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Abstract—With the expansion of machine learning and data
mining in the context of Big Data analytics, the common
problem that affects data is class imbalance. It refers to an
imbalanced distribution of instances belonging to each class. This
problem is present in many real world applications such as fraud
detection, network intrusion detection, medical diagnostics, etc.
In these cases, data instances labeled negatively are significantly
more numerous than the instances labeled positively. When this
difference is too large, the learning system may face difficulty
when tackling this problem, since it is initially designed to
work in relatively balanced class distribution scenarios. Another
important problem, which usually accompanies these imbalanced
data, is the overlapping instances between the two classes. It’s
commonly referred as noise or overlapping data. In this article,
we propose a novel approach called: One Side Behavioral Noise
Reduction (OSBNR). This approach presents a new way to
deal with the problem of class imbalance in the presence of
a high noise level. OSBNR is based on two steps. Firstly, a
cluster analysis is applied to groups similar instances from the
minority class into several behavior clusters. Secondly, we select
and eliminate the instances of the majority class, considered
as behavioral noise, which overlap with behavior clusters of
the minority class. The results of experiments carried out on a
representative public dataset confirm that the proposed approach
is efficient for the treatment of class imbalance in the presence
of noise.

Index Terms—Machine learning, Imbalanced data, Data min-
ing, Big data.

I. INTRODUCTION

The problems belong to the class of anomaly detection such
as fraud detection, network intrusion detection and medical
diagnostics, share a common observation: the captured data is
imbalanced. In other words, one of the classes, called minority
or postive class, is strongly under-represented compared to the
other class, called majority or negative class [12], [2]. The
problem with imbalanced data sets is that standard classifi-
cation learning algorithms assume a relatively uniform distri-
bution of classes. They are often biased towards the majority
class and, therefore, there is a higher rate of classification
errors for minority class instances [7].
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Unfortunately, the minority class is generally the most
important from data analysis point of view. Thus, such a
poor classification of minority instances often has serious
consequences in real applications. For example, in credit card
fraud detection systems, undetected fraudulent transactions are
much more serious and costly than detecting normal behavior
as fraud. Finding a good solution for imbalanced data with
good accuracy has become an important area of research,
known as learning from imbalanced data [2], [13], [1].

An important problem, which usually accompanies the
imbalanced data classification, is the presence of noise. It is
commonly referred as overlapping data and we named it as be-
havioral noise. The behavioral noise problem occurs when the
data instances belonging to a class overlap the data instances
of another class. Therefore, the boundaries of the classes may
not be clearly defined. This problem plays an important role
in the study of imbalanced data. Most classification learning
algorithms could lead to classifying minority class instances
into majority ones. Thus, classification performance depends
on these two main problems: class imbalance and behavioral
noise [20].

In this work, we are interested of credit card fraud detection
problem. This is a good example of a very imbalanced and
overlapping data classification problem [7]. We present a new
approach called: One Side Behavioral Noise Reduction (OS-
BNR) to deal with class imbalance problem, with a particular
emphasis on the presence of noise. OSBNR mainly contains
two steps. First, a cluster analysis is applied to groups similar
instances of the minority class dataset in multiple behavior
clusters. Second, we select and eliminate instances of the
majority class, considered as behavioral noise, which overlap
the behavioral clusters of the minority class.

This article is organized as follows: In Section II, common
approaches to address the data imbalance are presented. Sec-
tion III presents in detail our proposed approach to improve
the classification of imbalanced data. While section IV reports
the experiments and shows the results obtained. The final
section concludes the paper and provides our insights into
future works.



II. COMMON APPROACHES FOR ADDRESSING DATA
IMBALANCE

Different approaches have been proposed to deal with
imbalanced data problem and improve the performance of
prediction [23], [24], [21]. Often, these approaches are based
on either the data level or the algorithm level approaches.
Data-level based approaches are independent of the classifier
and use sampling methods to produce a well balanced dataset
from the imbalanced training dataset. With regard to sampling,
we can distinguish two methods: undersampling and oversam-
pling [16], [18], [28], [8]. Algorithm-level approach adapts
existing classification learning algorithms to guide learning
towards minority class. It requires a given specific knowledge
of the corresponding classifier and of the application field[22],
[5], [6], [9].

In reviewing the literature, related resampling methods
is the main focus in this paper. A popular algorithm for
undersampling, Condensed Nearest Neighbour Rule (CNN)
was proposed in the paper [10]. CNN works by eliminating
the majority class samples that are distant from the decision
border since these samples can be considered as less relevant
for learning.

Another popular algorithm for undersampling, Tomek’s
Link removal (TL) was introduced in [25], This algorithm
works by detecting pair of data points, called Tomek’s Link,
that are each other’s nearest neighbor but have different class
labels. Undersampling can be done by either removing all
Tomek links or by removing the majority class data belonging
to the Tomek link.

In [27], Edited Nearest Neighbor Rule (ENN) was pre-
sented. It removes any instance whose class label is different
from the class of at least two of its three nearest neighbors.
The idea behind this technique is to remove the instances from
the majority class near or around the borderline of different
classes, in order to increase classification accuracy of minority
instances rather than majority instances.

Another undersampling technique called Neighbourhood
Cleaning Rule (NCR) was proposed by [15]. It uses Wil-
son’s Edited Nearest Neighbour Rule (ENN) [27] to remove
instances from the majority class when two out of three of the
nearest neighbors of an instance contradict the class.

Two improvements to ENN are proposed in [26]: Repeated
Edited Nearest Neighnor (RENN) and All-KNN (AKNN).
Both methods make multiple passes over the training set
repeating ENN. RENN just repeats the ENN algorithm until no
further eliminations can be made from the edited set. AKNN
repeats ENN for each sample using incrementation values of
k each time and removing the sample if its label is not the
predominant one at least for one value of k.

In [14] an undersampling approach called One-Side Se-
lection (OSS) is proposed which is combination of Tomek’s
Link [25] followed by the application of CNN. Tomek’s
Link is used to remove noisy and borderline majority class
examples. Then, CNN will remove example from the majority
class that are distant from decision border. Then a consistent
subset of the majority class is formed.

III. PROPOSED APPROACH

Most classification learning algorithms are often biased to-
ward the majority class due to the data imbalance distribution,
which leads to a higher misclassification rate for the minority
class instances [7]. Unfortunately, the minority class is usually
the most important from a data analysis perspective. So,
such misclassification of minority instances often has serious
consequences in real applications. Another critical factor in
real world imbalanced data concerns presence of a relatively
large number of noise instances from the majority class located
inside the minority class. This problem is commonly referred
as overlapping data and we named it as behavioral noise.
The behavioral noise implies that some instances of a class
have similar characteristics to those of a different class. The
presence of noise has a severe impact in learning problems.
The generated models can become more complex, show-
ing less generalization abilities, lower precision, and higher
computational cost [29]. So, the classification performance
depends on these two main problems: class imbalance and
behavioral noise.

In this work, we focus on credit card fraud detection as a
very imbalanced and overlapped data classification problem,
where non-fraudulent samples are much more numerous than
fraud samples [7]. As well, it is known that some users
share a behavior where the transactions are similar. While
the transaction behavior of some users resembles no behavior
and may even behave like transactions unlike their labels.
For example, if a user’s credit card information is stolen,
fraudsters will make several large transactions in a short time
to maximize the benefits, while some normal users may also
make large transactions in a short time for certain reasons.
The normal behavior of an individual user is therefore close
to fraud. We define this type of transaction as behavioral
noise. The existence of behavioral noises pushes the system to
judge certain fraudulent transactions as authentic transactions.
This leads to an erroneous classification which can be costly.
Undetected fraudulent transactions (false positive) are much
more serious and costly than detecting normal behavior as
fraud (false negative). The cost of false positives is financial
in nature, it varies according to the amount of the transaction.
On the other hand, the cost of false negatives is measured
in terms of customer dissatisfaction, and this latter can be
resolved by strategies to compensate and retain customers.

The main objective of our approach, called: One Side
Behavioral Noise Reduction (OSBNR), is to handle behavioral
noise to improve the classification of the minority class
instances. OSBNR consists of separating normal transactions
(majority class instances) from fraudulent ones (minority class
instances). Then, a cluster analysis is applied to group similar
instances of the minority class containing the fraudulent
transactions in several subsets, that form several behavior
groups. The second step eliminates normal transactions
behaviors, considered as behavioral noise, which overlap with
the fraudulent transactions behaviors.



Fig. 1: Flowchart of the OSBNR approach

Figure 1 shows the main steps of OSBNR approach:
1) Separate: separates the majority Dmj and minority

Dmn from the original training dataset.
2) Clustering: using k-means clustering algorithm [3] to

form samples of similar Dmn instances into a number
of behavior clusters. Each cluster seems to have distinct
characteristics in the high-dimensional features space.

3) Reduction: carries out the behavioral noise reduction of
the majority instances with those of the minority class.
The Euclidean distance is used to measure the level
of similarity between the different clusters centers of
minority class and the majority class instances. So first,
we calculate the furthest distance dmaxi, 1 < i < k,
from minority instances to the cluster center Cmini for
each minority cluster according. Second, the distances
dmajij between majority instances and different clusters
centres of minority class Ci are obtained. As results,
all majority instances in the minority clusters area are
identified if dmaxi ≥ dmajij . So, they are considered
as noisy instances and then eliminated.

4) Combination: we combine the reduced majority in-
stances set Dmjr with the minority instances set Dmn
to have a new training dataset Dtr.

Accurate identification and elimination of these instances
maximize the visibility of the minority class instances and
at the same time minimize excessive elimination of data.

IV. EXPERIMENTS AND RESULTS

A. Dataset Description

For this work, we use the Kaggle credit card fraud detection
dataset [11]. It contains transactions made by credit card
during two days of September 2013 by European card holders.
Table I provides statistics for the dataset and shows that the
minority class (fraud) accounts for 0.172% of all transactions.
Therefore, this dataset is highly imbalanced [7]. It contains 31
numerical features. Since some of the input features contains
financial information, the PCA transformation of 28 digital
input features (named V1, . . . , V28) were performed due to
confidentiality issues. Three of the given features weren’t
transformed. Time feature shows the time between first trans-
action and every other transaction in the dataset. Amount
feature is the amount’s value spent in a single transaction
made by credit card. Class feature represents the label, and
takes only 2 values: value 1 in case of fraud transaction and
0 otherwise.

TABLE I: Kaggle credit card fraud dataset details

Transactions Majority class Minority class Columns
284 807 284 315 492 31

B. Feature selection

Feature selection is a fundamental technique that selects the
most relevant features from the given dataset. Choosing the
right features wisely and removing the less important ones can
reduce over-learning, improve accuracy, and reduce training
time. Visualization techniques can be helpful in this process.
Formally, we select a subset of features or attributes from
the set of features and eliminate redundant features that do
not contribute to performance. Thus, a feature is important
when its data distribution of the two classes are divergent.
Therefore, this feature can potentially separate the two classes
and improve prediction performance.

Figure 2 shows the class distribution for some features of
our dataset. We can see for V9, V10, V11, V12 and V14 a
significant divergence of class distribution. They are therefore
features with a strong predictive power. So, we can keep
them during the models construction. Similarly, we can see
for feature V13 that the distribution of normal transactions
(majority class) corresponds to the distribution of fraudulent
transactions (minority class). This feature cannot effectively
contribute to the separation between the two classes. We
carried out this process for all 28 features. As a result, 11
relevant features were selected for our experiments: V3, V4,
V9, V10, V11, V12, V14, V16, V17, V18 and V19.

C. Classifiers and resampling techniques

In this work, we applied various resampling techniques
such as the Condensed Nearest Neighbour Rule (CNN) [10],
Tomek’s links (TL) [25], One-Side Selection (OSS) [14],
Edited Nearest Neighbour Rule (ENN) [27], Repeated Edited
Nearest Neighnor (RENN) [26], All-KNN (AKNN) [26] and



Fig. 2: Class distribution histogram on some features

Neighbor Cleaning Rule (NCR) [15]. We evaluated their
performance with the proposed approach OSBNR using the
best and widely used classifiers: Random Forest (RF) and
Multilayer Perceptron (MLP) [19]:

• Random forest (RF) is an algorithm that consist of many
decision trees. This algorithm works best when there are
more trees in the forest. Each decision tree in the forest
gives results. These results are merged in order to obtain
a more precise and stable prediction [4].

• Multilayer perceptron (MLP) is an artificial neural net-
work with direct action which is made up of at least 3
layers of nodes: entry layer, hidden layer and exit layer.
Each node uses an activation function. The activation
function calculates the weighted sum of its inputs and
adds a bias. This allows us to decide which neuron should
be removed and not taken into account in the external
connections.

RF and MLP models parameters were determined from
various preliminary tests carried out on the training data, as
shown in Table II.

D. Evaluation Metrics

Evaluation metrics play an important role to assess and
guide learning algorithms [23]. The common metric used is

TABLE II: RF and MLP parameters used

Classifiers Parameter

Random forest (RF)
Number of trees = 20
Depth of each tree = 8

Impurity = Gini

Multilayer perceptron (MLP) Number of iterations = 100
Tolerance parameter = 1e-6

accuracy. However, accuracy is not a good indicator of the
actual classification performance when the class distribution
is not uniform, especially for the positive (minority) class.
Indeed, because it has less effect on accuracy compared to
the negative (majority) class. As in [17], we consider other
metrics summarized as follows, where:

FP false positive
FN false negative
TP true positive
TN true negative

• Precision or Positive Predictive Value (1): represents the
proportion of positive samples that were correctly classi-
fied to the total number of positive predicted samples.

Precision =
TP

TP + FP
(1)

• True Positive Rate (2): called Sensitivity or Recall, is the
number of actual positives which are predicted positives.

Recall =
TP

TP + FN
(2)

• F-measure or F1-score (3): represents the harmonic mean
of precision and recall. The value ranges from 0 to
1, if the value is high then F-measure indicates high
classification performance.

F1-score = 2
Precision ∗Recall

Precision+Recall
(3)

• AUC (4): represents the ability to distinguish classes,
which considers both the true positive rate TPR (2) and
the false positive rate FPR (5). AUC is based on the
consideration that the higher the true positive rate TPR,
and the lower false positive rate FPR, classification
performance is better.

AUC =
1 + TPR− FPR

2
(4)

Where False Positive Rate (FPR (5)) represents the proportion
of legitimate samples that were wrongly predicted as fraud.

FPR =
FP

FP + TN
(5)

V. RESULTS ANALYSIS

A. Training and test datasets used for the experiments

We present different experiments to compare the perfor-
mance of our proposed OSBNR approach and the state-of-art
resampling methods (CNN, ENN, AKNN, RENN, TL, OSS,



and NCR). As there is no rule-of-thumb for how to divide
a dataset into training and test sets, we have noticed that in
the case of the 70/30 rule, the percentages of the minority
class of the training and test sets are: 80%, 20% respectively
of the total fraud. In order to demonstrate the effectiveness of
the proposed OSBNR method to deal with the imbalance and
overlapping between classes problem, we studied 3 different
divisions of the dataset by resampling the minority class based
on the ratios: 80/20, 70/30, 60/40, and the majority class
based on the 70/30 ratio. Table III presents training and test
datasets used as input of our OSBNR approach (Fig. 1).

TABLE III: Training and test datasets used for the experiments

Total Majority class Minority class
100% Dataset 284 807 284315 - 100% 492 - 100%

Rule 80/20 Training 199 413 199020 - 70% 393 - 80%
Test 85 394 85295 - 30% 99 - 20%

Rule 70/30 Training 199 364 199020 - 70% 344 - 70%
Test 85 443 85295 - 30% 148 - 30%

Rule 60/40 Training 199 315 199020 - 70% 295 - 60%
Test 85 492 85295 - 30% 197 - 40%

B. Performance study of the OSBNR: case of all features

In this section, we analyze the impact of the proposed
OSBNR approach on the performance of each classifier by
comparing it with existing resampling methods taking into
account all the features and according to 3 different divisions
of the dataset. The results are calculated for four metrics: AUC,
Precision, Recall and F1-score.

Figures 3 and 4 show the results using the AUC metric for
the RF and MLP classifiers respectively. The most interesting
observation is that the proposed OSBNR offers significantly
better performance compared to the other methods for the two
classifiers from the AUC point of view for all the distributions
of training and test sets. For the RF classifier, the best score
is obtained by RF_OSBNR with an AUC value of (AUC =
0.9341), RF_CNN takes second place with a score of (AUC =
0.9079), when the training and test sets are set to 80/20 rule.
For the MLP classifier, the best AUC score rule is obtained
by MLP_OSBNR with a value of (AUC = 0.9487), followed
by MLP_OSS with a score of (AUC = 0.9079) when the
training and test sets are set to 80/20 rule.

Similarly, Figures 5 and 6 present the results in terms
of precision. The results illustrated in Figure 5 show that
OSBNR outperforms the other resampling methods for all the
distributions of the training and test sets. The best precision
score for the RF classifier is obtained by the OSBNR approach
when the training and test sets are set at 80% and 20% fraud
with a score of (Precision = 0.8686), while RF_CNN takes
second place with a score of (Precision = 0.8163). Similar
in MLP, as illustrated in Figure 6, it is clear that the best
precision score is obtained by MLP_OSBNR with a score
of (Precision = 0.8979), followed by MLP_OSS with a
score of (Precision = 0.8511). Based on these results, we
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Fig. 3: AUC metric for OSBNR and the reference resampling
approaches: RF as base classifier case of all features
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Fig. 4: AUC metric for OSBNR and the reference resampling
approaches: MLP as base classifier case of all features

conclude that the proposed OSBNR can significantly improve
the recognition rate of minority samples.

Figures 7 and 8 show the results obtained using Recall
measure. The most interesting observation is that the RF
and MLP classifiers without preprocessing clearly offer the
best performance in terms of recall metric. Such a result
was expected in a way, because the resampling methods
were introduced to manage class imbalance and class overlap
problems. They eliminate the instances of the majority class
considered as noise to improve the prediction of instances of
the minority class, and this can slightly increase the rate of
false negatives. For the RF classifier, the second best recall
score is obtained by RF_OSS with a value of (Recall = 0.96)
when the training and test sets are set at 60% and 40% fraud.
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Fig. 5: Precision metric for OSBNR and the reference resam-
pling approaches: RF as base classifier case of all features
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Fig. 6: Precision metric for OSBNR and the reference resam-
pling approaches: MLP as base classifier case of features

Similarly, for MLP the second place is occupied by MLP_OSS
with a score of (Recall = 0.9329) with the 60/40 rule.

As for measure F1-score, Figures 9 and 10 present the
results of all the resampling methods by applying the two
learning classifiers. We see that the OSBNR approach outper-
forms the other resampling methods for all the distributions
of the training and test sets for the two classifiers. For RF,
the best F1-score is obtained by RF_OSBNR with a score of
(F1− score = 0.8572) according to the 70/30 rule, followed
by RF_AKNN with a score of (F1 − score = 0.8436) when
applying rule 60/40 to divide the training and test sets. Re-
garding MLP, the best score is obtained by MLP_CNN with a
F1-score of 0.8679 according to the 60/40 rule, MLP_OSBNR
takes second place with a value of 0.8648.
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Fig. 7: Recall metric for OSBNR and the reference resampling
approaches: RF as base classifier case of all features
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Fig. 8: Recall metric for OSBNR and the reference resampling
approaches: MLP as base classifier case of all features

C. Performance study of the OSBNR: case of relevant features

In this section, we analyze the impact of the proposed
OSBNR on the performance of each classifier by comparing it
with existing resampling methods taking into account relevant
features and also according to the 3 different divisions of
the dataset. The results are calculated for four metrics: AUC,
Precision, Recall and F1-score.

In order to better situate the results, we start by reporting on
AUC metric from Figures 11 and 12. We can see that the best
AUC scores are obtained by RF and MLP combined with OS-
BNR for all the distributions of the sets of training and testing.
For the RF classifier, the best score is obtained by RF_OSBNR
with an AUC value of (AUC = 0.9442), RF_CNN takes
second place with a score of (AUC = 0.9129) according
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Fig. 9: F1-score metric for OSBNR and the reference resam-
pling approaches: RF as base classifier case of all features
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Fig. 10: F1-score metric for OSBNR and the reference resam-
pling approaches: MLP as base classifier case of all features

to the 80/20 rule. Regarding the MLP classifier, the best
AUC score is obtained by MLP combined with OSBNR when
applying the 80/20 rule with a value of (AUC = 0.9543),
followed by MLP_RENN with a score of (AUC = 0.9289),
while MLP_OSS maintained its score with the same value
of (AUC = 0.9079). From these results, we can conclude
that after eliminating redundant features that do not contribute
to performance, we get continuity or even improvement in
predictive performance.

Similarly, the figures 13 and 14 present the results in terms
of precision. The results illustrated in Figure 13 show that
the best precision score for the RF classifier is obtained by
the OSBNR approach for all the distributions of training and
test sets with a best value score of (Precision = 0.8934)
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Fig. 11: AUC metric for OSBNR and the reference resampling
approaches: RF as base classifier case of relevant features
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Fig. 12: AUC metric for OSBNR and the reference resampling
approaches: MLP as base classifier case of relevant features

according to 80/20 rule, which means that this model offers a
better prediction of minority instances. Similar in MLP, As
illustrated in Figure 14, it is clear that the best precision
score is obtained by MLP_OSBNR with a best score of
(Precision = 0.909).

With regard to the Recall measure and according to the
70/30 rule, Figures 15 and 16 show the results obtained. we
also notice that the RF and MLP classifiers without preprocess-
ing clearly offer the best performance in terms of recall metric.
For the RF classifier, the second best recall score is obtained
by RF_OSS with a value of (Recall = 0.928). Similarly, for
MLP the second place is occupied by MLP_AKNN with a
score of (Recall = 0.9474).

As for measure F1-score, Figures 15 and 16 show the results
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Fig. 13: Precision metric for OSBNR and the reference re-
sampling approaches: RF as base classifier case of relevant
features
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Fig. 14: Precision metric for OSBNR and the reference re-
sampling approaches: MLP as base classifier case of relevant
features

of all the resampling methods by applying the two learning
classifiers. For RF, we see that the OSBNR outperforms the
other resampling methods for all the distributions of the train-
ing and test sets. Likewise for MLP, the best score is obtained
by MLP combined with OSBNR for all the distributions of
training and test sets.

VI. CONCLUSION AND FUTURE WORK

In this paper, we provide a survey of the existing methods
for solving the two-class imbalanced classification problem.
Then we present a new approach called: One Side Behavioral
Noise Reduction (OSBNR). Our approach combines clustering
analysis and a behavioral noisy data reduction process.
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Fig. 15: Recall metric for OSBNR and the reference resam-
pling approaches: RF as base classifier case of relevant features
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Fig. 16: Recall metric for OSBNR and the reference resam-
pling approaches: MLP as base classifier case of relevant
features

To study the effectiveness of the proposed method, we
compare it to several state-of-the-art resampling methods. Two
learning classifier, namely Random Forest and MultiLayer
Perceptron, have been tested over these resampling methods.
Experimental results measured using four metrics (AUC, Pre-
cision, Recall, F1-score) indicate that OSBNR achieves much
better classification performance than the other compared
methods to deal with noise data problem with a significant
difference.

This work constitute an important part of the framework
in development. Thus, we wish to study the behavior of the
scaling of our approach in the context of a real application.
This will raise two fundamental questions:
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Fig. 17: F1-score metric for OSBNR and the reference re-
sampling approaches: RF as base classifier case of relevant
features
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Fig. 18: F1-score metric for OSBNR and the reference re-
sampling approaches: MLP as base classifier case of relevant
features

• Confidence and predictability of predictions for decision
making. The main objective of our explanatory approach
to machine learning is to propose methods to understand
and explain how the system produces its decisions in case
of real domain application.

• Notion of uncertainty in machine learning which is
of major importance and constitutes a key element of
modern machine learning methodology. It has gained in
importance due to the increasing relevance of machine
learning in real applications.
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