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Abstract
Question:	Do	remote	sensing	signals	represent	β-	diversity?	Does	β-	diversity	agree	
with	community	types?
Location:	UNESCO	Man	and	the	Biosphere	Reserve,	La	Palma,	Canary	Islands.
Methods:	 We	 recorded	 perennial,	 vascular	 plant	 species	 abundances	 in	 69	 plots	
(10	m	×	10	m)	in	three	pre-	defined	community	types	along	an	elevational	gradient	of	
2,400	m:	succulent	scrubland,	Pinus canariensis	forest	and	sub	alpine	scrubland.	The	
remote	sensing	data	consists	of	structural	variables	from	airborne	Light	Detection	
and	Ranging	(LiDAR)	and	multispectral	variables	from	a	time	series	of	Sentinel-	2	(S2)	
images.	Non-	metric	Multidimensional	Scaling	was	used	to	assess	β-	diversity	between	
plots.	K-	means	unsupervised	clustering	was	applied	to	remote	sensing	variables	to	
distinguish	 three	 community	 types.	 We	 subsequently	 quantified	 the	 explanatory	
power	of	S2	and	LiDAR	variables	representing	β-	diversity	via	the	Mantel	test,	varia-
tion	partitioning	and	multivariate	analysis	of	variance.	We	also	investigated	the	sen-
sitivity	of	results	to	grain	size	of	remote	sensing	data	(20,	40,	60	m).
Results:	The	β-	diversity	between	the	succulent	and	pine	community	is	high,	whereas	
the	β-	diversity	between	the	pine	and	sub	alpine	community	is	low.	In	the	wet	season,	
up	to	85%	of	β-	diversity	 is	reflected	by	remote	sensing	variables.	The	S2	variables	
account	 for	 more	 explanatory	 power	 than	 the	 LiDAR	 variables.	 The	 explanatory	
power	of	LiDAR	variables	increases	with	grain	size,	whereas	the	explanatory	power	
of	S2	variables	decreases.
Conclusion:	At	the	lower	ecotone,	β-	diversity	agrees	with	the	pre-	defined	commu-
nity	distinction,	while	at	the	upper	ecotone	the	community	types	cannot	be	clearly	
separated	by	compositional	dissimilarity	alone.	The	high	β-	diversity	between	the	suc-
culent	scrub	and	pine	forest	results	from	positive	feedback	switches	of	P. canariensis,	
being	a	fire-	adapted,	key	tree	species.	In	accordance	with	the	spectral	variation	hy-
pothesis,	remote	sensing	signals	can	adequately	represent	β-	diversity	for	a	large	ex-
tent,	in	a	short	time	and	at	low	cost.	However,	in-	situ	sampling	is	necessary	to	fully	
understand	community	composition.	Nature	conservation	requires	such	interdiscipli-
nary	approaches.
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1  | INTRODUC TION

The	spatial	 and	 temporal	 change	 rates	of	 species	composition,	 i.e.	
β-	diversity,	 have	 been	 at	 the	 heart	 of	 community	 ecology	 ever	
since	 Clements	 (1916).	 However,	 the	 community	 definition	 is	 still	
largely	 debated	 (Chiarucci,	 2007;	 Palmer	&	White,	 1994;	 Ricklefs,	
2008).	The	controversy	 revolves	around	 the	coherence	and	 integ-
rity	of	ecological	entities	through	different	scales	of	space	and	time	
(Jax,	2006).	 In	order	to	assess	community	patterns,	concepts	of	β-	
diversity	 are	 applied	 that	 quantify	 the	 compositional	 dissimilarity	
between	species	assemblages	(Anderson	et	al.,	2011).

Processes	 responsible	 for	 observed	 patterns	 of	 species	 co-	
existence,	usually	referred	to	as	“assembly	rules”,	can	be	determinis-
tic,	stochastic,	interrelated	and	contingent,	which	led	Lawton	(1999)	
to	 call	 community	 ecology	 “a	mess”.	 Vellend	 (2010)	 proposed	 the	
following	overarching	processes	shaping	β-	diversity	and	community	
patterns:	selection,	drift,	speciation	and	dispersal.	These	factors	and	
anthropogenic	 activities	 determine	β-	diversity	 and,	 thus,	 biodiver-
sity	 in	general	 (Socolar,	Gilroy,	Kunin,	&	Edwards,	2016),	on	which	
human	well-	being	 depends	 (Cardinale	 et	al.,	 2012).	 It	 is	 therefore	
important	to	study	patterns	of	β-	diversity	as	well	as	corresponding	
drivers.

The	existence	of	communities	implies	the	delineation	of	commu-
nity	types.	Because	natural	boundary	sharpness	varies	(Auerbach	&	
Shmida,	1993;	Wilson	&	Agnew,	1992),	community	distinction	is	not	
necessarily	discrete;	transition	between	communities	can	be	rather	
continuous.	This	is	why	community	limits	are	specifically	considered	
as	 transition	 zones,	 also	 known	 as	 ecotones	 (Livingston,	 1903).	 In	
early	 times,	 an	 ecotone	was	 associated	with	 a	 clear	 separation	 of	
plant	physiognomy	(Clements,	1905).	The	recent	definition	of	eco-
tone	by	Lloyd,	McQueen,	and	Lee	(2000)	is	based	on	β-	diversity	and	
describes	 it	as	a	 “zone	where	directional	change	 in	vegetation	 (i.e.	
qualitative	and	quantitative	species	composition)	is	more	rapid	than	
on	 the	other	 side	of	 the	 zone.”	Although	ecotones	 are	 a	 standard	
entity	 in	 landscape	 ecology	 (Wiens,	 Crawford,	Gosz,	 Crawford,	 &	
Boundary,	1985),	Hufkens,	Scheunders,	and	Ceulemans	(2009)	point	
out	that	they	do	not	have	standardized	spatial	and	temporal	units.

In	order	to	analyse	the	spatial	and	temporal	complexity	of	plant	
communities,	 comprehensive	 field	 sampling	 and	 monitoring	 is	
needed,	which	 is	 time-	consuming	 and	 costly.	Remote	 sensing	 (RS)	
can	be	a	powerful	 tool	 to	estimate	β-	diversity	patterns	over	 large	
extents,	in	a	short	time	and	at	low	cost	(Rocchini	et	al.,	2016).	RS	sen-
sors	provide	data	that	reveal	biodiversity	patterns	from	local	to	global	
extent	as	well	as	patterns	that	are	temporally	resolved.	RS	sensors	
are	used	to	detect	changes	in	community	composition,	with	changes	
in	spectral	diversity	as	a	measure	of	β-	diversity	(Rocchini,	Butini,	&	

Chiarucci,	2005).	This	application	rests	on	the	spectral	variation	hy-
pothesis	 (SVH)	explaining	 the	 relationship	between	environmental	
heterogeneity,	 species	 diversity	 and	 spectral	 information	 (Palmer,	
Earls,	 Hoagland,	 White,	 &	 Wohlgemuth,	 2002).	 Environmental	
heterogeneity	 increases	 habitat	 heterogeneity	 and,	 thus,	 species	
diversity	 (i.e.	 habitat	 heterogeneity	 hypotheses;	 Simpson,	 1949).	
Environmental	heterogeneity	also	increases	spectral	heterogeneity.	
Therefore,	 spectral	 variation	 is	 associated	with	 α-		 and	 β-	diversity	
(Palmer	et	al.,	2002;	Rocchini,	Chiarucci,	&	Loiselle,	2004).	However,	
the	SVH	does	not	apply	to	all	ecosystems	and	depends	on	the	extent	
of	RS	and	 in-	situ	data	as	well	as	the	spatial,	 temporal	and	spectral	
resolution	of	RS	data	(Schmidtlein	&	Fassnacht,	2017).

This	study	relates	 to	the	SVH,	because	we	 investigate	to	what	
degree	RS	signals	of	species	assemblages	can	explain	β-	diversity,	i.e.	
the	compositional	dissimilarity	between	species	assemblages.	As	a	
case	study,	we	sampled	the	semi-	natural	plant	communities	along	a	
continuous	elevational	gradient	on	La	Palma,	Canary	Islands.	First,	
we	test	the	SVH	using	structural	RS	variables	from	light	detection	
and	ranging	(LiDAR)	and	multispectral	variables	from	a	time	series	of	
Sentinel-	2	images	(S2).	Since	RS	sensors	can	barely	account	for	small,	
rare	and	understorey	species,	we	expect	that	RS	signals	cannot	ade-
quately	explain	β-	diversity	that	is	derived	from	in-	situ	observations.	
This	combination	of	data	and	techniques	has	not	been	used	before	to	
represent	β-	diversity	with	RS	products.	Second,	we	analyse	to	what	
extent	β-	diversity	agrees	with	the	pre-	defined	community	types.

2  | METHODS

2.1 | Study region

The	 island	 of	 La	 Palma	 is	 located	 at	 the	 northwest	 edge	 of	 the	
Canary	archipelago	 in	 the	Atlantic	Ocean,	 ca.	400	km	west	of	 the	
African	 coast	 at	 28°N	 (Figure	1).	 The	 entire	 island	 is	 designated	 a	
‘UNESCO	Man	 and	 the	 Biosphere	 Reserve’.	 La	 Palma	 is	 generally	
characterized	by	a	subtropical-mediterranean	climate.	However,	the	
elevational	gradient	and	trade	winds	from	the	northwest	constitute	
diverse	climatic	attributes	leading	to	the	existence	of	eight	different	
ombrotypes,	 ranging	 from	hyperarid	 to	humid,	within	a	small	geo-
graphic	extent	(Garzón-	Machado,	Otto,	&	del	Arco	Aguilar,	2013).

2.2 | Field sampling

Field	sampling	was	performed	along	the	elevational	gradient	(from	
45	 to	 2,400	m	 a.s.l.)	 present	 on	 the	 northwest	 part	 of	 the	 island,	
where	 anthropogenic	 pressure	 is	 low,	 semi-	natural	 land	 cover	 is	
largely	preserved,	edaphic	conditions	are	homogeneous	(Carracedo,	

K E Y W O R D S

β-diversity,	conservation	biogeography,	elevation	gradient,	island	biogeography,	LiDAR,	plant	
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vegetation	indices
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Badiola,	Guillou,	De	 La	Nuez,	&	 Pérez	 Torrado,	 2001)	 and	 human	
activities	are	scarce.	Fieldwork	was	conducted	during	February	and	
March	2017.	Three	main	 community	 types	were	crossed	along	el-
evation	 (Del	 Arco	 Aguilar,	 González-	González,	 Garzón-	Machado,	
&	 Pizarro-	Hernández,	 2010).	 Succulent	 scrublands	 occur	 in	 semi-	
arid	conditions	at	 low	elevation	 (~0–500	m)	and	are	dominated	by	
Euphorbia	scrub.	The	vegetation	height	can	exceed	2	m.	The	vegeta-
tion	cover	is	consistently	high,	but	bare	soil	and	rock	can	be	found.	
The	plant	communities	in	mid-	elevations	are	dominated	by	the	en-
demic P. canariensis,	 which	 also	 forms	 the	 tree	 line	 both	 towards	
high	and	low	altitudes	(~500–2,000	m).	The	canopy	cover	and	height	
peak	 in	mid-	elevation.	 The	 understorey	 consists	 of	 scrub	 species.	
The	forest	ground	is	covered	with	pine	needles.	The	sub	alpine	com-
munities	(~2,000–2,400	m)	are	characterized	by	the	summit	broom	
scrub Adenocarpus viscosus	subsp. spartioides	(hereafter	Adenocarpus 

viscosus).	The	vegetation	height	barely	reaches	2	m.	Bare	soil,	rock	
and	 deadwood	 is	 frequently	 found	 in	 this	 vegetation	 zone.	 In	 ac-
cordance	with	Del	Arco	Aguilar	et	al.	 (2010),	we	pre-	classified	 the	
sampling	sites	including	P. canariensis	as	pine	forest	(PF),	while	those	
without	P. canariensis	below	the	pine	forest	were	designated	as	suc-
culent	scrub	(SC)	and	those	above	the	pine	forest	were	designated	
as	sub	alpine	(SA).

We	applied	 a	 stratified	 random	 sampling	 along	 the	elevational	
gradient.	Thereby	SC,	PF	and	SA	defined	the	strata.	We	avoided	an-
thropogenic	 land	use,	 northern	 slopes	>20°,	 to	prevent	 sites	 from	
being	unnatural	and	appearing	dark	and	distorted	in	remote	sensing	
imagery.	Due	to	ridges	and	steep	slopes	some	sites	appear	linearly	
arranged	 (Figure	1).	 In	 each	 sampling	 site,	 a	 10	m	×	10	m	 plot	was	
used	to	record	plant	community	data.	We	sampled	ten	SC,	48	PF	and	
11	SA	plots.	We	recorded	abundances	of	all	vascular	plant	species	

F IGURE  1 Location	of	sampling	plots	on	La	Palma,	Canary	Islands.	(a)	The	Canary	Islands	are	located	in	the	Atlantic	Ocean	to	the	west	of	
the	African	continent.	(b)	The	entire	island	is	a	UNESCO	Man	and	the	Biosphere	Reserve.	The	digital	elevation	model	(Irl	et	al.,	2015)	shows	
the	location	of	the	sampling	plots.	The	plots	that	include	Pinus canariensis	were	classified	as	“Pine	forest	(PF)”.	Plots	below	the	pine	forest	
without	P. canariensis	were	classified	as	“Succulent	scrub	(SC)”,	and	plots	above	the	pine	forest	without	P. canariensis	as	“Sub	alpine	scrub	
(SA)”.	(c)	The	false-	colour	composite	image	supports	the	visual	interpretation	of	vegetation	and	is	based	on	the	Sentinel-	2	imagery	from	14	
Jan	2017	with	10-	m	resolution	(Band	8,	Band	4	and	Band	3).
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within	 the	 plots,	 by	 estimating	 their	 coverage	 within	 three	 verti-
cal	strata	(tree,	scrub	and	herb	layer).	Since	the	presence	of	annual	
plants	is	driven	by	short-	term	weather	events	that	differ	locally,	we	
only	considered	perennial	plant	species.	The	stochastic,	short-	term	
variation	of	the	occurrence	of	annuals	during	the	seasons	makes	it	
very	difficult	to	conduct	reliable	comparisons	with	remote	sensing	
data	which	 are	 recorded	 at	 a	 different	 time.	We	 used	Muer	 et	al.	
(2016)	for	the	nomenclature	of	vascular	plant	species.

Since	 we	 are	 interested	 in	 changes	 of	 abundance-	based	 spe-
cies	 composition,	 we	 applied	 relative	 abundances	 to	 calculate	 β-	
diversity.	Relative	abundance	per	species	and	plot	was	calculated	as	
the	species’	coverage	divided	by	the	sum	of	coverages	of	all	species	
in	all	vertical	strata.	From	this	definition,	we	can	accurately	assess	
changes	in	species	composition	between	plots,	because	land	cover	
types	other	than	vegetation	(i.e.	bare	soil,	rock	and	litter)	that	bias	
the	β-	diversity	based	on	absolute	abundances	are	neglected.	If	other	
cover	 types	were	 considered,	we	would	 notice	 a	 reduction	 in	 ab-
solute	species	abundances,	even	if	the	relative	species	abundances	
remain	constant.	However,	such	cover	classes	and	the	coverage	of	
species	influence	the	composition	of	RS	signals.	To	perform	an	anal-
ysis	of	the	composition	of	RS	signals,	we	used	the	following	explan-
atory	 variables:	we	estimated	 the	 absolute	 coverages	of	 bare	 soil,	
rock,	pine	needles	and	deadwood	that	are	not	vertically	covered	by	
any	other	strata	in	the	plot.	In	this	RS-	specific	analysis,	we	also	con-
sidered	 the	 absolute	 coverages	 of	 the	 ten	most	 abundant	 species	
that	are	not	covered	by	other	strata.	We	refer	to	these	coverages	as	
‘RS-	specific’	coverages.

2.3 | Environmental data

Since	mean	annual	temperature	and	mean	annual	precipitation	are	
among	the	most	important	climate	variables	in	community	ecology	
at	 the	 landscape	 scale	 (Whittaker,	 1970),	 we	 used	 them	 to	 char-
acterize	 the	plant	communities	 in	 the	study	 region.	These	climatic	
variables	were	 generated	by	 the	 interpolation	of	 data	 from	mete-
orological	stations,	applying	linear	regression	kriging	technique	(for	
details	see	Irl	et	al.,	2015).	We	extracted	climate	data	for	each	plot	
from	 the	 grid	 by	 averaging	 the	 values	 of	 all	 climate	 cells	 that	 fall	
within	 the	plot.	 In	order	 to	evaluate	 the	human	 impact	on	species	
composition,	we	calculated	for	each	plot	the	planar	distance	to	the	
nearest	anthropogenic	infrastructure,	i.e.	roads	and	buildings	of	any	
kind	(Figure	S1	in	Appendix	S1).

2.4 | Remote sensing data

We	considered	RS	products	that	represent	multispectral	and	struc-
tural	vegetation	properties,	and	are	 thus	appropriate	 to	distinguish	
plant	communities	 (Pettorelli	et	al.,	2014;	Xie,	Sha,	&	Yu,	2008).	To	
account	for	multispectral	differences	that	may	occur	during	the	sea-
sons,	we	selected	13	Sentinel-	2	images	(S2;	European	Space	Agency	
2017),	covering	the	time	period	from	February	2016	to	February	2017	
(Table	S1	 in	Appendix	S1).	We	chose	S2,	since	this	sensor	provides	
images	of	high	radiometric	(12	bands),	temporal	(5	days	revisit	time)	

and	spatial	resolution	(10–60	m)	that	are	publicly	available	and	free	
of	 charge	 (see	 https://sentinel.esa.int/documents/247904/685211/
Sentinel-2_User_Handbook).	 The	 downloaded	 images	 were	 given	
as	 geometrically	 and	 radiometrically	 corrected	 Top-	of-	Atmosphere	
(TOA)	Level-	1C	product.	We	applied	atmospheric,	terrain	and	bidirec-
tional	reflectance	distribution	(BRDF	with	cosine	of	local	solar	zenith	
angle)	 correction	using	 the	Sen2Cor	plugin	 (see	http://step.esa.int/
main/third-party-plugins-2/sen2cor/)	 within	 the	 Sentinel-	2	 toolbox	
of	 the	 Sentinel	 Application	 Platform	 (SNAP)	 to	 generate	 Bottom-	
Of-	Atmosphere	 (BOA)	 Level-	2A	 products.	 These	 products	 include	
a	masking	layer	for	classifying	pixels	affected	by	clouds	as	“medium	
cloud	 probability”,	 “high	 cloud	 probability”	 and	 “cirrus”.	 The	 cloud	
mask	covered	a	maximum	of	two	plots	per	image	(Table	S1	in	Appendix	
S1).	Such	plots	were	excluded	from	analyses.	Band	1	(aerosol,	60	m),	
Band	9	(water	vapour,	60	m)	and	Band	10	(cirrus,	60	m)	were	removed	
by	the	preprocessing	procedure,	as	they	are	only	needed	for	cloud-	
masking.	The	remaining	bands	are	Band	2	(blue,	10	m),	Band	3	(green,	
10	m),	Band	4	(red,	10	m),	Band	5	(red	edge,	20	m),	Band	6	(red	edge,	
20	m),	Band	7	 (red	edge,	20	m),	Band	8	 (near-	infrared	 [NIR],	 10	m),	
Band	8a	(red	edge,	20	m),	Band	11	(shortwave	infrared	[SWIR],	20	m)	
and	Band	12	(shortwave	infrared	[SWIR],	20	m).

We	also	applied	basic	vegetation	indices	to	explore	plant	charac-
teristics	that	lead	to	spectral	differences.	The	normalized	differentia-
tion	vegetation	index	(NDVI;	[Band	8	–	Band	4]/[Band	8	+	Band	4])	is	
one	of	the	most	popular	proxies	for	primary	productivity	(Pettorelli,	
2013).	Higher	 values	of	 the	moisture	 stress	 index	MSI	 ([Band	11/
Band	 8])	 reveal	 less	 leaf	water	 content	 (Hunt	 &	 Rock,	 1989).	 The	
plant	senescence	 reflectance	 index	PSRI	 ([Band	4	–	Band	2]/Band	
6)	 increases	with	canopy	stress	(carotenoid	concentration),	canopy	
senescence	 and	 fruit	 ripening	 (Merzlyak,	 Gitelson,	 Chivkunova,	 &	
Rakitin,	 1999).	 The	 anthocyanin	 reflectance	 index	 ACR1	 ([1/Band	
3]/[1/Band	5])	 demonstrates	 canopy	 changes	 through	growth	and	
death	(Gitelson,	Merzlyak,	&	Chivkunova,	2001).	The	carotenoid	re-
flectance	index	CRI1	([1/Band	2]/[1/Band	3])	represents	carotenoid	
concentration	 relative	 to	 chlorophyll	 (Gitelson,	 Zur,	 Chivkunova,	
&	Merzlyak,	 2002);	 carotenoid	 pigments	 increase	with	 vegetation	
stress.	The	photochemical	reflectance	index	PRI	([Band	2	–	Band	3]/
[Band	2	+	Band	3])	indicates	light	use	efficiency	(Gamon,	Serrano,	&	
Surfus,	 1997);	 the	PRI	 index	 changes	with	 carotenoid	pigments	 in	
live	foliage	and	thus	describes	productivity	and	stress.

Metrics	derived	from	airborne	LiDAR	are	able	to	account	for	both	
2D	and	3D	vegetation	structure,	which	helps	to	distinguish	vegetation	
that	differs	 in	structural	variables	such	as	growth	height	and	canopy	
cover	(Pettorelli	et	al.,	2014).	Airborne	laser	scanning	(ALS)	point	cloud	
data	 from	 April	 2009	 was	 downloaded	 from	 the	 Spanish	 National	
Geographic	 Institute	 (IGN).	 The	 point	 clouds	 have	 a	 density	 of	 0.5	
points	per	1	m2	(see	Appendix	S2).	After	data	pre-	processing,	several	
indices	were	calculated	with	a	grain	size	of	20	m.	The	canopy	height	
model	(CHM)	returns	the	average	of	normalized	heights	above	ground.	
The	tree	fraction	cover	(TFC)	is	the	proportion	of	first	ALS	returns	over	
2	m	above	ground	from	the	total	amount	of	first	ALS	return	in	the	raster	
cell.	The	vegetation	fraction	(VF)	reflects	the	number	of	all	returns	over	
0.5	m	height	divided	by	the	number	of	all	returns	within	the	cell.	The	

https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
http://step.esa.int/main/third-party-plugins-2/sen2cor/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
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return	proportion	(RP)	 indices	were	calculated	as	the	number	of	ALS	
returns	in	different	vertical	strata	(0.5,	2,	5,	10,	15,	20,	25	m)	divided	by	
the	total	number	of	ALS	returns	in	the	cell.	Thus,	RP	provides	informa-
tion	about	the	3D	vegetation	structure.	The	effective	leaf	area	index	
(LAI)	was	computed	based	on	the	gap	probability,	but	not	corrected	for	
woody	elements	or	 the	clumping	effect.	For	classifications	based	on	
RS	data	all	variables	were	standardized	to	zero	mean	and	unit	variance.	
In	order	to	retrieve	(pair-	wise)	distances	between	plots	based	on	these	
standardized	RS	variables,	we	applied	the	Euclidean	distance	measure.

To	reduce	the	bias	induced	by	GPS	inaccuracy	when	extracting	
the	RS	data	by	plot	centroids,	we	use	RS	metrics	with	a	minimum	
grain	size	of	20	m.	In	addition,	we	evaluated	the	sensitivity	of	results	
to	coarser	grain	sizes	(40	and	60	m)	by	aggregating	the	RS	metrics,	
i.e.	taking	the	mean	value.

2.5 | Statistical analyses

Our	methodological	approach	to	analyse	the	relationship	between	
in-	situ	and	RS	variables	 is	summarised	 in	Figure	2.	To	describe	the	

given	plant	communities	and	demonstrate	the	species’	realized	en-
vironmental	 niches,	we	modelled	 the	 coenoclines	of	 the	 ten	most	
abundant	species.	A	coenocline	 is	a	response	curve	of	 the	species	
abundance	along	a	 single	gradient	 (Whittaker,	1967).	Species	with	
overlapping	coenoclines	form	communities.	We	applied	two	environ-
mental	gradients:	mean	annual	temperature	and	mean	annual	pre-
cipitation.	Coenclines	were	generated	by	fitting	generalized	additive	
models	(GAM)	with	Gaussian	distribution	and	link	function,	and	thin	
plate	regression	splines	as	 the	single	penalty	smooth	class	 (Wood,	
2017).	Because	we	were	facing	unequal	sample	sizes	between	com-
munity	types,	we	conducted	non-	parametric	Kruskal-	Wallis	ANOVA	
(Siegel	&	Castellan,	1988)	to	identify	differences	in	species	richness	
(Figure	S2	in	Appendix	S1).	Linear	regression	models	were	applied	to	
determine	 the	 relationship	between	species	 richness	and	environ-
mental	gradients.	Model	assumptions	were	verified	visually.

Beta-	diversity	 can	be	understood	 as	 the	dissimilarity	 between	
plots	 regarding	 their	 species	 composition	 (Whittaker,	 1967).	 We	
applied	 non-	metric	 multidimensional	 scaling	 (NMDS)	 to	 assess	 β-	
diversity	and	distinguish	plant	communities	(Legendre	&	De	Cáceres,	

F IGURE  2 Flow	chart	describing	the	
remote	sensing	and	in-	situ	data	as	well	
as	the	statistical	analyses	to	evaluate	the	
relationship	between	the	two.	For	details	
see	Methods	section.
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2013).	The	NMDS	is	a	distance-	based,	indirect	ordination	technique.	
We	avoided	direct	ordination	methods,	since	we	were	interested	in	
unconstrained	 results	 that	only	 rest	on	compositional	dissimilarity	
(McCune	&	Grace,	2002).	The	NMDS	ranks	distances	between	input	
data	(plots);	therefore,	NMDS	bypasses	the	linearity	assumptions	of	
metric	 ordination	methods.	Here	we	applied	Hellinger	distance	 to	
calculate	 the	 distance	matrix	 among	 plots	 regarding	 their	 species	
composition	(Legendre	&	De	Cáceres,	2013).	The	Hellinger	distance	
down-	weights	 the	occurrence	of	 rare	species.	Thus,	we	controlled	
for	overrated	 influence	of	rare	species	 in	dissimilarity	calculations.	
We	calculated	a	2D	ordination	space	running	100	attempts	and	in-
volving	random	starting	configurations,	to	find	the	optimal	solution	
by	NMDS,	i.e.	the	lowest	stress	value.	The	NMDS-	space	was	rotated	
to	principal	components;	most	variation	in	the	data	is	shown	along	
the	first	axis,	followed	by	the	second.	We	conducted	post-	hoc	cor-
relation	of	explanatory	variables	to	the	NMDS	via	surface	and	vec-
tor	 fitting,	 to	 interpret	 the	 influence	of	explanatory	variables	onto	
the	compositional	dissimilarity	represented	by	the	location	of	plots	
in	 the	 NMDS-	space.	 We	 eventually	 calculated	 β-	diversity	 as	 the	
Euclidean	distances	between	plot	locations	in	the	2D	NMDS	space.

Subsequently,	 we	 utilized	 the	 Mantel	 test	 (Mantel,	 1967)	 to	
quantify	 the	 correlation	 between	 β-	diversity	 and	 the	 pair-	wise	

distances	between	plots	based	on	RS	variables.	Moreover,	variation	
partitioning	was	used	to	reveal	the	combined	and	 independent	ef-
fects	of	S2	and	LiDAR	variables	explaining	the	β-	diversity	(Legendre	
&	Anderson,	1999).	Variation	partitioning	is	based	on	a	redundancy	
analysis	(RDA),	linearly	modelling	the	relationship	between	a	set	of	
dependent	variables	and	two	sets	of	explanatory	variables.	We	also	
employed	 K-	means	 unsupervised	 classification	 algorithm	 (Lloyd,	
1982)	to	distinguish	three	community	types	considering	RS	variables	
only.	We	aimed	to	create	three	classes,	because	existing	vegetation	
maps	 predefine	 three	main	 community	 types	 in	 the	 study	 region:	
succulent	scrub,	pine	forest	and	sub	alpine	scrub.	The	K-	means	algo-
rithm	has	been	used	before	to	test	the	SVH	(Schmidtlein	&	Fassnacht,	
2017).	We	then	conducted	MANOVA	(Anderson,	2001)	to	estimate	
how	K-	means	classification	on	RS	variables	fits	to	the	β-	diversity.

The	Mantel	test,	variation	partitioning	and	MANOVA	was	applied	
to	each	S2	image	as	well	as	to	the	mean,	range	(|max–min|)	and	SD 
of	all	dates.	We	can	consequently	identify	seasonal	variation	of	the	
explanatory	power	of	RS	signals,	and	account	for	complementarity	
of	RS	signals	over	time.	This	time	series	analysis	was	also	conducted	
separately	 for	 each	 of	 the	 three	 vegetation	 types.	 Here	 we	 only	
applied	the	Mantel	 test,	since	the	sampling	size	of	SC	and	SA	was	
too	small	to	apply	variation	partitioning,	and	the	MANOVA	requires	

F IGURE  3 Species	abundance	vs.	environmental	gradients.	GAM	indicate	the	relative	abundance	of	the	ten	most	abundant	species	in	
the	data	set	for	(a)	mean	annual	temperature,	and	(b)	mean	annual	precipitation.	The	linear	regression	model	demonstrates	the	relationship	
between	(c)	perennial	species	richness	and	mean	annual	temperature,	and	between	(d)	perennial	species	richness	and	mean	annual	
precipitation.	Species	abbreviations:	Adenocarpus viscosus	(Adenvisc),	Arrhenatherum calderae	(Arrhcald),	Cistus monspeliensis	(Cistmons),	
Cistus symphytifolius	(Cistsymp),	Erica arborea	(Ericarbo),	Euphorbia balsamifera	(Euphbals),	Pinus canariensis	(Pinucana),	Retama rhodorhizoides 
(Retarhod),	Rubia fruticosa	(Rubifrut),	Schizogyne sericea	(Schiseri).
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vegetation	classes,	which	is	pointless	to	produce	within	single	com-
munity	types.	The	β-	diversity	within	vegetation	types	was	thereby	
again	given	by	the	point	distances	in	the	NMDS	that	involves	all	plots	
(see	above).

Furthermore,	we	applied	a	PCA	(Mardia,	Kent,	&	Bibby,	1979)	to	
the	RS	variables,	but	used	the	S2	variables	from	the	S2	image	that	
showed	the	highest	mean	of	the	three	correlational	results	from	the	
Mantel	test,	variation	partitioning	and	MANOVA.	We	thus	illustrate	
the	variation	in	RS	signals	that	can	best	explain	β-	diversity	and	depict	
the	RS	products	that	add	most	to	this	variation.	As	for	the	NMDS,	
we	added	post-	hoc	correlation	of	explanatory	variables	via	vector	
fitting.	In	addition,	variation	partitioning	onto	an	RDA	was	used	to	
separate	the	variation	among	these	date-	specific	S2	variables	 that	
can	be	explained	by	RS-	specific	coverages	of	the	ten	most	abundant	
species	and	of	non-	vegetation	cover	types	(i.e.	bare	soil,	rock,	pine	
needles	and	deadwood).

Data	processing	and	 statistical	 analyses	were	conducted	using	
open-	source	 R	 Statistics	 (R	 Foundation	 for	 Statistical	 Computing,	
Vienna,	Austria;	v	1.0.136)	and	corresponding	default	settings,	if	not	
mentioned	differently	(Table	S2	in	Appendix	S1).

3  | RESULTS

The	responses	of	the	ten	most	frequent	perennial	plant	species	to	
the	major	climatic	gradients	are	clear	and	unimodal	(Figure	3a,b).	In	
the	semi-	arid	conditions	of	the	low	elevation	zone,	several	species	
associated	with	succulent	communities	show	maximum	performance	
with	the	highest	temperature	and	lowest	precipitation	along	the	el-
evation	gradient	(Euphorbia balsamifera,	Retama rhodorhizoides,	Rubia 
fruticosa,	 Schizogyne sericea).	 Cistus monspeliensis,	 C. symphytifolius 

and Erica arborea	become	more	abundant	with	decreasing	tempera-
ture	and	increasing	precipitation.	They	share	their	realized	environ-
mental	niches	with	P. canariensis,	which	is	most	abundant	at	a	mean	
annual	temperature	of	ca.	14°C	and	at	the	highest	annual	precipita-
tion	found	 in	 the	region	 (~925	mm).	 In	 the	sub	alpine	communities,	
Adenocarpus viscosus and Arrhenatherum calderae	 show	 maximum	
abundance	with	decreasing	precipitation	and	lowest	temperatures.

Species	 richness	 is	 also	 clearly	 related	 to	 climatic	 variables,	
namely	a	positive	relationship	with	temperature	and	a	negative	re-
lationship	with	rainfall	 (Figure	3c,d).	Despite	 these	significant	 rela-
tionships,	 the	 three	main	vegetation	 types	are	clearly	 identified	 in	
the	species	 richness	vs.	 temperature	graph,	but	not	 in	 the	species	
richness	vs.	rainfall	graph,	which	is	explained	by	a	rainfall	decrease	
at	high	elevations.	We	did	not	detect	a	significant	relationship	be-
tween	the	relative	abundance	of	P. canariensis	and	perennial	species	
richness	 (not	 shown),	but	 the	SC	plots	harbour	 considerably	more	
species	than	both	other	classes	(Figure	S2	in	Appendix	S1).

Figure	4a	reveals	that	the	S2	variables	from	14	Jan	2017	(20-	m	
grain	 size)	 correlate	on	average	most	 strongly	with	 the	β-	diversity.	
We	 additionally	 observe	 a	 “W”-	shape;	 the	 correlation	between	S2	
variables and β-	diversity	 is	stronger	during	the	wet	 (Dec–Mar)	and	
dry	season	(Jun–Sept),	compared	to	other	months.	The	multitempo-
ral	analysis	demonstrates	that	neither	the	mean	nor	the	range	and	
SD	of	the	time	series	reaches	the	highest	correlation	results	of	single	
image	dates	(Figure	4b).	Here	the	multitemporal	mean	of	S2	variables	
yields	 on	 average	 the	 strongest	 correlation	 with	 β-	diversity,	 com-
pared	with	the	multitemporal	range	and	SD.	Interestingly,	the	multi-
temporal	MANOVA	results	are	weakest	of	the	three	statistical	tests,	
but	for	single	dates	the	two	strongest	correlations	are	produced	by	
MANOVA	(Figure	4a).	The	Mantel	test	reveals	a	rRS	=	0.41	(p < 0.001)	
considering	 all	 RS	 variables	 from	20-	m	 resolution	 data	 (Figure	4c).	

F IGURE  4 Time	series	analysis	of	Sentinel-	2	(S2)	images	and	sensitivity	analysis	concerning	grain	size.	In	(a)	the	date-	specific	correlation	
results	between	the	S2	variables	of	13	images	(20-	m	grain	size)	and	the	β-	diversity	are	shown.	Part	(b)	shows	the	correlation	results	applying	
the	multitemporal	mean,	range	(|max-	min|)	and	SD	of	the	time	series	of	S2	variables.	The	S2	image	from	14	Jan	2017	indicates	the	strongest	
correlation	from	the	three	statistical	tests	(MANOVA,	Mantel	test,	variation	partitioning).	This	S2	image	was	used	for	the	sensitivity	analysis	
in	(c).	Here,	we	show	the	statistical	results	for	coarser	grain	sizes	(40	and	60	m)	by	aggregating	the	RS-	derived	metrics	(i.e.	taking	the	mean	
value).	“Ns”	highlights	non-	significant	(p ≥ 0.05)	correlation	results.

(a) (b) (c)
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Considering	 only	 LiDAR	 variables,	 yields	 a	 Mantel	 rLiDAR	 of	 0.18	
(p = 0.008).	Variation	partitioning	of	β-	diversity	through	a	combina-
tion	of	S2	and	LiDAR	variables	(20-	m	grain)	leads	to	a	total	R2

Rs
	of	0.85	

(p < 0.001).	The	R2
S2
	resulting	from	independent	effects	of	S2	signals	

is	 0.59	 (p = 0.001).	 The	R2
LiDAR

	 of	 the	 independent	 effect	 of	 LiDAR	
signals	is	0.01	and	not	significant	(p	=	0.111).	The	combined	effects	
of	 S2	 and	 LiDAR	 variables	 produce	 R2

S2+LiDAR
	=	0.25.	 Accordingly,	

R2
S2
	+	R2

LiDAR
	+	R2

S2+LiDAR
 = R2

Rs
	=	0.85.	 Applying	 the	 K-	means	 classifi-

cation	algorithm	to	all	RS	variables	leads	to	differentiation	of	three	
classes	that	moderately	explain	the	dissimilarities	in	species	compo-
sition	 (Figure	4c;	MANOVA:	p < 0.001,	R2

Rs
	=	0.53).	When	 consider-

ing	 S2	 variables	 only	 (Figure	4c),	 K-	means	 classification	 outcomes	
adequately	 reflect	 the	β-	diversity	 (p < 0.001,	R2

S2
	=	0.70).	A	 classifi-

cation	solely	based	on	LiDAR	variables	yields	a	worse	fit	(Figure	4c;	
p = 0.001,	R2

LiDAR
	=	0.19).	 The	 correlation	 results	 between	 S2	 vari-

ables and β-	diversity	decrease	with	 increasing	grain	size	 (low	reso-
lution),	while	 for	 LiDAR	 variables	 the	 correlation	 slightly	 increases	
(Figure	4c).	 Except	 for	 variation	 partitioning,	 the	 statistical	 tests	
reveal	that	the	correlation	between	all	RS	variables	and	β-	diversity	
among	10-	m	plots	is	strongest	for	20-	m	grain	size,	but	resulting	dif-
ferences	in	explanatory	power	between	grain	sizes	can	be	marginal.

Separating	the	time	series	analyses	by	vegetation	types	resulted	
in	Figure	5.	In	particular,	SC	undergoes	temporal	variation	in	S2	sig-
nals	and	shows	highest	Mantel	r	among	communities,	followed	by	PF	
and	SA	(Figure	5a);	the	SA	correlations	also	cover	a	wide	range	and	
even	became	negative,	but	were	not	significant	due	to	low	sample	
size	and	very	homogeneous	S2	signals;	the	“w”-	shape	is	less	clear	for	
PF.	The	multitemporal	mean	of	the	time	series	produces	the	stron-
gest	correlation	for	SC,	followed	by	the	multitemporal	range	and	SD 
(Figure	5b);	for	PF,	this	is	the	opposite.

The	 NMDS	 based	 on	 the	 species	 abundances	 (Stress	=	0.06)	
demonstrates	no	clear	distinction	between	PF	and	SA	(Figure	6a).	At	
lower	altitudes,	a	considerable	gap	between	PF	and	SC	does	become	
obvious.	Consequently,	the	similarity	in	species	composition	between	

SA	and	PF	is	considerably	higher	than	between	SC	and	PF.	Within	PF	
we	find	emphasized	compositional	variation	in	the	lower	part	close	to	
the	transition	to	SC.	Such	variation	along	the	second	NMDS	axis	also	
appears	in	the	sub	alpine	zone.	The	relationship	between	β-	diversity	
and	nearest	distance	to	anthropogenic	land	use	is	very	weak	(Figure	
S1	in	Appendix	S1).	We	focus	in	the	following	on	RS	variables	derived	
from	RS	data	at	20-	m	spatial	resolution	from	the	S2	image	acquired	
on	14	Jan	2017;	among	these	RS	variables,	Band	3,	Band	5,	Band	6,	
Band	7,	Band	8,	Band	8a,	NDVI,	PSRI,	MSI,	RP0.5m,	RP2m,	RP5m,	
RP10m,	LAI	and	VF	correlate	significantly	(p < 0.05)	with	the	NMDS	
scores	 (Figure	6a;	 for	 details	 see	 Table	 S3	 in	 Appendix	 S1).	 These	
variables	are	mostly	associated	with	the	second	NMDS	axis,	which	
accounts	 for	 less	β-	diversity	 than	 the	 first	 axis.	Canopy	 stress,	 se-
nescence	or	fruit	ripening	(PSRI),	water	stress	(MSI)	and	productivity	
(NDVI)	are	associated	with	the	first	NMDS	axis.

The	PCA	based	on	RS	variables	shows	that	both	axes	contribute	
to	the	differentiation	of	vegetation	types	(Figure	6b),	but	the	three	
communities	appear	less	clearly	separated	than	for	the	species	data	
(Figure	6a);	 the	 distances	 between	 SC,	 PF	 and	 SA	 are	 not	 as	 pro-
nounced	 as	 in	 the	 species-	based	NMDS	 ordination.	 Increasing	 S2	
band	values	are	mostly	related	to	SC.	The	majority	of	LiDAR	metrics	
increase	along	PF	plots.	Weakening	vegetation,	 canopy	growth	or	
death	(CRI1,	ACR1),	and	productivity	(NDVI)	are	also	associated	with	
the	pine	community.	Light	use	efficiency	(PRI),	water	stress	(MSI)	as	
well	as	canopy	stress,	senescence	or	fruit	ripening	(PSRI)	accompany	
SA	plots.	The	structural	variable	RP0.5m	is	related	to	SA,	whereas	
RP2m	 reflects	 SC.	 The	PCA	axes	 loadings	 of	 the	RS	 variables	 are	
given	in	Table	S4	(Appendix	S1).	Among	the	other	explanatory	vari-
ables,	only	the	RS-	specific	coverage	of	Cistus monspeliensis,	C. sym-
phytifolius and Erica arborea	are	not	significantly	correlated	with	the	
PCA	scores	(Table	S3	in	Appendix	S1).	The	RS-	specific	coverage	of	
the	other	species	is	correctly	linked	to	their	corresponding	commu-
nities.	RS-	specific	coverage	of	deadwood	is	linked	to	SA,	of	rock	and	
bare	soil	to	SC	as	well	as	to	SA.

F IGURE  5 Time	series	analysis	of	Sentinel-	2	(S2)	images,	separated	by	community	type.	In	a)	the	date-	specific	Mantel	correlations	
between	the	S2	variables	of	13	images	(20-	m	grain	size)	and	the	β-	diversity	of	the	sub	alpine,	pine	and	succulent	community	are	shown.	
Part	b)	demonstrates	the	Mantel	correlation	results	between	the	mean,	range	(|max-	min|)	and	SD	of	the	time	series	of	S2	variables	and	
the	β-	diversity	of	the	three	community	types.	“Ns”	highlights	not	significant	(p ≥ 0.05)	correlation	results.

(a) (b)
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Furthermore,	variation	partitioning	onto	the	RDA	explaining	the	
variation	 in	 RS	 variables	 leads	 to	 a	 total	R2

Total
	 of	 0.62	 (p = 0.001),	

which	is	the	sum	of	the	effects	of	the	RS-	specific	coverages	of	species	

and	non-	vegetation	types	(rock,	bare	soil,	deadwood,	pine	needles):	
R
2

Total
 = R2

Species
	+	R2

Non−vegetation
	+	R2

Species	+	Non	-		vegetation.	 Thereby,	 RS-	
specific	 species	coverages	 independently	account	 for	an	R2

Species
	of	

0.29	(p = 0.001),	whereas	the	independent	effect	of	non-	vegetation	
coverages	scores	a	non-	significant	 (p = 0.067)	R2

Non−vegetation
	of	0.05.	

The	combined	effects	of	vegetation	and	non-	vegetation	coverages	
result	in	R2

Species+Non−vegetation
 = 0.28.

4  | DISCUSSION

4.1 | Beta- diversity and remote sensing signals

Contrary	to	our	initial	expectations,	we	show	that	a	combination	of	
multispectral	and	structural	RS	variables	can	explain	up	to	85%	of	β-	
diversity	in	the	plant	communities	of	the	study	system.	The	S2	vari-
ables	constitute	more	explanatory	power	than	the	LiDAR	variables	
we	 selected.	 These	 outcomes	 are	 partly	 in	 line	with	 similar	 stud-
ies	 that	 considered	 different	 variables	 and	 scales.	He,	 Zhang,	 and	
Zhang	 (2009)	quantified	 the	 relationship	between	NDVI	distances	
(derived	from	MODIS	with	250-	m	resolution)	and	plant	β-	diversity	
(using	pair-	wise	Bray-	Curtis	dissimilarity)	within	entire	US	counties.	
The	highest	Mantel	r	was	achieved	at	the	species	level	(r = 0.4);	see	
He	and	Zhang	(2009)	for	a	similar	approach	at	the	global	scale.	Hall,	
Reitalu,	Sykes,	and	Prentice	(2012)	used	multispectral	variables	de-
rived	from	QuickBird	imagery	with	a	grain	size	of	2.4	m.	They	applied	
variation	partitioning	on	grassland	β-	diversity	(local-	to-	regional	rich-
ness	 ratio),	 sampled	 in	 0.5-m	 plots	 representative	 for	 larger	 sites,	
which	resulted	in	an	R2	of	0.27	for	the	independent	effect	of	multi-
spectral	RS	variables.	That	is	lower	than	the	explanatory	power	we	
found,	although	their	study	scale	was	much	smaller.

Indeed,	the	different	extents	of	pixels	and	plots	affect	the	cor-
relation	between	RS	signals	and	β-	diversity.	On	the	one	hand,	pixels	
larger	than	the	plot	extent	imply	a	mixture	of	spectral	signals	that	do	
not	only	originate	from	the	plot	extent	(Nagendra,	Rocchini,	Ghate,	
Sharma,	&	Pareeth,	2010).	On	the	other	hand,	applying	a	sampling	
design	with	pixels	smaller	 than	the	plot	extent	 implies	either	sam-
pling	vegetation	in	larger	plots	or	to	using	RS	data	with	higher	spatial	
resolution	(Rocchini	et	al.,	2010).	Plots	larger	than	10	m	×	10	m	are	
rarely	 applied	 in	 vegetation	 ecology,	 because	 the	 sampling	 effort	
is	 large,	particularly	in	open	vegetation	types	(Chytrý	&	Otýpková,	
2003).	Moreover,	Rocchini	(2007)	found	a	Mantel	r	of	0.69	for	the	
correlation	between	species	diversity	sampled	in	10	m	×	10	m	plots	
and	QuickBird	data	with	much	smaller	spatial	resolution	(3	m).	This	
Mantel	 r	 is	 not	 considerably	 larger	 than	 our	 findings;	 in	 the	 case	
of	 over-	sampling	 (i.e.	 plots	 larger	 than	 pixels)	 high-	resolution	 data	
may	contain	a	considerable	amount	of	noise	(Nagendra	&	Rocchini,	
2008),	even	though	the	species	composition	of	pixels	may	be	inac-
curate	in	the	case	of	under-	sampling	(i.e.	plots	smaller	than	pixel).	An	
increase	in	spectral	resolution	can	also	compensate	for	 low	spatial	
resolution	(Rocchini,	2007).

Usually,	communities	that	are	subject	to	climate	seasonality	can	
be	well	 separated	by	RS	data	 (Horning,	Robinson,	Sterling,	Turner,	
&	Spector,	2010).	During	the	wet	(Dec	to	Mar)	and	dry	(Jun	to	Sept)	

F IGURE  6 The	location	of	plots	in	the	2D	ordination	space	
calculated	via	NMDS	and	PCA.	(a)	The	PC-	rotated	NMDS	space	
represents	β-	diversity	calculated	by	the	Hellinger	distance	
between	plots,	considering	the	abundances	of	perennial	plant	
species.	The	NMDS-	stress	value	of	0.06	shows	a	good	fit.	(b)	The	
PC-	rotated	PCA	space	is	calculated	by	the	remote	sensing	(RS)	
variables	derived	from	the	Sentinel-	2	image	taken	on	14	Jan	2017.	
A	proportion	of	60%	of	total	variance	is	explained	by	PC1	(39%)	
and	PC2	(21%;	for	details	see	Table	S4	in	Appendix	S1).	The	vectors	
of	explanatory	variables	(brown	arrows)	and	PCA-	input	variables	
(black	arrows)	were	fitted	after	generating	the	ordination	space	
(for	details	see	Table	S3	in	Appendix	S1).	Species	abbreviations:	
Adenocarpus viscosus	(Adenvisc),	Agrostis	spec.	(Agrospec),	Allium 
canariense	(Allicana)	Arrhenatherum calderae	(Arrhcald),	Cenchrus 
ciliaris	(Cenccili),	Cistus symphytifolius	(Cistsymp),	Echium brevirame 
(Echibrev),	Echium wildpretii	(Echiwild),	Erica arborea	(Ericarbo),	
Erysimum scoparium	(Erysscop)	Euphorbia balsamifera	(Euphbals),	
Euphorbia canariensis	(Euphcana),	Periploca laevigata	(Perilaev),	
Pericallis papyracea	(Peripapy),	Pinus canariensis	(Pinucana),	Plantago 
webbii	(Planwebb),	Pterocephalus porphyranthus	(Pterporp),	Retama 
rhodorhizoides	(Retarhod),	Rhamnus crenulata	(Rhamcren),	Rubia 
fruticosa	(Rubifrut),	Rumex acetosa	(Rumeacet),	Schizogyne sericea 
(Schiseri),	Sonchus hierrensis	(Sonchier).
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season,	 multispectral	 variables	 correlate	 more	 strongly	 with	 the	
dissimilarity	in	species	composition	than	in	other	months.	The	mul-
titemporal	variables,	however,	cannot	explain	 the	same	amount	of	
β-	diversity	as	date-	specific	variables	at	maximum.	This	offers	poten-
tial	 for	 further	 investigations,	 exploring	 the	 explanatory	 power	 of	
date-	specific	multispectral	 variables	 and	 vegetation	 indices	 to	 de-
tect	 the	 reasons	behind	 these	 findings.	We	assume	 that	 the	dom-
inant	 and	 stem-	succulent	 species	 of	 the	 succulent	 zone,	 such	 as	
Euphorbia balsamifera and Euphorbia lamarckii,	 shed	 their	 leaves	 in	
the	dry	season	(Muer	et	al.,	2016).	In	addition,	understorey	species	
of	the	pine	forest	and	sub	alpine	species	frequently	show	discoloura-
tion	during	dry	spells.	The	highly	abundant	bright	yellow	flowers	of	
the	dominating	Adenocarpus viscosus	might	also	lead	to	multispectral	
differentiation	of	 sub	alpine	vegetation	 in	 June	 (Muer	et	al.,	 2016).	
Furthermore,	 during	 the	wet	 season,	 ice	 storms	 can	 cause	 discol-
oration	 of	 Adenocarpus viscosus	 as	 a	 result	 of	 leaf	 tissue	 damage	
(Palomares	Martínez	et	al.,	2011).

In	January,	as	our	date-	specific	PCA	showed	the	vegetation	indi-
ces	PSRI,	MSI,	PRI,	ACR1	and	CRI1	may	represent	vegetation	stress.	
Especially	the	high-	elevation	pine	and	sub	alpine	community	experi-
ence	freezing	temperatures	and	low	precipitation.	Trade	winds	pre-
vent	the	orographic	and	convective	rise	of	moist	air,	leading	to	aridity	
also	 in	 the	 sub	alpine	 zone	 throughout	 several	 months	 (González	
Henríquez,	 Rodrigo	 Pérez,	 &	 Suárez	 Rodríguez,	 1986).	 The	 trade	
wind	cloud	facilitates	fog	drip.	The	high	reflectance	of	red	light	(i.e.	
Band	4,	Band	5	and	PSRI)	was	mostly	associated	with	the	succulent	
and	sub	alpine	scrub.	This	is	an	indicator	for	low	leaf	pigment	content	
and	small	leaf	area,	as	well	as	brown	rock,	soil	and	litter	(Frampton,	
Dash,	Watmough,	&	Milton,	2013).	 In	addition,	 leaf	water	 content	
is	positively	 related	 to	chlorophyll	 content	 (Sims	&	Gamon,	2002).	
Thus,	 leaf	water	 content	 (i.e.	MSI)	 of	 the	 succulent	 and	 	sub	alpine	
scrub	 may	 be	 low	 due	 to	 aridity	 resulting	 in	 less	 chlorophyll	 and	
higher	 reflectance.	Another	 reason	 for	high	 reflectance	 in	 the	vis-
ible	 spectrum	 refers	 to	 succulent	 leaf	 thickness,	 which	 prevents	
light	penetration	and	absorption	of	lower	leaf	layers	(Sims	&	Gamon,	
2002).	High	NDVI	values	correspond	to	the	pine	forest,	where	an-
nual	precipitation	is	highest,	probably	indicating	high	biomass	pro-
duction.	 Most	 LiDAR-	derived	 structural	 variables	 represent	 the	
physiognomic	forest	structure	very	well	 (Ørka,	Wulder,	Gobakken,	
&	Næsset,	2012;	Rees,	2007).	The	association	of	structural	variables	
representing	different	heights	above	ground	(RP	variables)	with	the	
community	 types	 in	 the	 date-	specific	 PCA	 agrees	 with	 observed	
vegetation	heights	in	the	field.

In	 our	 study	 multispectral	 S2	 variables	 explain	 β-	diversity	
more	 accurately	 than	 structural	 LiDAR	 variables.	 One	 reason	 is	
that	the	vegetation	coverages	of	both	scrub	types	are	similar	and	
characterized	by	rocky	outcrops	and	bare	soil.	Considering	addi-
tional	 LiDAR	 metrics	 that	 particularly	 differentiate	 the	 vertical	
scrubland	structure	between	0.5	and	2.0	m	may	 lead	to	a	stron-
ger	correlation	between	LiDAR	products	and	β-	diversity.	Besides,	
the	LiDAR	data	were	acquired	in	April	2009.	Since	then	perennial	
plant	coverage	and	structure	may	have	changed	slightly.	However,	
increasing	 grain	 size	 results	 in	 increasing	 explanatory	 power	 of	

LiDAR	variables	applying	MANOVA,	while	explanatory	power	of	
S2	variables	decreases	in	all	statistical	tests.	The	low	LiDAR	point	
density	and	thus	high	variation	(noise)	in	LiDAR	variables	could	be	
responsible	for	weak	correlations	with	β-	diversity	at	small	scales	
(20	m).	 The	 noise	 is	 reduced	 by	 averaging	 pixel	 values,	 i.e.	 with	
increasing	extent	the	LiDAR	metrics	become	more	stable.	Hence,	
the	average	 structural	 signatures	of	 entire	 community	 types	are	
rather	reflected	by	relatively	 large	grain	sizes	 (60	m),	which	then	
lead	 to	more	distinct	 LiDAR-	based	classes	 in	K-	means	 clustering	
that	correlate	stronger	with	β-	diversity.

A	proportion	of	62%	of	variation	in	S2	signals	from	14	Jan	2017	
can	 be	 explained	 by	 RS-	specific	 coverages	 of	 species	 and	 non-	
vegetation	cover,	but	the	RS-	specific	coverages	of	bare	soil,	rock	and	
litter	barely	add	to	the	differentiation	of	plots	based	on	S2	signals	
alone.	38%	of	variation	in	S2	variables	can	neither	be	explained	by	
the	species	coverages,	nor	by	non-	vegetation	cover	types,	probably	
because	of	differing	spatial	extents	of	plots	and	pixels	and	GPS	lo-
cation	bias.

The	GPS	 inaccuracy	affects	 the	co-	location	of	RS	and	 in-	situ	
data.	For	S2	imagery,	a	GPS	location	error	of	3,	6	and	18	m	is	given	
for	10-	,	20-		and	60-	m	bands,	 respectively	 (Baillarin	et	al.,	2012).	
Due	to	the	field	sampling	conditions	(i.e.	cloud-	free,	no	northern	
aspects,	slope	<20°,	no	obstacles),	the	GPS	accuracy	of	the	plot	lo-
cations	could	be	reduced	to	a	mean	of	3.6	m	(±1.0	m	SD).	However,	
the	cardinal	direction	of	the	true	location	shift	remains	unknown.	
Thus,	a	total	GPS	error	of	6	m	for	20-	m	bands	plus	the	GPS	error	
of	 the	 plot	 locations	 is	 possible	 and	 likely	 to	 cause	 unexplained	
variation	when	correlating	RS	with	 in-	situ	data.	However,	 as	 the	
sensitivity	 analysis	 shows,	 the	 GPS	 bias	 seems	minor,	 since	 the	
lowest	 grain	 size	 of	 20	m	 yields	 equally	 high	 correlation	 results	
compared	to	40	and	60	m.

The	moderate	conformity	of	RS-	based	classes	with	the	β-	diversity	
pattern	reveals	that	both	sets	of	variables,	S2	and	LiDAR,	are	able	to	
reclassify	the	pine	forest	plots,	even	though	unsupervised	classifi-
cations	may	be	 less	accurate	 than	supervised	techniques	 (Horning	
et	al.,	2010).	The	two	sets	seem	to	contradict	each	other,	because	
the	explanatory	power	decreases	when	 it	comes	to	defining	vege-
tation	classes	considering	a	combination	of	the	two	sets.	Therefore,	
increasing	the	number	of	RS	variables	does	not	necessarily	lead	to	
more	variation	explained.

The	 RS	 data	 were	 not	 able	 to	 totally	 resolve	 the	 community	
types	 and	 β-	diversity	 in	 this	 semi-	natural	 system,	 which	 suggests	
similar	RS	properties	of	different	species	assemblages.	Understorey	
species	may	be	highly	abundant	and	determine	β-	diversity,	but	are	
not	 detectable	 for	 RS	 sensors.	 In	 the	 case	 of	 heterogeneous,	 yet	
distinct,	plant	communities	that	comprise	the	same	spectral	signals	
(Sha,	Bai,	Xie,	Yu,	&	Zhang,	2008),	the	potential	of	RS	approaches	in	
vegetation	science	is	limited.

4.2 | Species richness and β- diversity

Many	studies	describe	continuous	change	in	plant	composition	along	
an	 elevational	 gradient	 (Auerbach	&	 Shmida,	 1993;	 Enright,	 1982;	
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Hamilton,	 1975;	Ogden	&	Powell,	 1979;	Whittaker,	 1956).	 In	 con-
trast,	we	 identified	two	very	distinct	communities	at	 low	altitudes	
–	succulent	scrub	and	pine	forest	–	even	though	the	main	environ-
mental	gradients	do	not	change	abruptly.	The	sharp	ecotone	appears	
with	the	presence	of	the	Canarian	endemic	Pinus canariensis.	Other	
ordination-	based	studies	also	reveal	discontinuities	in	compositional	
patterns	with	the	increasing	dominance	of	a	key	tree	species	(Druitt,	
Enright,	&	Ogden,	1990;	Walker	&	Guppy,	1976),	 inducing	positive	
feedback	 switches	 (Wilson	 &	 Agnew,	 1992);	 P. canariensis	 influ-
ences	environmental	resources	(e.g.	water,	 light	and	nutrient	avail-
ability),	 so	 that	 thermophilic	 species	 such	as	Euphorbia balsamifera 
and Retama rhodorhizoides	do	not	establish	in	the	forest	understorey.	
This	 is	 associated	with	 selection,	 a	major	 process	 shaping	 species	
communities,	 results	 from	 fitness	differences	and	 interactions	be-
tween	species	and	the	environment	(Vellend,	2010).

Shade-	tolerant	species	such	as	Erica arborea and Myrica faya	do,	
however,	occur	under	humid	conditions	in	the	lower	pine	forest,	but	
not	in	the	arid	conditions	of	the	upper	succulent	zone.	We	expected	a	
continuous	transition	in	species	composition	between	the	succulent	
and	the	pine	community,	according	to	the	distribution	of	Cistus mon-
speliensis and Cistus symphytifolius	 that	occur	 in	open	forest	stands	
of	 low	elevation	 as	well	 as	 in	 the	upper	 succulent	 zone.	However,	
their	abundances	are	too	low	to	substantially	increase	compositional	
similarity	in	the	lower	ecotone.	In	contrast,	the	leguminous	and	light-	
demanding	 shrub	 Adenocarpus viscosus	 that	 dominates	 above	 the	
tree	line	is	also	abundant	in	open	P. canariensis	stands	at	higher	ele-
vations.	Consequently,	the	similarity	in	species	composition	between	
the	pine	forest	and	the	sub	alpine	zone	is	much	higher	than	between	
the	pine	 forest	 and	 the	 succulent	 scrub.	This	 is	 in	 agreement	with	
Hamilton	and	Perrott	(1981),	who	conclude	that,	along	elevation	gra-
dients,	 lower	community	limits	are	strongly	influenced	by	competi-
tion,	whereas	upper	limits	are	mostly	climatically	determined.

We	propose	that	the	sharp	community	boundary	also	results	from	
different	species	pool	sizes.	Species	pool	size	is	generally	smaller	at	
higher	elevation	due	 to	 lower	 speciation	 rates	 (Ricklefs,	1987)	and	
decreasing	area	with	elevation	 (Karger	et	al.,	2011).	Dissimilarity	 in	
species	composition	intrinsically	increases	with	richness	differences	
between	species	assemblages,	because	the	chance	of	species	overlap	
decreases	(Anderson	et	al.,	2011).	At	the	upper	tree	line,	only	about	
three	perennial	vascular	plant	species	are	present,	whereas	approxi-
mately	eight	species	occur	at	the	lower	transition	zone.	Furthermore,	
species	richness	strongly	decreases	from	the	succulent	scrub	to	the	
pine	forest,	but	stays	constant	from	the	pine	forest	to	the	sub	alpine	
scrub.	Hence,	β-	diversity	is	enhanced	across	the	lower	tree	line,	not	
only	due	to	species	replacement,	but	also	due	to	richness	differences.

The	 strict	 separation	 between	 the	 succulent	 and	 the	 pine	 for-
est	 community	might	 also	 be	 explained	 by	 a	 difference	 in	 distur-
bance	 regimes,	which	 influence	 selection	 (Lawton,	1999),	 but	 also	
speciation	 in	 evolutionary	 time	 spans	 (Vellend,	 2010).	 Regular	 oc-
currence	 of	 fire	 is	 common	 in	 the	 Canary	 pine	 forest	 ecosystem	
(Climent,	Tapias,	Pardos,	&	Gil,	2004);	 fire	sometimes	spreads	 into	
the		sub	alpine	zone	(Irl	et	al.,	2014).	Contrary	to	thermophilic	species	
of	 the	succulent	vegetation,	P. canariensis	and	understorey	species	

display	 adaptations	 to	 fire	 (pyropyhtes).	 P. canariensis	 produces	
epicormics	shoots	and	basal	sprouts,	and	serotinous	cones	release	
seeds	 after	 fire	 events	 (Climent	 et	al.,	 2004).	Understorey	 species	
such	as	Myrica faya,	Erica arborea,	Cistus symphytifolius,	Cistus mon-
speliensis and Adenocarpus viscosus	 regenerate	 quickly	 after	 fire	
events	 (Höllermann,	 2000).	 From	 field	 observations	 (burned	 area)	
and	 literature	 reviews	 (Climent	 et	al.,	 2004;	 Méndez	 et	al.,	 2015;	
Molina-	Terrén,	Fry,	Grillo,	Cardil,	&	Stephens,	2016),	short-	term	fire	
regimes	do	not	vary	among	plots	and	long-	term	forest	regeneration	
does	 not	 depend	 on	 the	 fire	 regime	 either	 (Méndez	 et	al.,	 2015).	
Consequently,	 the	 fire	 regime	 might	 explain	 the	 strong	 composi-
tional	differentiation	between	pine	forest	and	succulent	scrub	due	
to	the	selection	and	speciation	of	species	being	differently	adapted	
to	fire	(Arévalo,	Fernández-	Palacios,	Jiménez,	&	Gil,	2001).

Furthermore,	 the	 European	 rabbit	 (Oryctolagus cuniculus),	 feral	
goat	 (Capra hircus)	 and	 Barbary	 sheep	 (Ammotragus lervia),	 intro-
duced	mammals	on	La	Palma,	induce	the	dominance	of	Adenocarpus 
viscosus	at	high	elevation	(Irl	et	al.,	2012).	Moreover,	anthropogenic	
land	use	influences	pine	forest	diversity	at	lower	altitudes	(Vellend	
et	al.,	2007).	Thinning	of	P. canariensis	plantations	for	timber	produc-
tion	enhances	habitat	heterogeneity,	understorey	species	diversity,	
seed	production	and	regeneration	of	P. canariensis	(Otto,	García-	del-	
Rey,	Méndez,	&	Fernández-	Palacios,	2012).	Although	we	did	not	find	
evidence	for	recent	anthropogenic	impacts,	the	legacy	of	such	dis-
turbance	regimes	can	act	over	decades	(Vellend	et	al.,	2007).	In	any	
case,	 fire	and	herbivory	 likely	 contribute	 to	 the	decline	of	 species	
richness	with	elevation	in	the	study	region	(Irl	et	al.,	2015),	despite	
precipitation	increase,	since	rabbit	densities	can	be	high	above	the	
tree	line	(Cubas	et	al.,	2018).	Thus,	decreasing	richness	differences	
may reduce β-	diversity	between	the	sub	alpine	and	pine	community.

The	 vague	 community	 boundary	 between	 the	 pine	 forest	 and	
the	sub	alpine	scrub	raises	questions	about	the	existence	of	two	dis-
tinct	communities.	Community	and	ecotone	definition	are	a	matter	
of	scale	(Hufkens	et	al.,	2009;	Ricklefs,	2008).	Here	we	apply	a	re-
gional	approach	that	does	not	consider	transition	at	local	scale	nor	
through	time.	Moreover,	we	did	not	test	for	causal	mechanisms	de-
termining	 compositional	 (dis-	)continuities	 (Shipley	&	Keddy,	1987).	
From	a	physiognomy	point	of	 view,	 the	 tree	 line	may	 indicate	 the	
community	limit,	but	in	terms	of	species	composition,	limits	are	un-
clear	(Walker	et	al.,	2003).	Often	boundaries	are	human	constructs.	
Lines	on	a	map	drawn	between	ecoregions	do	not	implicitly	corre-
spond	with	any	obvious	physical	discontinuities	 in	nature	 (Strayer,	
Power,	Fagan,	Pickett,	&	Belnap,	2003).	Because	fundamental	envi-
ronmental	gradients	were	adequately	covered	by	the	plots,	and	the	
relationship	between	β-	diversity	and	nearest	distance	to	anthropo-
genic	 land	 use	was	 very	weak,	 these	 outcomes	 are	 unlikely	 to	 be	
caused	by	sampling	bias	or	human	influence.

5  | CONCLUSION

Our	study	demonstrated	the	potential	of	multiple	RS	products	to	rep-
resent	patterns	in	plant	community	composition	over	large	extents,	
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in	a	short	time	and	at	 low	cost.	 In-	situ	sampling	was	 indispensable	
to	precisely	determine	 and	understand	β-	diversity	 and	 community	
distinction.	 The	 degree	 of	 concordance	 between	 spectral	 and	 β-	
diversity	depends	not	only	on	 the	studied	system,	but	also	on	 the	
methods	applied	(Schmidtlein	&	Fassnacht,	2017).	Such	methods	that	
identify	and	map	discontinuities	in	β-	diversity	are	necessary	for	con-
servation	planning	and	wildlife	management	(Socolar	et	al.,	2016).

On	the	one	hand,	spatial	and	temporal	resolution	of	RS	data	may	
limit	 the	potential	of	 linking	 field	observations	with	RS	data,	since	
interaction	between	species	and	environment	may	occur	at	 scales	
finer	than	those	RS	can	deliver.	In	such	cases,	other	techniques	than	
those	applied	here	may	be	appropriate	(e.g.	high	spatio-	temporal	and	
hyperspectral	resolution,	space-	borne	LiDAR),	but	most	high-	quality	
RS	 data	 are	 costly.	On	 the	 other	 hand,	 in-	situ	 data	 are	 also	 often	
missing.	Facing	 these	 limitations,	project	collaborations	are	neces-
sary	to	bring	together	scientists	from	ecology	and	remote	sensing	to	
exploit	the	vast	potential	of	a	combination	of	in-	situ	data	and	earth	
observation	for	science	and	conservation	practice.
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