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Abstract—This paper addresses scheduling and power man-
agement issues in energy harvesting embedded systems. We focus
on a fixed priority based operating system such as one found in
a wireless sensor node which is powered by a solar cell. We
show that a classical fixed priority scheduling solution has to be
reconceived. This is because new problems arise when perpetual
operation is required with no deadline missing and no energy
starvation being authorized. We provide a method to assign
processing time and energy to tasks in a short-term perspective.
The concepts of slack energy and slack time defined for dynamic
priority systems are revisited for fixed priority systems.

Index Terms—Real-time, Energy harvesting, Fixed priority
Scheduling, Slack energy, Slack time

I. INTRODUCTION

Energy consumption is a critical issue for real-time
embedded systems. Usually, embedded devices should adopt
real-time behavior, in that a task i.e an application program
must complete its execution before some deadline. Most of
devices such as sensor nodes do not allow any failure in
meeting the deadline. They are said to be hard real-time. Thus,
such embedded systems have to be provided with specific
real-time operating systems able to guarantee a predictable
behavior for the execution of all the tasks despite energy
limitations. Firstly, a schedulability analysis is important to
decide if a set of tasks can satisfy its timing requirements.
The most common idea is to compute the worst-case response
time of every task and compare it with its deadline. If so,
secondly the scheduling algorithm should indicate how to
arrange the tasks.
Classical real-time scheduling algorithms are online,
preemptive, priority driven and non idling (also called work-
conserving). They make their decisions on the fly, based on
the list of tasks ready to be processed but ignoring the tasks
which will arrive in the future. Tasks are arranged according
to a priority driven policy, i.e., the ready task with the highest
priority executes first and the processor never idles if at
least one task is pending for execution. Over the past 50
years, various scheduling algorithms have been developed to
improve the performance of systems subject to the timing
constraints. One of them is Rate Monotonic (RM). The other
is Earliest Deadline First (EDF) [1]. Although RM and EDF

algorithms are both effective for uniprocessing systems with
no energy limitation, they behave poorly in autonomous
devices powered with regenerative energy.
In a so-called RTEH (Real Time Energy Harvesting) system,
generally deployed in a wide wild area for surveillance,
replacing battery is either costly or impractical. The RTEH
device should be designed to operate perpetually in energy
neutral mode only consuming the energy generated from
one or several natural resources including sunlight, heat,
etc. Energy harvesting implies first to collect and convert
renewable energy, to transiently store electrical energy in a
reservoir (super-capacitor, battery, etc.) and second to adapt
the consumption of energy to its availability, dynamically
[2]. As a consequence, there are a lot of technical challenges
so as to make an RTEH system satisfy all its specifications
expressed in terms of timing and energy constraints [3] [4].
The conventional scheduling techniques are not designed for
RTEH systems because they are not energy aware: they do
not handle the uncertainty in available energy and they do
not predict future energy production [5]. In addition, classical
schedulers are non conserving in that they do not let the
processor idle if at least one task is pending for execution.
In contrast, the energy harvesting aware scheduler that will
be presented may decide to put the processor in the sleep
mode so as, either the energy reservoir recharges or the
processor is prevented to consume energy and involve an
energy starvation in future. The time of necessary idleness is
precisely estimated through the computations of the so-called
energy laxities of the deadline constrained tasks. In summary,
this paper describes the main principles of a harvesting-aware
scheduler under fixed priority assumptions, which permits to
prevent both energy starvation for the tasks and overflow of
the energy reservoir.

The rest of this paper is organized as follows. The energy
harvesting system model and some assumptions are described
in Section II. Section III gives background materials. Section
IV introduces the proposed scheduling scheme, namely FP-
H. The concepts of slack times and slack energy under fixed
priority settings are presented in Section V. Finally Section VI



Fig. 1. A Real-Time Energy Harvesting System

gives a summary of this paper.

II. TERMINOLOGY, MODEL AND ASSUMPTION

A. Terminology

We need to introduce some terminology relative to schedul-
ing theory.

• Optimal scheduling algorithm: if a task set can be sched-
uled to meet all its deadlines, then it will be feasibly
scheduled by the optimal algorithm.

• Clairvoyant (or omniscient) algorithm : if the future
knowledge of arriving jobs and/or the energy production
is required for on line decisions.

• Lookahead-ld algorithm: property of a clairvoyant al-
gorithm with ld being the shortest time interval for
clairvoyance.

• Idling (or non work-conserving) algorithm: ability to stay
idle even if there are one or more tasks pending for
execution.

B. System Model and Assumptions

Hereafter, we consider a real-time energy scavenging system
that consists of three major units: energy source module,
energy dissipation module and energy reservoir of limited
capacity.

C. System Model

1) Energy production: The real-time embedded system is
powered by an energy source unit that harvests the energy
from external environmental sources like wind, sun, etc. We
assume that the energy harvested from time t1 to t2 can be
calculated using the following formula:

Es(t1, t2) =

∫ t2

t1

Ps(t)dt (1)

Where Ps(t) is the worst case charging rate (WCCR) on
the harvested source power output.
We assume that it is possible to approximate the amount of
energy harvested in near future.

2) Energy storage : An energy reservoir is required to
continue operation even in absence of energy harvested from
the environment. It can be a rechargeable battery with nominal
capacity C. The reservoir stores the extra amount of energy
harvested for immediate or future use. To simplify, we consider
an ideal energy storage unit and so, we ignore energy wasted
in charging and discharging the reservoir.
There is an upper limit to the storage device denoted by Cmax

which is the maximum capacity of the energy reservoir. The
lower limit of the capacitor, denoted as Cmin, cannot be zero
since there is an energy reserved in the capacitor for worst
case scenarios. During the normal operation mode and at a
given time t we have

Cmin ≤ C(t) ≤ Cmax (2)

3) Energy consumption: A number of tasks are statically
assigned to the single processor powered with regenerative
energy. the run-time system provides pre-emptive priority-
based dispatching. We consider a set of n independent and
preemptive periodic tasks that can be denoted as follows:
Γ = {τi|1 ≤ i ≤ n}. A A four-tuple (Ci, Di, Ti, Ei) is used to
characterize a periodic real-time task τi, where Ci, Di, Ti and
Ei indicate the worst case execution time, the relative deadline,
the period and the worst case energy consumption of task τi,
respectively. We assume that the task set is synchronous at
time 0, exhibits no synchronisation and that each invocation
of a task takes its worst case execution time and its worst case
energy consumption. Each task has a unique priority i where 1
is the highest priority level and n the lowest. Each task gives
rise to an infinite sequence of jobs (or invocation requests),
separated by an inter-arrival time Ti.

III. BACKGROUND MATERIALS

Let us describe the main results relative to scheduling in
RTEH systems.

• Any optimal algorithm is necessarily clairvoyant for
scheduling tasks on a monoprocessor RTEH system.
As a consequence, clairvoyance i.e knowledge of at least
short term future is necessary to compute the optimal
scheduling sequence.

• No lookahead-ld scheduling algorithm can be optimal if
ld ≺ D where D is the longest relative task deadline.
From this result, a lower bound on the clairvoyance
interval that is required by any optimal scheduler. This
time bound has been proved to be the longest relative
deadline of the application. It appears as a key parameter
in the selection of the scheduler for a given application.
Only a sub-optimal version of the algorithm could
be implemented if the prediction technique in use is
imprecise.

The preemptive Earliest Deadline First (EDF) algorithm is
optimal with no energy limitation: It can successfully schedule
any feasible set of periodic, sporadic or hard deadline aperiodic
tasks. EDF is non clairvoyant since it makes processing



Fig. 2. Inefficiency of a non-idling scheduler for RTEH systems

decisions without any knowledge of future jobs at any time.
From the previous two results, we immediately conclude that
neither EDF, nor RM (Rate Monotonic) can behave efficiently
under energy harvesting settings (see figure 2).

The intuition behind the power management scheme is to
arrange the tasks according to a given priority assignment rule.
However, before authorizing the highest priority task to start
execution, the residual energy capacity of the reservoir must be
sufficient to supply this task for at least the next unit time-slot.
Furthermore, the energy consumption in that time-slot must
guarantee the energy-feasibility of all future tasks. This can be
verified by considering their timing and energy requirements
as well as the replenishment rate of the reservoir. If one of
these conditions is not fulfilled, the processor has to idle so
that the reservoir recharges sufficiently.
Following this idea, a modified version of EDF called ED-
H has been presented. It was shown how the scheduler ED-
H takes advantage of lookahead to improve the performance
of EDF (see figure 3). The optimality of the so-called ED-H
scheduler was proved in [6].

The main intuition behind ED-H is that it dynamically
adapts the processor state to the run time harvested power
variations without violating the deadlines of the tasks. This
means that ED-H has to verify the following two conditions
to let the processor busy:

1) The available energy in the reservoir is enough to
execute the ready task with the highest priority even
for the next unit time slot.

2) The energy consumption in that time-slot must guarantee
the energy feasibility of all future occurring tasks con-
sidering their timing and energy requirements and the
replenishment rate of the storage. In other words, the
so-called preemption slack energy should be positive.

When these conditions are verified, ED-H arranges the tasks
according to the earliest deadline first policy. However, ED-H
may result in unnecessary deadline violations if one of these
conditions is not fulfilled. The processor will then stay idle so
that the energy reservoir is sufficiently replenished as long as
the slack time does not become equal to zero.

Fig. 3. Efficiency of idling and clairvoyant schedulers for RTEH systems

IV. A GENERAL POWER MANAGEMENT SCHEME FOR
RTEH SYSTEMS

Most of the works on RTEH systems were based on the EDF
(Earliest Deadline First) dynamic priority scheme. Although
EDF can support systems with higher utilization than fixed-
priority (FP) algorithms, it reveals to be more difficult to
implement in commercial kernels that do not provide explicit
support for timing constraints, such as periods and deadlines.
Moreover, when the system is overloaded, EDF can produce
unbounded and unpredictable deadline misses. In contrast, FP
provides better stability behaviors in such cases because it is
always known in advance which task will miss its deadline (the
lowest priority one). As a consequence of high predictability,
low overhead, and ease of implementation, the Fixed Priority
scheduling schemes are widely adopted in real-time operating
systems.

A. Principles of FP-H

With the so-called Fixed Priority (FP) assignment rule,
each task statically receives a priority off-line and all the jobs
generated at run time by the same periodic task inherits its
priority. In classical applications with no energy limitations
that use the FP assignment rule, jobs in periodic tasks can
be guaranteed statically with the Rate-Monotonic (RM)
priority assignment initially studied in Liu and Layland [1],
or with the Deadline Monotonic (DM) proposed by Leung
and Whitehead [7]. The RM and DM priority assignment
schemes were proved to be optimal in the class of fixed
priority based schedulers, in the sense that, if there exists
any fixed priority assignment rule that generates a feasible
schedule, then RM and DM scheduling policies generate a
feasible schedule for the same task set. An exact feasibility
test for synchronous task sets on a single processor can be
performed in pseudo-polynomial time (using critical instant
analysis). As EDF, these schedulers are work conservative
(also called non idling) since they never let the processor
inactive when at least one job is pending for execution. And
idling the processor does not improve the schedulability .
Under energy harvesting settings, priority-driven schedulers
differ from each other not only on how priorities are assigned
to jobs but also on how to decide when to execute a job and
when to let the processor inactive.



The work reported in this paper aims to adapt any priority
driven work-conserving scheduler commonly used in energy
non-constrained environments so as to make them as efficient
in RTEH environment in terms of optimality and robustness.
From the results listed previously, our approach to dynamic
processor management is necessarily idling and lookahead .
In the so-called FP-H scheduler, as in ED-H, the dynamic
management of idle processor capacity exploits idle time
intervals to obtain a power adaptation for the processor while
ensuring that all jobs adhere to their timing constraints. It
can be demonstrated that FP-H permits us to guarantee the
so-called energy neutral operation mode in which the system
never consumes more energy than harvested while satisfying
all its timing requirements.

B. Fundamental concepts

Let us list and define the new concepts which are
necessary for designing an optimal scheduler under RTEH
considerations. Let t be the current time in the schedule
produced for the task set τ by a certain scheduling algorithm.

• The slack time of a task set Γ at current time t, denoted
STΓ(t) is the maximum continuous processor time that
could be available from time t while still guaranteeing
the feasability of all the tasks in the set Γ.

• The slack energy of a task set Γ at current time t, denoted
SEΓ(t) is the maximum continuous energy that could be
made available and consumed from time t by tasks other
than that of Γ(t) while still guaranteeing the feasability
of all the task set Γ(t).

• The preemption slack energy of a task set Γ at current
time t, denoted PSEΓ(t) is the maximum continuous
energy that could be consumed from time t by the current
active task while still guaranteeing the feasability of all
the tasks with a higher priority i.e. the tasks that may
preempt the current active one.

In other terms, making the processor idle from time t
when the slack time is zero leads to jeopardize the deadline
constraints due to time starvation. And making the processor
busy for task execution from time t when the so-called slack
energy is zero leads to jeopardize the deadline constraints of
some higher priority tasks due to energy starvation.

C. The Power management algorithm

Let us give an informal description of the FP-H algorithm.
FP-H says that:

• the processor cannot be active if either the reservoir is
deplenished or executing any task would prevent at least
one future task from being executed timely because of
energy starvation i.e. the system has no preemption slack
energy at t.

• the processor should not be inactive if the reservoir is
fully replenished to avoid wasting energy. When the
reservoir is neither full nor empty and the system has both

slack time and preemption slack energy, the scheduler
may decide on the processor state.

• the processor should not be inactive if the system has no
slack time.

• no tasks are dispatched when there is no energy
• charging the reservoir is achieved either if it is empty or

if there is not enough available energy to guarantee the
feasible execution of all the tasks.

• the charging process is flexible since it authorizes
to charge the storage unit during any time period
provided there is slack time and the storage unit has
not replenished. We only waste recharging power when
there are no ready jobs and the storage unit is full.

Let consider a given task set Γ that is known to be feasible
for the real-time energy harvesting model. Let Qr(t) be the
queue of uncompleted tasks ready for execution at t. From
what precedes, the FP-H algorithm obeys the following rules.

• Rule 1: The ready tasks are ordered by decreasing
priority in Qr(t).

• Rule 2: The processor is imperatively idle in [t, t+ 1) if
Qr(t) = φ or C(t) ≈ 0 or SEΓ(t) = 0.

• Rule 3: The incoming power is wasted in [t, t + 1) if
Qr(t) = φ and C(t) = C.

• Rule 4: The processor is imperatively busy in [t, t + 1)
if Qr(t) 6= φ and, either C(t) ≈ C or STΓ(t) = 0.

• Rule 5: The processor can be idle or busy if Qr(t) 6= φ,
STΓ(t) > 0 and PSEΓ(t) > 0.

This power management strategy under the dynamic
priority scheduler EDF, called ED-H was proposed in [6].
ED-H was proved optimal and robust. The implementation
costs of ED-H mainly are due to the run-time computations
of both the slack time and the slack energy of the system.
Computing the slack time of a periodic task set at run-time,
under the dynamic priority rule EDF has been described in
[8]. Efficient implementations have been proposed in [9].
Some off-line computations can be done in order to compute
efficiently the EDL (Earliest Deadline as Late as possible)
schedule without wasting too much time and involving
acceptable overhead at run-time. Under EDL, the tasks are
processed as late as possible so as to guarantee the maximum
idle time in a given interval.
Before the system begins to operate, we compute the static
EDL schedule for the given task set. More precisely, we
estimate the localization and the duration of the idle times
within the EDL schedule produced at time t = 0 till the end
of the hyperperiod. The EDL schedule can be described by
means of two vectors respectively called static deadline vector
and static idle time vector. We proved that the complexity of
the approach is O(kn) where k is the number of iterations and
n is the number of periodic tasks. The number k depends on
the periods and deadlines of the tasks, thus the complexity of
the algorithm is pseudo-polynomial.

The complexity for calculation of the slack energy depends



on how the amount of environmental energy produced between
two instants is predicted and estimated. Depending on whether
we have an energy source at constant power or not, this
calculation will therefore be more or less complex. The
common energy sources are in different forms: for example,
solar energy varies according to the parabolic law with a very
large period, the piezoelectric energy is often in the form of
pulsations, the energy dissipated by the human body can be
considered constant, etc.

The optimality of FP-H signifies that if it cannot produce
a valid schedule for any FP-schedulable task set Γ, then no
other processor management policy respecting the priority
assignment FP is able to do it on the same energy harvesting
platform [13].

V. COMPUTING THE SLACKS IN FP-H

A. Definitions

Let us define the notions of priority level, busy periods and
idle periods as in [11].

• Level i busy periods are defined as periods where the
processor serves tasks with priorities higher than or equal
to i.

• level i idle periods are defined as periods where the
processor serves tasks with priorities lower than i

• Given at time t, the slack time of a job set Γ(t) , (denoted
as STΓ(t) ) is the longest time interval such that, if the
execution of any job in Γ(t) does not start before the end
of that interval , all jobs will meet their deadlines.

• Given at time t, the level-i slack time denoted as STi(t) is
defined to be the maximal time interval after t such that,
if the execution of τi and any other tasks with priorities
higher than τi and arrival times later than t start no later
than t+ STi(t)),τi can still meet its deadline.

B. Slack time under fixed priority assignment

The slack time of a system represents the surplus of time
the system has either to execute additional tasks either to
stay idle without jeopardizing the timing constraints of the
periodic tasks. In a fixed priority context, there is slack time
in the system at a given time instant if there is slack available
at all priority levels. In order to compute STΓ(t), we need
to calculate,for each priority level, the available slack time,
denoted STi(t). Finally, STΓ(t) = mini STi(t). STi(t) gives
the maximum amount of time the task τi can be delayed from
time t without missing its deadline di. The value STi(t) is
consequently equal to the total number of unused time units at
priorities higher than or equal to i between t and the deadline
of the current job of the task τi ready at time t. The Dynamic
Slack Stealing (DSS) algorithm described in [10] permits to
compute STΓ(t) for periodic tasks as the algorithm described
in [11] and [12].

The implementation can also be achieved through off-line
mapping the processor schedule for the hard periodic tasks
over their hyperperiod (the least common multiple of task
periods). The mapping is then inspected to determine the slack
present between the deadline on one job of a task and the

deadline on the next. The values found are stored in a table.
At run-time, counters keep track of the slack which may be
stolen at each priority level. These counters are decremented
depending on which tasks, if any, are executing and updated
thanks to the table whenever each task completes [5].

C. Slack energy under fixed priority assignment

By definition, the slack energy at a given time instant gives
the energy surplus of the system at that time instant without
jeopardizing the feasibility of the system [13]. In a fixed
priority context, there is slack energy in the system at a given
time instant if there is slack energy available at all priority
levels. In order to compute SEΓ(t), for each priority level
i, calculation of the available slack energy, denoted SEi(t)
should be performed. SEi(t) gives the maximum amount of
energy that the tasks with lower priorities can consume from
time t without involving energy starvation for τi. This value
is consequently equal to the total number of unused energy
units consumed at priorities higher than or equal to i between
t and the deadline of the current job of the task τi ready at
time t. SEi(t) should be computed from:

• the amount of energy immediately available in the reser-
voir at time t, say C(t)

• the amount of energy which will be later produced by the
environmental source from t to the effective deadline of
τi

• and the energy required by all the tasks with higher
priorities released at or after t up to the effective deadline
of τi

As a consequence, the preemption slack energy,PSEΓ(t), is
calculated from the slack energy SEi(t) for each priority level
i which is greater than the priority of the current active task.
Thus, PSEΓ(t) = mini≥a SEi(t) where a is the priority of
the current active task.

VI. CONCLUSION

An embedded system such as sensor should be designed
to operate perpetually as it is often impractical or costly to
recharge or replace batteries. Energy harvesting technology
can serve to satisfy this objective by taking profit of the energy
available in the surrounding environment of the sensor.
To develop an energy aware real-time scheduler that guar-
antees an energy neutral operation, both energy stored in
the storage unit, energy produced by the source and energy
consumed by the tasks need to be considered with the dead-
lines of the tasks guaranteed. Any energy-aware scheduling
algorithm consists of a set of rules that govern, first how the
jobs are ordered to access to the computing unit (priority
driven scheduling capability) and, second when and under
what conditions the processor is authorized to consume energy
for job execution (dynamic power management capability).
In this work, we focussed on fixed priority driven systems.
We have described FP-H, an idling and clairvoyant scheme
which provides power management and scheduling support.
We have shown that it is based on the dynamic computation
of two fundamental values: the slack time and the preemption



slack energy.
Our current works aim at formulating an exact schedulability
test for FP-H and at proving the optimality of the FP-H
algorithm among the class of fixed priority schedulers under
energy harvesting settings.
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