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Abstract
Question: Do remote sensing signals represent β-diversity? Does β-diversity agree 
with community types?
Location: UNESCO Man and the Biosphere Reserve, La Palma, Canary Islands.
Methods: We recorded perennial, vascular plant species abundances in 69 plots 
(10 m × 10 m) in three pre-defined community types along an elevational gradient of 
2,400 m: succulent scrubland, Pinus canariensis forest and subalpine scrubland. The 
remote sensing data consists of structural variables from airborne Light Detection 
and Ranging (LiDAR) and multispectral variables from a time series of Sentinel-2 (S2) 
images. Non-metric Multidimensional Scaling was used to assess β-diversity between 
plots. K-means unsupervised clustering was applied to remote sensing variables to 
distinguish three community types. We subsequently quantified the explanatory 
power of S2 and LiDAR variables representing β-diversity via the Mantel test, varia-
tion partitioning and multivariate analysis of variance. We also investigated the sen-
sitivity of results to grain size of remote sensing data (20, 40, 60 m).
Results: The β-diversity between the succulent and pine community is high, whereas 
the β-diversity between the pine and subalpine community is low. In the wet season, 
up to 85% of β-diversity is reflected by remote sensing variables. The S2 variables 
account for more explanatory power than the LiDAR variables. The explanatory 
power of LiDAR variables increases with grain size, whereas the explanatory power 
of S2 variables decreases.
Conclusion: At the lower ecotone, β-diversity agrees with the pre-defined commu-
nity distinction, while at the upper ecotone the community types cannot be clearly 
separated by compositional dissimilarity alone. The high β-diversity between the suc-
culent scrub and pine forest results from positive feedback switches of P. canariensis, 
being a fire-adapted, key tree species. In accordance with the spectral variation hy-
pothesis, remote sensing signals can adequately represent β-diversity for a large ex-
tent, in a short time and at low cost. However, in-situ sampling is necessary to fully 
understand community composition. Nature conservation requires such interdiscipli-
nary approaches.
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1  | INTRODUC TION

The spatial and temporal change rates of species composition, i.e. 
β-diversity, have been at the heart of community ecology ever 
since Clements (1916). However, the community definition is still 
largely debated (Chiarucci, 2007; Palmer & White, 1994; Ricklefs, 
2008). The controversy revolves around the coherence and integ-
rity of ecological entities through different scales of space and time 
(Jax, 2006). In order to assess community patterns, concepts of β-
diversity are applied that quantify the compositional dissimilarity 
between species assemblages (Anderson et al., 2011).

Processes responsible for observed patterns of species co-
existence, usually referred to as “assembly rules”, can be determinis-
tic, stochastic, interrelated and contingent, which led Lawton (1999) 
to call community ecology “a mess”. Vellend (2010) proposed the 
following overarching processes shaping β-diversity and community 
patterns: selection, drift, speciation and dispersal. These factors and 
anthropogenic activities determine β-diversity and, thus, biodiver-
sity in general (Socolar, Gilroy, Kunin, & Edwards, 2016), on which 
human well-being depends (Cardinale et al., 2012). It is therefore 
important to study patterns of β-diversity as well as corresponding 
drivers.

The existence of communities implies the delineation of commu-
nity types. Because natural boundary sharpness varies (Auerbach & 
Shmida, 1993; Wilson & Agnew, 1992), community distinction is not 
necessarily discrete; transition between communities can be rather 
continuous. This is why community limits are specifically considered 
as transition zones, also known as ecotones (Livingston, 1903). In 
early times, an ecotone was associated with a clear separation of 
plant physiognomy (Clements, 1905). The recent definition of eco-
tone by Lloyd, McQueen, and Lee (2000) is based on β-diversity and 
describes it as a “zone where directional change in vegetation (i.e. 
qualitative and quantitative species composition) is more rapid than 
on the other side of the zone.” Although ecotones are a standard 
entity in landscape ecology (Wiens, Crawford, Gosz, Crawford, & 
Boundary, 1985), Hufkens, Scheunders, and Ceulemans (2009) point 
out that they do not have standardized spatial and temporal units.

In order to analyse the spatial and temporal complexity of plant 
communities, comprehensive field sampling and monitoring is 
needed, which is time-consuming and costly. Remote sensing (RS) 
can be a powerful tool to estimate β-diversity patterns over large 
extents, in a short time and at low cost (Rocchini et al., 2016). RS sen-
sors provide data that reveal biodiversity patterns from local to global 
extent as well as patterns that are temporally resolved. RS sensors 
are used to detect changes in community composition, with changes 
in spectral diversity as a measure of β-diversity (Rocchini, Butini, & 

Chiarucci, 2005). This application rests on the spectral variation hy-
pothesis (SVH) explaining the relationship between environmental 
heterogeneity, species diversity and spectral information (Palmer, 
Earls, Hoagland, White, & Wohlgemuth, 2002). Environmental 
heterogeneity increases habitat heterogeneity and, thus, species 
diversity (i.e. habitat heterogeneity hypotheses; Simpson, 1949). 
Environmental heterogeneity also increases spectral heterogeneity. 
Therefore, spectral variation is associated with α-  and β-diversity 
(Palmer et al., 2002; Rocchini, Chiarucci, & Loiselle, 2004). However, 
the SVH does not apply to all ecosystems and depends on the extent 
of RS and in-situ data as well as the spatial, temporal and spectral 
resolution of RS data (Schmidtlein & Fassnacht, 2017).

This study relates to the SVH, because we investigate to what 
degree RS signals of species assemblages can explain β-diversity, i.e. 
the compositional dissimilarity between species assemblages. As a 
case study, we sampled the semi-natural plant communities along a 
continuous elevational gradient on La Palma, Canary Islands. First, 
we test the SVH using structural RS variables from light detection 
and ranging (LiDAR) and multispectral variables from a time series of 
Sentinel-2 images (S2). Since RS sensors can barely account for small, 
rare and understorey species, we expect that RS signals cannot ade-
quately explain β-diversity that is derived from in-situ observations. 
This combination of data and techniques has not been used before to 
represent β-diversity with RS products. Second, we analyse to what 
extent β-diversity agrees with the pre-defined community types.

2  | METHODS

2.1 | Study region

The island of La Palma is located at the northwest edge of the 
Canary archipelago in the Atlantic Ocean, ca. 400 km west of the 
African coast at 28°N (Figure 1). The entire island is designated a 
‘UNESCO Man and the Biosphere Reserve’. La Palma is generally 
characterized by a subtropical-mediterranean climate. However, the 
elevational gradient and trade winds from the northwest constitute 
diverse climatic attributes leading to the existence of eight different 
ombrotypes, ranging from hyperarid to humid, within a small geo-
graphic extent (Garzón-Machado, Otto, & del Arco Aguilar, 2013).

2.2 | Field sampling

Field sampling was performed along the elevational gradient (from 
45 to 2,400 m a.s.l.) present on the northwest part of the island, 
where anthropogenic pressure is low, semi-natural land cover is 
largely preserved, edaphic conditions are homogeneous (Carracedo, 

K E Y W O R D S

β-diversity, conservation biogeography, elevation gradient, island biogeography, LiDAR, plant 
community, remote sensing, Sentinel, spectral variation hypothesis, time series, tree line, 
vegetation indices
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Badiola, Guillou, De La Nuez, & Pérez Torrado, 2001) and human 
activities are scarce. Fieldwork was conducted during February and 
March 2017. Three main community types were crossed along el-
evation (Del Arco Aguilar, González-González, Garzón-Machado, 
& Pizarro-Hernández, 2010). Succulent scrublands occur in semi-
arid conditions at low elevation (~0–500 m) and are dominated by 
Euphorbia scrub. The vegetation height can exceed 2 m. The vegeta-
tion cover is consistently high, but bare soil and rock can be found. 
The plant communities in mid-elevations are dominated by the en-
demic P. canariensis, which also forms the tree line both towards 
high and low altitudes (~500–2,000 m). The canopy cover and height 
peak in mid-elevation. The understorey consists of scrub species. 
The forest ground is covered with pine needles. The subalpine com-
munities (~2,000–2,400 m) are characterized by the summit broom 
scrub Adenocarpus viscosus subsp. spartioides (hereafter Adenocarpus 

viscosus). The vegetation height barely reaches 2 m. Bare soil, rock 
and deadwood is frequently found in this vegetation zone. In ac-
cordance with Del Arco Aguilar et al. (2010), we pre-classified the 
sampling sites including P. canariensis as pine forest (PF), while those 
without P. canariensis below the pine forest were designated as suc-
culent scrub (SC) and those above the pine forest were designated 
as subalpine (SA).

We applied a stratified random sampling along the elevational 
gradient. Thereby SC, PF and SA defined the strata. We avoided an-
thropogenic land use, northern slopes >20°, to prevent sites from 
being unnatural and appearing dark and distorted in remote sensing 
imagery. Due to ridges and steep slopes some sites appear linearly 
arranged (Figure 1). In each sampling site, a 10 m × 10 m plot was 
used to record plant community data. We sampled ten SC, 48 PF and 
11 SA plots. We recorded abundances of all vascular plant species 

F IGURE  1 Location of sampling plots on La Palma, Canary Islands. (a) The Canary Islands are located in the Atlantic Ocean to the west of 
the African continent. (b) The entire island is a UNESCO Man and the Biosphere Reserve. The digital elevation model (Irl et al., 2015) shows 
the location of the sampling plots. The plots that include Pinus canariensis were classified as “Pine forest (PF)”. Plots below the pine forest 
without P. canariensis were classified as “Succulent scrub (SC)”, and plots above the pine forest without P. canariensis as “Subalpine scrub 
(SA)”. (c) The false-colour composite image supports the visual interpretation of vegetation and is based on the Sentinel-2 imagery from 14 
Jan 2017 with 10-m resolution (Band 8, Band 4 and Band 3).
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within the plots, by estimating their coverage within three verti-
cal strata (tree, scrub and herb layer). Since the presence of annual 
plants is driven by short-term weather events that differ locally, we 
only considered perennial plant species. The stochastic, short-term 
variation of the occurrence of annuals during the seasons makes it 
very difficult to conduct reliable comparisons with remote sensing 
data which are recorded at a different time. We used Muer et al. 
(2016) for the nomenclature of vascular plant species.

Since we are interested in changes of abundance-based spe-
cies composition, we applied relative abundances to calculate β-
diversity. Relative abundance per species and plot was calculated as 
the species’ coverage divided by the sum of coverages of all species 
in all vertical strata. From this definition, we can accurately assess 
changes in species composition between plots, because land cover 
types other than vegetation (i.e. bare soil, rock and litter) that bias 
the β-diversity based on absolute abundances are neglected. If other 
cover types were considered, we would notice a reduction in ab-
solute species abundances, even if the relative species abundances 
remain constant. However, such cover classes and the coverage of 
species influence the composition of RS signals. To perform an anal-
ysis of the composition of RS signals, we used the following explan-
atory variables: we estimated the absolute coverages of bare soil, 
rock, pine needles and deadwood that are not vertically covered by 
any other strata in the plot. In this RS-specific analysis, we also con-
sidered the absolute coverages of the ten most abundant species 
that are not covered by other strata. We refer to these coverages as 
‘RS-specific’ coverages.

2.3 | Environmental data

Since mean annual temperature and mean annual precipitation are 
among the most important climate variables in community ecology 
at the landscape scale (Whittaker, 1970), we used them to char-
acterize the plant communities in the study region. These climatic 
variables were generated by the interpolation of data from mete-
orological stations, applying linear regression kriging technique (for 
details see Irl et al., 2015). We extracted climate data for each plot 
from the grid by averaging the values of all climate cells that fall 
within the plot. In order to evaluate the human impact on species 
composition, we calculated for each plot the planar distance to the 
nearest anthropogenic infrastructure, i.e. roads and buildings of any 
kind (Figure S1 in Appendix S1).

2.4 | Remote sensing data

We considered RS products that represent multispectral and struc-
tural vegetation properties, and are thus appropriate to distinguish 
plant communities (Pettorelli et al., 2014; Xie, Sha, & Yu, 2008). To 
account for multispectral differences that may occur during the sea-
sons, we selected 13 Sentinel-2 images (S2; European Space Agency 
2017), covering the time period from February 2016 to February 2017 
(Table S1 in Appendix S1). We chose S2, since this sensor provides 
images of high radiometric (12 bands), temporal (5 days revisit time) 

and spatial resolution (10–60 m) that are publicly available and free 
of charge (see https://sentinel.esa.int/documents/247904/685211/
Sentinel-2_User_Handbook). The downloaded images were given 
as geometrically and radiometrically corrected Top-of-Atmosphere 
(TOA) Level-1C product. We applied atmospheric, terrain and bidirec-
tional reflectance distribution (BRDF with cosine of local solar zenith 
angle) correction using the Sen2Cor plugin (see http://step.esa.int/
main/third-party-plugins-2/sen2cor/) within the Sentinel-2 toolbox 
of the Sentinel Application Platform (SNAP) to generate Bottom-
Of-Atmosphere (BOA) Level-2A products. These products include 
a masking layer for classifying pixels affected by clouds as “medium 
cloud probability”, “high cloud probability” and “cirrus”. The cloud 
mask covered a maximum of two plots per image (Table S1 in Appendix 
S1). Such plots were excluded from analyses. Band 1 (aerosol, 60 m), 
Band 9 (water vapour, 60 m) and Band 10 (cirrus, 60 m) were removed 
by the preprocessing procedure, as they are only needed for cloud-
masking. The remaining bands are Band 2 (blue, 10 m), Band 3 (green, 
10 m), Band 4 (red, 10 m), Band 5 (red edge, 20 m), Band 6 (red edge, 
20 m), Band 7 (red edge, 20 m), Band 8 (near-infrared [NIR], 10 m), 
Band 8a (red edge, 20 m), Band 11 (shortwave infrared [SWIR], 20 m) 
and Band 12 (shortwave infrared [SWIR], 20 m).

We also applied basic vegetation indices to explore plant charac-
teristics that lead to spectral differences. The normalized differentia-
tion vegetation index (NDVI; [Band 8 – Band 4]/[Band 8 + Band 4]) is 
one of the most popular proxies for primary productivity (Pettorelli, 
2013). Higher values of the moisture stress index MSI ([Band 11/
Band 8]) reveal less leaf water content (Hunt & Rock, 1989). The 
plant senescence reflectance index PSRI ([Band 4 – Band 2]/Band 
6) increases with canopy stress (carotenoid concentration), canopy 
senescence and fruit ripening (Merzlyak, Gitelson, Chivkunova, & 
Rakitin, 1999). The anthocyanin reflectance index ACR1 ([1/Band 
3]/[1/Band 5]) demonstrates canopy changes through growth and 
death (Gitelson, Merzlyak, & Chivkunova, 2001). The carotenoid re-
flectance index CRI1 ([1/Band 2]/[1/Band 3]) represents carotenoid 
concentration relative to chlorophyll (Gitelson, Zur, Chivkunova, 
& Merzlyak, 2002); carotenoid pigments increase with vegetation 
stress. The photochemical reflectance index PRI ([Band 2 – Band 3]/
[Band 2 + Band 3]) indicates light use efficiency (Gamon, Serrano, & 
Surfus, 1997); the PRI index changes with carotenoid pigments in 
live foliage and thus describes productivity and stress.

Metrics derived from airborne LiDAR are able to account for both 
2D and 3D vegetation structure, which helps to distinguish vegetation 
that differs in structural variables such as growth height and canopy 
cover (Pettorelli et al., 2014). Airborne laser scanning (ALS) point cloud 
data from April 2009 was downloaded from the Spanish National 
Geographic Institute (IGN). The point clouds have a density of 0.5 
points per 1 m2 (see Appendix S2). After data pre-processing, several 
indices were calculated with a grain size of 20 m. The canopy height 
model (CHM) returns the average of normalized heights above ground. 
The tree fraction cover (TFC) is the proportion of first ALS returns over 
2 m above ground from the total amount of first ALS return in the raster 
cell. The vegetation fraction (VF) reflects the number of all returns over 
0.5 m height divided by the number of all returns within the cell. The 

https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
http://step.esa.int/main/third-party-plugins-2/sen2cor/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
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return proportion (RP) indices were calculated as the number of ALS 
returns in different vertical strata (0.5, 2, 5, 10, 15, 20, 25 m) divided by 
the total number of ALS returns in the cell. Thus, RP provides informa-
tion about the 3D vegetation structure. The effective leaf area index 
(LAI) was computed based on the gap probability, but not corrected for 
woody elements or the clumping effect. For classifications based on 
RS data all variables were standardized to zero mean and unit variance. 
In order to retrieve (pair-wise) distances between plots based on these 
standardized RS variables, we applied the Euclidean distance measure.

To reduce the bias induced by GPS inaccuracy when extracting 
the RS data by plot centroids, we use RS metrics with a minimum 
grain size of 20 m. In addition, we evaluated the sensitivity of results 
to coarser grain sizes (40 and 60 m) by aggregating the RS metrics, 
i.e. taking the mean value.

2.5 | Statistical analyses

Our methodological approach to analyse the relationship between 
in-situ and RS variables is summarised in Figure 2. To describe the 

given plant communities and demonstrate the species’ realized en-
vironmental niches, we modelled the coenoclines of the ten most 
abundant species. A coenocline is a response curve of the species 
abundance along a single gradient (Whittaker, 1967). Species with 
overlapping coenoclines form communities. We applied two environ-
mental gradients: mean annual temperature and mean annual pre-
cipitation. Coenclines were generated by fitting generalized additive 
models (GAM) with Gaussian distribution and link function, and thin 
plate regression splines as the single penalty smooth class (Wood, 
2017). Because we were facing unequal sample sizes between com-
munity types, we conducted non-parametric Kruskal-Wallis ANOVA 
(Siegel & Castellan, 1988) to identify differences in species richness 
(Figure S2 in Appendix S1). Linear regression models were applied to 
determine the relationship between species richness and environ-
mental gradients. Model assumptions were verified visually.

Beta-diversity can be understood as the dissimilarity between 
plots regarding their species composition (Whittaker, 1967). We 
applied non-metric multidimensional scaling (NMDS) to assess β-
diversity and distinguish plant communities (Legendre & De Cáceres, 

F IGURE  2 Flow chart describing the 
remote sensing and in-situ data as well 
as the statistical analyses to evaluate the 
relationship between the two. For details 
see Methods section.
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2013). The NMDS is a distance-based, indirect ordination technique. 
We avoided direct ordination methods, since we were interested in 
unconstrained results that only rest on compositional dissimilarity 
(McCune & Grace, 2002). The NMDS ranks distances between input 
data (plots); therefore, NMDS bypasses the linearity assumptions of 
metric ordination methods. Here we applied Hellinger distance to 
calculate the distance matrix among plots regarding their species 
composition (Legendre & De Cáceres, 2013). The Hellinger distance 
down-weights the occurrence of rare species. Thus, we controlled 
for overrated influence of rare species in dissimilarity calculations. 
We calculated a 2D ordination space running 100 attempts and in-
volving random starting configurations, to find the optimal solution 
by NMDS, i.e. the lowest stress value. The NMDS-space was rotated 
to principal components; most variation in the data is shown along 
the first axis, followed by the second. We conducted post-hoc cor-
relation of explanatory variables to the NMDS via surface and vec-
tor fitting, to interpret the influence of explanatory variables onto 
the compositional dissimilarity represented by the location of plots 
in the NMDS-space. We eventually calculated β-diversity as the 
Euclidean distances between plot locations in the 2D NMDS space.

Subsequently, we utilized the Mantel test (Mantel, 1967) to 
quantify the correlation between β-diversity and the pair-wise 

distances between plots based on RS variables. Moreover, variation 
partitioning was used to reveal the combined and independent ef-
fects of S2 and LiDAR variables explaining the β-diversity (Legendre 
& Anderson, 1999). Variation partitioning is based on a redundancy 
analysis (RDA), linearly modelling the relationship between a set of 
dependent variables and two sets of explanatory variables. We also 
employed K-means unsupervised classification algorithm (Lloyd, 
1982) to distinguish three community types considering RS variables 
only. We aimed to create three classes, because existing vegetation 
maps predefine three main community types in the study region: 
succulent scrub, pine forest and subalpine scrub. The K-means algo-
rithm has been used before to test the SVH (Schmidtlein & Fassnacht, 
2017). We then conducted MANOVA (Anderson, 2001) to estimate 
how K-means classification on RS variables fits to the β-diversity.

The Mantel test, variation partitioning and MANOVA was applied 
to each S2 image as well as to the mean, range (|max–min|) and SD 
of all dates. We can consequently identify seasonal variation of the 
explanatory power of RS signals, and account for complementarity 
of RS signals over time. This time series analysis was also conducted 
separately for each of the three vegetation types. Here we only 
applied the Mantel test, since the sampling size of SC and SA was 
too small to apply variation partitioning, and the MANOVA requires 

F IGURE  3 Species abundance vs. environmental gradients. GAM indicate the relative abundance of the ten most abundant species in 
the data set for (a) mean annual temperature, and (b) mean annual precipitation. The linear regression model demonstrates the relationship 
between (c) perennial species richness and mean annual temperature, and between (d) perennial species richness and mean annual 
precipitation. Species abbreviations: Adenocarpus viscosus (Adenvisc), Arrhenatherum calderae (Arrhcald), Cistus monspeliensis (Cistmons), 
Cistus symphytifolius (Cistsymp), Erica arborea (Ericarbo), Euphorbia balsamifera (Euphbals), Pinus canariensis (Pinucana), Retama rhodorhizoides 
(Retarhod), Rubia fruticosa (Rubifrut), Schizogyne sericea (Schiseri).
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vegetation classes, which is pointless to produce within single com-
munity types. The β-diversity within vegetation types was thereby 
again given by the point distances in the NMDS that involves all plots 
(see above).

Furthermore, we applied a PCA (Mardia, Kent, & Bibby, 1979) to 
the RS variables, but used the S2 variables from the S2 image that 
showed the highest mean of the three correlational results from the 
Mantel test, variation partitioning and MANOVA. We thus illustrate 
the variation in RS signals that can best explain β-diversity and depict 
the RS products that add most to this variation. As for the NMDS, 
we added post-hoc correlation of explanatory variables via vector 
fitting. In addition, variation partitioning onto an RDA was used to 
separate the variation among these date-specific S2 variables that 
can be explained by RS-specific coverages of the ten most abundant 
species and of non-vegetation cover types (i.e. bare soil, rock, pine 
needles and deadwood).

Data processing and statistical analyses were conducted using 
open-source R Statistics (R Foundation for Statistical Computing, 
Vienna, Austria; v 1.0.136) and corresponding default settings, if not 
mentioned differently (Table S2 in Appendix S1).

3  | RESULTS

The responses of the ten most frequent perennial plant species to 
the major climatic gradients are clear and unimodal (Figure 3a,b). In 
the semi-arid conditions of the low elevation zone, several species 
associated with succulent communities show maximum performance 
with the highest temperature and lowest precipitation along the el-
evation gradient (Euphorbia balsamifera, Retama rhodorhizoides, Rubia 
fruticosa, Schizogyne sericea). Cistus monspeliensis, C. symphytifolius 

and Erica arborea become more abundant with decreasing tempera-
ture and increasing precipitation. They share their realized environ-
mental niches with P. canariensis, which is most abundant at a mean 
annual temperature of ca. 14°C and at the highest annual precipita-
tion found in the region (~925 mm). In the subalpine communities, 
Adenocarpus viscosus and Arrhenatherum calderae show maximum 
abundance with decreasing precipitation and lowest temperatures.

Species richness is also clearly related to climatic variables, 
namely a positive relationship with temperature and a negative re-
lationship with rainfall (Figure 3c,d). Despite these significant rela-
tionships, the three main vegetation types are clearly identified in 
the species richness vs. temperature graph, but not in the species 
richness vs. rainfall graph, which is explained by a rainfall decrease 
at high elevations. We did not detect a significant relationship be-
tween the relative abundance of P. canariensis and perennial species 
richness (not shown), but the SC plots harbour considerably more 
species than both other classes (Figure S2 in Appendix S1).

Figure 4a reveals that the S2 variables from 14 Jan 2017 (20-m 
grain size) correlate on average most strongly with the β-diversity. 
We additionally observe a “W”-shape; the correlation between S2 
variables and β-diversity is stronger during the wet (Dec–Mar) and 
dry season (Jun–Sept), compared to other months. The multitempo-
ral analysis demonstrates that neither the mean nor the range and 
SD of the time series reaches the highest correlation results of single 
image dates (Figure 4b). Here the multitemporal mean of S2 variables 
yields on average the strongest correlation with β-diversity, com-
pared with the multitemporal range and SD. Interestingly, the multi-
temporal MANOVA results are weakest of the three statistical tests, 
but for single dates the two strongest correlations are produced by 
MANOVA (Figure 4a). The Mantel test reveals a rRS = 0.41 (p < 0.001) 
considering all RS variables from 20-m resolution data (Figure 4c). 

F IGURE  4 Time series analysis of Sentinel-2 (S2) images and sensitivity analysis concerning grain size. In (a) the date-specific correlation 
results between the S2 variables of 13 images (20-m grain size) and the β-diversity are shown. Part (b) shows the correlation results applying 
the multitemporal mean, range (|max-min|) and SD of the time series of S2 variables. The S2 image from 14 Jan 2017 indicates the strongest 
correlation from the three statistical tests (MANOVA, Mantel test, variation partitioning). This S2 image was used for the sensitivity analysis 
in (c). Here, we show the statistical results for coarser grain sizes (40 and 60 m) by aggregating the RS-derived metrics (i.e. taking the mean 
value). “Ns” highlights non-significant (p ≥ 0.05) correlation results.

(a) (b) (c)
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Considering only LiDAR variables, yields a Mantel rLiDAR of 0.18 
(p = 0.008). Variation partitioning of β-diversity through a combina-
tion of S2 and LiDAR variables (20-m grain) leads to a total R2

Rs
 of 0.85 

(p < 0.001). The R2
S2
 resulting from independent effects of S2 signals 

is 0.59 (p = 0.001). The R2
LiDAR

 of the independent effect of LiDAR 
signals is 0.01 and not significant (p = 0.111). The combined effects 
of S2 and LiDAR variables produce R2

S2+LiDAR
 = 0.25. Accordingly, 

R2
S2
 + R2

LiDAR
 + R2

S2+LiDAR
 = R2

Rs
 = 0.85. Applying the K-means classifi-

cation algorithm to all RS variables leads to differentiation of three 
classes that moderately explain the dissimilarities in species compo-
sition (Figure 4c; MANOVA: p < 0.001, R2

Rs
 = 0.53). When consider-

ing S2 variables only (Figure 4c), K-means classification outcomes 
adequately reflect the β-diversity (p < 0.001, R2

S2
 = 0.70). A classifi-

cation solely based on LiDAR variables yields a worse fit (Figure 4c; 
p = 0.001, R2

LiDAR
 = 0.19). The correlation results between S2 vari-

ables and β-diversity decrease with increasing grain size (low reso-
lution), while for LiDAR variables the correlation slightly increases 
(Figure 4c). Except for variation partitioning, the statistical tests 
reveal that the correlation between all RS variables and β-diversity 
among 10-m plots is strongest for 20-m grain size, but resulting dif-
ferences in explanatory power between grain sizes can be marginal.

Separating the time series analyses by vegetation types resulted 
in Figure 5. In particular, SC undergoes temporal variation in S2 sig-
nals and shows highest Mantel r among communities, followed by PF 
and SA (Figure 5a); the SA correlations also cover a wide range and 
even became negative, but were not significant due to low sample 
size and very homogeneous S2 signals; the “w”-shape is less clear for 
PF. The multitemporal mean of the time series produces the stron-
gest correlation for SC, followed by the multitemporal range and SD 
(Figure 5b); for PF, this is the opposite.

The NMDS based on the species abundances (Stress = 0.06) 
demonstrates no clear distinction between PF and SA (Figure 6a). At 
lower altitudes, a considerable gap between PF and SC does become 
obvious. Consequently, the similarity in species composition between 

SA and PF is considerably higher than between SC and PF. Within PF 
we find emphasized compositional variation in the lower part close to 
the transition to SC. Such variation along the second NMDS axis also 
appears in the subalpine zone. The relationship between β-diversity 
and nearest distance to anthropogenic land use is very weak (Figure 
S1 in Appendix S1). We focus in the following on RS variables derived 
from RS data at 20-m spatial resolution from the S2 image acquired 
on 14 Jan 2017; among these RS variables, Band 3, Band 5, Band 6, 
Band 7, Band 8, Band 8a, NDVI, PSRI, MSI, RP0.5m, RP2m, RP5m, 
RP10m, LAI and VF correlate significantly (p < 0.05) with the NMDS 
scores (Figure 6a; for details see Table S3 in Appendix S1). These 
variables are mostly associated with the second NMDS axis, which 
accounts for less β-diversity than the first axis. Canopy stress, se-
nescence or fruit ripening (PSRI), water stress (MSI) and productivity 
(NDVI) are associated with the first NMDS axis.

The PCA based on RS variables shows that both axes contribute 
to the differentiation of vegetation types (Figure 6b), but the three 
communities appear less clearly separated than for the species data 
(Figure 6a); the distances between SC, PF and SA are not as pro-
nounced as in the species-based NMDS ordination. Increasing S2 
band values are mostly related to SC. The majority of LiDAR metrics 
increase along PF plots. Weakening vegetation, canopy growth or 
death (CRI1, ACR1), and productivity (NDVI) are also associated with 
the pine community. Light use efficiency (PRI), water stress (MSI) as 
well as canopy stress, senescence or fruit ripening (PSRI) accompany 
SA plots. The structural variable RP0.5m is related to SA, whereas 
RP2m reflects SC. The PCA axes loadings of the RS variables are 
given in Table S4 (Appendix S1). Among the other explanatory vari-
ables, only the RS-specific coverage of Cistus monspeliensis, C. sym-
phytifolius and Erica arborea are not significantly correlated with the 
PCA scores (Table S3 in Appendix S1). The RS-specific coverage of 
the other species is correctly linked to their corresponding commu-
nities. RS-specific coverage of deadwood is linked to SA, of rock and 
bare soil to SC as well as to SA.

F IGURE  5 Time series analysis of Sentinel-2 (S2) images, separated by community type. In a) the date-specific Mantel correlations 
between the S2 variables of 13 images (20-m grain size) and the β-diversity of the subalpine, pine and succulent community are shown. 
Part b) demonstrates the Mantel correlation results between the mean, range (|max-min|) and SD of the time series of S2 variables and 
the β-diversity of the three community types. “Ns” highlights not significant (p ≥ 0.05) correlation results.

(a) (b)
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Furthermore, variation partitioning onto the RDA explaining the 
variation in RS variables leads to a total R2

Total
 of 0.62 (p = 0.001), 

which is the sum of the effects of the RS-specific coverages of species 

and non-vegetation types (rock, bare soil, deadwood, pine needles): 
R
2

Total
 = R2

Species
 + R2

Non−vegetation
 + R2

Species + Non - vegetation. Thereby, RS-
specific species coverages independently account for an R2

Species
 of 

0.29 (p = 0.001), whereas the independent effect of non-vegetation 
coverages scores a non-significant (p = 0.067) R2

Non−vegetation
 of 0.05. 

The combined effects of vegetation and non-vegetation coverages 
result in R2

Species+Non−vegetation
 = 0.28.

4  | DISCUSSION

4.1 | Beta-diversity and remote sensing signals

Contrary to our initial expectations, we show that a combination of 
multispectral and structural RS variables can explain up to 85% of β-
diversity in the plant communities of the study system. The S2 vari-
ables constitute more explanatory power than the LiDAR variables 
we selected. These outcomes are partly in line with similar stud-
ies that considered different variables and scales. He, Zhang, and 
Zhang (2009) quantified the relationship between NDVI distances 
(derived from MODIS with 250-m resolution) and plant β-diversity 
(using pair-wise Bray-Curtis dissimilarity) within entire US counties. 
The highest Mantel r was achieved at the species level (r = 0.4); see 
He and Zhang (2009) for a similar approach at the global scale. Hall, 
Reitalu, Sykes, and Prentice (2012) used multispectral variables de-
rived from QuickBird imagery with a grain size of 2.4 m. They applied 
variation partitioning on grassland β-diversity (local-to-regional rich-
ness ratio), sampled in 0.5-m plots representative for larger sites, 
which resulted in an R2 of 0.27 for the independent effect of multi-
spectral RS variables. That is lower than the explanatory power we 
found, although their study scale was much smaller.

Indeed, the different extents of pixels and plots affect the cor-
relation between RS signals and β-diversity. On the one hand, pixels 
larger than the plot extent imply a mixture of spectral signals that do 
not only originate from the plot extent (Nagendra, Rocchini, Ghate, 
Sharma, & Pareeth, 2010). On the other hand, applying a sampling 
design with pixels smaller than the plot extent implies either sam-
pling vegetation in larger plots or to using RS data with higher spatial 
resolution (Rocchini et al., 2010). Plots larger than 10 m × 10 m are 
rarely applied in vegetation ecology, because the sampling effort 
is large, particularly in open vegetation types (Chytrý & Otýpková, 
2003). Moreover, Rocchini (2007) found a Mantel r of 0.69 for the 
correlation between species diversity sampled in 10 m × 10 m plots 
and QuickBird data with much smaller spatial resolution (3 m). This 
Mantel r is not considerably larger than our findings; in the case 
of over-sampling (i.e. plots larger than pixels) high-resolution data 
may contain a considerable amount of noise (Nagendra & Rocchini, 
2008), even though the species composition of pixels may be inac-
curate in the case of under-sampling (i.e. plots smaller than pixel). An 
increase in spectral resolution can also compensate for low spatial 
resolution (Rocchini, 2007).

Usually, communities that are subject to climate seasonality can 
be well separated by RS data (Horning, Robinson, Sterling, Turner, 
& Spector, 2010). During the wet (Dec to Mar) and dry (Jun to Sept) 

F IGURE  6 The location of plots in the 2D ordination space 
calculated via NMDS and PCA. (a) The PC-rotated NMDS space 
represents β-diversity calculated by the Hellinger distance 
between plots, considering the abundances of perennial plant 
species. The NMDS-stress value of 0.06 shows a good fit. (b) The 
PC-rotated PCA space is calculated by the remote sensing (RS) 
variables derived from the Sentinel-2 image taken on 14 Jan 2017. 
A proportion of 60% of total variance is explained by PC1 (39%) 
and PC2 (21%; for details see Table S4 in Appendix S1). The vectors 
of explanatory variables (brown arrows) and PCA-input variables 
(black arrows) were fitted after generating the ordination space 
(for details see Table S3 in Appendix S1). Species abbreviations: 
Adenocarpus viscosus (Adenvisc), Agrostis spec. (Agrospec), Allium 
canariense (Allicana) Arrhenatherum calderae (Arrhcald), Cenchrus 
ciliaris (Cenccili), Cistus symphytifolius (Cistsymp), Echium brevirame 
(Echibrev), Echium wildpretii (Echiwild), Erica arborea (Ericarbo), 
Erysimum scoparium (Erysscop) Euphorbia balsamifera (Euphbals), 
Euphorbia canariensis (Euphcana), Periploca laevigata (Perilaev), 
Pericallis papyracea (Peripapy), Pinus canariensis (Pinucana), Plantago 
webbii (Planwebb), Pterocephalus porphyranthus (Pterporp), Retama 
rhodorhizoides (Retarhod), Rhamnus crenulata (Rhamcren), Rubia 
fruticosa (Rubifrut), Rumex acetosa (Rumeacet), Schizogyne sericea 
(Schiseri), Sonchus hierrensis (Sonchier).
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season, multispectral variables correlate more strongly with the 
dissimilarity in species composition than in other months. The mul-
titemporal variables, however, cannot explain the same amount of 
β-diversity as date-specific variables at maximum. This offers poten-
tial for further investigations, exploring the explanatory power of 
date-specific multispectral variables and vegetation indices to de-
tect the reasons behind these findings. We assume that the dom-
inant and stem-succulent species of the succulent zone, such as 
Euphorbia balsamifera and Euphorbia lamarckii, shed their leaves in 
the dry season (Muer et al., 2016). In addition, understorey species 
of the pine forest and subalpine species frequently show discoloura-
tion during dry spells. The highly abundant bright yellow flowers of 
the dominating Adenocarpus viscosus might also lead to multispectral 
differentiation of subalpine vegetation in June (Muer et al., 2016). 
Furthermore, during the wet season, ice storms can cause discol-
oration of Adenocarpus viscosus as a result of leaf tissue damage 
(Palomares Martínez et al., 2011).

In January, as our date-specific PCA showed the vegetation indi-
ces PSRI, MSI, PRI, ACR1 and CRI1 may represent vegetation stress. 
Especially the high-elevation pine and subalpine community experi-
ence freezing temperatures and low precipitation. Trade winds pre-
vent the orographic and convective rise of moist air, leading to aridity 
also in the subalpine zone throughout several months (González 
Henríquez, Rodrigo Pérez, & Suárez Rodríguez, 1986). The trade 
wind cloud facilitates fog drip. The high reflectance of red light (i.e. 
Band 4, Band 5 and PSRI) was mostly associated with the succulent 
and subalpine scrub. This is an indicator for low leaf pigment content 
and small leaf area, as well as brown rock, soil and litter (Frampton, 
Dash, Watmough, & Milton, 2013). In addition, leaf water content 
is positively related to chlorophyll content (Sims & Gamon, 2002). 
Thus, leaf water content (i.e. MSI) of the succulent and subalpine 
scrub may be low due to aridity resulting in less chlorophyll and 
higher reflectance. Another reason for high reflectance in the vis-
ible spectrum refers to succulent leaf thickness, which prevents 
light penetration and absorption of lower leaf layers (Sims & Gamon, 
2002). High NDVI values correspond to the pine forest, where an-
nual precipitation is highest, probably indicating high biomass pro-
duction. Most LiDAR-derived structural variables represent the 
physiognomic forest structure very well (Ørka, Wulder, Gobakken, 
& Næsset, 2012; Rees, 2007). The association of structural variables 
representing different heights above ground (RP variables) with the 
community types in the date-specific PCA agrees with observed 
vegetation heights in the field.

In our study multispectral S2 variables explain β-diversity 
more accurately than structural LiDAR variables. One reason is 
that the vegetation coverages of both scrub types are similar and 
characterized by rocky outcrops and bare soil. Considering addi-
tional LiDAR metrics that particularly differentiate the vertical 
scrubland structure between 0.5 and 2.0 m may lead to a stron-
ger correlation between LiDAR products and β-diversity. Besides, 
the LiDAR data were acquired in April 2009. Since then perennial 
plant coverage and structure may have changed slightly. However, 
increasing grain size results in increasing explanatory power of 

LiDAR variables applying MANOVA, while explanatory power of 
S2 variables decreases in all statistical tests. The low LiDAR point 
density and thus high variation (noise) in LiDAR variables could be 
responsible for weak correlations with β-diversity at small scales 
(20 m). The noise is reduced by averaging pixel values, i.e. with 
increasing extent the LiDAR metrics become more stable. Hence, 
the average structural signatures of entire community types are 
rather reflected by relatively large grain sizes (60 m), which then 
lead to more distinct LiDAR-based classes in K-means clustering 
that correlate stronger with β-diversity.

A proportion of 62% of variation in S2 signals from 14 Jan 2017 
can be explained by RS-specific coverages of species and non-
vegetation cover, but the RS-specific coverages of bare soil, rock and 
litter barely add to the differentiation of plots based on S2 signals 
alone. 38% of variation in S2 variables can neither be explained by 
the species coverages, nor by non-vegetation cover types, probably 
because of differing spatial extents of plots and pixels and GPS lo-
cation bias.

The GPS inaccuracy affects the co-location of RS and in-situ 
data. For S2 imagery, a GPS location error of 3, 6 and 18 m is given 
for 10-, 20- and 60-m bands, respectively (Baillarin et al., 2012). 
Due to the field sampling conditions (i.e. cloud-free, no northern 
aspects, slope <20°, no obstacles), the GPS accuracy of the plot lo-
cations could be reduced to a mean of 3.6 m (±1.0 m SD). However, 
the cardinal direction of the true location shift remains unknown. 
Thus, a total GPS error of 6 m for 20-m bands plus the GPS error 
of the plot locations is possible and likely to cause unexplained 
variation when correlating RS with in-situ data. However, as the 
sensitivity analysis shows, the GPS bias seems minor, since the 
lowest grain size of 20 m yields equally high correlation results 
compared to 40 and 60 m.

The moderate conformity of RS-based classes with the β-diversity 
pattern reveals that both sets of variables, S2 and LiDAR, are able to 
reclassify the pine forest plots, even though unsupervised classifi-
cations may be less accurate than supervised techniques (Horning 
et al., 2010). The two sets seem to contradict each other, because 
the explanatory power decreases when it comes to defining vege-
tation classes considering a combination of the two sets. Therefore, 
increasing the number of RS variables does not necessarily lead to 
more variation explained.

The RS data were not able to totally resolve the community 
types and β-diversity in this semi-natural system, which suggests 
similar RS properties of different species assemblages. Understorey 
species may be highly abundant and determine β-diversity, but are 
not detectable for RS sensors. In the case of heterogeneous, yet 
distinct, plant communities that comprise the same spectral signals 
(Sha, Bai, Xie, Yu, & Zhang, 2008), the potential of RS approaches in 
vegetation science is limited.

4.2 | Species richness and β-diversity

Many studies describe continuous change in plant composition along 
an elevational gradient (Auerbach & Shmida, 1993; Enright, 1982; 
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Hamilton, 1975; Ogden & Powell, 1979; Whittaker, 1956). In con-
trast, we identified two very distinct communities at low altitudes 
– succulent scrub and pine forest – even though the main environ-
mental gradients do not change abruptly. The sharp ecotone appears 
with the presence of the Canarian endemic Pinus canariensis. Other 
ordination-based studies also reveal discontinuities in compositional 
patterns with the increasing dominance of a key tree species (Druitt, 
Enright, & Ogden, 1990; Walker & Guppy, 1976), inducing positive 
feedback switches (Wilson & Agnew, 1992); P. canariensis influ-
ences environmental resources (e.g. water, light and nutrient avail-
ability), so that thermophilic species such as Euphorbia balsamifera 
and Retama rhodorhizoides do not establish in the forest understorey. 
This is associated with selection, a major process shaping species 
communities, results from fitness differences and interactions be-
tween species and the environment (Vellend, 2010).

Shade-tolerant species such as Erica arborea and Myrica faya do, 
however, occur under humid conditions in the lower pine forest, but 
not in the arid conditions of the upper succulent zone. We expected a 
continuous transition in species composition between the succulent 
and the pine community, according to the distribution of Cistus mon-
speliensis and Cistus symphytifolius that occur in open forest stands 
of low elevation as well as in the upper succulent zone. However, 
their abundances are too low to substantially increase compositional 
similarity in the lower ecotone. In contrast, the leguminous and light-
demanding shrub Adenocarpus viscosus that dominates above the 
tree line is also abundant in open P. canariensis stands at higher ele-
vations. Consequently, the similarity in species composition between 
the pine forest and the subalpine zone is much higher than between 
the pine forest and the succulent scrub. This is in agreement with 
Hamilton and Perrott (1981), who conclude that, along elevation gra-
dients, lower community limits are strongly influenced by competi-
tion, whereas upper limits are mostly climatically determined.

We propose that the sharp community boundary also results from 
different species pool sizes. Species pool size is generally smaller at 
higher elevation due to lower speciation rates (Ricklefs, 1987) and 
decreasing area with elevation (Karger et al., 2011). Dissimilarity in 
species composition intrinsically increases with richness differences 
between species assemblages, because the chance of species overlap 
decreases (Anderson et al., 2011). At the upper tree line, only about 
three perennial vascular plant species are present, whereas approxi-
mately eight species occur at the lower transition zone. Furthermore, 
species richness strongly decreases from the succulent scrub to the 
pine forest, but stays constant from the pine forest to the subalpine 
scrub. Hence, β-diversity is enhanced across the lower tree line, not 
only due to species replacement, but also due to richness differences.

The strict separation between the succulent and the pine for-
est community might also be explained by a difference in distur-
bance regimes, which influence selection (Lawton, 1999), but also 
speciation in evolutionary time spans (Vellend, 2010). Regular oc-
currence of fire is common in the Canary pine forest ecosystem 
(Climent, Tapias, Pardos, & Gil, 2004); fire sometimes spreads into 
the subalpine zone (Irl et al., 2014). Contrary to thermophilic species 
of the succulent vegetation, P. canariensis and understorey species 

display adaptations to fire (pyropyhtes). P. canariensis produces 
epicormics shoots and basal sprouts, and serotinous cones release 
seeds after fire events (Climent et al., 2004). Understorey species 
such as Myrica faya, Erica arborea, Cistus symphytifolius, Cistus mon-
speliensis and Adenocarpus viscosus regenerate quickly after fire 
events (Höllermann, 2000). From field observations (burned area) 
and literature reviews (Climent et al., 2004; Méndez et al., 2015; 
Molina-Terrén, Fry, Grillo, Cardil, & Stephens, 2016), short-term fire 
regimes do not vary among plots and long-term forest regeneration 
does not depend on the fire regime either (Méndez et al., 2015). 
Consequently, the fire regime might explain the strong composi-
tional differentiation between pine forest and succulent scrub due 
to the selection and speciation of species being differently adapted 
to fire (Arévalo, Fernández-Palacios, Jiménez, & Gil, 2001).

Furthermore, the European rabbit (Oryctolagus cuniculus), feral 
goat (Capra hircus) and Barbary sheep (Ammotragus lervia), intro-
duced mammals on La Palma, induce the dominance of Adenocarpus 
viscosus at high elevation (Irl et al., 2012). Moreover, anthropogenic 
land use influences pine forest diversity at lower altitudes (Vellend 
et al., 2007). Thinning of P. canariensis plantations for timber produc-
tion enhances habitat heterogeneity, understorey species diversity, 
seed production and regeneration of P. canariensis (Otto, García-del-
Rey, Méndez, & Fernández-Palacios, 2012). Although we did not find 
evidence for recent anthropogenic impacts, the legacy of such dis-
turbance regimes can act over decades (Vellend et al., 2007). In any 
case, fire and herbivory likely contribute to the decline of species 
richness with elevation in the study region (Irl et al., 2015), despite 
precipitation increase, since rabbit densities can be high above the 
tree line (Cubas et al., 2018). Thus, decreasing richness differences 
may reduce β-diversity between the subalpine and pine community.

The vague community boundary between the pine forest and 
the subalpine scrub raises questions about the existence of two dis-
tinct communities. Community and ecotone definition are a matter 
of scale (Hufkens et al., 2009; Ricklefs, 2008). Here we apply a re-
gional approach that does not consider transition at local scale nor 
through time. Moreover, we did not test for causal mechanisms de-
termining compositional (dis-)continuities (Shipley & Keddy, 1987). 
From a physiognomy point of view, the tree line may indicate the 
community limit, but in terms of species composition, limits are un-
clear (Walker et al., 2003). Often boundaries are human constructs. 
Lines on a map drawn between ecoregions do not implicitly corre-
spond with any obvious physical discontinuities in nature (Strayer, 
Power, Fagan, Pickett, & Belnap, 2003). Because fundamental envi-
ronmental gradients were adequately covered by the plots, and the 
relationship between β-diversity and nearest distance to anthropo-
genic land use was very weak, these outcomes are unlikely to be 
caused by sampling bias or human influence.

5  | CONCLUSION

Our study demonstrated the potential of multiple RS products to rep-
resent patterns in plant community composition over large extents, 
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in a short time and at low cost. In-situ sampling was indispensable 
to precisely determine and understand β-diversity and community 
distinction. The degree of concordance between spectral and β-
diversity depends not only on the studied system, but also on the 
methods applied (Schmidtlein & Fassnacht, 2017). Such methods that 
identify and map discontinuities in β-diversity are necessary for con-
servation planning and wildlife management (Socolar et al., 2016).

On the one hand, spatial and temporal resolution of RS data may 
limit the potential of linking field observations with RS data, since 
interaction between species and environment may occur at scales 
finer than those RS can deliver. In such cases, other techniques than 
those applied here may be appropriate (e.g. high spatio-temporal and 
hyperspectral resolution, space-borne LiDAR), but most high-quality 
RS data are costly. On the other hand, in-situ data are also often 
missing. Facing these limitations, project collaborations are neces-
sary to bring together scientists from ecology and remote sensing to 
exploit the vast potential of a combination of in-situ data and earth 
observation for science and conservation practice.
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