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A B S T R A C T

Natural disturbances significantly influence forest ecosystem services and biodiversity. Accurate delineation and
early detection of areas affected by wind and insect outbreaks are crucial for guiding management decisions. To
this end, past studies relied mostly on passive sensors (e.g., optical), and active sensors (i.e., radar) were rarely
used. This study used L-band space-borne synthetic aperture radar (SAR) within a change-detection framework
to delineate forested areas affected by wind and insect disturbances. The results showed that changes in back-
scatter relate to damage caused by wind and insect outbreaks. Overall accuracies of 69–84% and 65–88% were
obtained for delineation of areas affected by wind damage and insect outbreaks, respectively, depending on the
acquisition date and environmental conditions. Areas susceptible to insect outbreaks or experiencing the initial
outbreak phase (green) were detected with lower accuracies (64–74%). It is expected that L-band space-borne
SAR data can be applied over larger areas and ecosystem types in the temperate and boreal regions to delineate
and detect damaged areas.

1. Introduction

Disturbances caused by windthrows or insect outbreaks play an
immanent role in the dynamics of most forest ecosystems (Franklin
et al., 2002; Turner et al., 1998). Worldwide, about 14 million hectares
of forest are affected annually by abiotic agents other than fire, in-
cluding 8.5 million hectares affected by insects, 3.8 million hectares
affected by severe weather, and 1.2 million hectares affected by various
diseases (Lierop et al., 2015). In temperate forests, insect outbreaks and
severe weather conditions can affect 50 times as much forest area as
fires (Dale et al., 2001).

Windthrows and insect outbreaks are influenced by global change in
several ways (Schlyter et al., 2006). For example, extreme climate
events in combination with a higher mean temperature decrease forest
vitality, which in turn increases forest susceptibility to windthrows.
Windthrows, in turn, often trigger insect outbreaks, which are then
facilitated by warm and dry weather conditions (Seidl et al., 2016). In
recent years, disturbance events reached an unprecedented global ex-
tent (Weed et al., 2013). Future climate projections predict that

disturbances will further intensify (Seidl et al., 2014; Westerling et al.,
2006), with potentially major impacts on global carbon sequestration
(Kurz et al., 2008). Therefore, accurate monitoring of disturbance type,
size, and impact over large areas is becoming increasingly important. In
addition, early detection could support timely salvage logging opera-
tions and thereby minimize economic losses (Fahse and Heurich, 2011),
or could allow short-term actions aimed at reducing the ecological
impact of disturbance.

The European spruce bark beetle (Ips typographus) is the most im-
portant biotic disturbance agent in Europe and Siberia; other bark
beetle species (e.g., Dendroctonus ponderosae, Dendroctonus frontalis)
constitute major disturbance agents of coniferous forests in North
America. Ignited by windthrows and droughts, bark beetle populations
can reach very high densities, which allow them to kill even healthy
trees (Marini et al., 2017). After hibernation, I. typographus beetles start
to swarm in spring and lay their eggs underneath the inner bark of
Norway spruce trees (Picea abies). Once the larvae hatch, they feed on
the tree's phloem tissues, thus interrupting the flow of water and nu-
trients, which causes the tree to die. Infested trees go through three
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stages of infestation named after the appearance of the trees, namely
green, red, and gray attack stages, which are reached after a few days, a
few months, and about half a year, respectively. In a forest, this process
can occur up to three times a year (depending on temperature) because
the beetle population can produce several generations per summer
season (Wermelinger, 2004b).

Multiple within-year events can be separated only by frequent
monitoring during spring and summer. Such monitoring can be cost
effective over large areas only if remote-sensing technologies are used.
Indeed, over the past decades, forest disturbance has received con-
siderable attention by researchers that use remote sensing. Passive
sensors of various spatial and spectral resolution have been employed
for mapping insect-related disturbances (Frolking et al., 2009; Senf
et al., 2017; Wulder et al., 2006), with methods spanning from the
detection of single dead trees with very high-resolution aerial photo-
graphy (Nielsen et al., 2014; Polewski et al., 2015), to taking advantage
of multi-temporal algorithms based on the extensive Landsat time series
archive (Cohen et al., 2010; Huang et al., 2010; Kennedy et al., 2010;
Oeser et al., 2017), and to the use of hyperspectral sensors for the de-
tection of the green attack stage (Fassnacht et al., 2014; Lausch et al.,
2013).

The lack of long synthetic aperture radar (SAR) time series acquired
from sensors with similar or compatible specifications has hindered the
development of multi-temporal algorithms using active radar sensors.
SAR-derived forest disturbance has largely been based on two-date
change-detection techniques (Joshi et al., 2015; Kuntz and Siegert,
1999; Mitchard et al., 2011; Rignot and Zyl, 1993; Tanase et al.,
2015a). Such studies, mostly focused on fire and logging induced dis-
turbances, show that the L-band is one of the most sensitive SAR wa-
velengths for detecting disturbance effects in forested landscapes and
that its sensitivity does not change across environments (Mermoz and
Le Toan, 2016; Tanase et al., 2015b). In contrast, wind induced dis-
turbance has been less considered, with only few SAR based studies
being available (Eriksson et al., 2012; Fransson et al., 2010; Fransson
et al., 2002; Green, 1998; Schwarz et al., 2003). Furthermore, a recent

literature review on the remote sensing of insect disturbances almost
exclusively mentions passive optical sensors (Senf et al., 2017), except
for one study that combined active and passive technologies (Ortiz
et al., 2013).

None of the active-based studies have taken advantage of the im-
proved capabilities demonstrated by recent L-band space-borne plat-
forms for delineating areas affected by insect outbreaks. Yet, the po-
tential demonstrated by SAR sensors in monitoring forest disturbance
caused by humans and fire makes their use compelling since insect
outbreaks and windthrows influence forest structure similarly by
changing the relative position and quantity (i.e., defoliation, fallen
trees) of the vegetation material, and by changing the vegetation water
content (i.e., drying up of affected trees). Such changes could influence
the dominant scattering mechanisms, as well as signal attenuation
through the vegetation layer. In the case of the L-band, cross-polarized
radar scattering is largely the result of backscatter from large elements
present in the forest canopies (i.e., branches, snags), and the foliage acts
as an attenuation layer (Le Toan et al., 1992). The removal of the ve-
getation material or reduction in the vegetation water content is ex-
pected to decrease the cross-polarized radar scattering, with lower va-
lues being generally expected after disturbance events (i.e., reduced
scattering due to decreasing scattering elements) not compensated for
by reduced attenuation. For co-polarized waves, scattering from the
ground plays a large role particularly when the vegetation layer is re-
moved, which might hamper the retrieval of disturbed areas. The aim of
this study was to evaluate the sensitivity of L-band data to changes in
forest structure caused by wind and insect outbreaks.

The specific objectives were i) to evaluate the extent to which
changes in forest structure caused by wind and bark beetle outbreaks
influence the L-band SAR signal, ii) to understand the influence of pre-
and post-disturbance SAR acquisition timing as well as of post-dis-
turbance management practices on SAR backscatter changes, and iii) to
estimate the accuracy of disturbance mapping using L-band SAR data.

Fig. 1. Location of the Bavarian Forest National Park (white polygon) and the areas affected by insect outbreaks between 2007 and 2010 derived by aerial imagery interpretation. The
background is represented by HV-polarized ALOS backscatter acquired on August 11, 2007.
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2. Study area and data sets

The study was carried out in the Bavarian Forest National Park. The
national park covers an area of 244 km2 in southeastern Germany
(Fig. 1) along the border with the Czech Republic. The area is moun-
tainous, with elevation varying between 600 and 1453m a.s.l. Mean
annual temperature ranges between 6.5 °C in the valleys and 3 °C at
higher elevations. Mean annual precipitation ranges from 830 to
2230mm, a considerable amount of which occurs as snowfall (Heurich
et al., 2010a). Snow cover persists for seven to eight months at higher
elevations and for five to six months in valleys. Above 1100m a.s.l.
(16% of the area), sub-alpine spruce forests with Norway spruce and
some common rowan (Sorbus aucuparia) prevail. Between 600 and
1100m a.s.l. (68% of the area), mixed montane forests with Norway
spruce, silver fir (Abies alba), European beech (Fagus sylvatica), and
sycamore maple (Acer pseudoplatanus) are found. In wet depressions at
the bottom of valleys (16% of the area), often associated with cold air
pockets, spruce forests with Norway spruce, mountain ash, and birch
(Betula pendula, Betula pubescens) predominate (Cailleret et al., 2014).

A major outbreak of spruce bark beetle started in the national park
around 1995. The outbreak was attributed to both stand variables and
large-scale drivers difficult to control by traditional forest management
(Seidl et al., 2016). After the wind storm Kyrill (January 2007), which
affected 412 ha, the total disturbed area reached about 7000 ha. Sal-
vage logging took place in all areas except the core zone (Lausch et al.,
2010). The extent of areas affected by insect outbreaks in the national
park have been routinely mapped since 1988 using high-resolution
aerial ortho-photographs acquired yearly between the end of July and

the beginning of November (Heurich et al., 2010b). Since 2004, digital
images at a spatial resolution of 20 cm have been acquired with an
Intergraph Z/I Imaging Digital Mapping Camera (DMC), which uses
three bands in the visible and near-infrared spectrum. The photograms
are orthorectified and used to digitize the perimeter of areas seemingly
affected by bark beetles. Only polygons containing at least five trees
with visible damage are digitized. The extent of the areas affected by
insect outbreaks (Fig. 1) is available as a vector file (39,318 polygons)
and contains additional attributes, such as the year of detection and the
type of intervention (i.e., clearing, no intervention, and dead trees
present on the ground). A subset of this layer (3576 polygons with areas
between 0.1 and 22.0 ha) was extracted for a period matching the
available SAR images (2007–2011). This subset forms the reference
vector layer for insect outbreaks. The minimum limit of 0.1 ha was used
as it roughly matches the spatial resolution (30m) of the processed SAR
datasets. Locations of trees toppled by the storm Kyrill were digitized
on the DMC image acquired on September 16, 2007 and saved as a
vector file (Heurich et al., 2010b). The vector layer contains informa-
tion on the affected areas and management interventions (clearing vs.
no intervention) after the storm. A subset of this vector layer (423
polygons with an area between 0.1 and 10 ha) was used. This subset
forms the reference vector layer for windthrows. These reference vector
layers were used to extract samples (i.e., pixels) for all subsequent
analyses.

The analysis was conditioned by the availability of SAR data sets
because acquisitions from the same satellite orbit are needed before and
after disturbance to allow for pixel-based comparisons. Only advanced
land-observing satellite (ALOS) phased array-type L-band synthetic
aperture radar (PALSAR), fine beam dual (FBD), and polarimetric (PLR)
acquisition modes were considered due to their high spatial resolution
and the availability of the cross-polarized (HV) channel. High spatial
resolution was needed to account for spatial heterogeneity of dis-
turbances. The cross-polarized channel was deemed necessary based on
earlier results that showed its sensitivity to forest structural char-
acteristics and their change (Joshi et al., 2015; Mermoz and Le Toan,
2016; Tanase et al., 2015b; Tanase et al., 2014). SAR data were pro-
vided by the Japanese Aerospace Exploration Agency (JAXA) in single-
look complex (SLC) format. Four PLR images were used to derive
change ratios (post-event divided by pre-event backscatter values) for
dates corresponding to the windstorm Kyrill. The effects of insect out-
breaks were evaluated using 13 dual-polarized (HH, HV) FBD datasets
available from two orbital paths (i.e., 635 and 636). The datasets were
acquired with an incidence angle at swath center of 24° and 39° for PLR
and FBD modes, respectively. The acquisition dates together with the
environmental conditions at acquisition are presented in Table 1. In-
formation on accumulated precipitations aided in the interpretation of
the results. Accumulated precipitation provides an indication of the
environmental conditions at image acquisition; datasets acquired
during stable, dry periods showed improved sensitivity to forest struc-
ture in a range of environments from Mediterranean to boreal (Cartus
et al., 2012; Kalogirou et al., 2014; Lucas et al., 2010; Tanase et al.,
2010). For temperate environments, the spatial variability of soil
moisture in the top few centimeters should be low during summer due
to high air temperatures and low precipitations. Therefore, accumu-
lated precipitation for an interval prior to the SAR acquisition should
more closely reflect overall environmental conditions (dry vs. wet).

3. Methods

3.1. SAR data processing

ALOS PALSAR data acquired on the same orbital path were co-re-
gistered using as reference the first image of each data series and a
cross-correlation algorithm (Werner et al., 2005). After co-registration,
each image was multi-looked in range and azimuth to obtain a ground
pixel spacing of approximately 30m. The high resolution was necessary

Table 1
ALOS data used to evaluate forest disturbance caused by the windstorm Kyrill (wind-
throws) and bark beetle outbreaks. Information on precipitation (sum of three previous
days, the acquisition day, and the following day), and minimum and maximum tem-
perature at SAR acquisition date are also provided.

ALOS Satellite pass
(local time)

Acquisition
dates

Grosser Arber meteorological
stationa

Path Frame Accumulated
precipitation
(mm)

Min/max
temperature
(°C)

Windthrows
630 980 Ascending

(21:15)
2006.09.30 2.2 (1.0**) 9.0/14.2
2007.04.02 6.3 (1.9*, 4.3**) 1.5/6.6
2007.05.18 26.6 −1.1/8.6
2011.04.13 17.8 (8.1*,

0.7**)
−5.5/−2.8

Insect outbreaks
635 970 Ascending

(21:30)
2007.08.11 17.6 (3.1*) 9.8/12.5
2007.09.26 15.9 (12.0*,

0.4**)
1.8/4.6

2008.06.28 0.2 (0.1**) 7.6/13.1
2009.07.01 54.9 (16.0*,

26.0**)
11.4/17.7

2010.05.19 6.5 (3.2*) −1.1/0.9
2010.07.04 6.3 (1.6*, 4.7**) 12.9/21.5

636 970 Ascending
(21:30)

2007.07.13 36.5 (2.4*) 7.3/14.0
2007.08.28 0.4 (0.4**) 6.8/12.5
2007.10.13 0.6 (0.6*) 0.0/3.6
2008.05.30 0.0 15.0/23.9
2008.07.15 24.9 (2.5**) 6.2/12.5
2009.09.02 11.6 (2.2*,

8.9**)
11.1/16.0

2010.06.05 34.9 (3.7**) 9.0/18.1

a Source: Integrated Climate Data Center (ICDC), Hamburg University. *Precipitations
(out of total) reported for the acquisition date (i.e., includes precipitations from 9 am on
the previous day to 9 am on acquisition day) **Precipitations (of total) reported for the
following day after image acquisition (i.e., includes precipitations from 9 am on the ac-
quisition day to 9 am the following day; the actual image acquisition time falls within this
interval).
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to allow preservation of the localized influence of disturbance events
and thus to avoid errors in SAR signature analysis. The use of high-
resolution SAR data might also help to minimize omission errors, par-
ticularly along disturbance borders (Santoro et al., 2012). PLR images
were multi-looked by 1 (range) and 9 (azimuth); FBD images were
multi-looked by 2 (range) and 10 (azimuth). SAR intensity was trans-
formed to the radar backscatter coefficient after applying polarization-
specific absolute calibration factors (Shimada et al., 2009). The back-
scatter coefficient (γ°) was normalized using the real scattering area
derived at the pixel level (Frey et al., 2013) using the digital elevation
model (25m) over Europe (Bashfield and Keim, 2011). Multi-temporal
filtering was applied to decrease speckle (Quegan et al., 2000). The
final SAR pre-processing step was orthorectification to the Universal
Transverse Mercator (UTM) projection using a look-up table based on
the SAR orbital information and the digital elevation model (Wegmüller
et al., 2002). The equivalent number of looks after processing was, on
average, 27 for the FBD data and 13 for the PLR data; the standard
deviation of the backscatter coefficient over stable forested areas
ranged between 0.8 and 1.2 dB, depending on polarization and image
date. The low equivalent number of looks did not affect signature
analysis as hundreds of pixels were grouped to derive the average va-
lues and confidence intervals (CI). Radar change ratios (RCR) were
computed (Eq. (1)) using pre- and post-disturbance averaged back-
scatter to better represent the typical forest condition by removing the
stochastic part of the signal. The rationing of radar intensities is better
adapted to the statistical characteristics of SAR data than the intensities
subtraction (Rignot and Zyl, 1993). More details about RCR in the form
of the equivalent radar burn ratio (RBR) can be found in Tanase et al.
(2015a, 2015b).

=RCR Post γ Pre γ/xy event xy event xy
0 0 (1)

where xy represents a specific radar polarization (i.e., HH, HV, or VV),
and γ⁰ represents the multi-temporal average backscatter coefficient at
pixel level.

Since post-event to pre-event indices are sensitive to changes in
forest structure, a priori, they should be sensitive to changes resulting
from causes other than fire or logging, as demonstrated in the following
sections. For undisturbed forests, multi-temporal backscatter averages
provide more accurate values by filtering out random temporal varia-
tions, as forest structure is largely stable, but backscatter values might
fluctuate due to changes in soil moisture or vegetation water content. In
disturbed forests, the backscatter signal is affected not only by the re-
maining vegetation, but also by recovery processes, such as recruitment
and regrowth. However, for temperate coniferous forests, regrowth is
slow (Zeppenfeld et al., 2015). Since L-band backscatter is mostly in-
fluenced by large vegetation components, such as branches and trunks
(Le Toan et al., 1992), recruitment has limited influence on the post-
event radar signal in the first years after disturbance.

3.2. Windthrow analysis

SAR values for each polarization (i.e., σ⁰HH, σ⁰HV, σ⁰VV) and acquisition
date were extracted for pixels located within the polygons digitized as
affected by the storm Kyrill. Ten large polygons were added to the re-
ference vector layer through the digitization of areas seemingly not
disturbed over the past years. Such areas were identified using recent
optical imagery (Google Earth and Bing Aerial layers) and were used to
estimate backscatter change in undisturbed forests. A total of
6053 pixels (2725 affected by wind and 3328 not affected) were ex-
tracted and used for statistical analyses of the backscatter trends and to
compute the threshold values separating affected areas from stable,
unaffected ones.

RCR values were computed for each polarization using the single
pre-event dataset available. For each RCR, the mean, median, standard
deviation, and CI (95%) were estimated. The dynamic range, i.e.,

difference between average pixel backscatter of disturbed and un-
disturbed areas, was used as an indicator of index sensitivity to forest
structural changes (Cartus et al., 2012). The mean and median RCR
values of areas affected by wind were compared to those of unaffected
areas. Furthermore, the mean (and CIs) and median values were ana-
lyzed as a function of the post-event management interventions (no
intervention vs. salvage logging) and environmental conditions at
image acquisition. Based on the observed trends, average values, CIs,
and the dynamic range, thematic maps showing windthrows location
were derived. The maps were based on thresholds on the HV back-
scatter change for the datasets acquired in April 2007 and 2011, re-
lative to the dataset acquired before the storm (0.6 dB and −1.8 dB,
respectively). The thresholds were derived by averaging median values
observed for affected and unaffected areas.

Derived maps were validated using an independent dataset. The
independent dataset was obtained by randomly selecting pixels affected
by wind out of an initial set of pixels falling within the boundaries of
the reference vector layer. The sampling size for validation was com-
puted according to Eq. (2) (Olofsson et al., 2014). A stratified random
sampling design was selected; the number of samples for the disturbed
strata was computed according to Eq. (3); the number of samples for the
undisturbed strata were obtained as the difference between the total
number of samples and the samples of the disturbed strata.

=
∑

+ ∑
n

w S
S O N w S

( )
[ ( )] (1/ )

i i

i i

2

2 2 (2)

where S(O) is the expected standard error for the overall accuracy, Wi is
the class proportion, Si is the standard deviation of stratum i (as de-
scribed by = −Si U U(1 ) ,i i where Ui is the expected user accuracy),
and N is the sampling population. When N is large, the second term in
the denominator can be ignored.

= − −V U U U n( ) (1 )/( 1)i i i af (3)

where Ui is the expected user accuracy, V(Ui) is target variance for the
user accuracy, and naf is the number of samples to extract in the af-
fected area.

The following assumptions were used to derive the number of
samples: i) proportion of disturbed area 2% (i.e., mean area disturbed
yearly by wind and insect outbreaks within the national park for the
period 2007–2011, obtained from the reference vector layer), ii) ex-
pected user accuracy for affected areas, 60%, iii) expected user accu-
racy for unaffected areas, 80%, iv) standard error for the overall ac-
curacy expected, 0.01, and v) target variance for the user accuracy,
0.0005. Confusion matrices were formed using the affected and un-
affected pixels; overall, user, and producer accuracies were computed
to evaluate the results.

Practically, all pixels falling within the affected polygons were ex-
tracted and 488 of them (sampling size for disturbed areas validation)
were randomly selected for validation (the remaining 2725 pixels were
used for analyses and calibration). In addition, 934 pixels (sampling
size for undisturbed areas validation) were selected at random locations
in areas not affected by the storm Kyrill. The coordinates of the 1422
randomly selected pixels were joined to form the validation layer for
windthrow mapping.

3.3. Insect outbreak analysis

Areas affected by insect-related disturbances were matched with
ALOS FBD polarized (σ⁰HH, σ⁰HV) datasets according to the outbreak
detection date (ODD) and the post-event SAR image acquisition date.
The ODD for the three years analyzed was August 31, 2008; August 20,
2009; and August 22, 2010. As for windthrows, the analysis focused on
the statistical properties of areas affected by beetle outbreaks compared
to those of unaffected areas. The number of pixels used for analyses is
presented in Table 2. For validation purposes, sets of random pixels
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were selected by year of disturbance from the pool of all affected pixels.
The validation datasets were generated for each year between 2007 and
2010. The number of validation samples was computed as described in
the previous section. For affected areas, between 484 and 496 pixels
were used for validation depending on disturbance year. Unaffected
areas were validated using 1085 (for ALOS path 635) and 1031 (for
ALOS path 636) random pixels selected in areas not affected by insect
outbreaks over the analyzed period.

Since the study area was contained within different SAR frames, the
RCR values were standardized (sRCR). sRCR might be useful when
study areas extend over several orbital paths to account for variable
environmental conditions at image acquisition (Tanase et al., 2015a,
2015b). Standardized values were computed using the mean and
standard deviation of unaffected areas for each image ratio analyzed
(4).

= −sRCR (RCR μRCR)/σRCR, (4)

where RCR is the backscatter ratio to normalize, and μRCR and σRCR
are the mean and standard deviation of RCR, respectively, over forested
areas not affected by disturbance.

Backscatter values are the result of an interplay between forest
structure, vegetation water content (often related to forest health), and
other factors, such as environmental conditions at image acquisition
(e.g., precipitation, temperature) and surface properties (moisture and
roughness). The original index (i.e., RBR) was designed and used to
assess point time events (i.e., fires). To reduce variable environmental
conditions at image acquisition, around ten images were used to com-
pute average pre- and post-event states according to Tanase et al.
(2015b). Such an approach is less feasible for temporally dynamic
processes, particularly when only few images are acquired every year.
Furthermore, ALOS FBD acquisitions are scheduled between spring and
autumn (i.e., beetle outbreaks gradation), meaning that the images
were acquired at various stages during the attack (i.e., green, red, gray).
To limit the influence of variable forest conditions, caused by the
continuous nature of the outbreaks and human interventions, the post-
event means were computed over short periods (e.g. one summer) when
only few images (up to three) were available (Table 1). Datasets ac-
quired under extremely wet conditions (2009.07.01) or at freezing

temperatures (2009.05.15) were removed from the analysis as it has
been demonstrated that such events might diminish SAR sensitivity to
forest structure (Cartus et al., 2012; Lucas et al., 2010; Santoro et al.,
2002; Tanase et al., 2010; Thiel et al., 2009). Another factor considered
when deciding which images are useful for temporal averaging was the
acquisition date relative to the bark beetle phenology. For example,
when analyzing the 2008 event (using 2009 post-event data), one needs
to exclude from pre-event averaging the image acquired in July
(2008.07.15) as bark beetles might have already caused significant
damage.

All possible combinations of post- to pre-event ratios were analyzed
(i.e., post-event to each pre-event image ratio, post-event to average
pre-event images, and post-event average to pre-event average) to as-
sess the influence of the environmental conditions and acquisition
timing relative to the bark beetle phenology. The analysis was carried
out for each year between 2007 and 2010. Pixel values were extracted
using the reference vector layer and analyzed depending on the SAR
acquisition and outbreak detection dates. Pre-event images were se-
lected if acquired one year before outbreak detection. As such, it was
possible to analyze insect attacks at ODD− 1 (i.e., before the detection
year specified in the reference vector file), ODD (during the detection
year, when the post-event image was acquired late summer or autumn)
and ODD+1 (areas identified as attacked the following year in the
reference vector file).

Polygons marked as ‘no intervention’ were typically used to extract
the SAR signatures because detection of logging activities was beyond
the scope of this study. Salvage logging after bark beetle outbreaks can
occur the entire year and starts after the first swarming of the beetles
when temperatures reach about 20 °C degrees in spring (Wermelinger,
2004a). After salvage logging, old spruce trees are removed, but some
regeneration and beech trees can remain. Inclusion of cleared areas in
the analysis would have artificially increased the perceived sensitivity
to insect-related disturbance because logged areas show lower back-
scatter levels than disturbed forests (i.e., dead or dying trees on site
remain significant scattering elements until they are completely dried
out). However, polygons marked as ‘cleared’ were also used when bark
beetle attacks were detected past the acquisition date of the post-event
SAR image (i.e., salvage logging was carried out after the satellite pass).
In such cases, it was considered that at SAR image acquisition, trees
were still present on site. Table 3 provides information relating post-
event images to the analyzed polygons as a function of outbreak de-
tection date. As pre-event image, all datasets acquired before the de-
tection year and their average (except for images acquired under heavy
rainfall and freezing conditions) were used. The pixels used for statis-
tical analysis were extracted only if located within the affected polygon
boundaries to limit the mixing of different forest conditions (affected
vs. unaffected). Ten polygons were added through digitization of areas
seemingly not disturbed over the past years. The number of pixels
available for the analysis depended on the post-event image acquisition
date, as areas marked as ‘cleared’ might have been excluded for some
years (Table 3).

Between 609 and 2042 pixels were available for the analysis for any

Table 2
Number of pixels used to compute mean and median values by year of outbreak (ex-
ample). The average of all pre-event images acquired was used (i.e., ‘Mean 2007’).

Outbreak year

sRCR ratio (path/frame) 2007 2008 2009 2010 2011 Not affecteda

2008.06.26/mean 2007
(635/970)b

1719 1114 1862 1508 609 478

Mean 2008/mean 2007
(636/970)c

1745 1002 2042 1688 830 482

a Reference pixels extracted within the polygons added in areas without outbreaks.
b Pixels marked as ‘cleared’ for year 2007 were eliminated.
c Pixels marked as ‘cleared’ for years 2007 and 2008 were eliminated.

Table 3
Polygons used for statistical analysis as a function of SAR image acquisition date. Areas without intervention are marked as ‘no int.’. Areas marked as ‘cleared’ were eliminated depending
on post-event SAR dates.

Path/row Pre-event images Post-event image Areas considered for analysis by outbreak year

Pre-event outbreak Same year outbreak Post-event outbreak

635–970 2007.08.11, 2007.09.26 2008.06.28 2007 (no int.) 2008 (all) 2009–2011 (all)
2007.08.11, 2007.09.26, 2008.06.28 2010.07.04 2009 (no int.) 2010 (all) 2011 (all)
2007.07.13, 2007.08.28, 2007.10.13 2008.05.30 2007 (no int.) 2008 (all) 2009–2011 (all)
2007.07.13, 2007.08.28, 2007.10.13 2008.07.15 2007 (no int.) 2008 (no int.) 2009–2011 (all)

636–970 2007.07.13, 2007.08.28, 2007.10.13, 2008.05.30 2009.09.02 2008 (no int.) 2009 (no int.) 2010–2011 (all)
2007.07.13, 2007.08.28, 2007.10.13, 2008.05.30, 2009.09.02 2010.06.05 2009 (no int.) 2010 (all) 2011 (all)
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given sRCR ratio and ODD. A set of thresholds was applied to the most
sensitive RCR indices to classify the area as ‘no change’ or ‘insect out-
break’. Three types of thresholds were tested: i) −1.0 dB, based on the
average maximum dynamic range (regardless of insect outbreak de-
tection year), ii) −0.7 dB, based on the average dynamic range of areas
affected during the year of SAR image acquisition (areas affected in
previous or subsequent years were not considered), and iii) −0.5 dB
based on the radiometric accuracy of the ALOS PALSAR sensor
(Shimada et al., 2014). The first two thresholds were computed as the
average of the median values for disturbed and undisturbed forests. The
latter threshold was used as it provides an approach based on sensor
radiometric sensitivity. Validation of affected vs. unaffected areas was
carried out using the set of randomly selected pixels and confusion
matrices.

4. Results

4.1. Windthrows

As expected, lower RCR values were observed over wind-affected
areas than over unaffected areas at all polarizations. This pattern was
the result of decreased post-disturbance backscatter levels over affected
areas. A decrease in magnitude depended on environmental conditions
at image acquisition and time since event. For HH and HV polariza-
tions, RCR indices indicated statistically significant changes (i.e., no
overlap between CIs) compared to pre-event conditions, except for the
dataset acquired under wet conditions (2007.05.18). For VV polariza-
tion, significant backscatter changes over wind-affected areas appeared
only for the last image, acquired four years after the event
(2011.04.13). Distributions of RCR values were normal over all polar-
izations and images analyzed. The interval of RCR values (pixel level)
was wide and non-outlier ranges largely overlapped (Fig. 2, lower pa-
nels). Such wide intervals are expected when working at high resolution
(i.e., low number of looks) due to the coherent nature of the SAR signal
(constructive and destructive interference, which results in speckle).
Since the mean values by classes were computed over many pixels, such
interferences were filtered out, thereby providing stable mean and CI
values. The variable RCR values over stable (unaffected) areas are the
result of variations in environmental conditions at the acquisition of

post-event datasets, as the same pre-event dataset was used (Fig. 2).
The amount of change (dynamic range) associated with each RCR,

i.e., the difference in dB between the RCR of affected and unaffected
areas, for all post-event datasets varied between 0 dB and 1.96 dB, de-
pending on environmental conditions and polarization (Fig. 3). For all
polarizations, the dynamic range observed for the SAR dataset acquired
three months after the event was low (0.1 to 0.6 dB); the highest values
were observed for the dataset acquired four years later. For the image
acquired immediately after the event, only the HV polarization showed
a dynamic range above the ALOS PALSAR calibration error (0.5 dB).
Areas affected by windthrows were mapped using the HV polarization
and the images acquired in April 2007 and 2011. The overall map ac-
curacy was 69% when the dataset acquired in April 2007 was used and
increased to 84% when the dataset acquired in 2011 was used; for af-
fected areas, user and producer accuracies were above 54% and 67%,

Fig. 2. Mean and median radar change ratio values from wind affected areas. Upper panels show the mean values computed for each post-event (windthrows) image and SAR polar-
ization, together with confidence intervals. The mean backscatter is shown as horizontal lines; CIs (95%) are represented by box edges. Lower panels show median values (horizontal
line), percentiles (25% and 75%, box edges), non-outlier values range (whiskers), and outlier values (circles). Differences between management types (i.e., no intervention, cleared areas)
are also shown. HH, horizontal transmit/receive; HV, horizontal transmit/vertical receive, and VV, vertical transmit/receive.
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Fig. 3. Dynamic range of RCR indices for each post-event image acquisition date. Filled
bars show the dynamic range for the image acquired four years after the disturbance
event (i.e., affected trees were likely removed from site). HH, horizontal transmit/receive;
HV, horizontal transmit/vertical receive; VV, vertical transmit/receive.
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respectively (Table 4). Machine-learning classification techniques (re-
sults not shown) rendered similar overall accuracies (within 2%), even
when multiple independent variables (i.e. polarizations) were used.

4.2. Insect outbreaks

Five pre-event and eight post-event datasets were analyzed to assess
sRCR sensitivity to insect-related disturbances. Of the eight post-event
datasets, two were acquired under sub-optimal conditions (2009.07.01
and 2010.05) and were only used to evaluate the extent to which such
conditions influence the discrimination between affected and un-
affected areas (i.e., not for temporal averaging or thresholds compu-
tation). Statistically significant differences were observed for areas
marked as outbreaks before the post-event SAR image date when
compared to unaffected areas (Fig. 4). Stable areas showed sRCR values
close to 0 (no change). Increasing effects on forest structural parameters
resulted in increasingly negative values of the standardized RCR (post-
event values lower than pre-event values). Analysis of all available
datasets indicated that a threshold of −1.0 dB is a consistent indicator
of forest structural changes induced by bark beetle attacks. sRCR values
between 0 and−1 indicated lower intensity changes with respect to the
reference date, which might be related to the onset of the outbreaks (see
values for polygons marked as affected after the analyzed post-event
SAR image; Fig. 4).

Outbreaks recorded in the previous year (e.g., 2007, for the post-
event image acquired in 2008; Fig. 4 upper left panel) have sRCR values

around −2 dB, whereas on-going outbreaks (i.e., 2008) have slightly
higher sRCR mean values. One should note that the SAR acquisition
date in 2008 was in early summer (June 28), which might explain the
smaller changes for the areas affected in 2008 compared to the re-
ference dataset (large parts of affected trees might still be alive, as
opposed to the end of summer, when these trees are mostly dead). More
interesting, however, were the mean values (and CIs) recorded for areas
identified as affected in the air-borne flight from 2009 (i.e., after ALOS
acquisition date in 2008). Such areas were characterized by statistically
different sRCR values compared to the areas affected by insect out-
breaks in following period (2010−2011). This suggests that although
these areas were not identified as affected in the 2008 air-borne flight
(August 31), some processes (e.g., declining tree health) were already
on-going by the end of June. Such early detection capabilities were
confirmed for other dates (2011 in the upper right and 2010 in the
lower middle panels in Fig. 4). In both cases, areas detected as affected
in the air-borne flights following the SAR acquisition date (2011 and
2010, respectively) showed negative changes that might be associated
to the onset of the outbreak.

Choosing the right pair of images to compute sRCR values when
environmental conditions varied over short periods was complex
(Fig. 5). When individual image-to-image (as opposed to mean-to-
mean) sRCR ratios were considered, higher dynamic ranges were ob-
served, particularly when the image acquired under wet conditions on
July 13, 2007 was used as reference (Fig. 5, left most panels). Indeed,
for the remaining combinations, it seemed considerably more difficult
to adequately discriminate affected areas, as most values were close to
0 dB (no change). Such a lower discrimination capacity seems to be
related to the drier conditions of the reference datasets (2007.08.28 and
2007.10.13) as opposed to the wetter conditions for the remaining
images. Under dry conditions, some decrease in the forest backscatter is
expected due to the decreased vegetation water content. Thus, the de-
crease in backscatter caused by bark beetle infestation seems to have
been compensated for by the lower initial reference levels, with most
values hovering around or above the no-change threshold (0 dB).

Management interventions affected RCR values such that areas af-
fected by salvage logging exhibited lower post-event backscatter values

Table 4
Validation results (%) for windthrow mapping using different post-event images and HV
polarization.

Classification accuracy 2007.04.02 2011.04.13

Affected Unaffected Affected Unaffected

User 54 80 75 89
Producer 67 70 81 86
Overall 69 84

Fig. 4. Mean sRCR values and CI (95%) for areas affected by bark beetles per year compared to that of stable areas (unaffected). Note that outbreaks detected after the specified post-event
image used might be distinguished for some of the sRCR ratios (lower values when compared to subsequent years). The ordinate axis shows sRCR values (for the specified post-event and
pre-event pairs) extracted in polygons marked as affected in different years (abscissa values). Average values of datasets acquired before the event were used (e.g., ‘Mean 2007’, ‘Mean
2007–2008’).
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(Fig. 6). When compared to areas with no intervention, such differences
were particularly large (4.5 dB) for some years (2009). Conversely, for
2010, the differences were small and not statistically significant.

The overall classification accuracy varied between 64% and 91%,
depending on the outbreak detection date and the sRCR index (Table 5).
Note that the accuracy was assessed using the reference polygons
identified as affected in the previous, current, and past year with re-
spect to the acquisition date of the post-event SAR data used. The
lowest overall accuracies (64–74%) were observed for areas affected by
outbreaks in the year following the acquisition of the post-event SAR
image, which might correspond to the detection of the onset of the
outbreak. Areas affected by insect outbreaks in previous and current
post-event SAR image acquisition were classified with overall ac-
curacies ranging from 74% to 91% depending on the image pair.
Classification using support vector machines (results not shown) ren-
dered overall accuracies values within 1% of the thresholding ap-
proach.

The use of different thresholds had a small effect (± 3%) on the
overall accuracy (Fig. 7). However, changing the threshold had a con-
siderable influence on how omission and commission errors varied
between classes. For areas affected by bark beetles, commission errors
were lowest (15% on average) when the disturbance occurred before
the post-event SAR acquisition date (−1.0 dB threshold), whereas
omission errors were considerable larger (60% on average). When the

threshold was increased to −0.5 dB, commission errors increased (by
4% on average), whereas omission errors decreased (by 6% on
average).

Areas not affected by bark beetles were classified more accurately,
with average commission errors between 19% and 16%, depending on
the threshold used. Omission errors for undisturbed areas were rare,
with average producer accuracy ranging between 92% and 97%, de-
pending on the threshold. When thresholds were changed from −1.0 to
−0.5 dB, the tolerance to different types of errors was controlled.
Balanced omission and commission errors were achieved for the
−0.5 dB threshold (Table 5 and Fig. 7).

5. Discussion

For both disturbance types, the cross-polarized channel showed the
highest sensitivity to changes in forest structure, and a simple mapping
approach based on thresholds produced results similar to those of more
advanced machine-learning algorithms (results not shown).
Classification accuracies were largely in line with those of previous
studies (Ortiz et al., 2013; Ranson et al., 2003; Schwarz et al., 2003).
For some datasets, areas susceptible to bark beetle disturbance were
identified (at lower accuracies) with about one-year lead time when
compared to the reference dataset. By adopting a change-detection
framework, distinct advantages were tapped: i) removal of topographic

Fig. 5. sRCR values for different combinations of post-event to pre-event ratios per year. Examples are given for assessment year 2007 using ALOS PALSAR FBD data from path 636. Areas
affected over the following years (2008–2011) are also displayed.

Fig. 6. The influence of salvage logging (clearing of trees) on sRCR values. The two panels on the left show areas affected by bark beetle outbreaks in 2007 and 2008 as seen in the data
acquired in June 2008. The two panels on the right show areas affected in 2009 and 2010 as seen in data acquired in July 2010.
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effects, a predominant factor influencing radar scattering, and ii) in-
creased signal-to-noise ratio using multi-temporal averages.

5.1. Windthrows

Statistically significant changes in backscatter were recorded for
areas affected by windthrows. The highest dynamic range between af-
fected and unaffected areas was observed for images acquired under
freezing conditions, but one should consider that post-event images
acquired under dry conditions were not available. Rainfall negatively
influenced the capacity of SAR data to detect changes between

acquisition dates. As for other disturbance types, such as logging and
fire (Joshi et al., 2015; Mermoz and Le Toan, 2016; Tanase et al., 2010),
the highest sensitivity to forest structural changes was observed for the
cross-polarized channel. High backscatter changes generally corre-
sponded to areas affected by windthrows. The overall mapping accu-
racy (69–84%) was in line with previous results (88%) based on manual
interpretation of air-borne X-band interferometric coherence (Schwarz
et al., 2003). The user accuracy for the affected areas was lower for this
study (54% to 75% vs. 93%) when compared to the study of Schwarz
et al. (2003), but the producer accuracy was higher (67–81% vs. 35%),
which indicates different tolerances to commission and omission errors
between the two retrieval algorithms. The lack of quantitative reporting
for the other studies available (Eriksson et al., 2012; Fransson et al.,
2010; Fransson et al., 2002; Green, 1998) precluded similar compar-
isons.

Schwarz et al. (2003) found that L-band amplitude data was not
sensitive to windthrows—a conclusion in contrast with our results.
Furthermore, Green (1998) found that co-polarized channels were more
sensitive to gaps than were cross-polarized channels, which again leads
to the opposite conclusion. Such differences might be explained by the
use of change-detection approaches instead of the single-date post-
event analysis in the aforementioned studies. Our results were more in
line with those of Fransson et al. (2002), who demonstrated the utility
of long-wavelength SAR (HH polarized, VHF 20–90MHz) data for the
detection of storm-damaged forests. However, the sensitivity of co-po-
larized channels to windthrows was observed only for images acquired
long after the event (four years), and this sensitivity is most likely re-
lated to the decreased water content of the remaining trunks (i.e., the
scattering from dry vegetation is lower). On the short term (3months
past event), the co-polarized channels were insensitive to windthrows,
which support findings of earlier studies (Fransson et al., 2010; Schwarz
et al., 2003). The low short-term sensitivity might be explained by the
interaction of co-polarized waves with vertical or horizontal elements
(i.e., tree trunks, branches) present after the event. After the wind-
throw, trees lie on the ground and still have their complete needles,
branches, and trunks. Moreover, the trees are uprooted, and the root
plates stand vertically up to several meters. The trees are still connected
to their intact roots and are therefore provided with water. Over the

Table 5
Validation results (%) for insect disturbance mapping (HV polarized data). An example is
given for outbreaks detected in the previous, current, and subsequent years as compared
to the post-event SAR acquisition date. A threshold of−0.5 dB was used for classification.

sRCR index Outbreak
detection
year

Accuracy (%)

Affected areas Unaffected areas Overall

User Producer User Producera

2008.06.28/
mean 2007
(path 635)

2007 68 62 84 87 79
2008 65 55 82 77
2009 41 21 71 67
2007–2008 80 59 70 74

Mean 2008/
mean 2007
(path 636)

2007 59 28 77 92 74
2008 63 32 77 75
2009 21 4 67 64
2007–2008 76 30 63 65

2009.09.02/
mean
2007–200-
8 (FBD
path 636)

2008 77 78 91 91 87
2009 83 92 96 91
2010 68 40 76 74
2008–2009 89 85 88 88

Mean 2010/
mean
2007–200-
8 (path
635)

2009 92 74 89 97 90
2010 84 33 76 77
2011 48 6 69 69
2009–2010 94 54 70 77

a The same accuracy is the result of using a unique dataset as reference for areas un-
affected by disturbance.

Fig. 7. User and producer accuracies as a function of the threshold (Tr) used (−1.0, −0.7, and −0.5 dB) to map areas affected by insect outbreaks.
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following seasons, these trees will die, but their vertical structure re-
mains (root plates, trunks laying in a network of several meters with
branches and without needles). Because of snow and decay, the trunks
will be pressed to the ground, and the branches will fall gradually; these
structures will thus have less influence on the backscatter coefficient.
Such reasoning might explain the increased sensitivity for the image
acquired in 2011 (i.e., after the trees were most likely removed or dried
up).

The rather small overall dynamic range observed immediately after
the event for the HV polarization (0.9 dB) might be explained by the
acquisition conditions of the individual datasets (i.e., spring).
Particularly the second dataset (2007.05.18) was acquired after rainfall
events (Table 1). Such conditions might affect the discrimination
power, as also shown for other natural disturbances and for cross-po-
larized channels. The maximum observed dynamic range (−2 dB) was
lower than values recorded after other types of natural disasters (−3 dB
for areas affected by fires). The difference might be explained by re-
sidual backscatter from unaffected vegetation present within the af-
fected pixels (e.g., live standing trees, toppled trees on the ground,
understory vegetation).

It is difficult to explain the unexpected trend observed when
‘cleared’ and ‘no intervention’ areas were analyzed (Fig. 2). Similar
trends were recorded for all backscatter channels except for the image
acquired under wetter conditions (May 2007). In ‘cleared’ areas, one
expects backscatter to decrease more (lack of vegetation material) than
the backscatter of ‘no intervention areas’ (dead trees standing/laying).
For the image acquired in April 2007, the opposite trend, particularly
for HV polarization, might be related to wind impact levels as logging
operations started later. It seems that areas with lower impact levels
were marked for salvage logging, which might be consistent from an
ecological perspective (i.e., to stop the bark beetle infestation). An al-
ternative explanation might be related to the differentiated effect of the
topographic slope on backscattering when vegetation structure
changes. For the image acquired in 2011, the difference between the
two treatments was minimal as expected; in areas marked for clearing,
vegetation was removed, whereas in ‘no intervention’ areas, the
standing trees dried up.

The higher map accuracies observed for the 2011 image were likely
related to the increased dynamic range caused by tree removal or dried
vegetation. Therefore, the resulting map was transformed into a forest
vs. non-forest map. In such cases, very high accuracies are obtained
using L-band data, as demonstrated in an earlier study (Shimada et al.,
2014). The maps obtained using empirical thresholds were reliable;
their accuracies were only slightly lower (2%) than maps obtained
using machine-learning algorithms, such as SVM classification (results
not shown).

Several limitations affected our study, particularly the SAR density
of observations. The lack of pre-event acquisitions precluded the use of
FBD datasets, a mode more frequently used within the ALOS PALSAR
basic observation scenario. Therefore, a more detailed analysis of the
influence of changing environmental factors was not possible. In ad-
dition, the lower spatial resolution of PLR datasets did not allow effi-
cient multi-looking and thus did not allow speckle reduction, despite
multi-temporal filtering. The availability of datasets with higher spatial
resolutions should allow more accurate mapping by reducing miss-de-
tection along borders (Santoro et al., 2012) and by identifying sha-
dowing effects that might be used for identification of the areas affected
by storm (Eriksson et al., 2012).

5.2. Insect outbreaks

The highest sensitivity to insect-related disturbance was observed
for the cross-polarized channel (HV). The co-polarized channel (HH)
showed a smaller dynamic range, which might be explained by the
higher sensitivity of the HH polarization to the surface properties. Over
affected areas, soil surface properties (roughness and moisture) play an

increasing role in the scattering process because tree scattering is lower
at a lower water content. In addition, defoliation after outbreaks re-
moves the attenuation layer, which in turn allows a higher interaction
of the incoming waves with the soil surface. Thus, over previously af-
fected areas, temporal signal variation is higher than that of dense
forests because soil surface properties have a larger influence on the
scattering properties. Such areas should be masked out in a temporally
iterative detection algorithm.

Salvage logging had a significant influence on backscatter. The ex-
tent to which salvage logging was completed could be assessed by the
relative differences in sRCR values compared to areas marked as no-
intervention. For example, for areas affected by bark beetles in 2007,
salvage logging might have still been on-going in June 2008 (note the
small difference in mean values between areas marked as no inter-
vention and areas marked as cleared in Fig. 6). By contrast, for the 2009
outbreak, salvage logging seems to have been completed by July 2010
as the difference to the no-intervention areas was substantial.

Backscatter changes generally corresponded to bark beetle out-
breaks, as shown by the generally low commission errors (6–24%)
observed for the affected class. The values were lower than those of an
earlier study (75%) based on X-band data alone (Ortiz et al., 2013).
Omission errors for the affected class (around 45%) were also lower
than X-band results (47%), but to a lesser extent. The average overall
accuracy computed for areas affected in the previous and current year
(as a function of the post-event SAR acquisition date) was about 10%
lower than that of the study of Ortiz et al. (2013). Such a discrepancy
might be explained by imbalanced sample data in that study, where
over 90% of the observations were not affected by outbreaks. By con-
trast, in our study, only 66% of the samples were taken from unaffected
areas.

Compared to studies using a combination of C- and L-band co-po-
larized wavelengths (Ranson et al., 2003), this study showed that it is
possible to delineate insect outbreaks using the cross-polarized channel,
as relatively low commission errors were observed for the “affected”
class. The relatively high commission errors for unaffected areas (about
30%) were related to the false classification of many affected pixels.
Such errors result from low changes in the post-event SAR signal and
might be related to an interplay between SAR acquisition timing, bark
beetle phenology, and forest biomass levels. It is possible that infested
trees had a relatively high trunk water content at SAR acquisition and
that high biomass levels compensated for the decreased SAR signal
caused by drying foliage and branches. In such a scenario, the post-
event SAR signal does not sufficiently decrease to allow the detection of
outbreaks. As for windthrows, the use of more advanced classification
methods based on support vector machines improved the results only
marginally, with the overall accuracies increasing by about 1%.

Areas susceptible to insect outbreaks might be detected with one-
year lead time, but also with increased commission errors (55%). Early
detection, as compared to optic sensors, might be related to tree stages
after infestation (green, red, gray). SAR data are sensitive to vegetation
water content, which changes during the green stage. However, trees
must reach the red or gray stages to be easily detected in the optical
datasets. Early detection might become important for forest manage-
ment by delineating areas likely to be affected by outbreaks, which
would allow closer monitoring and longer lead times for tree clearing.
Such early detection could not be confirmed for all post- to pre-event
image combinations, which might be related to the generally low dy-
namic range observed for some post- to pre-event ratios and the use of
mean seasonal values for the post-event datasets used to calculate the
ratios. As indicated above, the use of mean values has the potential to
reduce signal variations owing to background environmental condi-
tions. However, given that only few images were available for each year
and the environmental conditions at acquisition varied markedly, the
resulting sRCR values had a reduced dynamic range.
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6. Conclusions

This study assessed L-band sensitivity to windthrows and insect-
related forests disturbances and demonstrated the potential of space-
borne L-band backscatter to identify such areas within a change-de-
tection framework. The results suggest that disturbance events can be
delineated using relatively simple thresholding approaches. An im-
portant outcome of this study was the demonstration of the potential to
identify areas vulnerable to insect outbreaks, which might provide a
distinct advantage (early warning) over the use of other sensor types.
The methods presented here can be currently applied using L-band data
from the ALOS-2 PALSAR-2 and from future L-band missions, such
NASA-ISRO SAR.

The classification accuracy for the areas by affected windthrows was
high, but lower when the disturbance was caused by insect outbreaks. A
differentiated result was not unexpected because backscatter changes
are more abrupt for windthrows (days) than for insect outbreaks
(months or years). Overall, it seems that changes in backscatter owing
to insect outbreaks or windthrows are too generic to identify the spe-
cific stressor. As other agents (e.g., fire, logging) could result in similar
backscatter change values, a differential diagnosis using SAR remote-
sensing data alone is limited. Therefore, ancillary information might be
needed to pinpoint the exact disturbance agent, as shown in other
studies.

Overall, the analysis proved to be complex because of the multitude
of factors affecting backscatter changes (bark beetle outbreaks, logging,
environmental conditions affecting the vegetation water content, and
soil surface moisture) and limitations due to the density of SAR ob-
servations. Changes in the SAR backscatter were related to bark beetle
outbreaks, with lower mean values of affected areas than of un-
disturbed forests. However, backscatter variations caused by other
factors affected RCR values and might obscure effect of outbreaks if not
properly filtered out. Indeed, for images acquired under heavy rainfall
and freezing temperatures, the ability of RCR to differentiate affected
areas was reduced; the observed dynamic range was low and most pixel
values showed no change. Furthermore, changes from wet to dry per-
iods could result in a decreased backscatter marked as insect-related
disturbance even though it is only related to vegetation hydric stress.
Therefore, a more detailed analysis using denser time series acquired
during insect outbreak is needed to understand the influence of chan-
ging environmental factors.
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