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Stable and efficient differential estimators on oriented point clouds
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Figure 1: Differential estimations computed with our stable estimators on a large point cloud with normals (2.5M points). Zoom on: (a) the
initial point cloud, (b) our corrected normal vectors, (c) mean curvature, (d,e) principal curvatures, and (f) principal curvature directions.

Abstract

Point clouds are now ubiquitous in computer graphics and computer vision. Differential properties of the point-sampled surface,
such as principal curvatures, are important to estimate in order to locally characterize the scanned shape. To approximate the
surface from unstructured points equipped with normal vectors, we rely on the Algebraic Point Set Surfaces (APSS) [GGO7] for
which we provide convergence and stability proofs for the mean curvature estimator. Using an integral invariant viewpoint, this
first contribution links the algebraic sphere regression involved in the APSS algorithm to several surface derivatives of different
orders. As a second contribution, we propose an analytic method to compute the shape operator and its principal curvatures
[from the fitted algebraic sphere. We compare our method to the state-of-the-art with several convergence and robustness tests
performed on a synthetic sampled surface. Experiments show that our curvature estimations are more accurate and stable while
being faster to compute compared to previous methods. Our differential estimators are easy to implement with little memory
footprint and only require a unique range neighbors query per estimation. Its highly parallelizable nature makes it appropriate
for processing large acquired data, as we show in several real-world experiments.

CCS Concepts
¢ Computing methodologies — Computer graphics; Point-based models; Shape analysis;
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1. Introduction

Recent developments of technologies and sensors as photogram-
metry and Lidar have democratized 3D scanning. 3D point clouds,
resulting from these scans, are thus becoming a standard way for
acquiring our environment. Their processing is then required for
their effective use in many domains of application such as earth
and city digitization, culture heritage, engineering, entertainment,
health, agriculture, etc. The acquisition pipeline usually starts with
the generation of a 3D point cloud that is challenging to process.
These point clouds, composed of a large number of samples (up to
billions), exhibit many artefacts, and lack of structure to parameter-
ize the points-sampled surface. This is essentially why traditional
signal processing techniques are difficult to apply on unorganized
point clouds.

Point cloud processing - as protein surface comparison [Con86],
line-based rendering [PKGO3], fractured objects reassem-
bly [HFG*06], point cloud registration [GMGP05, MDS15],
semantic classification [KHS10, KLM*13, TGDMI18] pattern
recognition [HLP*20], and real-time point-cloud reconstruction
from single photon lidar data [TAM*19] to name a few - often
rely on local shape characterization, which may be efficiently
done using differential estimations locally describing the unknown
surface from the point set. When processing point clouds sampling
real-world objects, we thus need accurate (low error), consistent
(low variance), robust (stable with respect to noise), and efficient
(in time and memory) differential estimators.

Contribution. By relying on the Algebraic Point Set Sur-
faces (APSS) [GGO7] - that efficiently approximate a smooth man-
ifold from scattered points equipped with normal vectors (see Sec-
tion 3 for a brief background) - we propose to combine two dif-
ferent frameworks to obtain a provable mean curvature estimator
and a robust principal curvature estimator on unstructured 3D point
clouds. The analysis of the first, the algebraic sphere regression in-
volved in the APSS algorithm, with the second, an integral invari-
ant viewpoint [MHY S04, PWHY09, DM 14], demonstrates conver-
gence and stability guarantees on the mean curvature estimator. In
addition, the differentiation of the weighting kernel used in the al-
gebraic sphere fitting, allows us to provide a new analytical formula
for the shape operator of the APSS used to derive principal curva-
tures.

These lead us to the following contributions:

e We perform an asymptotic analysis of the algebraic sphere re-
gression demonstrating that the inverse radius of the fitted sphere
tends toward the expected value of the surface mean curvature
(Section 4). We also show how the algebraic sphere regression
gives access to an anisotropy measure as well as 3™ and 4™ or-
der surface derivatives. We analyse the stability by directly link-
ing the strength of a Gaussian noise on positions to the analysis
radius of the APSS weighting kernel.

e We analytically differentiate the APSS fitted algebraic sphere to
estimate our Algebraic Shape Operator and the principal curva-
tures of the point-sampled surface (Section 5). We then demon-
strate the higher robustness of our Algebraic Shape Operator
with several experiments on both synthetic and acquired data in
Section 6.

2. Related Work

In this section, we first review the general methods for locally es-
timating curvatures on unstructured point clouds. We then more
specifically present the different methods related to our two frame-
works: Point Set Surfaces and Integral Invariants.

Curvatures estimation on point clouds. Pauly et al. [PGKO02] in-
troduce the Surface Variation computed from the eigenvalues of the
Principal Component Analysis (PCA). It efficiently measures the
distance from the surface to a representative plane, but it lacks of
efficiency for discriminating between different curved surface. The
Osculating Jets method proposed by Cazals and Pouget [CPO5] es-
timates the coefficients of a truncated bi-variate Taylor expansion
that best match the neighboring points over the tangent plane. Re-
cently, Béarzi et al. [BDC18] have proposed a similar method de-
composing the bivariate Taylor approximation into a radial polyno-
mial and angular oscillations, creating a new set of basis function
called Wavejets. These two methods can compute surface deriva-
tives up to any orders at the cost of large systems to solve.

Kalogerakis et al. [KSNS07] directly fit the shape operator of the
surface from pairs of neighboring points and their normal vectors.
Meérigot et al. [MOG10] estimate principal curvatures from Voronoi
Covariance Measures (VCM) computed from the Voronoi diagram
of the point cloud. Although this method comes with theoretical
guarantees, it remains relatively sensitive in practice when there
is a significant amount of noise and varying sampling as usually
found in real-world acquired data. Guerrero et al. [GKOM18] pro-
pose a deep neural network called PCPNet, which is inspired from
the pioneer PointNet architecture [QSMG17]. Such machine learn-
ing approach experimentally gives accurate estimations of principal
curvatures, but guarantees on the accepted level of noise and sam-
pling variation are missing.

Point Set Surfaces. Introduced by Alexa et al. [ABCO*01], Point
Set Surfaces (PSS) approaches use Moving Least Squares regres-
sions [Lev98, Lev04] for approximating a smooth manifold from
scattered points. This local procedure estimates a reference plane
using non-linear optimization and fits a bivariate polynomial to the
local neighborhood expressed over it. A simpler and more effi-
cient PSS is provided with an implicit formulation [AA03] using
weighted average position and PCA. Another similar but slightly
more general PSS proposed by Amenta et al. [AKO4] is defined by
the critical points of an energy function along lines determined by
a given vector field. Principal curvatures are directly available from
such PSS formulation [YQO7]. Many other versions exist includ-
ing Progressive PSS [FCOASO03] that build a multi-resolution sur-
face, Anisotropic PSS [AA06], which are more robust to irregular
sampling, and Parabolic-cylindrical PSS [RGRG15] enforcing de-
velopability. Guennebaud and Gross [GG07] propose to directly fit
an algebraic sphere [Pra87a] to avoid the critical step that estimates
a reference plane. These Algebraic Point Set Surfaces (APSS) are
stable in presence of noise and are efficient to compute thanks to the
closed-form formula of the algebraic sphere regression [GGGOS].
The inverse radius of the fitted sphere provides an estimate for the
mean curvature. The APSS is a classical method developed in the
context of point cloud rendering, but it is also used to analyse the
point-sampled surface as done by Mellado et al. [MGB™12] with
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the Growing Least Squares (GLS). They provide point-wise multi-
scale differential descriptors based on the APSS that are widely
used for point cloud registration [MDS15], modeling [NGM14],
and pattern recognition [LMBM20, HLP*20]. In addition to its ef-
ficiency and robustness, we rely on the APSS for the analytical for-
mula of the sphere fitting, which makes it suitable for an integral
invariant analysis and for kernel differentiation.

Integral invariants. Integral invariants refers to a family of ap-
proaches that provably links integral operations on local geo-
metric quantities around a point on a surface to its differential
properties. This fundamental link is theoretically proven using an
asymptotic setting where the size of the neighborhood tends to-
ward zero. Manay et al. [MHYS04] introduced this name to de-
sign local signatures for 2D shape matching. Their work follow
the longstanding research on the connections that exist between
locally integrated measures like area, volumes and moments with
surface curvatures [Ber48, Con86, HT03, CRT04]. More recently,
Pottman et al. [PWY*07, PWHY09] provide several methods to
compute various integral invariants on meshes. They obtain prin-
cipal curvatures estimations [YLHPO6] that are shown to be more
robust than those obtained using PCA [CRT04,PKGO03], normal cy-
cles [CSMO03] and Osculating Jets [CPO5]. Digne et al. [DMSL11]
leverage the PCA to perform a mean curvature flow for point cloud
smoothing. Integral invariants can be formulated as soon as local
sums are computed around a point as done by Digne et al. [DM14]
for several curvature estimators [BC94, LT90, PGKO02] and re-
gression methods [DMSL11, ABCO*01]. The integral nature of
such approaches makes them particularly stable with respect to
noise. For this reason, they are used for many geometry process-
ing tasks such as point cloud registration [GMGPO05], shape match-
ing [HFG™06], shape editing [LZH*07], as well as digital geometry
analysis [CLL13].

3. Background: Algebraic Point Set Surfaces

We first remind the algebraic sphere regression involved in
the APSS [GGO7]. Instead of directly fitting a more general
quadric [AJB*07], the algebraic sphere regression does not lead
to any ambiguous geometric configuration (e.g. near double sheets
surfaces), usually involves less computational resources, and still
remains accurate for principal curvatures estimation as we will
show. The algebraic sphere is represented as the O-isosurface of
the following scalar field function:

f(x):= uL-+uZx+uq x'x, (1)

where uc € R, uy € R? and ug € R are respectively the constant,
linear and quadratic coefficients of the sphere. Fitting an algebraic
sphere to N oriented points {p;,n;},_, , leads to the closed-form
solution [GGGOS, Equation 6]:

_ L Xiwipimi — Y, wi Pi- X wi 0y
2YiwiPiPi— XLiwi Pi- LiWi Pi

u(x) = le,- <Zwi n; —2 g (x) ) wi Pi) ) ®)

i

@

uq(x)

ue(x) = — Z-lwi (“z(x)-zwi pi +Mq(X)ZWi Pi~Pi) G
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where w; = w,(p; — X) is a weighting function of support size r €

R* defined by:
wr(x) ;=K (”—):H) . ®))

The smooth decreasing kernel is typically defined by the polyno-
mial K (x) = (x> —1)2.

As pointed by Mellado et al. [MGB*12], a given set of parame-
ters uc, g and ug4 characterizes an infinite set of local hyperspheres
as there exists an infinity of scalar fields (based on scalar multiples
of [ue,uy,ug]) that correspond to the same fitting coefficients. To
solve this issue and consistently pick a unique solution, they use
Pratt’s normalization [Pra87b] to constrain the scalar field to have
a unitary gradient vector on the O-isosurface, yielding:

o Uc A Uy A Uq
Ue = ) uf = T\ Ug = —F—, (6)
< px) px)" T p(x)

with p := +/|lug||? — 4ucuy being the Pratt’s norm. Two differ-
ential estimators can be derived from these normalized parame-

ters [GGO7] computed without loss of generality at the origin of R3:
the mean curvature A and the corrected normal vector i, that are
respectively defined as:

H =2y, 7
A= L ®)
[l |l

H corresponds to the inverse radius of the hypersphere, and fi to
the normalized gradient. We present in Section 4 a study of the
asymptotic behavior of differential quantities estimated from the
algebraic hypersphere parameters, and we introduce in Section 5 a
novel estimator for the shape operator.

4. Differential properties from the algebraic sphere regression

This section is organized as follows. We first describe the asymp-
totic analysis framework in Section 4.1 that is used to recover sta-
ble differential quantities from the hypersphere coefficients (Sec-
tions 4.2 and 4.3). Then, we study the asymptotic properties of
other estimators derived from the hypersphere coefficients: the spa-
tial derivatives of the coefficients (Section 4.4) and the bilaplacian
flow (Section 4.5). We introduce in Section 4.6 a theoretical anal-
ysis of the estimators robustness when the input point samples are
perturbed by Gaussian noise. Proofs are detailed in the supplemen-
tary material.

4.1. Asymptotic framework

We study a smooth regular surface S embedded in R3, and the anal-
ysis focuses on one of its point p € S and its neighborhood within a
fixed distance r € R*. The frame of analysis is the so-called prin-
cipal frame [PWY*07] (also called local canonical frame [DC76,
Section 1.6] or local intrinsic coordinate system [DMSL11]). The
frame origin is defined such that p = 0, and the surface § is lo-
cally expressed as a height field over its tangent plane by using the

mapping:

fry) =[x y z2xy)]". ©9)
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@ V3~ |VH]

Figure 2: Geometric features: obtained from local algebraic sphere regressions performed on 2 million unstructured points (dark dots
are due to the splats rendering). We summarize the relevant differential properties that are asymptotically linked to each of them by the
symbol ~. (a) The quadratic parameter is related to the mean curvature H (Theorem 1). (b) The deviation of the Pratt’s norm from 1
defines an anisotropy measure (Proposition 1). (c¢) The constant parameter involves 4" order derivatives which highlights fine surface
variations (Theorem 1). (d) The squared root of the geometric variation [MGB™* 12] is related to the norm of the mean curvature gradient

(c) fic ~ 9H? —5KH — AH

(a) g ~ H ) 1—p~ (k1 —Kk)?

involving 3" 4 order derivatives ( Proposition 2).

The coordinates x and y on the plane are aligned with the directions
of principal curvatures k; and x;. The height z along the surface
normal vector n is given by the following Taylor expansion of order
5 (minimum order required for the following studies):

iZ()xjk. aje+0(x*+30). (10

k=0 j=0

The coefficients a;;_; = ax]%yk - correspond to the successive
derivatives of z evaluated at p. In this work, we focus on the follow-
ing differential quantities: the principal curvatures that are explic-
itly written as K; = app and K» = ag, and the mean and Gaussian
curvature that are respectively denoted by H = (k] + k»)/2 and
K = x;x,. Note that this local principal frame is chosen so that
apgo = ajo = ag; = aj; = 0. The Laplace operator applied to the
mean curvature, which is also half of the bilaplacian of z, is also
explicitly denoted by AH = 1A%z = 1 (aag +2a20 + aga).

In this smooth setting, any discrete sum appearing in Equa-
tions (2)-(4) is replaced by an integral over the surface patch:
Pr:= Br(p) NS, where B,(p) is the ball of center p and radius r.
Integrating over P is actually asymptotically equivalent to inte-
grating over the cylindrical neighborhood [DMSL11, Lemma 1]:

Dy :={(x,y)€]R2, x2+y2<r2}, (11)

which is used instead as it makes analytical integration possible.
Note that for simplicity, this study considers a constant weighting

w; = | instead of the smooth decreasing weighting kernel of Equa-
tion (5) that is used in practice. Apart from changing multiplicative
constants, this modification does not impact the results of the fol-
lowing sections.

4.2. Algebraic sphere coefficients

Our first result stated in Theorem 1 concerns the link between the
coefficients of the normalized algebraic sphere (see Equation (6))
and the differential properties of the surface.

Theorem 1 The parameters of the algebraic sphere fitted to the
surface patch P, have the following asymptotic expansions:

H
g = —*—FO( ) (12)
aztaipn
(103<8lel 2 3
e r +0(r ), (13)
0
78 i 9H —5KH — AH)r +0( ) (14)

The full proof is provided in the supplementary material. Equa-
tion (12) demonstrates that the quadratic coefficient 7, is propor-
tional to the mean curvature of the surface as visually validated in
Figure 2-(a). In case the surface is flat, the mean curvature H is null,
ilq is equal to zero, and the fitted algebraic sphere of Equation (1)
degenerates to a plane. The constant parameter . is the algebraic
distance between the point of analysis and the algebraic sphere. It
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is asymptotically equivalent to a mix between the mean and Gaus-
sian curvatures, and the bilaplacian of the surface AH. Since this
last quantity involves 4™ order surface derivatives, i highlights
the fine variations of the surface as shown in Figure 2-(c).

4.3. APSS differential estimators

We now give one of our key contribution, which is the conver-
gence proof of the APSS differential estimators A and i (Equa-
tions (7) and (8)).

Corollary 1 The normal estimator fi and the mean curvature esti-
mator H have the following asymptotic expansion:

0 axtain

= a -il;—a 2 3

f=[0| — |@te| 2 yo0”), (15)
1 0

A=—-H+0(r). (16)

This corollary follows exactly from Equations (7) and (8) and
Equations (12)-(14) of Theorem 1.

4.4. Other curvature-related estimators

Even though the algebraic sphere is, by definition, isotropic and
cannot estimate principal curvatures, it can still measure the
anisotropy of the principal curvatures, as detailed in the following
proposition.

Proposition 1 The Pratt’s norm is asymptotically given by

(k1 —%2)% 2

—1— 3
p=1 TR +0(r). (17)

In other words, the Pratt’s norm deviates from 1 by a quantity
proportional to (i —;)2. Therefore, the difference 1 — p can be
used to define an anisotropy measure of the surface. As we can see
in Figure 2-(b), it is null around flat and spherical regions, whereas
it takes high values near elongated features.

Also, the spatial derivatives of the hypersphere coefficients
appear in the geometric variation Vv introduced by Mel-
lado et al. [MGB™* 12, Equation 5]. It measures the variation of the
algebraic hypersphere when the neighborhood size r changes:

= (3riic)* + (royn)* + (rzarﬁ)2 (18)

Proposition 2 The asymptotic expansion of the GLS geometric
variation is

VH|?
= L ” r4—0—0(r5)7 (19)
where VH = [7‘1302“‘2 LE‘”'}?

Therefore v is related to the norm of the spatial gradient of the
mean curvature H and thus involves 3™ order surface derivatives.
Figure 2-(d) shows that the GLS geometric variation character-
izes detailed geometric features, which remain different from those
characterized from #. and iy (Theorem 1).
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4.5. Bilaplacian flow estimator

This section presents the projection operator sending the point of
analysis p onto the algebraic sphere that is fitted to the surface
patch P, around it.

The projection of a point x onto the sphere is defined by:

W VEx)  ifug, =0,
[ E%H ’

. (20)
f(x) otherwise.

o(x) =
X = vy

In the asymptotic settings introduced in Section 4.1, the projection
of the center point p amounts to:

- é‘l" i ifug =0, on
7= Gl=1g  otherwise.

i1y

Proposition 3 The projection of the point of analysis onto the fitted
algebraic sphere is

L O3 — 5KH — AH)*n+ 0(). 22)

=9

The projection onto the fitted algebraic sphere displaces the point
along the normal vector n with a distance proportional to 9H 3
SKH — AH. Since AH appears in this equation, repeating several
iterations of such algebraic sphere projections creates a bilapla-
cian flow. The geometric flow induced by this projection operator
is to algebraic sphere regression what the mean curvature flow is
to PCA-based plane regression [DMSL11]. In addition, it can be
related to the bilaplacian flow implied by the PSS [ABCO*01] as
demonstrated by Digne et al. [DM14].

In Figure 3, we compare the PCA-based mean curvature flow
with our algebraic sphere-based bilaplacian flow. After tens of iter-
ations, our flow gives a more rounded shape and avoids the critical
instabilities of the mean curvature flow that are due to singularities
appearing near the medial axis of the surface.

4.6. Stability analysis

In this section we study the convergence behaviors of the APSS
estimators (Equations (7) and (8)) when the 3D points are perturbed
by noise. More formally, each ’true’ positions p is modified by a
noise displacement 3D vector €:

p =p+e. (23)

€~ N3(0, 02) is an isotropic Gaussian noise with an expected value
equal to zero, and with a standard deviation given by:

o= +o00P), 24)

defined by a constant 8 > 0, and an order B > 0. In the following
we report an appropnate order B that is sufficient to ensure that the
perturbed estimators H* and A* are convergent.

Theorem 2 For § > 2, we have

0 asoJSralz

0= (0] - |wien| 2y o), (25)
1 0

H =—H+0(r). (26)




T. Lejemble & D. Coeurjolly & L. Barthe & N. Mellado / Stable and efficient differential estimators on oriented point clouds

Figure 3: Geometric flows: after 30 iterative projections onto PCA
planes (middle) and algebraic spheres (bottom) using the initial
point cloud shown on the top.

This stability theorem shows that the normal and the mean curva-
ture estimators converge toward their theoretical values as long as
the Gaussian noise standard deviation ¢ has at least a quadratic re-
lation with the regression radius r. For B < 2, these estimators are
biased by the noise and do not converge toward n and H. All proofs
are given in the supplementary material.

5. Algebraic shape operator

Our second contribution concerns the estimation of the principal
curvatures from the algebraic sphere fitting. The goal is to compute
the shape operator:

W:=P

Vi

(N7 en
of the scalar field function f of Equation (1), where P is the 3-by-
2 transfer matrix from the 2D tangent plane to the 3D space. We
recall that for any unit direction v = [u v] T defined on the tan-

gent plane, applying the shape operator as viwy gives the normal
curvature of the surface in that direction.

Using only Equation (1), and thus considering uc, uy and ug as
constants, leads to a symmetric shape operator from which princi-
pal curvatures cannot be accurately computed. Instead, we propose
to rely on the smoothing kernel of Equation (5) used in the weighted
Least Squares algebraic sphere regression in order to differentiate
the fitted scalar field of the APSS. Indeed, the parameters of the fit-
ted sphere given in Equations (2)-(4) actually depend on x through
the weighting kernel that can be differentiated twice.

From the fitted algebraic sphere, we obtain the following gradi-

ent:
Vf(x)=Vuc+uy+ Vulx+ 2ugx + quxTx, (28)
and the following Hessian matrix:
sz(x) =V2ue + Vuy + Vu! + Viux+ 2quxT
XXV 2uq + 2ugh +2xVil (29)
which, when combined with Equation (27), define our Alge-

braic Shape Operator (ASO). Note that each expression in Equa-
tions (28) and (29) depends on X, which is omitted for clarity. Since

T . .
u = [ugx ug, llgz] is a 3D vector, the term Vzu(x in Equa-
tion (29) is the product between the rank-3 tensor Vzug and the
. . T . .
3-dimensional vectorx = [x y z|, which gives:

Viux = xV2ug, +yViug, +2V 7y, (30)

By denoting A; and A, the two eigenvalues, and e; and e, the
two eigenvectors of the shape operator W, we obtain the following
estimators for the normal vector, the mean, Gaussian, and principal
curvatures, and the principal directions at the point from where the
APSS algebraic sphere has been fitted:

_ Vf(x)

flyy = , 3D
V)l

= @ (32)

Kw = 7\.17\.2, (33)

K =27, K =M\, (34)

d] =er, dz =e). (35)

The analytical Equations (28) and (29) can be implemented in
the same unique loop over the neighboring points used for the fit-
ting, and without significant additional memory. It results in an effi-
cient algebraic shape operator (AS0) leading to principal curvatures
that are evaluated in the next section.

6. Experimental Evaluation

In this section, we compare our estimators with previous meth-
ods. More precisely, we consider the estimators listed in Table 1
to evaluate either the mean curvature, or the complete curvature
tensor on point clouds. All methods have been implemented in the
same framework (detailed in Section 6.3) that will be made publicly
available.

To evaluate the stability of the estimators with respect to a
ground truth, we consider the isosurface of a polynomial implicit
function sampled using a Lloyd’s relaxation scheme [Lev15]. This
allows us to compare the estimated differential quantities with re-
spect to the expected ones, for various sample counts N. All meth-
ods in Table 1 have a unique parameter: the radius r of the Eu-
clidean ball used to define the local neighborhood of a given point.
The VCM approach has a second convolution parameter R that has
been set as a fraction of r as suggested in [PC21] (i.e. R = 0.57).
Compared to other approaches, the APSS and ASO estimators
require oriented points, thus with prescribed normal vectors. De-
pending on the experiments, the normal vector field can be either
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given by the acquisition device (Lidar setting), by an initial rough
estimation (for instance using a PCA fitting of the neighborhood),
or from the underlying smooth surface (e.g. available in the conver-
gence test). As a consequence, except for APSS and ASO, all mean
curvature estimators listed in Table 1 output absolute value of the
mean curvature.

6.1. Convergence experiments

In this first test, we consider a smooth surface, the Goursat 0-
surface defined by —8 — 2x% + 0.03x* — 2y” + 0.03y* — 222 +
0.03z* =0, which exhibits an interesting range of curvature values,
and evaluate the differential estimators on oriented points {p;,n;}
sampling the isosurface (using the above-mentioned Lloyd’s relax-
ation approach). We first evaluate the convergence of the mean cur-
vature and corrected normal vector quantities while increasing the
number of points N. In this setting, we have considered a fixed
radius 7 set to 5% of the limit shape diagonal. Figure 4 presents
logscale graph of the estimation error for the absolute value of the
estimated mean curvature (% Y (|Hegtimated| — | Hexpected))- as well
as the corrected normal vector estimation (% Y (1 — Negrimated -
Dypecied|))> With respect to N.

First, we observe a good experimental convergence of WJets,
OJets, PSS, and the proposed estimators, which matches with
the theoretical guarantees provided by these methods (Corol-
lary 1 for APSS). We also observe a very good experimental be-
havior of the quantities derived from our curvature tensor ASO,
namely H,, and f,,.

6.2. Robustness experiments

We evaluate the robustness of the estimated quantities with respect
to noise, either on the position or the prescribed normal vector
field. In Figure 5 and to match with the statement of Theorem 2,
we compare our approaches with previous ones when a Gaussian
noise on the positions {p;} is considered (with standard deviations
in {0,0.005,0.01,0.02}). In all these tests, we set the radius param-
eter to r = 0.1. For each result, we render the absolute value of the
mean curvature estimator (top-left part) and a pure reflexive mate-
rial with a zebra pattern to highlight the smoothness of the corrected
normal vector (bottom-right part). Although a Gaussian noise is not
a complete representative model of a real acquisition noise, it can
still be shared by many 3D acquisition sensors and techniques. In
the supplementary material, we provide additional robustness tests
on non-uniform sampling of the input geometry, as well as a sim-
ulated Lidar sampling with noise in the depth measurement. We
also provide further experiments with various r (which can also be
set as a function of the noise level) and the estimators proposed
in [PWY™*07], [DMSL11] and [GKOM18] (for both single scale
and multi-scale pre-trained networks).

Figure 5 also highlights a robustness test with respect to the input
normal vector field {n;}: if we consider an estimation of the nor-
mal vector field using a simple PCA fitting ({npcs} +APSS and
{npca } +AS0), we observe similar results on this object compared
to exact normal vectors from the implicit surface. In Figure 6, we
evaluate the stability of the APSS and ASO quantities when the in-
put normal vectors are perturbed using a varying angular random
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noise of 10°, 20° and 30°. We have also performed an additional
test when normal vectors are flipped with probabilities 0.1 and 0.3.
We observe a strong stability of both APSS and ASO quantities,
with an even better stability for ASO.

Finally, Figures 1 and 7 illustrate various differential quanti-
ties (mean curvature, corrected normal vectors, Gaussian curvature,
principal curvature values and directions) on a Lidar Pisa data set
(2 506 408 points) and the Dragon statue (127 572 points).

6.3. Implementation details and timings

All the methods have been implemented in C++ using
Eigen [GJ*10], except for VCM and OJets whose implementa-
tions come from CGAL [PC21, AGJ*21]. The APSS code comes
from Ponca [MLGB20], and we converted in C++ the Matlab im-
plementation of WJet s released by the authors. Point cloud ren-
derings have been obtained using Radium [MRB*]. The same k-d
tree is used to accelerate range neighbors queries (except for VCM
that builds a Voronoi diagram). Its branches split across the most
elongated dimension at the middle, and it has a maximal depth of
32 and a maximum of 64 points per leaf. The proposed estimators
will be released in the Ponca library [MLGB20] upon publication.

Timings reported in Table 2 are recorded using an Intel(R)
Xeon(R) CPU with 40 cores at 2.40GHz and 128G of RAM. Our
shape operator (ASO) adds a slight overhead compared to APSS
due to the computation of Equations (28) and (29). It remains faster
than OJets, WJets, PSS and VCM since it avoids the decomposi-
tion of large matrices and the construction of a Voronoi diagram. In
addition, our method has a constant complexity in memory with re-
spect to the number of neighbors, contrary to OJets and WJets.
Computing the distance to the barycenter [PWY*07] and to the
PCA plane [DMSL11] is very fast, but it is limited to mean cur-
vature estimations and gives imprecise results in practice. To sum-
marize, our method is the fastest and the most accurate and robust
way (Sections 6.1 and 6.2) to estimate principal curvatures in un-
structured point clouds.

7. Conclusions

We have introduced an analysis of the theoretical stability prop-
erties of the differential estimators based on the APSS. From a
computational point of view, the proposed estimators can easily
be implemented on parallel architectures, only requiring nearest
neighbor queries for which many efficient data structures exist. We
have shown that these quantities converge to the expected differen-
tial ones (e.g. mean curvature, corrected normal vectors) when the
point cloud approximates a smooth manifold. A stability property
has been proposed with respect to perturbations of point positions
(Gaussian noise). We have also proposed a new set of estimators
for computing differential properties on point clouds exploiting the
full curvature tensor from the shape operator. We did not provide a
convergence proof for these estimators but we show better exper-
imental behaviors than the proven ones in quantitative studies, for
comparable computational requirements.

Limitations. In order to estimate signed curvature information,
our APSS approach requires oriented normal vectors. In most ac-
quisition scenarios (e.g. Lidar, photogrammetry), normal vectors
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Name Quantity

Ref. Comment

Distance to barycenter Mean curvature

[PWY*07, Theorem 6]  convergence proof

Distance to PCA plane Mean curvature

[DMSL11, Theorem 2]  convergence proof

Point Set Surfaces (PSS) Curvature tensor [ABCO™*01]

Osculating Jets (OJet s) Curvature tensor [CPO5] convergence proof
Wavejets (WJets) Curvature tensor [BDC18]

Voronoi Covariance Measure (VCM) Curvature tensor [MOG10] convergence proof
Algebraic Point Set Surfaces (APSS) i (Equation (8)), H (Equation (7)) [GGO7] convergence proof (here)

Algebraic Shape Operator (ASO)

iy, &1,%2,H,,.K,, (Equations (31)-(33))  here

Table 1: Compared methods: list of estimators evaluated in our experiments (Sections 6.1 and 6.2).
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Figure 4: Asymptotic analysis: error plots in logscale of the absolute

function of the number of points N (with fixed r = 0.01).

are provided and oriented relatively to the acquisition device po-
sition. In our experimental evaluation, we demonstrate that pertur-
bation in the normal vector orientation has limited impact on the
estimated quantities to some extent.

Future work. A first challenging future work would be to extend
the proposed framework to the non-oriented algebraic fitting pro-
cedure introduced by Chen et al. [CGBG13]. This would allevi-
ate the normal vector orientation requirement when this informa-
tion is not provided in the input point cloud. A more technical
future work would be to extend the stability results by consid-
ering alternative noise models (e.g. Hausdorff perturbation, Lidar
specific models, etc), or to study alternative reconstruction ker-
nels [RIT*05,0GG09].
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0 0.005 001 0.02 0.5
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Figure 5: Stability with respect to noise on the positions: we evaluate the absolute value of the mean curvature and the corrected normal
vectors for various noise level (Gaussian noise with standard deviations in {0,0.005,0.01,0.02}). Curvature measures are displayed using
a white-red colormap with a green highlight for the zero-curvature values (grey values correspond to quantities outside the [0 : 0.5] range).
To illustrate the smoothness of the corrected normal vectors, we consider a pure reflective material with a zebra like environment map to
approximate isophotes.
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0° 10° 20° 30° flip p = 0.1 flipp =03
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Figure 6: Stability of APSS and ASO on perturbed normal vector field input: using similar rendering as for Figure 5, we compared estimated
quantities when normal vectors are perturbed using a random angular Gaussian noise of degrees in {0, 10,20,30} around the exact normal
vectors, or when the normal vectors are flipped with probability 0.1 and 0.3.

(0) APSS (q) OJets (r) PSS

Figure 7: Examples of differential quantities: on the Empire (951 600 points) and Dragon statue (127 572 points), from (a) to (g) and
(h) to (n), the signed mean curvature, the corrected normal vectors, the first and second principal curvatures, the Gaussian curvature and
the first and second curvature directions. On this smooth, noise-free shape, differences between APSS, ASO and OJet s for instance are
limited ((0 —r)). However, APSS and ASO are obtained about 10 times faster (seeTable 2).
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data execution [PWY*07] [DMSL11] APSS ASO OJets WJets PSS VCM
. . parallel 0.07 0.08 008 024 0.98 121 0.55 1431
bragon (Figure 7, 127K points) o ential .12 1.64 1.47 4.34 1276 1997 1067  13.60
p1oa (Figure 1. 2.5M points) parallel 1.64 237 231 782 2275 3941 2021 | 307.94
sa trgure 1, =0 ponts sequential 29.13 46.19 4265 13542  390.13 62038  367.40  291.54

Table 2: Timings: in seconds to compute the differential quantities with two execution approaches: parallel (OpenMP, 40 cores) and sequen-

tial.
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