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Abstract: 13 

Crop monitoring information is essential for food security and to improve our understanding of the 14 

role of agriculture on climate change, among others. Remotely sensing optical and radar data can 15 

help to map crop types and to estimate biophysical parameters, especially with the availability of an 16 

unprecedented amount of free Sentinel data within the Copernicus programme. These datasets, 17 

whose continuity is guaranteed up to decades, offer a unique opportunity to monitor crops 18 

systematically every 5 to 10 days. Before developing operational monitoring methods, it is important 19 

to understand the temporal variations of the remote sensing signal of different crop types in a given 20 

region. In this study, we analyse the temporal trajectory of remote sensing data for a variety of 21 

winter and summer crops that are widely cultivated in the world (wheat, rapeseed, maize, soybean 22 

and sunflower). The test region is in southwest France, where Sentinel-1 data have been acquired 23 

since 2014. Because Sentinel-2 data were not available for this study, optical satellites similar to 24 

Sentinel-2 are used, mainly to derive NDVI, for a comparison between the temporal behaviors with 25 

radar data. The SAR backscatter and NDVI temporal profiles of fields with varied management 26 

practices and environmental conditions are interpreted physically. Key findings from this analysis, 27 

leading to possible applications of Sentinel-1 data, with or without the conjunction of Sentinel-2, are 28 

then described. This study points out the interest of SAR data and particularly the VH/VV ratio, which 29 

is poorly documented in previous studies. 30 

 31 
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1. Introduction  34 

There is a general demand for achieving optimal and sufficient crop productivity, while taking into 35 

account socio-economic conditions and the environmental impacts that the agricultural systems may 36 

cause. Crop management must be attentive to climate variability and adapt its practices according to 37 

given conditions. In this context, it is essential to achieve a full understanding of the processes driving 38 

the current patterns of crops production and also the cropland carbon, water and energy dynamics 39 

needed in implementation of climate change mitigation strategies. 40 

Remotely sensing data can help to monitor crop growth by providing precise and timely information 41 

on the phenological status and development of vegetation. They constitute a valuable tool for 42 

tackling those issues at different scales, from local to global extents, especially when combined with 43 

agro-hydrological models for studies related to crop yield (Duchemin et al., 2015, Baup et. al, 2015), 44 

carbon (Veloso et al., 2014, Revill et al., 2013) and water budget (Le Page et al., 2014, Ferrant et al., 45 

2014).  46 

Optical data are used to explore the links between the photosynthetic and optical properties of the 47 

plant leaves, via vegetation indices. The most used is the Normalized Difference Vegetation Index 48 

(NDVI). Optical satellite images have significantly contributed to provide a range of crop added-value 49 

products, for instance crop area extent estimates, crop type maps (Inglada et al., 2015) and estimates 50 

of different biophysical parameters at various crop phenological stages (Quarmby et al., 1993, 51 

Doraiswamy et al., 2004, Baret et al., 2007, Bontemps et al., 2015). These applications have been 52 

widely developed based on data from various satellites, e.g. Landsat, MODIS and SPOT, although 53 

optical sensors are affected by the presence of clouds. Regarding synthetic aperture radar (SAR) data, 54 

studies have been carried out at various frequencies and incidence angles for interpreting crop 55 

temporal trajectories, based on electromagnetic modeling (Chiu et al., 2000, Cookmartin et al., 2000, 56 

Picard et al., 2002) and/or experimental data (Bush 1976, Engdahl et al., 2001, Hajnsek et al., 2007, 57 

Baghdadi et al., 2009, McNairn et al., 2014). Crop type maps using SAR have also been produced, for 58 

example by Dobson et al. (1996), Skriver et al. (2011) or Deschamps et al. (2012). However, 59 

compared to optical data, the use of SAR data in agricultural applications has not been well 60 

developed, partly due to the complexity, diversity and availability of SAR data, and partly due to the 61 

difficulty of data interpretation.  62 

Up to now, monitoring crop dynamics was hampered by the lack of availability of high temporal and 63 

spatial resolutions satellite time series. A new era started with the launch of the first Sentinel 64 

satellite developed by the European Space Agency, providing a large and unprecedented amount of 65 

free data for the operational needs of the Copernicus program. Sentinel-1A, the first SAR satellite, 66 



launched in April 2014, has started to provide multi-temporal series of SAR imagery (C-band) at an 67 

outstanding time interval of 12 days. With Sentinel-1B, launched in April 2016, the data provision is 68 

expected for every 6 days. Sentinel-2A, the optical satellite, launched in June 2015, provides data at a 69 

time interval of 10 days. With Sentinel-2B, the time interval will be 5 days. Those dense time series 70 

are not yet available worldwide, but for Europe Sentinel-1A and Sentinel-2A are already in operation. 71 

The dense time series of Sentinels offer a unique opportunity to systematically monitor crops at a 72 

weekly repeat cycle (from 5 to 12 days, depending of the data type and the region in the world). In 73 

addition, the continuity of Sentinel data is guaranteed up to 2030 and the next generation of Sentinel 74 

is planned beyond 2030, allowing long-term environmental monitoring.  75 

So far, few studies have been using dense time series SAR data for crop monitoring. Only recently,   76 

Sentinel-1 data have been used (Navarro et al., 2016, Inglada et al., 2016). In order to derive 77 

methods using dense time series SAR and optical data, there is a need to study their temporal 78 

behavior for a variety of crop types that are widely cultivated. The objective of this paper is to 79 

analyse and interpret time series of Sentinel-1 data, and to compare the temporal variation with 80 

NDVI derived from optical data. The experimental dataset contain 28 Sentinel-1 data in 2014 and 81 

2015 over our study area in the South of France. A multi-image filter (Bruniquel and Lopes 1997, 82 

Quegan and Yu 2001) was applied to reduce the speckle effect while preserving the spatial resolution 83 

and the fine structure present in the image. This strategy takes advantage of the Sentinel-1 dense 84 

temporal series and is particularly suited for monitoring even small crops. Since Sentinel-2 data were 85 

not yet available, we use a set of 71 data from different optical satellites that we will refer to as 86 

Sentinel-2-like data. The paper focuses on the analysis of the temporal behavior of SAR backscatter 87 

coefficients and NDVI of the main crop types in the temperate world (wheat and barley, rapeseed, 88 

maize, soybean and sunflower) over fields with varied management practices (e.g. tillage, sowing) 89 

and environmental conditions (rainfall, temperature). The study is conducted over 256 crop fields in 90 

Southwest France, surrounding two Joint Experiments for Crop Assessment and Monitoring (JECAM) 91 

experimental sites (Auradé and Lamasquère) that belong to the Regional Observation System (OSR) 92 

in Southwestern France. 93 

The paper is organized as follows. The following section provides information on the study area and 94 

the data and Section 3 presents the results. Finally, conclusions are given in Section 4. 95 

  96 



2. Study area and Data 97 

2.1. Study area 98 

The study area shown in Figure 1 is located in southwest France next to Toulouse and covers an area 99 

of approximately 70 x 40 km. The study region is mainly covered by arable lands (approximately 100 

60%). The main cultivated crops are wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), 101 

rapeseed (Brassica napus L.), maize (Zea mays L.), soybean (Glycine max (L.) Merr.) and sunflower 102 

(Helianthus annuus L.). The climate in the region is temperate and mild and is characterized by warm 103 

and dry summers, sunny autumns, mild winters and rainy springs. The annual mean precipitation is 104 

approximately 656 mm, and the annual mean temperature is 13°C. The Garonne River crosses the 105 

study area, and the soil textures are mainly clay and loam. However, most of the maize and 106 

sunflower crops in this study are cultivated over silty (boulbenes) and clayey limestone soils 107 

respectively. 108 

A set of 256 fields were surveyed on the ground at different dates for providing land-use data. The 109 

crop type classes included in the dataset and the amount of surveyed fields per class are: wheat (64), 110 

barley (1), sunflower (116), maize (57), rapeseed (10) and soybean (8). The surface area of the fields 111 

varies between 1.75 and 45 ha. Table 1 presents the typical calendar of some of the main 112 

phenological stages and management practices for the investigated crop type classes. 113 

 114 

Table 1: Average periods of the main phenological stages for different crop types in the study area 115 

  Sowing Emergence Heading/Flowering Harvest 

W
in

te
r 

cr
o

p
s Wheat & 

Barley 

Mid-October – 

late November 

Sowing  

+ 15 days 
Late April – early May Late June – mid-July 

Rapeseed 
Late August –  

September 

Sowing + 15-30 

days 
April 

Late June –  

early-July 

Su
m

m
er

   
 c

ro
p

s Maize & 

Soybean 

Mid-April –  

late May 

Mid-May –  

mid-June 
July 

1-15 September 

(silage) 

October (grain) 

Sunflower 
Early April –  

mid-May 

Sowing  

+ 10 days 
1-20  July September 

 116 

In the study area, two agricultural sites have been intensively monitored since 2005, the so-called 117 

Auradé (shown in Figure 2) and Lamasquère sites (Béziat et al., 2009). The two sites are part of the 118 

FLUXNET global network [http://fluxnet.ornl.gov] and the Joint Experiment for Crop Assessment and 119 



Monitoring [JECAM: http://www.jecam.org/project-overview/france-osr] networks. They are also 120 

Integrated Carbon Observation System (ICOS) sites and therefore, meteorological and flux 121 

measurements are standardized according to the ICOS protocols. In addition, fresh biomass and 122 

green area index (GAI) have been measured in both sites in 2015. The concept of GAI (Baret et al., 123 

2010, Duveiller et al., 2011) corresponds to the photosynthetically active plant area without organ 124 

distinctions. We preferred to use the GAI instead of LAI because it is better correlated with remote 125 

sensing observations. 126 

The two sites have similar climatic conditions but different soil properties, topography and 127 

management practices. It is noted that Auradé and Lamasquère crop rotations are representative of 128 

the main regional crop rotations. 129 

The Auradé plot (23.5 ha) is located on a hillside area near the Garonne river terraces and is 130 

characterized by a rapeseed - winter wheat - sunflower - winter wheat four-year rotation that only 131 

receives mineral fertilizers and does not receive irrigation. Only the grain is exported whereas all 132 

other parts of the plants are left. Superficial tillage (5–10 cm depth) is usually done after harvest to 133 

plough residues, spontaneous regrowth and weeds into the soil. The Lamasquère plot (23.8 ha) is 134 

part of an experimental farm owned by the Purpan Engineering School EIP (Ecole d’Ingénieurs de 135 

Purpan) and is characterized by a maize - winter wheat two-year rotation that is used to feed 136 

livestock and provide litter. Therefore, nearly all aboveground biomass is exported as grain and straw 137 

for winter wheat, and maize is harvested when it is still green for silage. Both organic and mineral 138 

fertilizers are applied and the maize is irrigated. In the 2015 season, a hose-reel irrigator was used. 139 

This field was irrigated 5 times between May and August. Superficial tillage after harvest may be 140 

performed, depending on the cultivated crops. Deep tillage (30 cm depth) is usually performed in 141 

November before sowing of summer crops (essentially maize). 142 

For the 2014-2015 agricultural season considered in this study, barley was cultivated (instead of 143 

wheat) at Auradé and maize at Lamasquère. Their crop growth and development will be investigated 144 

in detail in section 3.  145 

 146 

2.2. Field data  147 

2.2.1. Vegetation data 148 

For the Auradé and Lamasquère plots, destructive measurements of green area index (GAI) and 149 

fresh and dry aboveground biomass were performed regularly to characterize crop development 150 

during the vegetative cycle (five times each site). Measured GAI is defined as the half-surface of all 151 

green organs. It was measured by means of a LiCor planimeter (LICOR 3100, Lincoln Inc., 152 

Nebraska). For maize in Lamasquère, twenty plants were collected at each date along a transect 153 



crossing the plot. For barley in Auradé, ten 0.25 m long rows were collected at each sampling date. 154 

Plant height was also measured. Yield data were provided by the farmers who cultivate the two sites.  155 

 156 

2.2.2. Meteorological data 157 

Air temperature and precipitation measurements were continually recorded over the Auradé and 158 

Lamasquère sites (Béziat et al., 2009). Data were originally pre-processed and delivered at a time 159 

scale of 30 min. For this study, air temperature recorded at 6 a.m. was selected, which corresponds 160 

to the approximate time of the Sentinel-1 data acquisition. The precipitation measurements were 161 

integrated to obtain daily values. The Lamasquère site temperature values were used qualitatively in 162 

the analysis of the results for all the 256 other fields under study, assuming that temperatures do not 163 

change drastically within the study area. However, precipitation data over the 256 other fields were 164 

derived from the Global Satellite Mapping of Precipitations (GSMaP) project (Aonashi et al., 2009). 165 

The GSMaP project provides precipitation data based on the combined microwave-infrared algorithm 166 

using GPM-Core GMI, TRMM TMI, GCOM-W1 AMSR2, DMSP series SSMIS, NOAA series AMSU, 167 

MetOp series AMSU, and Geostationary infrared developed by the GSMaP project. The newly 168 

developed algorithm for the Global Precipitation Measurement (GPM) mission (GPM-GSMaP Ver.6) is 169 

used to retrieve rainfall at 0.1 degree latitude/longitude resolution every hour. We assigned for each 170 

crop the corresponding daily rainfall value.  171 

 172 

2.2.3. Soil water content data 173 

At Auradé and Lamasquère sites, theta probes ML2X (DeltaT devices) measuring volumetric soil 174 

water content (SWC) were settled in 3 independent pits, at 0.5 cm and 5 cm depth. A site-specific 175 

calibration function, determined with gravimetric measurement, was applied to convert the mV 176 

signal into volumetric SWC. The root mean square error (RMSE) and the square of the Pearson’s 177 

linear correlation coefficient (r2) related to the linear regression between the mV signal and the 178 

SWC were 5.6% and 0.57 respectively over the Auradé site and 3.2% and 0.87 respectively at the 179 

Lamasquère site. Then, volumetric SWC was estimated by averaging the 3 measurements. Data were 180 

delivered at a time scale of 30 min, and averaged at daily time step.  181 

 182 



 183 

Figure 1: Field data over a 70x40 km area in South-West France, superposed to very high resolution optical data from 184 

Bing Map. Large circles represent the two Joint Experiment for Crop Assessment and Monitoring (JECAM) experimental 185 

sites (Auradé and Lamasquère). Small circles represent the other crop fields studied in this paper. In this area, in average 186 

between 2006 and 2013, 43% of cultivated crops were cereals, 25% were sunflower, 5% were maize and 5% rapeseed, 187 

(from detailed French national land use database, the RPG (in French, Registre Parcellaire Graphique). 188 

 189 



 190 

Figure 2: The experimental site of Auradé (surrounded in black) and its surroundings. Auradé is located 28 km south-west 191 

of Toulouse, in France. At the top, the NDVI map derived from a SPOT5-Take5 image (10 m resolution) acquired on 29 192 

April 2015; at the bottom, an RGB image of VV and VH backscatters from a Sentinel-1 image (20 m resolution) acquired 193 

on 5 May 2015. Vegetated areas appear in green. The 17.5 x 12.5 km area is centered on 43.549°N, 1.106°E.  194 

 195 

2.3. Remote Sensing data 196 

2.3.1.  SAR data 197 

Twenty-eight Sentinel-1A images have been acquired between 6 November 2014 and 7 December 198 

2015. The ESA Sentinel-1 observation strategy defines the Interferometric Wideswath (IW) mode as 199 

the pre-defined mode over land. This mode provides dual-polarisation (VV and VH) imagery, at a 200 

resolution of 10 meters, with a swath of 250km. The incidence angle over the surveyed fields shown 201 

in Figure 1 ranges approximately from 38 to 41o.  202 

 203 



All the Sentinel-1 imagery is made available free of charge by ESA. In this study, we used Level-1 204 

Ground Range Detected (GRD) products that consist of focused SAR that has been detected, multi-205 

looked and projected to ground-range using an Earth ellipsoid model. The data have been first 206 

calibrated to obtain the γ0 backscatter coefficient, using the “Calibration” module in the Sentinel 207 

Application Platform SNAP (ESA, 2017). 208 

We additionally multi-looked the data with a window size of 2x2 (“Multilooking” module in the 209 

SNAP) to reduce the speckle noise effect, reaching a spatial resolution of 20m. Then, terrain 210 

correction was applied (“Range-Doppler Terrain Correction” module in the SNAP) to geocode 211 

accurately the images by correcting SAR geometric distortions (foreshortening, layover and shadow) 212 

using the digital elevation model from the Shuttle Radar Topography Mission (that allows to take 213 

into account the local elevation variations). The images are therefore overlaid, without additional 214 

coregistration. A speckle filter (Bruniquel and Lopes 1997, Quegan and Yu 2001) was then applied to 215 

further reduce the speckle effect while preserving the 20m spatial resolution and the fine structure 216 

present in the image. As evidenced for example in Mermoz et al. (2014, 2016), this filter produces 217 

images with reduced speckle effects from multi-temporal (28 dates) and multi-polarised (VH and VV) 218 

images, and is expressed as follows: 219 

 220 

      
       

 
 

     

       
  

     with  k=1,…,N (1) 

 221 

where Jk(υ) is the radar intensity of the output image k at pixel position υ, Ii(υ) is the radar intensity 222 

of the input image i, <Ii(υ)> is the local average intensity of the input image i (window size of 7x7) and 223 

N is the number of images. We implemented this filter using the Matlab software (R2011 version). 224 

The resulting theoretical equivalent number of looks (ENL) was estimated using the following 225 

equation (Quegan and Yu 2001): 226 

      
   

     
 (2) 

 227 

where L is the initial number of looks, M the number of images (28 dates x 2 polarisations) using a 228 

fixed window size of N pixels (7x7 pixels). L is found to be 17,6 that is the product of approximately 229 

4.4 initial looks for GRD data at 10m (ESA report, 2016) multiplied by 4 (multi-look of 2x2). 230 

According to equation 2, the final theoretical ENL per pixel is 464. In the following, the ENL per 231 

crop is even much higher as tens to hundreds of pixels were grouped to derive average values by 232 

crops. 233 



Radar backscatter is affected by factors related to crop biomass, structure and ground conditions. 234 

Past studies agreed that the observed backscatter at C-band is a combination of the ground 235 

backscatter attenuated by the canopy layer and the backscatter from the canopy, which includes 236 

simple and multiple scattering, and the vegetation-ground interaction (Attema and Ulaby, 1978; 237 

Ulaby et al., 1986; Bouman and Hoekman, 1993). The backscatter from vegetation canopy is 238 

affected by vegetation 3D structure and water content (related to biomass) (Karam et al., 1992). The 239 

ground backscatter at C-band is affected by soil moisture, surface roughness and terrain topography 240 

(Schmugge, 1983). Note that the moderate topography of the plots used in this study (mean slope of 241 

4.3o), together with the Sentinel-1 processing that reduced radiometric and geometric distortions, 242 

ensure low topographic effects. The vegetation-ground interaction depends on both vegetation and 243 

ground characteristics (Brown et al., 2003). The relative importance of these 3 scattering 244 

components depends on the radar frequency, polarisation, incidence angle, the crop type and 245 

growth stage, and the ground conditions. In general, the ground scattering is dominant at the early 246 

and late crop growth stage, and in-between vegetation scattering dominates (Mattia et al., 2003). 247 

However, during the period when the vegetation scattering is more important, the relationship 248 

between the radar backscatter and the vegetation biophysical parameters is considerably influenced 249 

by the dynamics of the canopy structure, including orientation, size and density of the stems and the 250 

dielectric constant of the crop elements, which depend on the phenological stage. For example, a 251 

drastic difference in the sensitivity of backscatter to wheat biophysical parameters has been found 252 

before and after the heading stage by Mattia et al. (2003).  In terms of incidence angle, the shallow 253 

incidence angles (>35-40o) increase the path length through vegetation and maximize the vegetation 254 

scattering contribution (Blaes et al., 2006), whereas steep incidence angles (<30o) reduces the 255 

vegetation attenuation and maximize the ground scattering contribution in the return, which is more 256 

useful for soil moisture measurement (Mattia et al., 2006). In our datasets, the incidence angles are 257 

approximately 40° (38° to 41°), the data are therefore suitable to the crop parameters retrieval. 258 

Regarding the polarisation effect, it is well known that HH is more sensitive to surface scattering and 259 

HV to volume scattering, and VV a combination of the two. HV backscatter is therefore often used for 260 

the retrieval of crop parameters, and HH, ground parameters. However, theoretical modeling and 261 

ground-based SAR measurements have indicated that VH and VV can contain vegetation ground 262 

interaction (double-bounce term) (Picard et al., 2003). In fact, soil returns at VH polarisation is 263 

probably caused by double scattering (stem-ground) (Brown et al., 2003). This hypothesis is 264 

supported by simulation results based on a second-order radiative transfer model (Brown et al., 265 

2000), showing that double-bounce scattering exceeds the direct backscatter from the soil. In this 266 

case, the ratio VH/VV can reduce the double-bounce effect. In addition, the ratio VH/VV probably 267 

reduce errors associated to the acquisition system (e.g. due to the radiometric stability) or 268 



environmental factors (e.g. due to variations of soil moisture) and might appear as a more stable 269 

indicator in time than VH or VV backscatter. Nevertheless, the scattering mechanisms are in general 270 

much more complex and experimental observations are needed to provide insights into the 271 

scattering behavior of each crop type.  272 

For additional information on interactions between electromagnetic waves and crops, in particular 273 

using multipolarisation or polarimetric data at C-band, you may refer to the thorough review of 274 

McNairn et al. (2004). For a recent and complete review on the use of SAR data (including PolSAR, 275 

PolInSAR or TomoSAR techniques at various frequencies) or even scatterometers and radiometers 276 

for applications in agriculture, please read Steele-Dune et al. (2017). 277 

 278 

2.3.2.  Optical data 279 

Seventy-one Sentinel-2-like optical images have been acquired by four satellites, SPOT5-Take5 (39 280 

acquisitions), Landsat-8 (27 acquisitions), Deimos-1 (3 acquisitions) and Formosat-2 (2 acquisitions), 281 

between 2 November 2014 and 25 December 2015. 282 

Formosat-2 is a Taiwanese satellite that provides images with spatial resolution of 8 m in four visible 283 

and near-infrared reflective bands. Images are taken at nearly constant viewing angles. Deimos-1 284 

provides 22 m resolution images in three spectral bands (red, green and near-infrared) that have 285 

been designed to be compatible with the same channels of the Landsat series, allowing full 286 

compatibility. The Landsat 8 is an American satellite, launched in 2013, that provides multispectral 287 

images (at nine spectral bands) along the entire Earth at 30 m resolution with a repeat cycle of 16 288 

days.  289 

In the frame of the SPOT Take 5 experiments, the Centre National d’Etudes Spatiales (CNES) lowered 290 

the orbit altitude of SPOT, to place it on a five-day repeat cycle orbit for a given duration. Images 291 

were acquired at 10 m resolution every 5 days under constant angles, at four spectral bands (green, 292 

red, near infrared and short wave infrared). Data were processed by THEIA [www.theia-land.fr] Land 293 

Data Center and were distributed with a free and open policy for scientific purposes. 294 

The four optical remote sensing datasets were pre-processed using the Multi-sensor Atmospheric 295 

Correction and Cloud Screening prototype (MACCS, Hagolle et al., 2008, 2015) spectro-temporal 296 

processor.  One particularity of MACCS is that it uses multi-temporal criteria to build cloud, cloud 297 

shadow, water and snow masks and to detect the aerosols before the atmospheric correction. All 298 

datasets were processed to level 2A within the THEIA Land Data Center. 299 



Next, NDVI was computed. Note that the NDVI time series were not smoothed despite the 300 

different spatial and spectral resolutions of the four optical sensors. However, we consider that 301 

these differences do not have a significant effect on the NDVI estimates as they were averaged 302 

over each field within surface areas ranging from 1.75 to 45 ha. 303 

 304 

 305 

Figure 3: Calendar of the remote sensing data acquisitions, expressed in month/year. At the top, the 71 optical data 306 

acquisitions from: Landsat-8 (cross), Deimos (diamond), Formosat-2 (plus) and SPOT5-Take5 (triangles). At the bottom: 307 

28 radar acquisitions from Sentinel-1 (circle). 308 

 309 

3. Results and Discussion 310 

The time series of optical NDVI and radar backscatter (VH, VV and VH/VV) are analysed and physically 311 

interpreted with the support of rainfall and temperature data, as well as the destructive in situ 312 

measurements (GAI and fresh biomass, when available). The analysis is performed for each crop type 313 

separately, grouped in winter and summer crops. The square of the Pearson’s linear correlation 314 

coefficient r2 indicated in this section represents correlation between temporal interpolated NDVI 315 

and SAR backscatter (VV, VH and VH/VV). The number of available SAR observations during the 316 

growth cycle determines the number N of samples used for computing these correlations. The 317 

NDVI profiles were interpolated (using a third degree polynomial) to have corresponding NDVI 318 

values at the SAR acquisition dates. 319 

 320 

3.1. Winter crops 321 

3.1.1. Cereals (Barley and Wheat) 322 

Barley and wheat are two cereals that are grown as winter crops in the study area, with a very similar 323 

plant structure and phenology. They are therefore treated in the same subsection, first by analysing 324 

in detail one barley field with associated in situ data, and then a set of 64 wheat fields. Note that the 325 

results and analysis below for barley, based on one single field, might be not fully representative of 326 

the barley crop behavior. 327 



Barley in the Auradé site was sown on 22 October 2014, emergence occurred approximately on 5 328 

November 2014, and the field was harvested on 27 June 2015. The corresponding remote sensing 329 

time series are shown in Figure 4. The most striking feature is the sensitivity of the VH/VV ratio to the 330 

barley growth cycle. While NDVI starts increasing immediately after the emergence of barley plants 331 

and appears therefore correlated to the greenness of small vegetation, VH/VV remains relatively 332 

stable during winter and starts increasing significantly at the tillering stage, around beginning of 333 

March. In fact, VH/VV is always more correlated to the fresh biomass than to the photosynthetic 334 

activity.  335 

VH/VV appears more stable in time than VH or VV backscatter as anticipated and detailed in section 336 

2.3.1., and more sensitive to the barley growth cycle. But although the VH and VV profiles appear 337 

complex, most of their variations can be physically explained. During winter, the vegetation remains 338 

short and VV and VH are affected mostly by variations in the soil backscatter driven by SWC and 339 

surface roughness. For example, rainfall events just before the two first Sentinel-1 acquisitions may 340 

explain the slight increase of the backscatter. Then, a slight decrease of VV and VH backscatters is 341 

observed until beginning of March, which can be explained by the soil backscatter attenuated by the 342 

growing vegetation, plus probably by the progressive smoothing of the soil until early April 2015. 343 

Note that the strong and abrupt decrease of VV and VH backscatters on 10 February 2015 (observed 344 

in all the fields regardless the crop type) is caused by the frost (Khaldoune et al., 2009) as confirmed 345 

by the temperature records. At the tillering stage in March and during the stem elongation phase in 346 

April, the volume fraction of the vegetation increases as a result of the increase in the number of 347 

stems per plant and in the length of these stems. The VH backscatter, which is dominated by the 348 

attenuated double-bounce and volume scattering mechanisms, increases as reported in Lopez-349 

Sanchez et al. (2013) and Wiseman et al. (2014), while the VV backscatter, which is dominated by 350 

the direct contribution from the ground and the canopy, decreases due to the rising attenuation 351 

from the predominantly vertical structure of the barley stems (Brown et al., 2003), especially in April, 352 

during the stem elongation (Jia et al., 2013). Note that under drier meteorological conditions at the 353 

same period, the contribution of ground vegetation interaction in the VH backscatter may decrease 354 

compared with the volume contribution, leading to a more increasing VH backscatter.  355 

 356 

The resulting VH/VV therefore increases until end of April, whereas NDVI remains stable from 357 

beginning of March. At the beginning of May, the observed increase in VH and VV is related to the 358 

heading (that causes an increase in the fresh biomass), as previous experimental (Mattia et al., 2003) 359 

and theoretical (Picard et al., 2003) studies have found for similar frequencies and incidence angles. 360 

This illustrates the potential of Sentinel-1 time series to capture very short phenological events. 361 

During the senescence, which starts at the beginning of June, both the NDVI and the VH/VV ratio are 362 



characterized by a steady decrease until harvest, as a consequence of the decreasing chlorophyll and 363 

water content.  364 

Another important finding is the capacity of VH/VV to detect post-harvest spontaneous regrowth 365 

(refer to the photographs in Figure S1), which is visible in the form of a second cycle (Figure 4) from 366 

end of July to beginning of October at the Auradé site. The regrowth is due to a combination of soil 367 

work on 20th July, which together with the rainfall events, allowed the grain fallen on the soil at 368 

harvest to emerge in the beginning of August (stale seedbed). This is a promising result for future 369 

applications such as the monitoring of post-harvest events, like regrowth and cover crops, which 370 

store carbon in agricultural soils (Poeplau and Don, 2015, Ceschia et al., 2010) and therefore 371 

represent interesting levers for climate change mitigation. 372 



 373 

Figure 4: Observations over the barley field: temporal behavior of optical NDVI, radar VH/VV, VH, and VV, rainfalls, 374 

temperatures and soil water content (SWC) over the Auradé site, where barley was cultivated in 2015. The blue and 375 

green profiles superposed to NDVI are fresh biomass and GAI, respectively. In the second to last plot, temperatures in 376 

red were measured at the Sentinel-1 acquisition time 6 a.m. The horizontal red line is the 0
o
C line. Precipitation is 377 

represented by the blue bars. They are displayed in green when occurring in the same days than Sentinel-1 acquisitions 378 

and in red if rainfall events take place in the two days before Sentinel-1 acquisitions (assuming that wet soil due to 379 

rainfalls may still affect Sentinel-1 backscatter two days later). Vertical grey bars represent Sentinel-1 acquisition events. 380 

In the last plot, soil water content (SWC) has been measured at 0.5 cm (green) and 5 cm (brown) depth. 381 

 382 

Figure 5 shows the mean values (blue circles) and standard deviations (represented by the filled blue 383 

color domains surrounding the mean profile), calculated over the 64 winter wheat fields, as well as 384 

the 10 rapeseed fields that will be analysed in the next section. The global behaviors of NDVI, VH/VV, 385 

VH and VV over the wheat fields are similar to those of the Auradé barley field from sowing to 386 

harvest (as found by Lopez-Sanchez et al., (2013) at HV polarisation). This finding was expected 387 

because the two crops present similar plant structure and functioning, as well as management 388 



practices. VH/VV and VV are correlated to NDVI (r2 is 0.74 and 0.58 respectively, N=16) contrary to 389 

VH (r2 is approximately 0.01). The decrease of VV at the tillering stage, as explained before, explains 390 

this correlation. One interesting feature is that, during this period, the standard deviations of VH and 391 

VV between different fields are relatively high (probably revealing the different agricultural practices, 392 

but the polarisation ratio VH/VV has a low standard deviation, indicating that the contribution of the 393 

ground is reduced in a homogeneous way across all fields.  394 

As demonstrated by the analysis of our available plots, VH/VV is therefore a reliable growth 395 

indicator of winter cereals that can be used to separate cereals from other crops such as rapeseed, 396 

for example in the frame of a crop type classification, instead of the HH/VV ratio that was found to 397 

be reliable as well (Ulaby et al., 1986, Moran et al., 2012, Fieuzal et al., 2013) but not available in the 398 

Sentinel-1 IW acquisition mode. Reversely, after harvest, the standard deviations of VH and VV are 399 

relatively low, but VH/VV has a high standard deviation, indicating a variety of scattering mechanisms 400 

across fields. This is justified by the diversity of post-harvest management practices across the 64 401 

fields, which also explains the lack of a clear second growth cycle (regrowth, cover crop) in the mean 402 

optical and radar profiles. 403 

 404 

3.1.2. Rapeseed 405 

Compared to the cereal winter crops, rapeseed has earlier sowing/harvest dates and a very different 406 

plant structure. At full development, the plants are twice taller (reaching approximately 1.5m), 407 

randomly organized with no strong vertical structure. 408 

NDVI and VH/VV (r2 is 0.30, N=16) both follow the vegetation cycle (red profiles in Figure 5), with an 409 

earlier start of the NDVI, compared to the cereal winter crops. Also, NDVI reaches high values (above 410 

0.5) shortly after plant emergence, which occurs around October, and remains high until the 411 

beginning of senescence in June. On the opposite, VH/VV clearly starts increasing in March, 412 

corresponding to the spring growth restart (stem elongation, inflorescence emergence). At the end 413 

of flowering and during ripening (end of April-beginning of June), VH/VV remains stable at high 414 

values, until it starts decreasing at the beginning of the senescence. 415 

Contrary to the cereal winter crops (displayed in blue in Figure 5), VH and VV follow the VH/VV trend 416 

during the growth period, in a similar way although correlation between NDVI and VH (r2 is 0.38) is 417 

greater than with VV (r2 is 0.25). In fact, taller rapeseed plants compared to cereals, in addition to 418 

randomly oriented branches, causes high volume scattering mechanism and lower attenuation of the 419 

signal from the ground. Note that the increasing behavior of VH backscatter for rapeseed during its 420 

growth cycle has been previously reported (Yang et al., 2014; Wisemann et al., 2014; Lopez-421 

Sanchez et al., 2013). In particular, in conformity with the results of Wisemann et al. (2014) based 422 



on RADARSAT-2 data, we observe a small decrease of backscatter at the onset of flowering 423 

(beginning of April) and a 5dB increase when the pods reach maturation (May). 424 

 425 

 426 

Figure 5: Observations over winter wheat and rapeseed fields: temporal behavior of optical NDVI, radar VH/VV, VH, and 427 

VV, rainfalls and temperatures over winter crops, i.e. 64 wheat crops (in blue) and 10 rapeseed crops (in red). Mean 428 

values are represented by dots and standard deviations are represented by the filled color domains surrounding the 429 

curves. In the last plot (bottom), temperatures in red were measured at the Sentinel-1 acquisition time 6 a.m. Vertical 430 

precipitation bars in blue are drawn in green the same days than Sentinel-1 acquisitions and in red the two days before 431 

Sentinel-1 acquisitions, assuming that wet soil due to rainfalls may still affect Sentinel-1 backscatter two days later. 432 

Vertical grey bars represent Sentinel-1 acquisition events. The typical periods of sowing and harvest are indicated by the 433 

grey shaded areas.   434 

 435 

3.2. Summer crops 436 

3.2.1. Maize 437 

Maize time series are first analysed in detail for the Lamasquère site (one maize field) with associated 438 

in situ data in Figure 6 (photographs are shown in Figure S2) and then for a set of summer crop fields 439 

(maize, soybean and sunflower) in Figure 7. 440 



In Figure 6, the NDVI and VH/VV ratio are similarly sensitive to the maize phenology. Between the 441 

soil work on 26th November and the soil preparation for sowing on 16th April, VH and VV (and VH/VV) 442 

steadily decreases due to gradual smoothing of the soil with time (intensified by rainfalls). Just after 443 

sowing in the beginning of May, a short decrease of VV and VH (and VH/VV) is observed due to soil 444 

work (harrowing) that breaks up, smoothes out and dries the soil surface. Then, the NDVI and VH/VV 445 

ratio increase in the same way until the beginning of the harvest on the 8th September. During this 446 

period, VH increases because vegetation provides the main volume scattering contribution to the 447 

backscattered signal (in fact maize reaches approximately 2.5 m height), and the soil influence 448 

becomes marginal (SWC variations shown in Figure 6 do not influence the backscatter).  449 

We can observe that both NDVI and VH/VV profiles are in good agreement with the destructive GAI 450 

and fresh biomass measurements. This finding highlights the potential of Sentinel-1 (and Sentinel-2) 451 

data for maize biomass retrieval. In the Lamasquère site, there is no senescence stage because maize 452 

is harvested when it is still green for silage, which is reflected by an abrupt decrease in NDVI. 453 

However, VH/VV decreases gradually from harvest until mid-October. This may be explained by 454 

standing green residues (or weed) remaining on the field, which dry out progressively. On 14th 455 

October, soil tillage is performed. Soil tillage allows for preparing the soil for the next crop sowing 456 

(wheat). This results in the smoothing of the soil surface leading to a decrease in VV, and therefore 457 

an increase of VH/VV. 458 

Note that the Lamasquère site was irrigated 5 times between May and August. However, the impact 459 

of these irrigation events onto the radar backscatter could not be observed because no Sentinel-1 460 

images were acquired just after irrigation events. In addition, the soil influence becomes very small 461 

when maize is well developed. This is the reason why the signal is stable whatever the SWC 462 

variations (see Figure 6) as observed in Bériaux et al. (2015) and Fieuzal (2013). 463 

We underline that the results and analysis presented above are based on one single maize field 464 

and might be not fully representative of the maize crop behavior, although in line with the results 465 

below based on a number of maize fields. 466 

The temporal profiles of the 57 maize fields (in blue), shown together with soybean and sunflower in 467 

Figure 7, are similar to the Lamasquère one during the growing period, with correlations r2 of 0.91 468 

between NDVI and VH/VV and 0.89 between NDVI and VH (N=13). However, trends are not similar 469 

during the senescence. Indeed, many fields that are not harvested green for silage show a gradual 470 

decrease of NDVI and radar backscatter.  471 

During winter, the soil is bare or the vegetation (such as weeds or re-growth of previous crops) 472 

remains short and VV and VH behaviors are mostly due to variations in the soil backscatter.  473 

 474 

 475 



 476 

Figure 6: Observations on maize field: temporal behavior of optical NDVI, radar VH/VV, VH, and VV, rainfalls, 477 

temperatures and soil water content (SWC) over the Lamasquère site, where maize was cultivated in 2015. The blue and 478 

green profiles superposed to NDVI are fresh biomass and GAI, respectively. In the second to last plot, temperatures in 479 

red were measured at the Sentinel-1 acquisition time 6 a.m. The horizontal red line is the 0
o
C line. Precipitation is 480 

represented by the blue bars. They are displayed in green when occurring in the same days than Sentinel-1 acquisitions 481 

and in red if rainfall events take place in the two days before Sentinel-1 acquisitions (assuming that wet soil due to 482 

rainfalls may still affect Sentinel-1 backscatter two days later). Vertical grey bars represent Sentinel-1 acquisition events. 483 

In the last plot, SWC has been measured at 0.5 cm (green) and 5 cm (brown) depth. Irrigation events are indicated by the 484 

blue bars in the fourth (with VV profile) and in the last plot. 485 

 486 

3.2.2. Soybean 487 

The mean and standard deviation time series of 8 soybean crop fields are drawn in green in Figure 7. 488 

One can observe very similar NDVI and VH/VV trends (r2 is 0.82, N=13) and both parameters behave 489 

almost similarly to maize despite some differences. For example, VV backscatter is lower for soybean 490 

than for maize during the growth period. Then, NDVI starts to decrease earlier than VH/VV, despite 491 



VH and VV backscatters start decreasing at the same time as NDVI. Even if the standard deviation at 492 

VV polarisation is, as expected, logically higher than for VH when the soil is bare, VH and VV 493 

backscatters show similar temporal behaviors, especially during the growing and senescence periods. 494 

This may be explained by the fact that the height of soybean only reaches approximately 0.7 m (up to 495 

3 times less than maize) and the number of soybean stems per surface unit is low, which leads to a 496 

significant surface scattering from the soil and a poor attenuation of the backscattered signal. In July 497 

and August, VV decreases slightly as compared to VH, which explain the lower correlation between 498 

NDVI and VV (r2 is 0.39) than between NDVI and VH (r2 is 0.69).  499 

 500 

3.2.3. Sunflower 501 

Figure 7 shows in red color the temporal behavior of the 116 sunflower fields. The NDVI temporal 502 

profile depicts well the growing and senescence period (with a high number of images acquired at 503 

that time). Note that NDVI is lower for sunflower than for maize and soybean during the senescence. 504 

Likewise, lower GAI were observed for sunflower than for maize (Claverie et al., 2012) and maize and 505 

soybean (Claverie, 2012). 506 

VH/VV backscatter is poorly correlated to NDVI (r2 is 0.08, N=15). Sunflower is therefore the only 507 

crop studied in this paper for which temporal monitoring using VH/VV is not recommended. VH 508 

backscatter, as for maize and soybean, follows well the NDVI trends (r2 is 0.71) despite the complex 509 

structure of sunflower plants. In addition, sunflower is the only crop for which VV is positively well 510 

correlated to NDVI (r2 is 0.77). In fact, VV is not affected by ground return because of large leaves and 511 

both VH and VV are dominated by volume scattering. Therefore, VH/VV does not reduce the surface 512 

and double-bounce effect and has smaller sensitivity to volume scattering than for maize and 513 

soybean.  514 

At the beginning of July, the flowering stage causes a strong increase of VV that result in a VH/VV 515 

decrease, leading to the poor correlation between NDVI and VH/VV.  516 



 517 

Figure 7: Observations on maize, soybean and sunflower fields: temporal behavior of optical NDVI, radar VH/VV, VH, and 518 

VV, rainfalls and temperatures over summer crops, i.e. 57 maize crops (in blue), 8 soybean crops (in green) and 116 519 

sunflower crops (in red). Mean values are represented by dots and standard deviations are represented by the filled 520 

color domains surrounding the curves. In the last plot (Bottom), temperatures in red were measured at the Sentinel-1 521 

acquisition time 6 a.m. Vertical precipitation bars in blue are drawn in green the same days than Sentinel-1 acquisitions 522 

and in red the two days before Sentinel-1 acquisitions, assuming that wet soil due to rainfalls may still affect Sentinel-1 523 

backscatter two days later. Vertical grey bars represent Sentinel-1 acquisition events. The typical periods of sowing and 524 

harvest are indicated by the grey shaded areas. 525 

 526 

3.3. Key findings for potential applications 527 

In this section, we summarise some of the main findings of this paper and their potential impact on 528 

crop mapping (e.g. crop types, irrigated crops and early crop identification) and biophysical 529 

parameters estimation using Sentinel-1 and -2 data. 530 

The analysis and interpretation of Sentinel-1 and Sentinel-2-like time series data led to 531 

recommendations for feature selection in the frame of crop mapping. Feature selection is a process 532 

by which we look for the best subset of attributes in a dataset. Performing feature selection allows 533 

reducing the use of redundant and misleading data to reach highest accuracy, while reducing 534 



computation time. As observed in Figure 5, VH and/or VV SAR backscatters are able to clearly 535 

separate winter wheat and rapeseed between the tillering and senescence stages (roughly between 536 

March and July). Satalino et al. (2014) found the same results using the VH backscatter. In addition, 537 

NDVI and VH backscatter may be used to distinguish wheat and rapeseed earlier, i.e. between 538 

November and December. Note that VH/VV ratio is less sensitive to cereal development than NDVI 539 

before March, suggesting that the use of the VH/VV ratio for winter crop detection may be 540 

recommended from March, as found in Inglada et al. (2016). Regarding the classification of summer 541 

crops, VH/VV could be used to distinguish maize, soybean and sunflower during the 542 

heading/flowering phase (between June and the end of August) as shown in Figure 7, allowing early 543 

crop type identification. VV backscatter as well could be used to separate summer crops in July and 544 

August. However, using VH is not recommended, except in October for detecting maize crops that 545 

are not harvested green for silage. NDVI is not recommended either for distinguishing summer crops, 546 

except sunflower during the senescence period, between August and September. This result brings 547 

to light the valuable contribution of SAR measurements for distinguishing crop types having similar 548 

NDVI profiles.  549 

The analysis and interpretation of Sentinel-1 and Sentinel-2-like time series data also allows 550 

enhancing the estimation of the croplands production (biomass and yield) and soil moisture using 551 

agro-meteorological models (Revill et al., 2013, Ferrant et al., 2016). Bernardis et al. (2016) have 552 

illustrated this complementarity by using together NDVI (from Landsat), the HH/VV ratio (from 553 

TerraSAR-X) air temperatures from a ground-based station for improving rice crop phenological 554 

estimation. In addition, the sensitivity of SAR data to soil moisture may be useful for detecting 555 

irrigated crops. This may be useful for crop modeling by providing information on irrigation practices, 556 

and also for a better water management strategy. 557 

Our results showed that, for barley and maize crops, the Sentinel-1 and Sentinel-2-like data are 558 

correlated to GAI and fresh biomass. Despite the lack of GAI and biomass in situ data for rapeseed 559 

and soybean, SAR data are likely to be reliable for biomass or GAI estimation given the good 560 

agreements between VH/VV and NDVI. GAI time series estimation can be useful for driving crop 561 

models, allowing to better set some crop parameters and thus improve the estimation of the model 562 

output variables, such as biomass and yield production. Alternatively, SAR data could be used to 563 

directly estimate crop biomass, which could be then assimilated by the models, allowing a more 564 

accurate estimation of other crop related features, such as the components of carbon fluxes. 565 

Besides, during periods of strong cover development, NDVI sensitivity to GAI and biomass is more 566 

likely to saturate. Therefore, SAR data could represent a solution for describing crop development 567 

under these conditions. 568 



Finally, the joint use of SAR and optical data may allow the development of tillage change maps that 569 

are useful in the context of conservative agriculture. 570 

 571 

4. Conclusions 572 

In this study, we used a large number of temporal Sentinel-1 together with Sentinel-2-like data to 573 

assess the potential of the Sentinel satellites for winter and summer crops monitoring. We applied an 574 

adapted multi-image filter to the Sentinel-1 images, taking advantage of the Sentinel-1 dense 575 

temporal series to reduce the speckle effect, while preserving the fine structure present in the 576 

image, like the crop fields boundaries. The time series of optical NDVI and radar backscatter (VH, VV 577 

and VH/VV) were analysed and physically interpreted with the support of rainfall and temperature 578 

data, as well as the destructive in situ measurements (GAI and fresh biomass, when available). We 579 

showed that dense time series allow to capture short phenological stages and thus to precisely 580 

describe various crop development.  581 

A better understanding of SAR backscatter and NDVI temporal behaviors under contrasting 582 

agricultural practices and environmental conditions will help many upcoming studies related to crop 583 

monitoring based on Sentinel-1 and -2, such as dynamic crop mapping and biophysical parameters 584 

estimation. Regarding crop mapping, we found that wheat and rapeseed could be better 585 

distinguished using VH and VV backscatters between March and July and using NDVI between 586 

November and December. Regarding summer crops, we recommend using VH/VV and VV to separate 587 

maize, soybean and sunflower during the heading/flowering phase. Results also showed that for 588 

barley and maize, both NDVI and VH/VV profiles are in good agreement with the destructive GAI and 589 

fresh biomass measurements. Thus, VH/VV ratio could be successfully used for biophysical 590 

parameters retrieval and direct biomass assimilation in crop models. VH/VV is also able to detect 591 

post-harvest spontaneous regrowth.  592 

In general, SAR and optical data both accurately reproduce crop growth cycles and may be combined 593 

for having full gap-free time series, used as inputs for agro-meteorological models. This study points 594 

out the interest of SAR data and particularly the VH/VV ratio, which is poorly documented in previous 595 

studies (for notable exceptions see McNairn et al., 2009 and Inglada et al., 2016 for crop type 596 

classification, Fieuzal et al., 2013 for rapeseed and Blaes et al., 2006 for maize monitoring). Radar 597 

data could also be used to fill eventual gaps in the optical data series, namely during cloudy periods. 598 

The unprecedented amount of free Sentinel data, guaranteed up to and even beyond 2030 with the 599 

next generation of Sentinel, offers a unique opportunity to monitor crops in near real time as 600 

highlighted in this study.  601 

 602 
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