (in n 1) continuity of ν → S n ({νt, ft} 0 t 1 ) for any

f ∈ C 2,1 b ([0, 1] × R),
S n ({ν n t , ft} 0 t 1 ) = S n ({νt, ft} 0 t 1 ) + on [START_REF]Asymptotics of unitary multimatrix models: the Schwinger-Dyson lattice and topological recursion[END_REF].

We can use the exponential martingale (3.16) to obtain the large deviations upper bound as follows.

P({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ)) = E 1({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ)) e n 2 S n ({ν n t ,f t } 0 t 1 ) e n 2 S n ({ν n t ,f t } 0 t 1 ) = E 1({ν n s } 0 t 1 ∈ B({νs} 0 t 1 , δ))e n 2 S n ({ν n t ,f t } 0 t 1 ) e o(n 2 ) e n 2 S n ({ν t ,f t } 0 t 1 ) E e n 2 S n ({ν n t ,f t } 0 t 1 ) e o(n 2 ) e n 2 S n ({ν t ,f t } 0 t 1 ) = e -n 2 S n ({ν t ,f t } 0 t 1 )+on(1)) .
(3.18) {e:upp} {e:upp}

The large deviations upper bound (3.12) follows from rearranging (3.18), and taking the infimum over f ∈ C 2,1 b .

Large deviations Lower Bound

In the rest of this section, we prove the large deviations lower bound of Theorem 3.1, namely we show that for any continuous measure-valued process {νt} 0 t 1 , we have lim inf

δ→0 lim inf n→∞ 1 n 2 log P({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ)) -Sµ 0 ({νt} 0 t 1 ). ( 3 

.19) {e:DBMlow} {e:DBMlow}

The proof itself will be used to derive the large deviations for Dyson Bessel processes as it allows to control the positions of the extreme particules, see Proposition 3.5, key to control the singularity at the origin of the Dyson Bessel process. The proof consists of two steps, in the first step we approximate {νt} 0 t 1 by a sequence of measurevalued process with benign properties.

{p:approximati Proposition 3.3. Fix a probability measure µ0 with finite second moment. Then, any measure-valued process {νt} 0 t 1 with Sµ 0 ({νt} 0 t 1 ) < ∞ can be approximated by a sequence of measure-valued processes {ν ε t } 0 t 1 satisfying • ν ε t has uniformly bounded density ρ ε t , supp(ν ε t ) is a single interval for all times t ∈ [0, 1], and

lim ε→0 sup 0 t 1 d(νt, ν ε t ) = 0.
• The dynamical entropy satisfies

lim ε→0 S ν ε 0 ({ν ε t } 0 t 1 ) = Sµ 0 ({νt} 0 t 1 ). ( 3 

.20) {convS} {convS}

• The density {ρ ε t (x)} 0 t 1 of the measure-valued process {ν ε t } 0 t 1 is smooth in both x, t, and the corresponding drift ∂xk ε t (x) as defined by

∂tρ ε t + ∂x(ρ ε t u ε t ) = 0, u ε t (x) = 1 2 H(ν ε t )(x) + ∂xk ε t (x),
is also smooth in both x, t.

Above, smooth means differentiable and with continuous derivative (we shall not need more the proof yields eventually the existence of more derivatives).

{p:lowerb} Proposition 3.4. Fix a probability measure µ0 satisfying Assumption 1 and δ > 0. Let μ0 be a compactly supported probability measure such that d(µ0, μ0) δ/3. Let {νt(x)} 0 t 1 be a compactly supported measure-valued process with a smooth density ρ in both x, t such that ν0 = μ0. Assume that the corresponding drift ∂x kt defined by

∂t ρt(x) + ∂x(ρt ũt) = 0, ũt(x) = 1 2 H(νt)(x) + ∂x kt(x), ( 3 

.21) {driftk} {driftk}

is also smooth in both x, t. Then, the following large deviations lower bound holds

lim inf n→∞ 1 n 2 log P({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ)) -Sμ 0 ({νt} 0 t 1 ) + o δ (1).
Proof of Large deviations lower bound (3.19). We approximate {νt} 0 t 1 by {ν ε t } 0 t 1 as in Proposition 3.3 and take {νt(x)} 0 t 1 equal {ν ε t } 0 t 1 in Proposition 3.4 with sufficiently small ε. Then it follows

lim n→∞ 1 n 2 log P({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ)) lim ε→0 lim n→∞ 1 n 2 log P({ν n t } ∈ B({ν ε t } 0 t 1 , δ/2)) lim ε→0 -S ν ε 0 ({ν ε t } 0 t 1 )) + o δ (1) -Sµ 0 ({νt} 0 t 1 )) + o δ (1),
where in the last inequality we used (3.20). The large deviations lower bound follows by taking δ → 0.

Proof of Proposition 3.3. We fix three parameters ε3 ε2 ε1 1. The construction of ν ε t consists of the following three steps. Note that S is lower semi-continuous hence we only need to show that lim sup ε→0 S ν ε 0 ({ν ε t } 0 t 1 ) Sµ 0 ({νt} 0 t 1 ).

Step 1 (Free Convolution). We replace νt by ν

(1) t = νt σε 1 , its free convolution with a small semi-circle distribution of size ε1. Then we have d(νt, ν

t ) = oε 1 (1). More importantly, ν

t (dx) = ρ (1) t (x)dx has density bounded by O(1/ √ ε1 (1) 
), and it is proven in [START_REF] Cabanal-Duvillard | Discussions around non-commutative entropies[END_REF] that

S ν (1) 0 ({ν (1) 
t } 0 t 1 ) Sµ 0 ({νt} 0 t 1 ). ( 3 

.22) {bor} {bor}

By our assumption Sµ 0 ({νt} 0 t 1 ) < ∞, Proposition 3.2 implies that ν1 has bounded second moment and finite free entropy -∞ < Σ(ν1) < ∞. The same bound holds for its free convolution with semi-circle distribution, i.e. -∞ < Σ(ν

(1)
1 ) < ∞. Moreover, the second moments of ρ (1) and u (1) under ρ Step 2 (Truncation). If {ν

t } 0 t 1 is not compactly supported, in this step we truncate it to have compact support. Let a(t), b(t) be such that 

a(t) ∞ ρ (1) t (x)dx = ε1/2, ∞ b(t) ρ (1) t (x)dx = ε1/2 .
ρ (2) t = 1([a(t), b(t)]) 1 -ε1 ρ (1) 
t (x).

and let ν

(2)

t (dx) = ρ (2) 
t (x)dx. From the construction, we have d(ρ

(1) t , ρ (2) 
t ) = oε 1 (1), and ρ

(2) t has bounded L2 norm. The corresponding u (2) t (x) is the restriction of u (1) t (x) to [a(t), b(t)]. Hence, we get S ν (2) 0 ({ν (2) t } 0 t 1 ) = β 2 1 0 ((u (2) t ) 2 + π 2 12 (ρ (2) 
t (x)) 2 )ρ (2) t (x)dxdt - 1 2 (Σ(ν (2) 
1 ) -Σ(ν

(2) 0 )) = β 2 1 0 1 1 -ε1 b(t) a(t) ((u (1) t ) 2 + π 2 12 ( ρ (1) 
t (x) 1 -ε1 ) 2 )ρ (1) 
t (x)dxdt -

1 2 (Σ(ν (2) 
1 ) -Σ(ν

(2) 0 )) (3.23) {e:largeb} {e:largeb} → β 2 1 0 ((u (1) 
t ) 2 + π 2 12 (ρ (1) 
t (x)) 2 )ρ

(1)

t (x)dxdt - 1 2 (Σ(ν (1) 
1 ) -Σ(ν

(1) 0 )) = S ν (1) 0 ({ν (1) 
t } 0 t 1 ), as ε1 → 0 by monotone convergence theorem.

Step 3. (Smoothing) We first extend ρ

(2) t by ρ

(2) 0

for t 0 and ρ

(2) 1

for t 1. Then we replace it by its convolution with a bump function ϕε 3 on the scale ε3, i.e a smooth function with L 1 norm equal to one, supported on [-ε3, ε3] 2 , with ε3 ε1: ρ

t (x) = ρ (3) 
t-s (x -y)ϕε 3 (y, s)dyds.

Then ν (3) (dx) = ρ (3) t (x)dx is supported on [a(t) -ε3, b(t) + ε3].
Next we replace this smoothed density by its average with a smooth characteristic function χt(x) constructed in the following way. Take a smoothed step function φ(x) such that φ(x) = 0 for x 0, φ(x) = 1 for x ε1. Let ã(t), b(t) be two smooth functions such that for all times [a(t) -ε3, b(t)

+ ε3] ⊂ [ã(t), b(t)]. Then we let χt(x) =    φ(x -ã(t) -2ε1), x ∈ [ã(t) -2ε1, ã(t) -ε1], Ω(1), x ∈ [ã(t) -ε1, b(t) + ε1], φ( b(t) + 2ε1 -x), x ∈ [ b(t) + ε1, b(t) + 2ε1].
Moreover, we construct χt(x) such that χt(x)dx = 1 for all 0 t 1. Because a(t), b(t) are at most of order 1/ √ ε1, we can choose ã(t) and b(t) such that χt is lower bounded by O(

√ ε1) on [ã(t)-ε1, b(t)+ε1].
We can also make sure that it is upper bounded by one, and such that x ∂tχt is uniformly bounded.

We replace ρ

(2) t by

ρ ε t (x) = ε2χt(x) + (1 -ε2)ρ (3) 
t (x).

Then ρ ε t (x) is smooth, and for x ∈ [ã(t) -ε1, b(t) + ε1], ρ ε t is uniformly lower bounded by Ω(ε2 √ ε1).

For x ∈ [ã(t) -2ε1, ã(t) -ε1], ρ ε t (x) = ε2φ(x -ã(t) -2ε1) and x ∈ [ b(t) + ε1, b(t) + 2ε1], ρ ε t (x) = ε2φ( b(t) + 2ε1 -x). From the construction, we have that d(ρ ε t , ρ (2) 
t ) = oε 1 (1). For the second term in the dynamical entropy (3.8), by Young's convolution inequality,

(ρ ε t (x)) 3 dxdt = ε2χt(x) + (1 -ε2)ρ (3) 
t (x)

3 dxdt = (1 + O(ε2)) ρ (2) 
t-s (x -y)ϕε 3 (y, s)dyds

3 dxdt + O(ε2) (1 + O(ε2)) (ρ (2) 
t (x)) 3 dxdt + O(ε2), (3.24) {e:Young} {e:Young} where we used that χt was uniformly bounded above and with bounded expectation. In the following we study the first term in (3.8),

1 0 ∂t x ρ ε t (y)dy 2 ρ ε t (x) dxdt = 1 0 ∂t x (ε2χt(y) + (1 -ε2)ρ (3) 
t (y))dy

2 ε2χt(x) + (1 -ε2)ρ (3) t (x) dxdt. For x ∈ [ã(t) -2ε1, ã(t) -ε1], ρ ε t (x) = ε2φ(x -ã(t) -2ε1
), the integrand simplifies and is of order

ε2(ã (t)) 2 φ(x -ã(t) -2ε1), the total contribution is O(ε1ε2). Similarly for x ∈ [ b(t) + ε1, b(t) + 2ε1], ρ ε t (x) = ε2φ( b(t) + 2ε1 -x)
, the total contribution is O(ε1ε2). We get 

1 0 ∂t x ρ ε t (y)dy 2 ρ ε t (x) dxdt = 1 0 b(t)+ε 1 a(t)-ε 1 ∂t x ρ ε t (y)dy 2 ρ ε t (x) dxdt + O(ε1ε2). ( 3 
t } 0 t 1 ) implies that ∂t x ρ (2) 
t (y)dy is in L 2 :

1 0 ∂t x ρ (2) 
t (y)dy

2 dxdt 1 √ ε1 1 0 (u (2) t (y)) 2 ρ (2) t (y)dydt 2 β √ ε1 S ν (2) 0 ({ν (2) 
t } 0 t 1 ) .

Therefore the convolution density ∂t x ρ

(3)

t (y)dy = x ∂t(ρ (2) 
• * ϕε 3 )(y, t)dy converges to x ∂tρ

t (y)dy in L 2 norm as ε3 → 0 faster than ε1 .

1 0 b(t)+ε 1 ã(t)-ε 1 ∂t x ρ (3) 
t (y)dy

2 ρ ε t (x) dxdt - 1 0 ∂t x ρ (2) 
t (y)dy

2 ρ ε t (x) dxdt 1 0 b(t)+ε 1 ã(t)-ε 1 1 ε2(ε1) 1 2
x ∂tρ (3) (y)dy provided we choose ε3 going to zero fast enough with respect to ε1 and ε2. Now we can estimate the right hand side of (3.25) as we have

1 0 b(t)+ε 1 ã(t)-ε 1 ∂t x ρ ε t (y)dy 2 ρ ε t (x) dxdt = 1 0 b(t)+ε 1 ã(t)-ε 1 ε2 x ∂tχt(y) + (1 -ε2) x ∂tρ (3) (y)dy 2 ρ ε t (x) dxdt = O( ε2 ε 1/2 1 ) + O(ε2) 1 0 b(t)+ε 1 ã(t)-ε 1 | x ∂tρ (3) (y)dy| ρ ε t (x) dxdt + (1 -ε2) 2 1 0 b(t)+ε 1 ã(t)-ε 1 x ∂tρ (3) (y)dy 2 ρ ε t (x) dxdt O( ε2 ε 1/2 1 ) + O(ε2) 1 0 b(t)+ε 1 ã(t)-ε 1 (ε2) 1/2 + (1/ε2) 1/2 x ∂tρ (3) (y)dy 2 ρ ε t (x) dxdt + (1 -ε2) 2 1 0 b(t)+ε 1 ã(t)-ε 1 x ∂tρ (3) (y)dy 2 ρ ε t (x) dxdt = O( ε2 ε 1/2 1 ) + O( ε 1/2 2 ε 1/2 1 ) + (1 + O((ε2) 1/2 )) 1 0 b(t)+ε 1 ã(t)-ε 1 x ∂tρ (3) (y)dy 2 ρ ε t (x) dxdt, ( 3 
1 0 ∂t x ρ (3) t (y)dy 2 ρ ε t (x) dxdt = 1 0 ∂t x ρ (3) 
t (y)dy

2 ε2χt(x) + (1 -ε2)ρ (3) t (x) dxdt → 1 0 ∂t x ρ (2) 
t (y)dy 

2 ε2χt(x) + (1 -ε2)ρ (2) t (x) dxdt 1 1 -ε2 1 0 ∂t x ρ (2) 
1 (x) are bounded by O(1/ √ ε1), and are compactly supported, it is easy to see that

1 2 Σ(ν (3) 
1 ) -Σ(ν For the density ρ ε s (x), it satisfies

(3) 0 ) → 1 2 Σ(ν (2) 1 ) -Σ(ν (2) 0 ) 
∂tρ ε t + ∂x(ρ ε t u ε t ) = 0.
The drift is given by

∂xk ε t (x) = - x ∂tρ ε t (y)dy ρ ε t (x) - 1 2 H(ν ε t )(x). Since ρ ε t (x) is smooth, i.e. in C ∞ , then H(ν ε t
) is also smooth (see Remark 3.6). For the regularity of the drift term ∂xk ε t (x), we need to understand the regularity of ( x ∂tρ ε t )/ρ ε t . By our construction, ρ ε t is supported on [ã(t) -2ε1, b(t) + ε1], and has positive smooth density. Thus (

x ∂tρ ε t )/ρ ε t is smooth inside the support of ρ ε t . Close to the boundary of the support, on [ã(t) -2ε1, ã(t) -ε1], ρ ε t = φ(x -ã(t) -2ε1), where φ(x) is smooth, and φ(x) = 0 for x 0. In this way In the following proposition, we show that for the Dyson Brownian motion with smooth drift, the locations of its particles are close to the quantiles of the limiting profile. Proposition 3.4 will then be an easy consequence.

∂xk ε t (x) = - x ∂tρ ε t (y)dy ρ ε t (x) - 1 2 H(ν ε t )(x) = ∂t x φ(y -ã(t) -2ε1)dy φ(x -ã(t)) - 1 2 H(ν ε t )(x) = ã (t) - 1 2 H(ν ε t )(x), ( 3 
{p:lowerbound2 Proposition 3.5. Let {νt} 0 t 1 be a measure valued process with bounded support and with smooth density ρt(x) in both x, t, and such that the drift ∂xkt(x) such that 

∂tρt(x) + ∂x(ρt( 1 2 H(νt)(x) + ∂xkt(x))) = 0, ( 3 
max 1 i n |xi(t) -γi(t)| e Kt max 1 j n (|xj(0) -γj(0)|) + M √ n ,
with probability going to one as M goes to infinity. {hilberts} Remark 3.6. Note that if ν is a probability measure with density ρ which is where we noticed that P.V. |x-y| A+M 1

x-y dy = 0.

Proof of Proposition 3.5. We first show that the (1/n)-quantiles of ρt approximately satisfy the equations of Dyson Brownian motion: 

∂tγi(t) = 1 2n j:j =i 1 γi(t) -γj(t) + ∂xkt(γi(t)) + O 1 √ n , 1 i n. ( 3 
γ i-1 (t) ρt(x) γi(t) -x dx = P.V. γ i (t)+c/ √ n γ i (t)-c/ √ n ρt(x) γi(t) -x dx + O 1 c √ n = P.V. γ i (t)+c/ √ n γ i (t)-c/ √ n ρt(x) -ρt(γi(t)) γi(t) -x dx + O 1 c √ n = O c ρ t ∞ √ n + 1 c √ n = O 1 √ n , (3.37) {e:diff1} {e:diff1}
where we used in the second line that P.V.

γ i (t)+c/ √ n γ i (t)-c/ √
n (γi(t) -x) -1 dx = 0. For the integral outside the interval [γi-1(t), γi+1(t)], we have the trivial bounds

γ i-1 (t) -∞ ρt(x)dx γi(t) -x i-1 j=1 γ j (t) γ j-1 (t) ρt(x)dx γi(t) -γj(t) i-1 j=1 1 n(γi(t) -γj(t))
, and the lower bound

γ i-1 (t) -∞ ρt(x)dx γi(t) -x i-1 j=1 γ j (t) γ j-1 (t) ρt(x)dx γi(t) -γj-1(t) i-2 j=1 1 n(γi(t) -γj(t))
. 

Thus we conclude that

γ i-1 (t) -∞ ρt(x)dx γi(t) -x - i-1 j=1 1 n(γi(t) -γj(t)) 1 n(γi(t) -γi-1(t)) 1 c √ n . ( 3 
γ i (t) ρt(x)dx = γ i+k (t) γ i (t) (ρt(γi(t)) + O( ρ t ∞|x -γi(t)|))dx = (γ i+k (t) -γi(t))ρt(γi(t)) + O( ρ t ∞|(γi+k (t) -γi(t))| 2 ).
By rearranging, we get

γ i+k (t) -γi(t) = k nρt(γi(t)) 1 1 + O( ρ t ∞|(γi+k (t) -γi(t))|/ρt(γi(t)) = k nρt(γi(t)) 1 + O k ρ t ∞ nρt(γi(t)) 2 ,
(3.39) {e:loc} {e:loc}

provided that k ρ t ∞ nρt(γi(t)) 2 /2.
We have exactly the same estimates for γi(t) -γ i-k (t), and 

1 n 1 γi(t) -γ i-k (t) + 1 γi(t) -γ i+k (t) 1 n O k ρ t ∞ nρ t (γ i (t)) 2 k nρ t (γ i (t)) ρ t ∞ nρt(γi(t)) . ( 3 
d ρ t ∞ ρ t ∞ + ρ t ∞ √ nρt(γi(t)) C nρt(γi(t)) 2 /2,
provided we take C large enough. By summing over (3.40) Similarly, following the proof of (3.38), we get The martingale term dW i * (t) (t) has the same law as a standard Brownian motion. By Gronwall's inequality, we deduce that

from k = 1 to k = d -1, we have d-1 k=1 1 n 1 γi(t) -γ i-k (t) + 1 γi(t) -γ i+k (t) d ρ t ∞ nρt(γi(t)) 1 √ n . ( 3 
γ i-d (t) -∞ ρt(x)dx γi(t) -x - i-d j=1 1 n(γi(t) -γj(t) 1 n(γi(t) -γ i-d (t)) 1 √ n . ( 3 
x i * (t) (t) -γ i * (t) (t) e Kt x i * (0) (0) -γ i * (0) (0) + t 0 e -Ks dW i * (s) (s) √ βn e Kt max i |xi(0) -γi(0)| + M √ n ,
where M is a stochastically bounded random variable, uniformly in time (by Doob's martingale inequality). It follows that uniformly for any

i ∈ [[1, n]], xi(t) -γi(t) e Kt max i |xi(0) -γi(0)| + M √ n .
By the same argument, we have a similar lower bound by considering i * (t) = arg min i∈[ [1,n]] (xi(t) -γi(t)).

The following holds

γi(t) -xi(t) e Kt max i |xi(0) -γi(0)| + M √ n ,
where M is stochastically bounded. This finishes the proof of Proposition 3.5.

Proof of Proposition 3.4. We first show that changing slightly the initial condition of the Dyson Brownian motion will not change much the large deviations lower bound. This will enable us to consider an initial measure μ0 with compact support and finite free entropy. Let µ0 be a probability measure and μ0 a compactly supported approximation so that d(µ0, μ0) δ/3. Denote F0(x) = μ0((-∞, x]). We construct a new family of initial data

νn 0 = 1 n n i=1 δ xi (0) , xi(0) = F -1 0 ((i -1/2)/n).
In this way xi(0) is the (i -1/2)/n quantile of ρ0. Thanks to Assumption 1, we have that

d(ν n 0 , ν n 0 ) = 1 n 1 i n |xi(0) -xi(0)| 2 δ 3 + on(1).
We consider the Dyson Brownian motion starting from νn 0 , 

dxi(t) = dWi(t) √ βn + 1 2n   j:j =i 1 xi(t) -xj(t)   dt, ( 3 
d(ν n t , ν n t ) = 1 n i (xi(t) -xi(t)) 2 1 n i (xi(0) -xi(0)) 2 δ/2,
provided n is large enough. As a consequence, we deduce that for any compactly supported measurevalued process {νt(x)} 0 t 1 with a smooth density such that ν0 = μ0 as in Proposition 3.4

lim n→∞ 1 n 2 log P({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ)) lim n→∞ 1 n 2 log P({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ/2)). (3.

48) {e:replace1} {e:replace1}

Let ∂x kt denote the drift (3.21) and Q β k be the distribution

Q β k = e n 2 S n ({ν n t ,β kt )} 0 t 1 Q,
where S n ({ν n t , β kt)}0 t 1 ) 

S n ({ν n t , β kt)}0 t 1 ) = 1 n 2 nL β k 1 2 - n 2 2 L β k , L β k 1 , dL β k t = i β∂x kt(xi(t)) dWi(t) √ βn , ( 3 
max 1 k n |x k (t) -γk (t)| e Kt max 1 k n (|x k (0) -γk (0)|) + M √ n , (3.51 
({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ/2)) with probability 1 -o(1). We conclude that Q({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ/2)) = Q β k (e -n 2 S n ({ν n t ,β kt } 0 t 1 ) 1({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ/2))) = exp{-n 2 (Sμ 0 (νt) + o δ (1))}Q β k ({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ/2) = exp{-n 2 (Sμ 0 (νt) + o δ (1))}(1 -o(1)),
(3.52) {e:replace2} {e:replace2}

where in the second line, we used that S n ({ν n t , β kt}0 t 1 ) = Sμ 0 (νt)+o δ (1) for {ν n t } 0 t 1 in B({νt} 0 t 1 , δ/2) by continuity of ν → S n ({νt, β kt}0 t 1 ) and (3.5). This and (3.48) together finish the proof of (3.19).

Large deviations for the Dyson Bessel process {secbessel}

In this section, we prove the large deviation principle, Theorem 1.2, for the symmetrized empirical particle density of the Dyson Bessel process

dsi(t) = dWi √ βn +   1 2n j:j =i 1 si(t) -sj(t) + 1 2n j:j =i 1 si(t) + sj(t) + αn 2si(t)   dt, 1 i n, (4.1 

) {e:dskccopy} {e:dskccopy}

We can symmetrize the Dyson Bessel process (4.1), by setting

s-i(t) = -si(t), W-i(t) = -Wi(t) for 1 i n, then for i ∈ [[-n, n]] \ {0}, we have dsi(t) = dWi(t) √ βn +   1 2n j:j =±i 1 si(t) -sj(t) + αn 2si(t)   dt, = dWi(t) √ βn + 1 2n j:j =i dt si(t) -sj(t) + αn -1/(2n) 2si(t) dt (4.2) {e:dsk2} {e:dsk2}
where in the last line we added a term (1/2n)dt/(si(t)-sj(t)) with j = i, and replaced αn by αn -(1/2n).

We denote the law of the Dyson Bessel process by P, and the empirical particle density and its symmetrized version as

ν n t = 1 n n i=1 δ s i (t) , νn t = 1 2n n i=1 δ s i (t) + δ -s i (t) , 0 t 1. (4.
3) {e:density} {e:density} More generally, for a probability measure ν on the real line we set ν to be its symmetrized version ν(f ) = (f (x) + f (-x))/2dν. Reciprocally, if ν is a probability on (0, ∞), we can retrieve ν from ν by setting ν = 2ν| (0,+∞) . If αn 1/nβ, the solution of (4.1) for t > 0 is non negative almost surelyand thus ν n t = 2ν n t | (0,+∞) . We denote by M s 1 (R) the set of symmetric probability measures on the real line and observe that it is a closed subset of M1(R).

We recall from (1.10) that given a symmetric measure μ0 and a continuous symmetric measure-valued process {νt} 0 t 1 with ν0 = μ0, we define the following dynamical free entropy:

S α μ0 ({νt} 0 t 1 ) = sup f ∈C 2,1 b S α ({νt, ft} 0 t 1 ), (4.4 
) {e:ratesingular} {e:ratesingular} where

S α ({νt, ft} 0 t 1 ) = L α 1 ({νt, ft} 0 t 1 ) - 1 8β 1 0 (f s (x) -f s (-x)) 2 dνs(x)ds L α u ({νt, ft} 0 t 1 ) = νu(fu) -ν0(f0) - u 0 ∂sfs(x)dνs(x)ds - 1 2 u 0 f s (x) -f s (y) x -y dνs(x)dνs(y)ds - α 2 u 0 f s (x) x dνs(x)ds.
The supremum is taken over ft(x) ∈ C 2,1 b (R×[0, 1]) which has bounded twice derivative in x and bounded derivative in t. We notice that since the measure process νt is symmetric, for any ft

(x) ∈ C 2,1 b (R × [0, 1]), it holds S α ({νt, (ft(x) + ft(-x))/2} 0 t 1 ) = S α ({νt, ft(x)} 0 t 1 ).
Therefore, the optimization problem (4.4) can be restricted to the set of even functions, i.e. ft(x) = ft(-x). If νt is not symmetric, or ν0 = μ0, we simply set S α μ0 ({νt} 0 t 1 ) = ∞.

In this section we prove Theorem 1.2. We study the properties of the rate function (4.4) and its relation to rectangular free convolution in Sections 4.1 and 4.2. In Section 4.3, we derive dynamical equations of linear statistics of Dyson Bessel process for general test function using Itô's formula. We prove the large deviations upper bound in Section 4.4, and the large deviations lower bound in Section 4.5. Finally we give the proof of Theorem 1.2 in Section 4.6.

Study of the Rate Function {s:rrt}

In this section, we study the rate function S α μ0 ({νt} 0 t 1 ) as defined in (4.4). If S α μ0 ({νt} 0 t 1 ) < ∞, then ν0 = μ0, and by Riesz representation theorem, for any measure process {νt} 0 t 1 , there exists a measurable function ∂xkt(x), such that for any

f ∈ C 2,1 b ([0, 1] × R), 1 0 f s (x)∂xks(x)dνsds = L α 1 ({νt, ft} 0 t 1 ) = ν1(f1) -ν0(f0) -∂sfs(x)dνs(x)ds - 1 0 f s (x)(H(νs) + (α/2)H(δ0))dνs(x)ds.
(4.5) {e:testfb} {e:testfb} Since νs is symmetric, it is necessary that ∂xks(x) is an odd function. With this notation, we can rewrite the rate function as

S α μ0 ({νt} 0 t 1 ) = sup f ∈C 2,1 1 0 f s (x)∂xks(x)dνs(x)ds - 1 8β 1 0 (f s (x) -f s (-x)) 2 dνs(x)ds = β 2 1 0 ∂xks(x) 2 dνs(x)ds, (4.6) {e:testfb2} {e:testfb2} 
where the equality is achieved when f t (x) -f t (-x) = 2β∂xkt(x).

We next see as in Proposition 3.2 that when the rate function S α μ0 ({νt} 0 t 1 ) is finite, the measure valued process {νt} 0 t 1 satisfies nice properties.

{p:rate2} Proposition 4.1. Fix a symmetric probability density μ0 with bounded second moment. S α μ0 is a good rate function on C([0, 1], M s 1 (R)). If S α μ0 ({νt} 0 t 1 ) is finite, and log |x|dν0, and the free entropy Σ(ν0) are finite, then we have (i) There exists universal constant C > 0 depends only on μ0 and S μ0 ({νt} 0 t 1 ) such that the L2 norms of νt are uniformly bounded, (iii) We denote the velocity field ut = (H(νt) + (α/2)H(δ0)) + ∂xkt, then it satisfies the conservation of mass equation ∂t ρt + ∂x(ρtut) = 0, 0 t 1, (4.9) {e:masseq2} {e:masseq2} in the sense of distribution. We can rewrite the dynamical entropy (4.4) as

x 2 dνt(x) C, (4.7 
S α μ0 ({νt} 0 t 1 ) = β 2 1 0 u 2 s ρs(x)dxds + π 2 3 1 0 ρ3 s ds + α 2 4 ρs(x) x 2 dxds -Σ(νt) + α log |x|dνt(x) 1 t=0 
.

(4.10) {Sent2} {Sent2} {r:unsym} Remark 4.2. Under assumptions of Proposition 4.1, if μ0 and νt are symmetrization of measures µ0 and νt supported on [0, ∞) respectively,

μ0(x) = (µ0(x) + µ0(-x))/2, νt(x) = (νt(x) + νt(-x))/2, 0 t 1, (4.11) 
then for almost all 0 t 1, we have νt(x) = ρt(x)dx, and it satisfies ρt(x) = (ρt(x) + ρt(-x))/2 and ∂tρt(x) + ∂x(ut(x)ρt(x)) = 0.

In particular we have for almost all 0 t 1, ρt(x) = (ρt(x) + ρt(-x))/2. With ρt, we can rewrite (3.8) as

S α μ0 ({νt} 0 t 1 ) = β 2 1 0 u 2 s dρsds + π 2 12 1 0 ρ 3 s ds + α 2 4 ρs(x) x 2 dxds -Σ((νt(x) + νt(-x))/2) + α log |x|dνt(x) 1 t=0 =: S α µ 0 ({νt} 0 t 1 ).
Proof. The claim that S α μ0 is a good rate function follows from essentially the same arguments as in [START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF]Theorem 1.4]. The fact that S α μ0 is lower semi-continuous comes from the continuity of {νt} 0 t 1 → S α ({νt, ft} 0 t 1 ) for any C 2,1 b (R × [0, 1]) function. In fact, the only difference lies in the new term

- α 2 1 0 f s (x)
x dνs(x)ds, which are continuous since νs is even we can rewrite it as

- α 4 1 0 f s (x) -f s (-x) x dνs(x)ds,
and it no long has a singularity at x = 0. If S α μ0 ({νt} 0 t 1 ) is finite, by definition we have ν0 = μ0. To check that the level set {S α μ0 M } is included in a compact set, one first checks that x 2 dνt(x) is uniformly bounded as in Proposition 3.

2. Moreover if f is in C 2,1 b ([0, 1], R), (4.5) implies that |νt(f ) -νs(f )| C f ∞|t -s| + t s |∂xks||f (x)|dνs(x)ds C f ∞|t -s| + f ∞ 1 0 dνs(x) |∂xks| 2 ds 1/2 √ t -s C f ∞|t -s| + f ∞ (2M ) 1/2 √ t -s .
This implies that t → νt(f ) is tight by Arzela-Ascoli theorem. The conclusion follows.

The estimate (4.7) can be proven in the same way as (3.6). In the following we prove (4.8). We take a test function f (x) = -(αβ/4) ln(ε + x 2 ) in (4.4),

+ ∞ > S α μ0 ({νt} 0 t 1 ) = ν1(f ) -ν0(f ) + αβ 4 1 0 x ε + x 2 H(νs)dνs(x)ds + α 2 β 4 1 0 1 ε + x 2 dνs(x)ds - α 2 β 8 1 0 x ε + x 2 2 dνsds ν1(f ) -ν0(f ) + αβ 4 1 0 x ε + x 2 H(νs)dνs(x)ds + α 2 β 8 1 0 1 ε + x 2 dνs(x)ds.
(4.12) {e:tets} {e:tets}

By our assumption on μ0, it holds that μ0(log |x|) > -∞. Using the fact that νs is symmetric, i.e. νs(y) = νs(-y), we can rewrite the first integral on the righthand side of (4.12) as By plugging (4.13) into (4.12), and rearranging, we conclude that there exists a constant C depending only on ρ0 and S μ0 ({νt} 0 t 1 ), such that

1 0 x ε + x 2 H(νs)dνs(x)ds = 1 0 x ε + x 2 dνs(y) x -y dνs(x)ds = 1 2 1 0 x ε + x 2 - y ε + y 2 dνs(y) x -y dνs(x)ds = 1 2 1 0 ε -xy (ε + x 2 )(ε + y 2 ) dνs(y)dνs(x)ds = ε 2 1 0 1 ε + x 2 dνs(x)
α 2 β 8 1 0 1 ε + x 2 dνs(x)ds C + ln(ε + x 2 )dν1(x) C,
where we used (4.7) for the last inequality. Moreover, we also have that ln(ε + x 2 )dνt(x) -C. The claim (4.8) The measure process νt satisfies (4.15), which verifies the assumption in Proposition 3.2. Item (ii) in Proposition 3.2 implies that νt has a density for almost surely all 0 t 1, νt = ρt(x)dx, and (4.9) holds. Moreover, we have (4.17) {e:nee} {e:nee}

In the following we prove (4.10). The same as in (4.16), we have This finishes the proof of Item (iii).

Free Rectangular Convolution

{s:frconv} The minimizer of the dynamical entropy (4.21) is characterized by the free rectangular convolution as introduced in [START_REF] Belinschi | Regularization by free additive convolution, square and rectangular cases[END_REF][START_REF] Benaych-Georges | Rectangular random matrices, related convolution[END_REF]. For any λ = 1/(1 + α) ∈ [0, 1], the rectangular free convolution denoted by λ can be defined in terms of the rectangular R-transform. For any symmetric measure ν on R, its Stieltjes transform is given by

G ν (z) = dν(x) z -x .
The rectangular R-transform C ν (w) with ratio λ of ν is defined on a neighborhood of zero by 

zG ν (z) -1 = C ν (w), w = G ν (z)(λG ν (z) + (1 -λ)/z). ( 4 
µσW = (σ 2 (1/ √ λ + 1) 2 ) -x)(x -σ 2 (1/ √ λ -1) 2 ) √ 2πσx ,
with the Stieltjes transform given by 

zmµ σW (z) -1 = σ 2 λ mµ σW (z)(λzmµ σW (z) + 1 -λ), mµ σW = dµσW (x) z -x . ( 4 
G νσW (z) = dνσW z -x = 1 2 dνσW z -x + dνσW z -x = zdνσW z 2 -x 2 = zdµσW z 2 -x = zmµ σW (z 2 )
zG νσW (z) -1 = σ 2 λ G νσW (z)(G νσW + (1 -λ)/z).
Comparing with the defining relation of rectangular R-transform The empirical distribution of eigenvalues of large dimensional information-plus-noise type matrices [START_REF] Bai | No eigenvalues outside the support of the limiting spectral distribution of information-plus-noise type matrices[END_REF][START_REF] Dozier | Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices[END_REF][START_REF] Dozier | On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices[END_REF] can also be characterized by rectangular free convolution. This model is of particular interest because of its applications in statistics. The following Theorem is a special case of [START_REF] Dozier | Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices[END_REF][START_REF] Dozier | On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices[END_REF], which deals with more general noise.

w = G νA λ B (z)(λG νA λ B (z) + (1 -λ)/z) = G νA (z )(λG νA (z ) + (1 -λ)/z ). ( 4 
{t:addfree} Theorem 4.4. Let An be an sequence of n × m matrices and Wn be a sequence of n × m matrices with entries given by independent real or complex Gaussian random variables with mean zero and variance 1/n, where m n and n/m → λ ∈ [0, 1]. If the eigenvalue distributions of AnA * n converge to µA. Then the empirical eigenvalue distributions of (An + σWn)(An + σWn) * converge to a deterministic measure µ A λ σW with Stieltjes transform m(z) given by dµA We can reformulate Theorem 4.4 in terms of rectangular R-transform. We recall the rectangular R-transform of the square root Marchenko-Pastur law from (4.25) C νσW (w) = σ 2 w/λ. We denote the limiting symmetrized empirical singular value distribution of An and An + σWn as νA and νA λ σW respectively, then (4.31) is equivalent to

(x) (1 -σ 2 m(z)) ((1 -λσ 2 m(z))z -(1 -λ)σ 2 )) -x = m(z) 1 -σ 2 m(z) , m(z) = dµ A λ σW (x) z -x . ( 4 
C νA λ σW (w) = C νA (w) + σ 2 w/λ.
The Stieltjes transform m(z) can be expressed in terms of the Stieltjes transform of νA λ σW , and the bound (4.32) becomes 

1 z G νA λ σW (z) = m(z 2 ), |G νA λ σW (z)| 1 σ . ( 4 
a = 0 a a * 0 , g(t) = 0 g(t) g(t) * 0 ,
where g(t) and a are the limit in * -moments of G(t)/ √ n and An respectively. Then a and g(t) are free and g(t) has independent increment in terms of rectangular free convolution, with λ = 1/(1 + α).

For any measurable odd function {∂xkt(x)} 0 t 1 , we consider the following noncommutative stochastic process,

dh(t) = dg(t) + ∂xkt(h(t))dt, h(0) = a.
Then the nonzero part of the spectral measure ρt of h(t), satisfies the equation (4.9) 

∂ ρt + ∂x((H(ρt) + αH(δ0)/2 + ∂xkt)ρt) = 0. ( 4 

Itô's calculus for the Dyson Bessel process

{s:ito} In this section, we derive dynamical equations of linear statistics of Dyson Bessel process for general test functions using Itô's formula. Take any test function ft 

(x) ∈ C 2,1 b ([0, 1] × R). Using to Itô's lemma, (4.2) gives d i∈[[-n,n]]\{0} ft(si(t)) = i∈[[-n,n]]\{0} f t (si(t))dsi(t) + ∂tft(si(t))dt + f t (si(t)) 2βn dt = dL f t + 1 4n i =j∈[[-n,n]]\{0} f t (si(t)) -f t (sj(t)) si(t) -sj(t) dt + αn - 1 2n i∈[[-n,n]]\{0} f t (si(t)) 2si(t) dt + i∈[[-n,n]]\{0} ∂tft(si(t))dt + i∈[[-n,n]]\{0}
L f t = n i=1 1 √ βn t 0 (f (si(u)) -f (-si(u)))dWi(u), ( 4 

.38) {martdef} {martdef}

and its quadratic variation is given by,

L f , L f t = 1 βn n i=1 t 0 (f (si(u)) -f (-si(u))) 2 du = 1 β t 0 (f (x) -f (-x)) 2 dν n u (x)du, ( 4 

.39) {brLf} {brLf}

where we used that the measure νn u is symmetric. We can construct an exponential martingale using the martingale L f t from (4.38) Then for {ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ), we have by uniform (in n 1) continuity of {νt} 0 t 1 → S n ({νt, ft} 0 t 1 ) and the convergence of αn to α, that for any f ∈ C 2,1 b ([0, 1] × R), S αn,n ({ν n t , ft} 0 t 1 ) = L α 1 ({ν n t , ft} 0 t 1 ) - e n 2 S αn ,n ({ν n t ,f t } 0 t 1 )

Dt = e n 2 L f t -n 2 8 L f ,L f t , E[Dt] = E[D0] = 1. ( 4 
1 8β 1 0 (f (x) -f (-x))
= E 1({ν n s } 0 t 1 ∈ B({νs} 0 t 1 , δ))e n 2 S αn ,n ({ν n t ,f t } 0 t 1 )

e o(n 2 ) e n 2 S α ({ν t ,f t } 0 t 1 ) E e n 2 S αn,n ({ν n t ,f t } 0 t 1 ) e o(n 2 ) e n 2 S α ({ν t ,f t } 0 t 1 ) = e -n 2 (S α ({ν t ,f t } 0 t 1 )+o n,δ (1)) . If S α μ0 ({νt} 0 t 1 ) = +∞, there is nothing to prove. Otherwise, we prove that there exists a symmetric probability measure in the form (νt(x) + νt(-x))/2, such that νt(x) is supported on [a, ∞), with a > 0, has a smooth density dνt(x) = ρt(x)dx, and S α (ν 0 (x)+ν 0 (-x))/2 ({(νt(x) + νt(-x))/2}0 t 1 ) S α μ0 ({νt} 0 t 1 ) + o(1). {s:pmain2} In this section, we prove Theorem 1.2. The statement that S α ν0 is a good rate function follows from Proposition 4.1. The weak large deviations upper bound and lower bound (1.11) are proven in Sections 4.4 and 4.5 respectively. In this section we show that the distribution of {ν n t } t∈[0,1] satisfying S α ν0 ({ν n t } t∈[0,1] ) is exponentially tight. Then the full large deviation principle follows from the weak large deviations upper bound and lower bound (1.11).

The arguments are very similar to those of [START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF] and [14, Section 2.3] and we therefore only outline them. We see {ν n t } 0 t 1 as a continuous process with values on the space of symmetric probability measures M s 1 (R) on R. We denote by C([0, 1], M s 1 (R)) this set. Because M s 1 (R) is a closed subset of M1(R), its compact sets have the same form and we consider the following compact sets: The proof from [START_REF] Cabanal-Duvillard | Large deviations upper bounds for the laws of matrix-valued processes and non-communicative entropies[END_REF] uses the eigenvalue matrix representation of the Dyson Brownian motion of the special cases β = 1 or 2. We therefore show how to extend this proof to all β 1 and αn 0. To this end we use for ε > 0, the smooth function fε(x) = x 2 /(1 + εx 2 ) in (4.37) and notice as in the proof of (3.6) Zn,m dU dV. where Gn is an n × m rectangular matrix with independent real (β = 1) or complex (β = 2) Gaussian entries. We denote the singular value decomposition of Xn as Xn = U BnV * . Then the law of Xn is 

Asymptotics of rectangular spherical integral

  (An, Bn) = cn det e na i b j 1 i,j n ∆(a)∆(b) , (1.2) {tg} {tg} where a = (a1, a2, • • • , an), b = (b1, b2, • • • , bn) are eigenvalues of An and Bn respectively, and ∆(a) = i<j (ai -aj), ∆(b) = i<j (bi -bj) are Vandermonde determinants. In 2003, Schlittgen and Wettig [46] considered a generalization of the above rectangular spherical integral given by det[U V ] ν e τ Tr(A * n U BnV * +V D * n U * Cn)/2 dU dV, (1.3) {e:inegral0} {e:inegral0}

For a rectangular

  n × m matrix An , m n, with non trivial singular values (si) 1 i n , we denote νn A

  ) {e:arate} {e:arate} where const is a constant depending on α. The infimum is taken over continuous symmetric measure valued processes (ρt(x)dx)0<t<1 such that lim t→0 ρt(x)dx = νA, lim t→1 ρt(x)dx = νB. (1.6) {e:bbterm} {e:bbterm} Moreover, u is the weak solution of the following conservation of mass equation ∂s ρs + ∂x(ρsus) = 0.

1 b

 1 ) {e:rateD} {e:rateD}where ft(x) ∈ C 2,has bounded twice derivative in x and bounded derivative in t. For any measure µ0, if ν0 = µ0, we set Sµ 0 ({νt} 0 t 1 ) = sup f ∈C2,1 

. 6 )

 6 {e:L2norm} {e:L2norm} (ii) νt has a density for almost surely all 0 t 1, i.e. dνt(x) dx = ρt(x).

  are bounded independently of ε1 by Proposition 3.2 and (3.22).

  C k b and with compact support, then Hν is C k-1 b . Indeed, for ρ with support in [-A, A] and |x| M Hν(x) = P.V. ρ(y) x -y dy = P.V. |x-y| A+M ρ(y) x -y dy = |x-y| A+M ρ(y) -ρ(x) x -y dy,

x 2

 2 dt C, -log |x|dνt C. (4.8) {e:1x} {e:1x} (ii) νt has a density for almost all 0 t 1, i.e. dνt(x) dx = ρt(x).

( 4 .

 4 13) {e:2t} {e:2t}

  -(Σ(ν1) -Σ(ν0)) .

. 22 )

 22 {e:Rtransform} {e:Rtransform} When the symmetric measure ν is the delta mass δ0 at zero, we have G δ 0 (z) = 1/z, and the R-transform C δ 0 (w) = 0. Let Wn be a sequence of n × m matrices with entries given by independent real/complex Gaussian random variables with mean zero and variance one, where m n and n/m → λ ∈ [0, 1]. Then the empirical eigenvalues of (σWn/ √ n)(σWn/ √ n) * converges to the rescaled Marchenko-Pastur law

  .23) {e:zm} {e:zm} We denote the limiting symmetrized singular value distribution of σWn by νσW , we call it the square root Marchenko-Pastur law. Then

( 4 . 3 .

 43 22), we conclude that the rectangular R-transform of the square root Marchenko-Pastur law is given by C νσW (wLet An, Bn ∈ R n×m and U ∈ O(n), V ∈ O(m) following Haar distribution over orthogonal group for β = 1; An, Bn ∈ C n×m and U ∈ U(n), V ∈ U(m) following Haar distribution over unitary group, for β = 2, where m n and n/m → λ ∈ [0, 1]. We assume that the symmetrized empirical singular values νn A and νn B of An and Bn converge to νA and νB respectively. Then the symmetrized empirical singular values of An + UnBnV * converges weakly in probability to νA λ B , the free rectangular convolution νA λ B = νA λ νB, which is characterized byC νA λ B (w) = C νA (w) + C νB (w). (4.26) {e:freecon} {e:freecon} To use (4.26) to solve for the measure νA λ B , we need to solve

( 4 . 2

 42 44) {e:uppha} {e:uppha} The large deviations upper bound (4.43) follows from rearranging (4.44), and taking infimum over functions f ∈ C 2,1 b .4.5 large deviations lower bound{s:lddown} In this section we prove the large deviations lower bound of Theorem 1log P({ν n t } 0 t 1 ∈ B({νt}0 t 1 , δ)) -S α μ0 ({νt} 0 t 1 ),(4.45) {e:DBMlower2} {e:DBMlower2} using the large deviations lower bound of Dyson Brownian motion Theorem 3.1, and the change of measure Proposition 2.2.

( 4 . 46 )t

 446 {e:bor} {e:bor} Next we construct νt(x) in (4.46). Take small ε > 0, thanks to Remark 4.6, let σε = νεW as in (4.24), then Theorem 4.4 implies ν(1) t = νt λ σε has an analytic density on its support, which is bounded by O(1/ε) by (??). In particular ν(1) t has no atom at the origin. Moreover, Lemma 4} t∈[0,1] ) S α μ0 ({νt} t∈[0,1] ) .

4. 6

 6 Proof of Theorem 1.2

K

  M,δ := p∈N {νt} 0 t 1 : sup0 t 1 νt([-Mp, Mp] c ) 1 p i∈N m∈N {νt} 0 t 1 : sup |s-t| δ m,i |νt(fi) -νs(fi)| 1 m ,where fi is a dense set of bounded continuous functions on R and δm,i and Mp are sequences of positive real numbers. We need to show that we can choose the functions fi, such that for each L > 0, there exists δ = δ(L) and Mp = Mp(L) such thatP ({νt} 0 t 1 / ∈ K M,δ ) e -Ln 2 . (4.58) {exptight} {exptight}We first show that for any positive real number L and integer number p, we can find Mp(L) such that

Finally,

  Tchebyshev's inequality yields, since fε 1/(2ε) on [-ε -1/2 , ε -1/2 ] c , supt∈[0,1] νn t ([-ε -1/2 , ε -1/2 ] c ) 4ε(C + R) .Hence, taking R = L + p, ε = (4p(C + L + p)) -1 and Mp(L) = ε -1/2 , yieldsP sup t∈[0,1] νn t ([-Mp(L), Mp(L)] c ) 1 p P (A n R,ε ) c e -n 2 (L+p) ,which completes the proof of (4.59) after summing over p. The proof that for any twice continuously differentiable function f for any L > 0 and m ∈ N we can find δm,i > 0 such thatP sup |s-t| δ m,i |ν n t (fi) -νn s (fi)| 1 m e -Ln 2 ,follows exactly the proof of[START_REF] Cabanal-Duvillard | Large deviations upper bounds for the laws of matrix-valued processes and non-communicative entropies[END_REF] Lemma 2.5]. We therefore omit it.5 ApplicationsAs consequences of the large deviation principle of the Dyson Bessel process, we derive the asymptotics of the rectangular spherical integral in Section 5.1, and prove Theorem 1.1. In Section 5.2, we characterize the limiting joint law of (An, U BnV * ) which follows dµn,m(U, V ) = e βnRe[Tr(A * n U BnV * )]

1 n 2

 12 As the first application of our large deviation principle for the Dyson Bessel process, we prove Theorem 1.1 the asymptotics of rectangular spherical integral, lim n log In,m(An, Bn) = β 2 I α (νA, μB), In,m(An, Bn) = e βnRe[Tr(A * n U BnV * )] dU dV, Proof of Theorem 1.1. We recall from (2.1), Xn is an n × m rectangular random matrix Xn = An + 1 √ n Gn.

2 i -b 2 j | β e -βn 2 ( 1 n 2 2 i -b 2 j | β e -βn 2 ( i b 2 i + a 2 i 1 ,m e βn 2 2

 222122222212 i b 2 i + a 2 i )+βnRe[Tr(A * n U BnV * )] dU dV dBn. (5.1) {e:lawXX} {e:lawXX}The large deviations principle of Dyson Bessel process gives limn→∞ log P(ν n B ∈ B(νB, δ)) = inf ν1 =ν B S α νA ({νt} 0 t 1 ) + o δ (1),where o δ (1) goes to zero as δ goes to zero. By integrating (5.1) over the ball B(νB, δ), we haveνn B ∈B(ν B ,δ) )+βnRe[Tr(A * U BV * )] dU dV dBn = Zn(2α log |x|dν B +2Σ(ν B )-(ν A (x 2 )+ν B (x 2 ))+o δ (1)) νn B ∈B(ν B ,δ)e βnRe[Tr(A * U BV * )] dU dV dBn

  2/β C.

	The claim 3.6 follows by sending ε to 0 and monotone convergence theorem.	
	It was proven in [29, Theorem 2.1] and [36, Theorem 3.3] that if µ0 = ν0 has bounded 5 + ε moments,
	i.e.	
	|x| 5+ε dν0 < ∞,	(3.10) {e:five} {e:five}

  Observe that because t → ν is weakly continuous and with bounded density, t → a(t) and t → b(t) are continuous. Moreover, because the second moments of ν

	(1)			
	t			
	and b(t) are at most of order 1/	√ ε1. Then we restrict ρ	(1) t	(1) t on [a(t), b(t)] by setting are uniformly bounded we see that a(t)

  ) {e:xkbb} {e:xkbb} where the constant K depends on the Lipschitz constant of ∂xkt, and M is stochastically bounded. Especially, (3.51) implies that Q k

  Thanks to (4.27), we have the expression of w in terms of G νA λ B (z) and z. We can then solve z using (4.27) and (4.30) in terms of G νA λ B (z) and z. Plugging them into (4.30), we finally get a self-consistent equation for G νA λ B (z) and z which has a unique solution in a neighborhood of infinity, which determines νA λ B .

	and from (4.26) we get						
	G νA λ B (z) z	=	1 + C νA λ B (w) z 2	=	w λC νA λ B (w) + 1	(4.29) {e:Gz} {e:Gz}
		=	w λC νA (w) + 1 + λC νB (w)	=	z G νA	1 (z ) + λ	w C νB (w)	.
	In particular we can rearrange (4.28) and (4.29) as	
		z G νA (z )	=	z G νA λ B (z)	-	λC νB (w) w	.	(4.30) {e:zz} {e:zz}
								.27) {e:wz} {e:wz}
	where z, z belongs to some neighborhood of infinity. We formally show below how to deduce a closed
	equation for G νA λ B (z) from (4.27) and (4.26) and leave the reader check that we can take z, z in such
	a neighborhood. We notice that the defining relation (4.22) gives that
		G νA (z ) z	=	1 + C νA (w) (z ) 2	=	w λC νA (w) + 1	,	(4.28) {e:Gz'} {e:Gz'}

  By letting z approach the support of νA λ σW in (4.33), we conclude that νA λ σW has a density bounded by O(1/σ), and it is analytic on its support.For later purpose, we show that free convolution reduces the dynamical entropy. If we take p to be the square root Marchenko-Pastur law on scale ε, i.e. σε = νεW as in (4.24), then Theorem 4.4 implies νε t = νt λ σε has an analytic density, which is bounded by O(1/ε), and Lemma 4.5 implies

	Lemma 4.5. Let ν ∈ C([0, 1], M s 1 (R)) and p ∈ M s 1 (R)). Then for all λ 0,	{l:decrease}
	S α ν0 λ p ({νt λ p} t∈[0,1] ) S α ({νt} t∈[0,1] ) .	{r:rectconv}
	Remark 4.6. S α νε 0 ({ν ε t } t∈[0,1] ) S α μ0 ({νt} t∈[0,1] ) .	
	Proof. With the notation of rectangular free convolution, we can construct the limiting object of the matrix Brownian motions An and G(t)/ √ n from (2.4),	
	.33) {e:mbb2} {e:mbb2}

  = ρt λ p satisfies the same differential equation but with ∂xkt replaced by ∂xk p t defined by, if h(t) and p are two free random variables with respect to the rectangular free convolution in a non-commutative probability space τ with distribution ρt and pt respectively, then

				∂xk p t (x) = τ (∂xkt(h(t))|h(t) + p).
	As a consequence, we find								
	S α ({ρt λ p} 0 t 1 ) =	β 2	0	1	ρs λ p(∂x(k p s ) 2 )ds =	β 2	0	1	τ (τ (∂xks(h(t))|h(t) + p)) 2 )ds
		β 2	0	1	τ (∂xks(h(t)) 2 )ds =	β 2	0	1		∂xks(x)

.34) {e:masseq3copy} {e:masseq3copy}

Then for any symmetric probability measure p on R, the process ρp t 2 ρsds = S α ({ρt} 0 t 1 ).

  2 dν n u (x)du + ε n 1 ({ft} 0 t 1 ) = S α ({νt, ft} 0 t 1 ) + o n,δ (1). (4.42) {e:sanb} {e:sanb} 4.4 Large deviations upper bound {s:ldup} In this section we prove the large deviations upper bound of Theorem 1.2 log P({ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ)) -S α μ0 ({νt} 0 t 1 ), (4.43) {e:DBMupbb2} {e:DBMupbb2} by tilting the measure using the exponential Martingale (4.40). Indeed, by using (4.42) uniformly on {ν n t } 0 t 1 ∈ B({νt} 0 t 1 , δ), the large deviations upper bound follows from

	lim sup δ→0	lim sup n→∞	1 n 2

P({ν n s } 0 t 1 ∈ B({νs} 0 t 1 , δ)) = E 1({ν n s } 0 t 1 ∈ B({νs} 0 t 1 , δ))

e n 2 S αn ,n ({ν n t ,f t } 0 t 1 )

  νs(fε)ds. On the other hand, for any L > 0, the set A n R,ε = {sup 0 t 1 e ]e -n 2 R = e -n 2 R .

	that		
	1 2n	L fε t	νn t (fε) -C,
	with a constant C independent of ε. Moreover L fε t , L fε t t 0 n t 4 2 L fε t -n 2 8 L fε t t e n 2 R } satisfies by Doob's inequality
	P (A n R,ε ) c 1 1 But on A n E[e nL fε 1 -n 2 2 L fε 1 ,L fε R,ε , we have for all t ∈ [0, 1]
			t
	νn t (fε) -C -2	νs(fε)ds R,
			0
	and therefore by Gronwall's lemma		
	sup	νn t (fε) 2(C + R) .
	t∈[0,1]	

Dyson Bessel ProcessIn this section we introduce Dyson Bessel process, which is the singular value process of rectangular matrix brownian motions. Then in section 2.2, we will write Dyson Bessel process as a change of measure from Dyson Brownian motion using Girsanov's theorem.

Let

ν [START_REF]Asymptotics of unitary multimatrix models: the Schwinger-Dyson lattice and topological recursion[END_REF] t (x) = ρ(1) t (x)dx for 0 t 1. Then ρ [START_REF]Asymptotics of unitary multimatrix models: the Schwinger-Dyson lattice and topological recursion[END_REF] t is a symmetric measure, with analytic density on its support. We denote ρ

(1) t

= 2ρ

(1)

t (x) + ρ

(1)

t (-x))/2. Let u

(1) t be the weak solution of ∂tρ [START_REF]Asymptotics of unitary multimatrix models: the Schwinger-Dyson lattice and topological recursion[END_REF] t + ∂x(ρ (u (1) s ) 2 dν (1) s ds + π 2 12 1 0 (ρ (1) s ) 3 ds +

s (x)

t ) + α log |x|dν

t (x)

t } 0 t 1 ).

(4.47) {e:largeupb2} {e:largeupb2}

For any small number a > 0, we denote ν

(2) t the probability obtained from shifting ν

(1) t

to the right by 2a, and corresponding ρ

t :

Then u

(2) t (x) = ut(x -2a), and it is easy to see from (4.47) that

t } 0 t 1 ) + oa [START_REF]Asymptotics of unitary multimatrix models: the Schwinger-Dyson lattice and topological recursion[END_REF].

Since the support of ν

t } 0 t 1 ) no longer have a singularity at 0. Thanks to Proposition 3.3, we can further approximate {ν [START_REF] Anderson | An introduction to random matrices[END_REF] t } 0 t 1 by a sequence of measure-valued processes {ν ε t (x)} 0 t 1 , such that lim

t , ν ε t ) = 0.

which satisfies the properties of the Proposition. For ε > 0 small enough, we can construct ν ε t such that it is supported on [a, +∞), away from 0. Moreover,

t } 0 t 1 ) + oε(1)

t } 0 t 1 ) + oa,ε(1) S α μ0 ({νt} t∈[0,1] ) + oa,ε(1).

Moreover, for ε, a sufficiently small, from the construction, we have d((ν ε t (x) + ν ε t (-x))dx/2, νt) δ/3. We take {νt} 0 t 1 as {ν ε t } 0 t 1 with sufficiently small ε, a, with d((ρt(x) + ρt(-x))dx/2, νt) δ/3. Next, we construct a new family of initial data, using the 1/n quantiles of ν0,

In this way si(0) are the 1/n quantiles of ρ0. From our construction and Assumption 1, we have that

We consider the Dyson Bessel process starting from νn 0 , which shares the same Brownian motions Wi as (2.5). We denote its particle density as

By taking the difference between (2.5) and (4.48), we get

.

Averaging over all the indices i ∈ [[n]], we get 

. On the event that {ν n t } 0 t 1 ∈ B({ρt} 0 t 1 , δ/2), sn(t) a, 0 t 1, we can rewrite (4.52) as

(4.53) {e:abb} {e:abb}

In the following we prove that 

(

which gives the large deviations lower bound (4.45) by taking a, ε, δ → 0.

The estimate (4.54) can be proven essentially the same as (3.52). Let Q β k be the law of

where S n ({ν n t , β kt)}0 t 1 ) is as defined (3.17). Then under Q β k , the measure valued process {ν n t } 0 t 1 has the same law as where the constant K depends on ∂xkt(x) and M is stochastically bounded. Especially, (4.56) implies that where in the third line, we used that S n ({ν n t , β kt}0 t 1 ) = Sρ 0 (ρt)+o δ (1) for {ν n t } 0 t 1 ∈ B({ρt} 0 t 1 , δ/2). This finishes the proof of the large deviations lower bound.

where we use similar techniques than in [START_REF] Ben Arous | Large deviations for Wigner's law and Voiculescu's non-commutative entropy[END_REF] to prove that even though the logarithm is singular, log |x|dν n B is close to log |x|dνB on the ball (and similarly for the non-commutative entropy term). By rearranging, we obtain the following asymptotics of the spherical integral

)) + const.

( We recall the following formula for the dynamical entropy S α νA ({νt} 0 t 1 ) from (4.10),

.

(5.5) {e:largeupb3} {e:largeupb3}

By plugging (5.5) into (5.2), we obtain the following theorem on the asymptotics of rectangular spherical integral, In the remaining of this section, we give an informal characterization of the minimizer in (5.6), by the complex Burger's equation. We denote the minimizer of (5.6) as {ρ * t } 0 t 1 , then it satisfies the following Euler equation gives

(5.7) {e:euler} {e:euler}

We define the function

Then thanks to the relations (5.4) and (5.7), ft(x) satisfies the following complex burger's equation

(5.8) {e:burgeq} {e:burgeq}

The complex burger's equation can be solved by characteristic flow formally. Let

There are two quantities conserved:

Therefore, we have

Solving them we get Zn,m dU dV.

Joint law of

(5.9) {e:lawUb} {e:lawUb}

To do it, we construct An, Bn to be the hermitized version of these operators:

With the hermitized operators An, Bn, we can rewrite the law dµn,m(U, V ) from (5.9) as dµn,m(U, V ) = e βnRe[Tr(AnBn)]/2 Z β m,n dU dV, (5.10) {e:lawUb2} {e:lawUb2}

where dU denotes the Haar measure on the Unitary (resp. orthogonal) group when β = 2 (resp. β = 1). We denote by µA n ,Bn the non-commutative distribution of (An, Bn) given by µA n ,Bn (P ) = 1 n Tr(P (An, Bn)) .

(5.11) {defher} {defher}

where P belongs to the set C X1, X2 of non-commutative polynomials in two self-adjoint variables. We recall that C X1, X2 is the linear span of words in X1, X2 endowed with the convolution

for any ij ∈ {1, 2} and z ∈ C. We denote the space of non-commutative laws as

We recall that for any L > 0, the subset

of M is a compact metric space. Hereafter, we will concentrate on non-commutative laws with given marginal distributions νA, νB compactly supported on [-L.L] for some finite L:

which is also compact. {p:uniquelimit Proposition 5.1. Let An, Bn ∈ R n×m and U ∈ O(n), V ∈ O(m) following Haar distribution over orthogonal group for β = 1; An, Bn ∈ C n×m and U ∈ U(n), V ∈ U(m) following Haar distribution over unitary group, for β = 2, where m n and m/n → 1 + α, α 0. We assume that the symmetrized empirical singular values νn A and νn B of An and Bn converges to νA and νB respectively. We further assume that An, Bn are uniformly bounded for the operator norm. Then µA n ,Bn as defined in (5.10) converges almost surely towards a tracial state τ which depends only on νA and νB.

The proof starts by noticing that the convergence of the trace of powers of linear combinations of An, Bn follows from the large deviations of Dyson Bessel proces. We then show that the non-commutative law µA n ,Bn is tight for the weak topology since the variables are uniformly bounded (and therefore µA n ,Bn ⊂ ML for some finite L and all n ∈ N) and that any limit point satisfies the so-called loop equation. The convergence of powers of linear combinations of An, Bn and the loop equation will then be shown to uniquely characterize the limit.

Proof. We recall the real/complex Brownian motions starting from An from (2.4):

If we condition on that the singular values of H(1) are given by Bn, i.e. H(1) = U BnV * , then the joint law of U, V is given by (5.9). If we further condition on U, V , i.e. we condition on that H(1) = U BnV * , then the law of {Hij(t)} 0 t 1 is the same as a Brownian bridge from Hij(0) to Hij [START_REF]Asymptotics of unitary multimatrix models: the Schwinger-Dyson lattice and topological recursion[END_REF]. Therefore

) {e:sumABW} {e:sumABW}

where Wn is an n × m matrix with entries given by independent real or complex Gaussian random variables. Each entry has mean zero and variance one. We denote the Hermitized version of H(t) as

The above discussion implies that if we condition on H( 1)

Then the limiting law of the spectral measure of H(t) as n goes to infinity is characterized by the rectangular convolution of the limiting law of νn (1-t)An+tBn using the relation (4.31). For any limiting joint law τ ∈ M of An, Bn, it is necessary that

(5.13) {e:boundary} {e:boundary} and we claim that we also know for t ∈ [0, 1] and k ∈ N the value of τ (((1 -t)a + tb) k ).

(5.14) {e:moment} {e:moment}

To see this point, for τ ∈ M a non-commutative joint law of a, b and denote {ν τ t } 0 t 1 the measure valued process such that ντ t is the law of (1 -t)a + tb + t(1 -t)w where w is a symmetrized Pastur-Marchenko law (the limit distribution of nonzero eigenvalues of H( 1 (5.15) is enough to deduce the distribution of ν(1-t)a+tb of (1 -t)a + tb thanks to the rectangular free convolution relation (4.31). In fact, thanks to Theorem 4.3, the rectangular R-transform of the measure ν(1-t)a+tb , and ρ * t are related by

The rectangular R-transform of µt can be solved in terms of the rectangular R-transform of ρ * t , and it uniquely characterizes µt. It gives us the moments (5.14) for τ * . Next we derive the loop equations for the measure (5.10) : they will together with (5.14) describe uniquely the non-commutative law τ * . Let C A, B, U, V denote the set of * polynomials for non-commutative operators A, B, U, V . Under the assumptions of Proposition 5.1, let W ∈ C A, B, U, V be a self-adjoint polynomial. We recall from [START_REF]Asymptotics of unitary multimatrix models: the Schwinger-Dyson lattice and topological recursion[END_REF][START_REF] Collins | Asymptotics of unitary and orthogonal matrix integrals[END_REF], that for any measure 

and DU = m • ∂U with m(P ⊗ Q) = QP . Similar statements hold for V . We denote the normalized trace τn as

Then τn is tight almost surely, thanks to the uniform boundedness of (An, Bn, U, V ). Hence, any limit point τ * of τn satisfies τ * ⊗ τ * (∂U P ) = -τ * (P DU W ) .

(5.17) {e:loopeq} {e:loopeq}

To get the rectangular spherical integral (5.9), we take

We take non-commutative polynomial P in the form P = U * Q(A, A * , U BV * , V B * U * )U . Then, we get

Hence, since U is unitary and τn tracial τn ⊗ τn(∂U P ) =

We conclude that τn satisfies the loop equation such that for any polynomial

(5.18) {e:prelimit} {e:prelimit} with overwhelming probability. We denote the the limit of U BnV * as b, the limit of An as a, and for any non where p is obtained by replacing in P every even letter by its adjoint. We can then define ∂ b by putting

The two loop equations (5.19) and (5.20) for τ * then summarize into an equation for any limit point τ * of µA n,Bn which reads τ * ⊗ τ * (∂ b P ) + τ * (P (ab -ba)) = 0.

(5.

21) {lop} {lop}

We can then proceed as in [START_REF] Belinschi | Large deviation principles via spherical integrals[END_REF]Theorem 2.11] to see that the loop equations (5.21) allows us to commute a and b. We can use the loop equations to express the trace of any polynomial in terms of the trace of monomials in the form a k b . In particular by applying the loop equations to (5.14), τ * (a k b k-k ) are uniquely determined from the moments . Then the trace of any polynomials are uniquely determined. This gives the uniqueness of τ * and completes the proof.