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Abstract

In the general setting of long-memory multivariate time series, the long-memory characteris-
tics are defined by two components. The long-memory parameters describe the autocorrelation
of each time series. And the long-run covariance measures the coupling between time series, with
general phase parameters. It is of interest to estimate the long-memory, long-run covariance and
general phase parameters of time series generated by this wide class of models although they
are not necessarily Gaussian nor stationary. This estimation is thus not directly possible using
real wavelets decomposition or Fourier analysis. Our purpose is to define an inference approach
based on a representation using quasi-analytic wavelets. We first show that the covariance of
the wavelet coefficients provides an adequate estimator of the covariance structure including the
phase term. Consistent estimators based on a local Whittle approximation are then proposed.
Simulations highlight a satisfactory behavior of the estimation on finite samples on linear time
series and on multivariate fractional Brownian motions. An application on a real neuroscience
dataset is presented, where long-memory and brain connectivity are inferred.

Keywords. Multivariate processes, long-memory, covariance, phase, wavelets, cerebral con-
nectivity

1 Introduction

Multivariate processes are often observed nowadays thanks to the recordings of multiple sensors

simultaneously. Many examples can be cited such as hydrology [Whitcher and Jensen, 2000], finance

∗Institute of Engineering Univ. Grenoble Alpes
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[Gençay et al., 2001] or neuroscience [Achard and Gannaz, 2016]. When in addition the time series

have the property of long-memory, the definition of the model is complicated and several definitions

can be proposed. Some approaches proposed a simple definition, where the covariance matrix is real

[Lobato, 1999, Shimotsu, 2007]. However, this simple model is not able to address any multivariate

models. For example, in [Lobato, 1997] two models were introduced, FIVARMA and VARFIMA,

from this approach. Long-memory models with a complex covariance matrix give a solution to

overcome this problem [Kechagias and Pipiras, 2020, Baek et al., 2020]. Following these modelings,

the long-memory model studied in this paper admits a complex long-run covariance matrix, where

a phase-term is added to the covariance structure.

Let X = {X(t), t ∈ Z} denote a multivariate long-memory dependence process X(t) =[
X1(t) . . . Xp(t)

]T
, t ∈ Z, p ∈ N, p ⩾ 1, with long memory parameters d = (d1, d2, . . . , dp),

d ∈ (−0.5,+∞)p. The exponent T is the transpose operator. We will denote by L the backward

lag operator, (1− L)X(t) = X(t)−X(t− 1). The k-th difference operator, (1− L)k, k ∈ N, is

defined by k recursive applications of (1− L). For D = ⌊d + 1/2⌋, we assume that the multivari-

ate process Diag
(
(1− L)Dℓ , ℓ = 1, . . . , p

)
X is covariance stationary with a spectral density matrix

given by

(M-1) fD(λ) =
(
Diag

(
λ−d

∗
1 , . . . , λ−d

∗
p
)
ΘDiag

(
λ−d

∗
1 , . . . , λ−d

∗
p
))

◦ fS(λ), for all λ > 0,

where ◦ denotes the Hadamard product, and d∗m = dm −Dm ∈ (−0.5, 0.5) for all m. The process

(1− L)DmXm is said to have long-memory if d∗m ∈ (0, 0.5), and to be anti-persistent if d∗m ∈
(−0.5, 0) (see for instance Lobato [1999], Shimotsu [2007]). For simplicity of notation, we will use

the term long-memory parameters d throughout the paper.

The function f(·) is defined by

f(λ) = (Λ(λ)ΘΛ(λ)) ◦ fS(λ), for all λ > 0,

with Λ(λ) = Diag
(
λ−d1 , . . . , λ−dp

)
. Under condition (M-1), the function f(·) is called the gener-

alized spectral density of the multivariate process X ={X(t), t ∈ Z}.

The function fS(·) represents the short-range memory of f(·). In order to get identifiability, it is

necessary to assume fS(0) = 1. The following assumption is also needed to control the regularity.
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(M-2) There exists Cf > 0 and β > 0 such that sup0<λ<π supℓ,m=1,...,N
|fSℓ,m(λ)−1|

λβ
⩽ Cf .

In particular, our definition agrees with the one given in Kechagias and Pipiras [2014] if Dm = 0

for all m = 1, . . . , p. Definition (M-1) includes both stationary and non-stationary time series. It

has the advantage of including multivariate fractional Brownian motion [Coeurjolly et al., 2013].

The major interest of this model is the introduction of the matrix Θ. This provides a generalization

of multivariate long-memory models used in Lobato [1997], Shimotsu [2007], Achard and Gannaz

[2016]. Indeed, the matrix Θ can be written as,

Θℓ,m = Ωℓ,me
iϕℓ,m , ℓ,m = 1, . . . , p,

with Ω = (Ωℓ,m)ℓ,m=1,...,p a real symmetric non-negative semi-definite matrix and Φ =

(ϕℓ,m)ℓ,m=1,...,p an anti-symmetric matrix. Let the bar above denote the conjugate operator. The

matrix Θ satisfies ΘT = Θ since fT (·) = f(·). We will use ∥Ω∥ to denote the infinity norm, that

is, ∥Ω∥ = maxℓ,m=1,...,pΩℓ,m. In Lobato [1997], Shimotsu [2007], Achard and Gannaz [2016], the

phase term was defined by ϕℓ,m = π(dℓ − dm)/2.

In a univariate setting, the main parameter of interest is the long-memory parameter or equivalently

the Hurst parameter. In this particular case, three main families of Fourier-based estimation have

already been proposed: the average periodogram estimation [Robinson, 1994], the log periodogram

regression [Geweke and Porter-Hudak, 1983, Robinson, 1995a] and semiparametric estimation based

on Whittle approximation [Künsch, 1987, Robinson, 1995b]. Estimation with a wavelet represen-

tation of time series was proposed in Abry and Veitch [1998] with a log-scalogram approach similar

to log-periodogram estimation and in Moulines et al. [2008] with a wavelet-based local Whittle

estimation.

In a multivariate setting, estimation procedures have also been proposed using either Fourier or

wavelets. For a general phase term, Sela and Hurvich [2012] proposed an estimation based on

the average periodogram and Robinson [2008] and Baek et al. [2020] developed a Fourier-based

local Whittle estimation. For a fixed phase term, ϕℓ,m = π(dℓ − dm)/2, estimation of both the

covariance structure and the long-memory was proposed by Lobato [1999], Shimotsu [2007] and

Nielsen and Frederiksen [2011], with a Fourier-based local Whittle estimation, and by Achard and

Gannaz [2016] with a similar procedure based on a real wavelet representation.
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The objective of this work is to propose an estimation procedure in the general framework described

above, with a general phase, based on a wavelet representation of the processes rather than a Fourier

representation. Our model includes among other the co-integration case [Robinson, 2008, Nielsen,

2011, Baek et al., 2020]. Observe that the Fourier-based local Whittle procedure proposed in Baek

et al. [2020] is very closed to the one developed here.

Introducing wavelets is motivated by their flexibility for real data applications. In particular, it

allows to consider non-stationary processes thanks to an implicit differentiation. The introduction

of a general phase term challenges the choice of the wavelet filters. Due to condition (M-1), we

need to consider complex filters for identifying the imaginary part of Θ. Indeed, as illustrated

in Gannaz et al. [2017], with real wavelet filters it is not possible to recover both the real and

the imaginary part of the matrix Θ. Complex wavelet filters, with quasi-analytic properties, are

described in Section 2. The main properties of the filters are displayed and an approximation of

the covariance of the wavelet coefficients is derived in Section 3. Section 4 recalls the definition

of the wavelet local Whittle estimators. We prove their consistency and their convergence rate,

as well as their asymptotic distribution. Section 5 reports some simulation results, on ARFIMA

linear models and on multivariate fractional Brownian motions. Section 6 provides an empirical

application on neuroscience data. The detailed proofs are provided in Appendix.

2 Transform of the multivariate process

We first define the filters used to transform the multivariate time series X ={X(t), t ∈ Z}.

Let (h(L)(·), h(H)(·)) and (g(L)(·), g(H)(·)) denote two pairs of respectively low-pass and high-pass fil-

ters. Let (φh(·), ψh(·)) be respectively the father and mother wavelets associated to (h(L)(·), h(H)(·)).
They can be defined through their Fourier transforms as

φ̂h(λ) = 2−1/2
∞∏
j=1

[
2−1/2ĥ(L)(2−jλ)

]
and ψ̂h(λ) = 2−1ĥ(H)(λ/2) φ̂h(λ/2). (1)

Let us define similarly (φg(·), ψg(·)) the father and the mother wavelets associated with the wavelet
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filters g(L)(·) and g(H)(·). Their Fourier transforms are

φ̂g(λ) = 2−1/2
∞∏
j=1

[
2−1/2ĝ(L)(2−jλ)

]
and ψ̂g(λ) = 2−1ĝ(H)(λ/2) φ̂g(λ/2). (2)

The complex father and mother wavelets (φ(·), ψ(·)) are then defined by

φ̂(λ) = φ̂h(λ) + i φ̂g(λ) and ψ̂(λ) = ψ̂h(λ) + i ψ̂g(λ). (3)

Wavelet ψ(·) is said to be analytic if its Fourier transform is only supported on the positive frequency

semi-axis. In particular, it is sufficient to show that the pair (ψg(·), ψh(·)) is a Hilbert pair, that

is, ψ̂g(λ) = −i sign(λ)ψ̂h(λ), for all λ ∈ R, where sign(λ) denotes the sign function taking values

−1, 0 and 1 for λ < 0, λ = 0 and λ > 0, respectively.

From Paley-Wiener Theorem, analytic filters with finite support do not exist. Selesnick’s common

factor filters propose compact wavelet filters with a relaxation of the strict analytic condition.

2.1 Selesnick’s common factor filters

We choose here to consider the quasi-analytic filters introduced by Thiran [1971], Selesnick [2002].

The common-factor wavelets, defined by Selesnick [2002], have a compact support and are quasi-

analytic. They are parameterized by a degree L quantifying the approximation of the analytic

property of the derived complex wavelet. We refer the reader to Selesnick [2001, 2002], Achard

et al. [2020] for a fuller description of the construction of the wavelets and of their properties.

Let d̂L(λ), λ ∈ R, be defined by

d̂L(λ) = eiλ(−L/2+1/4)
[
cos(λ/4)2L+1 + i (−1)L+1 sin(λ/4)2L+1

]
.

Next, filters (ĥ(L), ĥ(H)), and (ĝ(L), ĝ(H)) are defined by

ĥ(L)(λ) = 2−M+1/2
(
1 + e−iλ

)M
q̂L,M (λ) d̂L(λ) and ĥ(H)(λ) = ĥ(L)(λ+ π)e−iλ , (4)

ĝ(L)(λ) = 2−M+1/2
(
1 + e−iλ

)M
q̂L,M (λ) d̂L(λ)e

−iλL and ĝ(H)(λ) = ĝ(L)(λ+ π)e−iλ, (5)
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with q̂L,M (λ) a real polynomial of (e−iλ) such that q̂L,M (0) = 1. Observe that the normalization of

the filters is different from Achard et al. [2020].

Common-factor wavelets are introduced with q̂L,M (.) such that the wavelet decomposition satisfies

the perfect reconstruction condition. This condition is classically used for deriving wavelet bases

21/2ψg j,k(.) = 2−1/22j/2ψg(2
j · −k) and 21/2ψh j,k(.) = 2−1/22j/2ψh(2

j · −k), j, k ∈ Z, which are

orthonormal bases of L2(R). In that case, q̂L,M is defined as a solution of

|q̂L,M (λ)|2 s(λ) + |q̂L,M (λ+ π)|2 s(λ+ π) = 1 , (6)

where s(λ) = 24L−1

(2L+1)2
2−M (1+cos(λ))M

∣∣∣d̂L(λ)∣∣∣2. The existence of q̂L,M (·) is proved in Achard et al.

[2020]. However, to the best of our knowledge, under perfect reconstruction, no explicit expression

of q̂L,M is easy to obtain. Since perfect reconstruction is not necessary for deriving estimation

procedures, we can assume that q̂L,M (.) is a constant equal to 1.

Definition 1 (Common-Factor Wavelets (CFW)). Let M , L be strictly positive integers. Let

(φ(.), ψ(.)) be a family of Common-Factor wavelets defined by equations (1), (2), (3), and (4), (5).

If the filter q̂L,M (.) satisfies perfect reconstruction condition (6), the pair (φ(.), ψ(.)) will be denoted

by CFW-PR(M,L). If q̂L,M (.) is a constant polynomial equal to 1, (φ(.), ψ(.)) will be denoted by

CFW-C(M,L) filters.

The two main characteristics are the compact support and the quasi-analiticity. The compact

support property for CFW-C(M,L) filters is given below.

Proposition 2. Let M , L be strictly positive integers. The functions φ(.), and ψ(.) for CFW-

C(M,L) have supports of respective length M + 2L+ 1 and M + L+ 1/2.

The proof is given in Appendix.

Concerning the functions φ(.), and ψ(.) for CFW-PR(M,L), in practice, they have supports of

respective length 2M +3L and 2M +2L+1/2. Yet, there is no theoretical proof that these lengths

are indeed achieved for all (L,M). See Section 4 of Achard et al. [2020].

Let us now recall the main result concerning the analytic approximation established in Achard

et al. [2020].
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Theorem 3 (Achard et al. [2020]). For all λ ∈ R, for all q̂L,M (.) real polynomial of (e−iλ),

ψ̂(λ) = ψ̂h(λ) + i ψ̂g(λ) =
(
1− eiηL(λ)

)
ψ̂h(λ) ,

with aL(λ) = 2(−1)L atan
(
tan2L+1(λ/4)

)
and ηL(λ) = −aL(λ/2 + π) +

∞∑
j=1

aL(2
−j−1λ). (7)

Additionally, for all λ ∈ R,∣∣∣ψ̂h(λ) + i ψ̂g(λ)− 21R+(λ) ψ̂h(λ)
∣∣∣ = UL(λ)

∣∣∣ψ̂h(λ)∣∣∣ ,
where UL(·) is a R → [0, 2] function satisfying, for all λ ∈ R,

UL(λ) ⩽ 2
√
2

(
log2

(
max(4π, |λ|)

2π

)
+ 2

) (
1− δ(λ, 4πZ)

max(4π, |λ|)

)2L+1

.

and, for all λ ∈ R and A ⊂ R, δ(λ,A) denotes the distance of λ to A defined by δ(λ,A) =

inf {|λ− x| , x ∈ A} .

In equation (7), we adopt the convention that atan(±∞) = ±π/2 so that αL(·) is well defined on

R.

Theorem 3 quantifies the quality of the analytic approximation. Observe that the function UL(·)
only depends on the parameter L. The higher L, the better the analytic approximation. However,

the higher L, the larger the wavelets support.

3 Moments approximations of the wavelet coefficients

Let {Wj,k, j ⩾ 0, k ∈ Z} denote the wavelet coefficients of the process X associated to the wavelet

pair (φ(.), ψ(.)). At a given resolution j ⩾ 0, for k ∈ Z, we define the dilated and translated

functions ψj,k(·) = 2−j/2ψ(2−j · −k). The wavelet coefficients of the process X are defined by

Wj,k =

∫
R
X̃(t)ψj,k(t)dt j ⩾ 0, k ∈ Z,
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where X̃(t) =
∑

k∈ZX(k)φ(t − k). Given any j ⩾ 0 and any k ∈ Z, Wj,k is a p-dimensional

vector Wj,k =
(
Wj,k(1) Wj,k(2) . . . Wj,k(p)

)T
where Wj,k(a) =

∫
R X̃a(t)ψj,k(t)dt, a = 1, . . . , p.

Throughout the paper, we adopt the convention that large values of the scale index j correspond

to coarse scales (low frequencies).

We will consider the behavior of Cov(Wj,k), defined as follows

Cov(Wj,k) = E
[
Wj,kWj,k

T
]
=

∫ π

−π
f(λ) |τ̂j(λ)|2 dλ ,

with τ̂j(λ) =
∫∞
−∞

∑
ℓ∈Z φ(t+ ℓ) e−iλ ℓ2−j/2ψ(2−jt)dt.

In practice, a finite number of observations of the process X are available, X(1),X(2), . . .X(N).

As the wavelets have a compact support, only a finite number of coefficients are non-zero at each

scale j. More precisely, for every j ⩾ 0, let nj denote the number of coefficients Wj,k evaluated

from the observations. Note that only the coefficients evaluated without boundary effects are taken

into account (see the definition of nj in Lemma 4). For all k < 0 or k > nj , the coefficients Wj,k

are set to zero. In the following, we will assume that M is fixed and finite, and that L may go to

infinity. Hence, the length of the wavelets support is equivalent to L when N goes to infinity. If

additionally 2jN−1L→ 0, then nj is equivalent to 2−jN . In that case, the behavior of nj is similar

to the framework of Moulines et al. [2008] and Achard and Gannaz [2016].

Lemma 4. Let (φ(.), ψ(.)) be a CFW-C(M,L) wavelet pair, with M,L ⩾ 1. Let {Ŵj,k, j ⩾ 0, k ∈
Z} denote the wavelet coefficients evaluated from X(1),X(2), . . .X(N) by Ŵj,k =

∫
R X̂(t)ψj,k(t) dt,

j ⩾ 0, k ∈ Z, where X̂(t) =
∑N

k=1X(k)φ(t − k). Then, at each scale j, the number of coefficients

nj such that Ŵj,k = Wj,k is

nj = max{0, ⌊2−j(N − 2L−M − 1)− L−M − 1/2⌋}.

Suppose that N−1L → 0 when N goes to infinity. Then, for all j such that 2jN−1L → 0 when N

goes to infinity, nj 2
jN−1 → 1 when N goes to infinity.
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3.1 Motivations

In this section, results obtained in Gannaz et al. [2017] are summarized. We begin with a bivariate

ARFIMA(0,d,0) process defined as

Xℓ(k) = (1− L)−dℓuℓ(k), ℓ = 1, 2, k ∈ Z , (8)

where L is a lag operator and

(
u1(k)

u2(k)

)
i.i.d. with distribution N

((
0

0

)
,Ω

)
, where Ω =(

1 0.8

0.8 1

)
. The spectral density of (X1, X2) satisfies (M-1) with Θℓ,m = Ωℓ,me

iϕℓ,m , ϕℓ,m =

π(d1−d2)/2. Let d be equal to (0.2, 1.2). The phase is equal to π/2 and, hence, Θℓ,m is imaginary.

Let us now illustrate the impossibility using real wavelets decomposition to infer Θℓ,m.

We simulate X(1), . . . ,X(2J), with J = 12. For each scale j ⩾ 0, we evaluate the sample wavelet

covariances as Σ̂(j) = 1
nj

∑nj−1
k=0 Wj,k(1)Wj,k(2)−

(
1
nj

∑nj−1
k=0 Wj,k(1)

)(
1
nj

∑nj−1
k=0 Wj,k(2)

)
, and the

wavelet sample correlations as Σ̂1,2(j)/
√
Σ̂1,1(j)Σ̂2,2(j).

Figure 1 shows the behavior of sample wavelet correlations with respect to scale j over 100 realiza-

tions of (X(1), . . . ,X(2J)). First observe that for real wavelets (left column), the wavelet sample

covariance Σ̂1,2(j) tends to 0 when the scale j increases. This confirms the impossibility to identify

Θ1,2. In addition, the plots displayed in the middle and right columns illustrate that the imaginary

part of the sample wavelet coefficient correlations does not vanish for CFW-PR(M,L) and CFW-

C(M,L) filters. The average sample correlation seems to converge to Ω1,2e
iϕ1,2/

√
Ω1,1Ω2,2 as the

frequency decreases.

3.2 Theoretical results

We will now develop the theory of the behavior of Cov(Wj,k). This result consists in the extension

of Proposition 3 of Achard and Gannaz [2016] to quasi-analytic wavelets. The results are obtained

hereafter only for CFW-C(M,L) filters. Indeed, the results are more difficult to obtain for CFW-

PR(M,L) filters because no explicit expression of q̂L,M satisfying (6) is available.
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Figure 1: Boxplots of sample correlations between wavelet coefficients at different scales for
the bivariate process defined in (8). First row gives the real part of the correlations and sec-
ond row gives the imaginary part. Each column corresponds to different wavelet filters, from
left to right: Daubechies’ real wavelets with M=4, CFW-PR(4,4) and CFW-C(4,4). Horizon-
tal red lines correspond to the real value, that is, Ω1,2 cos(ϕ1,2)/

√
Ω1,1Ω2,2 for the real part and

Ω1,2 sin(ϕ1,2)/
√
Ω1,1Ω2,2 for the imaginary part.

Our basic assumption on the regularity of the spectral density is the following.

(C-a) −M + β + 1 < 2 dℓ < M for all ℓ = 1, . . . , p, M ⩾ 2.

Parameter M is the number of vanishing moments and it also corresponds to the regularity of

CFW-C(M,L) filters. Parameters (dℓ)ℓ=1,...p and β characterize the dependence in the spectral

domain (M-1)-(M-2).

Let us first prove the following approximation using the regularity of the filters.

Proposition 5. Let X be a p-multivariate long range dependent process with long memory pa-
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rameters d1, . . . , dp with generalized spectral density f(·) satisfying (M-1) with short-range behavior

(M-2). Consider {Wj,k(ℓ), (j, k) ∈ Z, ℓ = 1, . . . , p} the wavelet coefficients obtained with CFW-

C(M,L) filters. Suppose that (C-a) hold. Then we have, for all j ⩾ 0, k ∈ Z,∣∣∣∣Cov(Wj,k(ℓ),Wj,k(m))− 2j(dℓ+dm)Ωℓ,m

∫ ∞

−∞
esign(λ)ϕℓ,m |λ|−dℓ−dm

∣∣∣ψ̂(λ)∣∣∣2 dλ

∣∣∣∣ ⩽ C1 2
j (dℓ+dm−β) ,

where C1 is a constant only depending on M,L and Cf , β, ∥Ω∥ , {dℓ, ℓ = 1, . . . , p}.

The proof is given in Appendix.

The result follows from the fact that CFW-C(M,L) satisfy the assumptions (W1)–(W4) described

in Moulines et al. [2008] and Achard and Gannaz [2016] (see Appendix). Note that it does not

depend on the quasi-analytic property.

The use of the Proposition 5 in inference needs the evaluation of the integral depending of |ψ̂(λ)|2.
With real wavelets, the approximation is given in Proposition 3 of Achard and Gannaz [2016]. Since

|ψ̂(λ)|2 is a real and symmetric function, the imaginary part of the integral is null. Consequently,

a cosine term with the phase appears in the approximation of the covariance. That is, we would

obtain in this framework an approximation of the form∣∣∣∣2−j (dℓ+dm)Cov(Wj,k(ℓ),Wj,k(m))− 2Ωℓ,m cos(ϕℓ,m)

∫ ∞

0
|λ|−δ

∣∣∣ψ̂(λ)∣∣∣2 dλ

∣∣∣∣
⩽ C ∥Ω∥ 2−j β. (9)

It is straightforward to check that parameters {Ωℓ,m, ϕℓ,m} are not identifiable. Estimation can be

derived in the case of a parametric phase, typically ϕℓ,m = π
2 (dℓ − dm) (see Achard and Gannaz

[2016]).

In the case of quasi-analytic wavelets, the imaginary part no longer vanishes. The control of quasi-

analyticity, given by Theorem 3, leads to the following result.

Proposition 6. Let X be a p-multivariate long range dependent process with long memory param-

eters d1, . . . , dp with generalized spectral density f(·) satisfying (M-1)–(M-2).

Consider
{
Wj,k(ℓ), (j, k) ∈ Z, ℓ = 1, . . . , p

}
the wavelet coefficients obtained with CFW-C(M,L)
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filters. Suppose that (C-a) hold and that L goes to infinity, with L2−2j → 0 when j goes to infinity.

Then, for all (ℓ,m) ∈ {1, . . . , p}2,∣∣∣∣2−j(dℓ+dm)Cov(Wj,k(ℓ),Wj,k(m))− 4Θℓ,m

∫ ∞

0
|λ|−dℓ−dm

∣∣∣ψ̂h(λ)∣∣∣2 dλ

∣∣∣∣
⩽ C2

(
2−jβ + L2−2j + L−M−1

)
, (10)

where C2 is a constant only depending on M and Cf , β, ∥Ω∥ , {dℓ, ℓ = 1, . . . , p}.

The proof is given in Appendix.

Convergence (10) can be written as follows: when 2−jβ + L2−2j + L−1 → 0, for all (ℓ,m) ∈
{1, . . . , p}2,

lim
j→∞

2−j (dℓ+dm)Cov(Wj,k(ℓ),Wj,k(m)) = Gℓ,m, (11)

with Gℓ,m = Θℓ,mK(dℓ + dm) and K(δ) = 4

∫ ∞

0
|λ|−δ

∣∣∣ψ̂h(λ)∣∣∣2 dλ .

Common-factor wavelets, as stated by Proposition 6, have the ability of recovering simultaneously

the magnitude and the phase. Observe that with real wavelets the upper bound in (9) is 2−jβ, up

to a multiplicative constant. With complex wavelets, the rate depends on L, and the parameter

will need to be calibrated accordingly.

The specificity of CFW-C(M,L) filters is that the quality of the analytic approximation is based only

on parameter L, as written in Proposition 6. Nevertheless, if we want to have an approximation

with the same quality as that obtained with real wavelets, the choice of L is more constrained.

This trade-off is due to the fact that the greater L, the better analyticity approximation, but the

larger the length of the wavelets support. In practice, due to numerical instability, choosing high

values (i.e. ⩾ 8) is not manageable. As shown by the simulations in Section 5, however, the results

are of good quality even with a smaller value of L.

12



3.3 Quality of approximation

To empirically assess the accuracy of the approximation, let us compare the empirical covariances

of the example of Section 3.1 to the approximation of Proposition 5. Figure 2 displays the sample

covariance of the wavelet coefficients, respectively with real Daubechies filters with M = 4, CFW-

PR(4,4) and CFW-C(4,4) filters. As for Figure 1, N = 212 observations were considered. Observe

that the covariance term is complex, and only the magnitude is represented in Figure 2.

Figure 2 shows the difference between our theoretical findings given in Proposition 5 and the sim-

ulations for both CFW-PR(M,L) and CFW-C(M,L). To better evaluate the quality of the approx-

imation with CFW-C(M,L) filters, the same figure without the first scale is provided in Figure 3.

It shows that indeed the approximation improves when the scale j increases. Nevertheless, the

difference between the results obtained with the simulations at first scales (corresponding to the

highest frequencies) and the approximation given in Proposition 5 is higher with CFW-C(4,4) fil-

ters in comparison with Daubechies and CFW-PR(4,4) filters. Therefore, the lowest scale used in

estimation may be higher with CFW-C(M,L) filters. This choice may reduce the bias but increase

the variance.

4 Estimation

Let j0 and j1, j1 ⩾ j0 ⩾ 1 be respectively the lower and the upper resolution levels used in the

estimation procedure. The estimation is based on the vectors of wavelet coefficients {Wj,k, j0 ⩽

j ⩽ j1, k ∈ Z}. The total number of non-zero coefficients used for estimation is then n =
∑j1

j=j0
nj .

Without restriction of generality, we can assume that L = o(N).

13
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Figure 2: Boxplots of normalized sample covariances between wavelet coeffi-
cients at different scales for the bivariate process defined in (8). Let Vj =(

2−2 j d1Var{Wj,k(1), k ∈ Z} 2−j(d1+d2)Cov{(Wj,k(1),Wj,k(2)), k ∈ Z}
2−j(d1+d2)Cov{(Wj,k(1),Wj,k(2)), k ∈ Z} 2−2 j d2Var{Wj,k(2), k ∈ Z}

)
. The

first row gives the sample version of Vj 11, the second row gives the sample version of |Vj 12| and
the third row gives the sample version of Vj 22. Each column corresponds to a different wavelet
filters, form left to right: Daubechies’ real wavelets with M=4, CFW-PR(4,4) and CFW-C(4,4).
Horizontal red lines correspond to the approximation given by Proposition 5.
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Figure 3: Boxplots of normalized sample covariances between CFW-C(4,4) coefficients at different
scales for the bivariate process defined in (8). Plots are the same as the right column of Figure 2 but
without the first wavelet scale. From left to right, panels correspond respectively to the variance
of the first component, the magnitude of the covariance and the variance of the second component.
Horizontal red lines correspond to the approximation given by Proposition 5.

4.1 Estimation procedure

Based on approximation (11), the objective function L(·) is defined by the wavelet Whittle approx-

imation of the negative log-likelihood (see Achard and Gannaz [2016])

L(G,d) = 1

n

j1∑
j=j0

[
nj log det (Γj(d)GΓj(d)) +

nj∑
k=0

Wj,k
T
(Γj(d)GΓj(d))

−1Wj,k

]

where Γj(d) is the diagonal matrix with diagonal entries 2−j d1 , . . . , 2−j dp , and G is the matrix

with elements Gℓ,m = Θℓ,mK(dℓ + dm), 1 ⩽, ℓ,m ⩽ p. We can rewrite L(·) as

L(G,d) = 1

n

j1∑
j=j0

[
nj log det (Γj(d)GΓj(d)) + trace

(
(Γj(d)GΓj(d))

−1 I(j)
)]
, (12)

where I(j) =
∑nj

k=0Wj,kWj,k
T
denotes the (non-normalized) empirical scalogram at scale j.

Note that when G is a positive definite Hermitian matrix, for all j ⩾ 0 and for all d ∈ (−0.5,∞)p,

det(Γj(d)GΓj(d)) is real and strictly positive and trace
(
(Γj(d)GΓj(d))

−1Ij
)
is real. The ob-

jective function L(G,d) is hence well-defined for G in the set of Hermitian matrices and for all

d ∈ Rp, and takes its values in R.
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Differentiating expression (12) with respect to the matrix G yields

∂L
∂G

(G,d) =
1

n

j1∑
j=j0

[
njG

−1 −G−1Γj(d)
−1I(j)Γj(d)

−1G−1
]T
.

Some keys for complex matrix differentiation can be found in Hjorungnes and Gesbert [2007].

Hence, the minimum for fixed d is attained at

Ĝ(d) =
1

n

j1∑
j=j0

Γj(d)
−1I(j)Γj(d)

−1.

In Shimotsu [2007] the resulting objective function only depends of d since the phases are parametric

whereas in Baek et al. [2020] the authors consider a general form of phases. In both Shimotsu

[2007] and Baek et al. [2020], with a Fourier-based approach, a real matrix G(d) and complex

valued matrices Γj(d), including the phases
(
ϕℓ,m

)
ℓ,m=,,...,p

, are considered. G(d) and Γj(d) are

estimated in a second step, together with parameter d. They minimize the objective function

obtained when replacing G by Ĝ(d) in (12). However, our procedure makes it possible to estimate

the magnitude of the correlation even when the phase is equal to π/2, with imaginary terms in G.

Replacing G by Ĝ(d), the objective function is defined by

R(d) := L(Ĝ(d),d)− p = log det(Ĝ(d))− 1

n

j1∑
j=j0

nj log
(
det
(
Γj(d)Γj(d)

))
.

Since Γj(d) = Diag
(
2−jd

)
, we obtain

R(d) = log det(Ĝ(d)) + 2 log(2)

 1

n

j1∑
j=j0

jnj

( p∑
ℓ=1

dℓ

)
.

The vector of the long-memory parameters d is estimated by d̂ = argmindR(d).

In a second step of estimation we define Ĝ(d̂), estimator of G. And we recover an estimation of

Θ by

Θ̂ℓ,m = Ĝℓ,m(d̂) /K(d̂ℓ + d̂m) .
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4.2 Asymptotic convergence

Following Moulines et al. [2008] and Achard and Gannaz [2016], we introduce an additional con-

dition on the variance of the scalogram {I(j), j ⩾ 0}. Examples of linear processes satisfying

this condition can be found in Proposition 4 of Achard and Gannaz [2016] for real wavelets. With

complex wavelets, to obtain the convergence results, we need to define the parameter L depending

on N . We omit the dependence in the notation except when it is necessary. Therefore, the wavelet

bases depend on N as the parameter L depends on N . Hence the wavelet scalogram {I(j), j ⩾ 0}
depends on N , via the number of observations used in the calculation of the coefficients and via L.

Condition (C)

L is a sequence of N , L = L(N), such that,

for all ℓ,m = 1, . . . , p, sup
N

sup
j⩾0

|Var (Iℓ,m(j))|
nj 22j(dℓ+dm)

< ∞ .

Let d0, G0 and Θ0 denote the true values of the parameters. The consistency of the estimators

can be established as in Achard and Gannaz [2016].

Theorem 7. Suppose that (C-a) and assumptions of Proposition 6 hold. Assume that Condition

(C) is satisfied. Denote jN = max{j, nj ⩾ 1}.

Let j0 and j1 satisfy log(N)2(2−j0β +N−1/22j0/2) → 0 and j0 < j1 ⩽ jN .

Consider CFW-C(M,L) filters with M ⩾ 2 and 2−2j0L+N−12j1L+ log(N)3 L−M−1 → 0.

Then , ∀(ℓ,m) ∈ {1, . . . , p}2,

d̂− d0 = OP(L2
−2j0 + log(N)L−M−1 + 2−j0β +N−1/22j0/2),

Ĝℓ,m(d̂)−Gℓ,m(d
0) = OP(log(N)(L2−2j0 + log(N)L−M−1 + 2−j0β +N−1/22j0/2)),

Θ̂ℓ,m −Θ0
ℓ,m = OP(log(N)(L2−2j0 + log(N)L−M−1 + 2−j0β +N−1/22j0/2)).
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Taking 2j0 = N1/(1+2β) and L = N
β

1+2β
1
M ,

d̂− d0 = OP(N
−β/(1+2β)).

Elements of proof are given in Appendix.

The convergence rate d̂− d0 = OP(N
−β/(1+2β)) is optimal in minimax sense [Giraitis et al., 1997].

The condition on the scales used in the estimation is log(N)2(2−j0β+N−1/22j0/2) → 0. As explained

in Achard and Gannaz [2019], this indicates that highest frequencies should be removed. The

number of scales to remove depends on the short-range dependence via β. In practice, j0 can be

chosen applying a bootstrap procedure on the time series, see Achard and Gannaz [2019].

Next, the parameters M and L in CFW-C(M,L) filters are subject to the conditions (C-a) and

2−2j0L+N−12j1L+ log(N)3 L−M−1 → 0. Condition (C-a) only depends on M . It is very similar

to the one given in Achard and Gannaz [2016] with real filters. It imposes that the number of

vanishing moments M is high enough.

The parameter L quantifies the quality of the analytic approximation of CFW-C(M,L) filters. The

assumption 2j1N−1L→ 0 results from Lemma 4. This is a technical assumption allowing nj to be

equivalent to 2−jN as N goes to infinity. This facilitates the translation of the proofs from real

wavelets to complex wavelets. This assumption deals with the highest scale j1. It can be formulated

on j0, N
−12j0L→ 0, when j1 = j0+∆, with ∆ <∞. The condition log(N)3 L−M−1 → 0 guarantees

that L is high enough for the analytic approximation to be satisfactory. Alternatively, L should

not be too high, and condition 2−2j0 L → 0 ensures that the size of the wavelets support remains

reasonable. As discussed in Section 5, in practice, the choice of L is not critical, but this condition

influences the choice of j0. It must be higher than the usual choice for real filters. This also appears

in the discussion in Section 3.3, where it can be seen that the behavior of the wavelet coefficients

at first scales differs from other scales.

Remark. Baek et al. [2020] observe that in case of co-integration, the corresponding magnitude Ωa,b

is equal to 0. Hence, the phase parameter φa,b is not identifiable. To counter this problem, Baek

et al. [2020] propose to use another parametrization, where Θa,b is decomposed into its real and its

imaginary parts. Our procedure estimates the complex matrix Θ, which is always identifiable, so
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this discussion is unnecessary here.

4.3 Asymptotic normality

A useful result in estimation is asymptotic normality. For real wavelet-based local Whittle estima-

tion, in a multivariate context, it has been studied by Gannaz [2023]. The proof of the latter can

be extended to common-factor wavelets.

Let us introduce an additional assumption on the process X.

(M-3) There exists a sequence {A(D)(u)}u∈Z in Rp×p such that
∑

u∈Zmaxa,b=1,...,p |A
(D)
a,b (u)|

2 < ∞
and

∀t ∈ Z,
(
(1− L)DaXa(t)

)
a=1,...,p

=
∑
u∈Z

A(D)(t+ u)ε(u)

with ε(t) weak white noise process, in Rp. Let Ft−1 denote the σ-field of events generated

by {ε(s), s ⩽ t− 1}. Assume that ε satisfies E[ε(t)|Ft−1] = 0, E[εa(t)εb(t)|Ft−1] = 1a=b and

E[εa(t)εb(t)εc(t)εd(t)|Ft−1] = µa,b,c,d with |µa,b,c,d| ⩽ µ∞ <∞, for all a, b, c, d = 1, . . . , p. For

all (a, b) ∈ {1, . . . , p}2, for all λ ∈ R, the sequence (2−j da |A(D)∗
a,b (2−jλ)|)j⩾0 is convergent as j

goes to infinity.

The asymptotic normality of the estimator of the long-memory parameters is established by our

following theorem. For M ∈ Rp×p, vec(M) denotes the operation that transforms a matrix M ∈
Rp×p into a vector of Rp2 .

Theorem 8. Suppose that conditions of Theorem 7 are satisfied and that assumption (M-3) hold.

Let j0 < j1 ⩽ jN with jN = max{j, nj ⩾ 1} such that

j1 − j0 → ∆ ∈ {1, . . . ,∞}, log(N)2(N2−j0(1+2β) +N−1/22j0/2) → 0.

Define n =
∑j1

j=j0
nj.

Consider CFW-C(M,L) filters with M ⩾ 2 and

N−12j1L+ log(N)3N1/22−j0/2(L2−2j0 + L−M−1) → 0.
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Then,

•
√
n(d̂ − d0) converges in distribution to a centered Gaussian distribution with a variance

V(d)(∆) defined in Appendix, equation (40).

• vec
(√

n
(
Ĝ(d̂)−G0

))
converges in distribution to a centered Gaussian distribution with a

variance V(G)(∆) defined in Appendix, equation (41).

The proof is very similar to the one of Gannaz [2023]. Some points are detailed in Appendix.

The highest scale is j1 = j0 +∆. The theorem distinguishes the cases ∆ < ∞ and ∆ = ∞. Note

that when ∆ < ∞, the condition N−1/22j1/2L → 0 is equivalent to N−1/22j0/2L → 0. Hence, the

condition on L writes as log(N)3N1/22−j0/2(L2−2j0 + L−M−1) → 0.

Remark. Observe that with the condition on j0, the minimax rate is not achieved. But we can

take 2j0 = Na0 with 1/(1 + 2β) < a0 < 1. If L is defined as L = N b0 , then it suffices that
β

1+2β .
1

M+1 < b0 <
1
2 min

{
1 − a0, 5a0 − 1

}
. For example, we can take 2j0 = N (1+β)/(1+2β) and

L = N c0.β/(1+2β) with 1
2(M+1) < c0 <

1
2 .

As detailed in Gannaz [2023], these results allow to build hypothesis tests on the long-memory

parameters and on the long-run covariance.

5 Simulation study

In this section, we verify the accuracy of the covariance approximation given in Proposition 6 and the

consistency of the parameters estimates provided in Proposition 7 on simulated data. We consider

1000 Monte-Carlo simulations of bivariate long-memory processes X observed at X(1), . . . ,X(N)

with N = 212. For each process, we compute the wavelet coefficients using CFW-PR(4,4) and

CFW-C(4,4) filters.

We compare the quality of estimation of parameters d to the one given by real wavelets, namely

Daubechies’ wavelets with 4 vanishing moments. A comparison with a Fourier-based local Whittle

procedure is also provided, when the simulated processes are stationary.
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Observe that comparisons of Fourier-based and wavelet-based estimation procedures in univariate

settings have been done previously in Nielsen and Frederiksen [2005] and Faÿ et al. [2008]. In

multivariate settings, comparisons have been done in Achard and Gannaz [2019] with a parametric

phase. With a general phase, Baek et al. [2020] proposed Monte Carlo simulations using Fourier-

based approach. The specificity here is to extend simulations of the former to non-stationary

processes.

The estimated parameters are d = (d1, d2), the magnitude of the long-run covariance Ω, the phase

ϕ = ϕ1,2 and the long-run correlation ρ =
Ω1,2√
Ω1,1Ω2,2

. For each parameter, we will evaluate the

quality of estimation by the bias, the standard deviation (std) and the Root Mean Squared Error,

RMSE =
√
bias2 + std2.

Two models are considered: models admitting a linear representation called ARFIMA, and multi-

variate fractional Brownian motions (mFBM).

5.1 ARFIMA models

We first provide an estimation example on linear time series. Let ξ be a p-dimensional white noise

with E[ξ(t) | Ft−1] = 0 and E[ξ(t)ξ(t)T | Ft−1] = Σ with Σ positive definite, where Ft−1 is the

σ-field generated by {ξ(s), s < t}. The spectral density of ξ, denoted f ξ(.), satisfies f ξ(λ) = Σ,

for all λ ∈ R.

Let (Ak)k∈N be a sequence in Rp×p with A0 the identity matrix and
∑∞

k=0 ∥Ak∥2 < ∞. Let A(·)
be the discrete Fourier transform of the sequence, A(λ) =

∑∞
k=0Ake

ikλ. We assume that |A(L)|
has all its roots outside the unit circle so that A(·)−1 is defined and smooth on R. We also define

(Bk)k∈N to be a sequence in Rp×p with B0 the identity matrix and
∑∞

k=0 ∥Bk∥2 <∞. Let B(·) be
the discrete Fourier transform of the sequence, B(λ) =

∑∞
k=0Bke

ikλ.

Let us define the process X = {X(t), t ∈ Z} by

A(L)Diag
(
(1− L)d

)
X(t) = B(L)ξ(t), t ∈ Z. (13)

21



The spectral density of X satisfies

f(λ) = (1− e−iλ)−dA(e−iλ)−1B(e−iλ)f ξ(λ)B(eiλ)TA(eiλ)T
−1

(1− eiλ)−d.

In particular

fℓ,m(λ) ∼λ→0+ Gℓ,me
−iπ/2(dℓ−dm)λ−(dℓ+dm) ,

with G = A(0)−1B(0)f ξ(λ)B(0)TA(0)T
−1

= A(0)−1B(0)ΣB(0)TA(0)T
−1

a real valued matrix.

Condition (M-2) is satisfied with β = minℓ(dℓ). In this case f(0+) = f(0−).

This corresponds to Model A of Lobato [1997]. Note that this model satisfies the definition of

LRD processes of Kechagias and Pipiras [2014]. In Kechagias and Pipiras [2014], the process ξ

is not necessarily a white-noise process, and verifies f ξ(λ) ∼λ→0+ Σ, which is indeed true for a

white-noise process.

Following (13), we have simulated X(1), . . .X(N) in (13) with N = 212, null Ak and Bk for

k ⩾ 0. That is, there is no short-range terms in the model. We consider three sets of values for d,

d ∈ {(0.2, 0.2), (0.2, 0.4), (0.2, 0.8)}. Matrix Σ is equal to

(
1 ρ

ρ 1

)
, with ρ = 0.8. The phase is

equal to π(d1 − d2)/2 which is respectively equal to 0, π/10, 3π/10. Simulations were done using R

package multiwave [Achard and Gannaz, 2015].

Remark. The objective of this simulation part is to compare estimations based respectively on real

and complex wavelet filters. Hence, only simulations with null Ak and Bk are considered. We refer

to Achard and Gannaz [2019] for results with non null AR and MA parts, with real wavelet filters.

Figure 4 displays the boxplots of the correlations between the wavelet coefficients obtained by

CFW-PR(4,4) filter at different scales. It illustrates that the approximation of Proposition 6 is

valid, especially for high scales (lowest frequencies), even if it has not been established theoretically

for such filters. The figure shows that the approximation of Proposition 6 is slightly more accurate

for the real part of wavelet correlations than for the imaginary part.

The results for the estimation of the long-memory parameters d are displayed respectively in Table 1

for CFW-PR(4,4) filter and in Table 2 for CFW-C(4,4) filter. Based on Achard and Gannaz [2019],

the only hyperparameter to choose is the minimal scale j0. The example in Section 3.3 illustrates

that the behaviors of Daubechies’ wavelets and CFW-PR(M,L) are very similar with respect to
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Figure 4: Boxplots of correlation between CFW-PR(4,4) coefficients at different scales for ARFIMA
processes. First row gives the real part of the correlations and second row gives the imaginary part.
Each column corresponds to a given value of parameter d. Horizontal red lines correspond to the
approximation given by Proposition 6, ρ cos(ϕ)rK for the real part and ρ sin(ϕ)rK for the imaginary
part, with rK = K(d1 + d2)/

√
K(2 d1)K(2 d2).

scales. Thus, for both of them, we consider j0 = 1 when the two components of the time series

are stationary, and j0 = 2 when a component is not stationary. These choices are motivated by

previous studies [Achard and Gannaz, 2019].

Table 1 shows that the estimation of d with CFW-PR(M,L) filters is good and similar to the

Daubechies’ real wavelet-based estimation.

When d = (0.2, 0.2) or d = (0.2, 0.4), the processes are stationary, it is then possible to estimate

the parameters of the model using a Fourier-based procedure. Following Baek et al. [2020], we im-

plemented a Fourier-Based local Whittle estimation by keeping our parametrization. In particular,

the complex matrix Θ is not decomposed in real and imaginary parts or in magnitude and phase

in the objective function. Let λj = 2πj/N , j = 1, . . . ,m, be the Fourier frequencies used in estima-
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tion, m ∈ N. Define ΛF
j (d) = Diag

(
λdj e

−iλj d/2
)
. The Fourier-based estimators (d̂MFW , Θ̂MFW )

are minimizers of the objective function

1

m

m∑
j=1

[
log det

(
ΛF
j (d)ΘΛF

j (d)
∗
)
+WF (λj)

∗
(
ΛF
j (d)Ω(d)ΛF

j (d)
∗
)−1

WF (λj)

]
.

Note that this objective function differs from Baek et al. [2020] since we chose a different parametriza-

tion (see Section 4.2). We consider m = N0.65, as suggested by Lobato [1999], Shimotsu [2007],

Nielsen [2011].

Concerning the estimation with CFW-C(M,L), it has been shown in Section 3.3 that the approx-

imation of Proposition 5 is not accurate for the first scales. Therefore, the procedure is executed

with j0 = 4 in each case, to reduce the bias of the long-run covariance estimation. Since fewer

scales are available in the procedure, the variance increases and the quality of the estimation is

lower than the one based on CFW-PR(M,L). Table 2 illustrates that the quality of the estimation

with CFW-C(M,L) filters presents a good accuracy, however lower than that with CFW-PR(M,L)

filters.

d bias std RMSE PR/Real PR/Fourier

0.2 -0.0066 0.0165 0.0178 1.0375 1.0000
0.2 -0.0069 0.0156 0.0171 1.0228 1.0108

0.2 -0.0080 0.0165 0.0183 1.1537 1.0000
0.4 -0.0138 0.0159 0.0211 1.1888 0.9606

0.2 -0.0094 0.0255 0.0272 0.9072 .
0.8 -0.0145 0.0270 0.0307 1.3319 .

Table 1: Results for the estimation of long-memory parameters d with CFW-PR(4,4) filters us-
ing ARFIMA processes. j0 = 1 for d ∈ {(0.2, 0.2), (0.2, 0.4)} and j0 = 2 for d ∈ {(0.2, 0.8)}.
PR/Real denotes the ratio between the RMSE given by CFW-PR(4,4) filter and the RMSE given
by Daubechies’ real filter. PR/Fourier denotes the ratio between the RMSE given by CFW-PR(4,4)
filter and the RMSE given by a Fourier-based local Whittle procedure.

Table 3 and Table 4 give the results for the estimation of the covariance structure, respectively for

CFW-PR(4,4) filter and for CFW-C(4,4) filter. The quality of the estimation using CFW-PR(4,4)

improves significantly the results obtained with real wavelets. This is not the case for CFW-C(4,4)

filters where the quality of estimation deteriorates.
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d bias std RMSE C/PR

0.2 -0.0152 0.0401 0.0429 2.4155
0.2 -0.0145 0.0392 0.0418 2.4504

0.2 -0.0158 0.0394 0.0425 2.3229
0.4 -0.0150 0.0385 0.0413 1.9626

0.2 -0.0166 0.0397 0.0430 1.5837
0.8 -0.0163 0.0390 0.0422 1.3762

Table 2: Results for the estimation of long-memory parameters d with CFW-C(4,4) filters using
ARFIMA processes. j0 = 4. C/PR denotes the ratio between the RMSE given by CFW-C(4,4)
filter and the RMSE given by CFW-PR(4,4) filter in Table 1.

With CFW-PR(M,L) filters, the results for the phase parameter ϕ are less satisfactory. A bias

term can be observed when the phase ϕ increases. This term is for example of order π/10 when

estimating the phase of 3π/10, corresponding to the case d = (0.2, 0.8). However, our results for

the stationary cases are comparable or significantly better than those obtained by the Fourier-based

Whittle estimation. Similar qualities were observed in Baek et al. [2020]. Estimating the phase

is challenging. Interestingly, the quality of the estimation based on CFW-C(M,L) filters is much

stable with respect to the phase values. Indeed, even when the phase value increases, the bias

remains constant.

It can be observed that the estimation with CFW-C(4,4) filters has a lower bias and a higher

variance than the estimation with CFW-PR(4,4) filters. The higher j0, the lower the bias, but the

higher the variance. For the estimation of d, the main difficulty is to control the variance according

to the choice of j0. Since the bias for the phase estimation is critical, a higher j0 for CFW-PR(4,4)

filters can be considered. Moreover, as illustrated in Figure 4, the quality of the approximation of

the imaginary part of the correlation is not accurate for the three highest scales. Thus, to ensure a

good approximation and consequently a small bias for the correlation and the phase, it seems more

appropriate to remove the three first scales and to consider j0 = 4 also for CFW-PR(M,L), even if

this increases the variance.

Table 5 and Table 6 display the results considering j0 = 4, with CFW-PR(M,L), respectively for

the long-run dependence parameter d and for the long-run correlation and the phase. The results

for the long-run covariance are omitted, for simplicity. Table 5 shows that even if the bias of d̂
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d bias std RMSE PR/Real PR/Fourier

( 0.2 , 0.2 ) Ω1,1 0.0087 0.0227 0.0243 0.5089 1.6669
Ω1,2 0.0076 0.0204 0.0218 0.5509 1.6621
Ω2,2 0.0092 0.0229 0.0247 0.5184 1.6796

correlation 4e-04 0.0057 0.0057 0.9702 0.6987
phase 1e-04 0.0081 0.0081 . 1.0869

( 0.2 , 0.4 ) Ω1,1 0.0082 0.0229 0.0243 0.4919 1.7049
Ω1,2 0.0028 0.0206 0.0208 0.4883 1.4759
Ω2,2 0.0146 0.0231 0.0273 0.3142 1.3126

correlation -0.0063 0.0058 0.0085 0.6079 0.6950
phase 0.1879 0.0083 0.1880 . 0.1677

( 0.2 , 0.8 ) Ω1,1 -0.0184 0.0365 0.0409 0.8883 .
Ω1,2 -0.0860 0.0292 0.0908 0.4163 .
Ω2,2 -0.1145 0.0352 0.1198 2.1877 .

correlation -0.0342 0.0083 0.0351 0.1788 .
phase 0.2790 0.017 0.2795 . .

Table 3: Results for the estimation of matrices Θ with CFW-PR(4,4) filters on ARFIMA processes.
j0 = 1 for d ∈ {(0.2, 0.2), (0.2, 0.4)} and j0 = 2 for d ∈ {(0.2, 0.8)}. PR/Fourier denotes the ratio
between the RMSE given by CFW-PR(4,4) filter and the RMSE given by a Fourier-based local
Whittle procedure.

increases, it has a similar order of magnitude. Interestingly, Table 6 highlights that the quality of

the estimations with CFW-C(4,4) and CFW-PR(4,4) filters are then very similar. In particular,

the bias of the phase and of the correlation decrease, as shown in Table 3. With j0 = 4, the RMSE

is significantly lower than the one of the Fourier-based local Whittle estimator. This approach,

hence, improves significantly the estimation of the phase compared to the other procedures. Note

that it is nevertheless sensitive to the choice of j0.

5.2 Multivariate fractional Brownian motions

We now consider a multivariate fractional Brownian motion (mFBM). Since mFBM are not station-

ary, Fourier-based estimation is not available (without a differentiation). A specificity of mFBM is

that it does not have a linear representation, even if it can be seen as the limit process of a linear

representation, see Amblard et al. [2013].
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d bias std RMSE C/PR

( 0.2 , 0.2 ) Ω1,1 0.0488 0.175 0.1817 7.5165
Ω1,2 0.0367 0.1252 0.1305 6.0138
Ω2,2 0.0451 0.1685 0.1744 7.1674

correlation 0.0012 0.0173 0.0173 2.9994
phase 8e-04 0.0367 0.0367 4.5335

( 0.2 , 0.4 ) Ω1,1 0.0469 0.1726 0.1789 7.3547
Ω1,2 0.0124 0.1198 0.1205 5.7810
Ω2,2 -0.0086 0.1628 0.1630 5.9735

correlation -3e-04 0.0172 0.0172 2.0196
phase 0.0225 0.0364 0.0428 0.2278

( 0.2 , 0.8 ) Ω1,1 0.0476 0.1715 0.178 4.3507
Ω1,2 -0.0266 0.1156 0.1186 1.3064
Ω2,2 -0.0973 0.1499 0.1787 1.4916

correlation -0.0026 0.0175 0.0177 0.5036
phase 0.0645 0.0357 0.0737 0.2637

Table 4: Results for the estimation of matrices Θ with CFW-C(4,4) filters on ARFIMA processes.
j0 = 4. C/PR denotes the ratio between the RMSE given by CFW-C(4,4) filter and the RMSE
given by CFW-PR(4,4) filter in Table 3.

The p-multivariate fractional Brownian motion X = {X(t), t ∈ R} of long-memory parameter d,

for any d ∈ (0.5, 1.5)p is a process satisfying the three following properties:

• X(t) is Gaussian for any t ∈ R;

• X is self-similar with parameter d− 1/2, i.e. for every t ∈ R and a > 0, (X1(at), . . . , Xp(at))

has the same distribution as (ad1−1/2X1(t), . . . , a
dp−1/2Xp(t));

• the increments are stationary.

Another usual parametrization is the one with Hurst parameters, equal to d− 1/2.
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d bias std RMSE PR/Real PR/Fourier C/PR

0.2 -0.0020 0.0412 0.0412 1.1056 1.0000 1.0068
0.2 -0.0037 0.0419 0.0421 1.1177 1.5829 1.0121

0.2 -0.0029 0.041 0.0411 1.0477 1.0000 0.9815
0.4 -0.0035 0.0418 0.0419 1.0560 1.5435 0.9682

0.2 -0.0054 0.0409 0.0412 0.9472 . 1.0173
0.8 -0.0078 0.0423 0.0430 0.9049 . 0.9855

Table 5: Results for the estimation of long-memory parameters d with CFW-PR(4,4) filters on
ARFIMA processes. For real filter, j0 = 1 for d ∈ {(0.2, 0.2), (0.2, 0.4)} and j0 = 2 for d ∈
{(0.2, 0.8)}. For CFW-PR(4,4) filter, j0 = 4. PR/Real denotes the ratio between the RMSE given
by CFW-PR(4,4) filter and the RMSE given by Daubechies’ real filter. PR/Fourier denotes the
ratio between the RMSE given by CFW-PR(4,4) filter and the RMSE given by a Fourier-based
local Whittle procedure. C/PR denotes the ratio between the RMSE given by CFW-C(4,4) filter
in Table 2 and the RMSE given by CFW-PR(4,4) filter.

d bias std RMSE PR/Fourier C/PR

( 0.2 , 0.2 ) correlation 8e-04 0.0166 0.0166 0.9944 1.0477
phase 0 0.0340 0.0340 1.5912 1.0346

( 0.2 , 0.4 ) correlation 2e-04 0.0164 0.0164 0.9745 1.0362
phase 0.0241 0.0345 0.0421 0.1320 0.9842

( 0.2 , 0.8 ) correlation -0.0033 0.0169 0.0172 . 1.0291
phase 0.0654 0.0341 0.0738 . 0.9995

Table 6: Results for the estimation of matrices Θ with CFW-PR(4,4) filters on ARFIMA processes
with j0 = 4. PR/Fourier denotes the ratio between the RMSE given by CFW-PR(4,4) filter and
the RMSE given by a Fourier-based local Whittle procedure. C/PR denotes the ratio between the
RMSE given by CFW-C(4,4) filter in Table 4 and the RMSE given by CFW-PR(4,4) filter.

We introduce the following quantities, for 1 ⩽ ℓ,m ⩽ p:

σℓ = E[Xℓ(1)
2]1/2

rℓ,m = rm,ℓ = Cor(Xℓ(1), Xm(−1))

ηℓ,m = −ηm,ℓ = (Cor(Xℓ(1), Xm(−1))− Cor(Xℓ(−1), Xm(1)))/cℓ,m

with cℓ,m =

2(1− 2dℓ+dm−1) if dℓ + dm ̸= 1,

2 log(2) if dℓ + dm = 1,
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where Cor(X1, X2) denotes the Pearson correlation between variables X1 and X2. The quan-

tities (ηℓ,m)ℓ,m=1,...,p measure the dissymmetry of the process. A mFBM is time reversible if

the distribution of X(−t) is equal to the distribution of X(t) for every t. Didier and Pipiras

[2011] established that zero-mean multivariate Gaussian stationary processes X is equivalent to

E[Xℓ(t)Xm(s)] = E[Xℓ(s)Xm(t)] for all (s, t), which corresponds to the definition of time reversibil-

ity used in Kechagias and Pipiras [2014]. A mFBM is time-reversible if and only if ηℓ,m = 0 for all

(ℓ,m).

Coeurjolly et al. [2013] characterize the spectral behaviour of the increments of a mFBM. If f
(1,1)
ℓ,m (.)

denotes the cross-spectral density of {(1− L)Xℓ(t), (1− L)Xm(t)), t ∈ Z}, then

f
(1,1)
ℓ,m (λ) = 2Ωℓ,m

1− cos(λ)

|λ|dℓ+dm
eiϕℓ,m ,

with

Ωℓ,m =

σℓσmΓ(dℓ + dm)
(
r2ℓ,m cos2(π2 (dℓ + dm)) + η2ℓ,m sin2(π2 (dℓ + dm))

)1/2
if dℓ + dm ̸= 2

σℓσmΓ(dℓ + dm)
(
r2ℓ,m + η2ℓ,m

π2

4

)1/2
if dℓ + dm = 2

ϕℓ,m =

atan
(
ηℓ,m
rℓ,m

tan(π2 (dℓ + dm))
)

if dℓ + dm ̸= 2

atan
(
ηℓ,m
rℓ,m

π
2

)
if dℓ + dm = 2.

Let Θ be given by Θ = (Ωℓ,me
iϕℓ,m)ℓ,m=1,...,p. When λ tends to 0, the spectral density f

(1,1)
ℓ,m (λ) is

equivalent to Θℓ,m|λ|−(dℓ+dm−2). Thus, assumption (M-1) holds. Assumption (M-2) is satisfied for

any 0 < β < 2. We can verify easily that time-reversibility is still equivalent to ϕℓ,m = 0 in this

setting.

Note that the set of parameters {dℓ, σℓ, rℓ,m, ηℓ,m, ℓ,m = 1, . . . , p} is not identifiable. Indeed, for

0 < a < 1, {dℓ, σℓ, rℓ,m, ηℓ,m, ℓ,m = 1, . . . , p} and {dℓ,
√
a σℓ, rℓ,m/a, ηℓ,m/a, ℓ,m = 1, . . . , p} lead to

the same expressions of f
(1,1)
ℓ,m (·). It thus seems reasonable to parameterize the fractional Brownian

motion by {dℓ,Θℓ,m, ℓ,m = 1, . . . , p}.

We consider two mFBM, both with parameters σ1 = σ2 = 1 and d = (1, 1.2).

Case 1. η1,2 = 0.9, r1,2 = 0.6.
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The phase ϕ1,2 is approximately equal to π/7 and Ω ≃

(
1.000 0.699

0.699. 1.005

)
, giving a long-run

correlation ρ ≃ 0.70.

Case 2. η1,2 = −0.6, r1,2 = 0.2.

The phase ϕ1,2 is approximately equal to −π/4 and Ω ≃

(
1.000 0.293

0.293 1.005

)
, giving a long-run

correlation ρ ≃ 0.29.

Simulations were done using R functions provided by J-F Coeurjolly at https://sites.google.

com/site/homepagejfc/software.

Figure 5 represents the boxplots of CFW-PR(4,4) wavelet correlations at different scales in Case

1 and in Case 2. The good behavior of the approximation is observed except for the highest

frequencies. Identical observations are obtained for CFW-C(4,4) filters (figure not provided).

We now consider the local Whittle estimation of the parameters. Based on the discussion of

Section 5.1, and on Figure 5, we fix j0 = 4. Table 7 and Table 8 highlight the good behavior

of the estimation of long-memory parameters d, respectively for CFW-PR(4,4) and CFW-C(4,4)

filters. Again, considering j0 = 4 for both filters, the estimation procedures are equivalent for

the two common-factor wavelets. Compared to the real wavelet-based estimation (with j0 = 2 as

suggested by Achard and Gannaz [2019]), the RMSE increases. This is mainly due to the choice of

the hyperparameter j0.

d bias std RMSE ratio PR/Real

Case 1 1 -0.0065 0.0464 0.0469 1.5577
1.2 -0.0059 0.0475 0.0478 2.0886

Case 2 1 -0.0051 0.0510 0.0513 1.6812
1.2 -0.0035 0.0515 0.0516 1.9884

Table 7: Results for the estimation of long-memory parameters d with CFW-PR(4,4) filter on
mFBMs. Hyperparameter j0 satisfies j0 = 4 for CFW-PR(4,4) and j0 = 2 for real filters.
PR/Real denotes the ratio between the RMSE given by CFW-PR(4,4) filter and the RMSE given
by Daubechies’ real filter.

Table 9 and Table 10 give the results obtained for the estimation of the covariance structure, that
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Figure 5: Boxplots of correlation between CFW-PR(4,4) coefficients at different scales for the
simulated mFBM in Case 1 (left column–(a)) and in Case 2 (right column–(b)). First row gives
the real part of the correlations and second row gives the imaginary part. Horizontal red lines
correspond to the approximation given by Proposition 6, that is, ρ cos(ϕ)rK for the real part and
ρ sin(ϕ)rK for the imaginary part, with rK = K(d1 + d2)/

√
K(2 d1)K(2 d2).

is, Ω, ρ and ϕ. It is not possible to compare our results with alternative non parametric procedures

because real wavelet-based procedure estimates the real part of the long-run covariance or of the

correlation, and Fourier-based estimations are not valid for non-stationary time series.

The results of CFW-PR(4,4) and CFW-C(4,4) are similar. We observe a high bias and a high

standard deviation for the estimation of Ω. On the other hand, we observe a good quality for the
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d bias std RMSE ratio C/PR

Case 1 1 -0.0155 0.0409 0.0437 0.9323
1.2 -0.0133 0.0402 0.0423 0.8849

Case 2 1 -0.0177 0.0448 0.0482 0.9397
1.2 -0.0116 0.0473 0.0487 0.9441

Table 8: Results for the estimation of long-memory parameters d with CFW-C(4,4) filter on
mFBMs. Hyperparameter j0 satisfies j0 = 4. C/PR denotes the ratio between the RMSE given by
CFW-C(4,4) filter and the RMSE given by CFW-PR(4,4) filter.

estimation of ρ and of ϕ.

bias std RMSE

Case 1 Ω1,1 -0.1999 0.1544 0.2526
Ω1,2 -0.1592 0.0925 0.1841
Ω2,2 -0.2471 0.1504 0.2892

correlation 0.0971 0.0243 0.1001
phase 0.0039 0.0526 0.0528

Case 2 Ω1,1 -0.2048 0.1654 0.2633
Ω1,2 -0.0647 0.0501 0.0818
Ω2,2 -0.2508 0.1588 0.2969

correlation 0.0967 0.0434 0.1059
phase -0.0087 0.1549 0.1551

Table 9: Results for the estimation of matrices Θ with CFW-PR(4,4) filter on mFBMs. Hyperpa-
rameter j0 satisfies j0 = 4.

To conclude, no major difference are observed between CFW-PR and CFW-C filters. As theoretical

results are also available for CFW-C filters, it seems preferable to use them in practice.
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bias std RMSE ratio C/PR

Case 1 Ω1,1 -0.1548 0.1501 0.2156 0.8537
Ω1,2 -0.1305 0.0865 0.1565 0.8501
Ω2,2 -0.2088 0.1365 0.2495 0.8625

correlation 0.0965 0.0245 0.0995 0.9940
phase 0.0043 0.0493 0.0495 0.9376

Case 2 Ω1,1 -0.1427 0.1632 0.2168 0.8235
Ω1,2 -0.052 0.0527 0.074 0.9043
Ω2,2 -0.2107 0.1596 0.2643 0.8905

correlation 0.0936 0.045 0.1039 0.9805
phase -0.0061 0.156 0.1561 1.0064

Table 10: Results for the estimation of matrices Θ with CFW-C(4,4) filter on mFBMs. Hyperpa-
rameter j0 satisfies j0 = 4. C/PR denotes the ratio between the RMSE given by CFW-C(4,4) filter
and the RMSE given by CFW-PR(4,4) filter.

6 Application on a neuroscience dataset

We have applied our framework on fMRI data acquired on rats. We consider functional Magnetic

Resonance images (fMRI) of dead and live rats. Our aim is to estimate the brain connectivity, that

is, the significant correlations between brain regions where fMRI signals are recorded. For this data

set, we know that for dead rats the recordings are just noise, as no legitimate functional activity

should be detected. Thus, the estimated graphs should be empty. We also expect non-empty

graphs for live rats under anesthetic, as brain activity keeps on during anesthesia. The dataset is

freely available at https://10.5281/zenodo.2452871 [Becq et al., 2020a,b].

6.1 Description of the dataset

Functional Magnetic Resonance Images (fMRI) were acquired for dead and live rats (the full de-

scription is available in Becq et al. [2020b]). 25 rats were scanned and identified in 4 different

groups: DEAD, ETO L, ISO W and MED L. The first group contain dead rats and the three last

groups correspond to different anesthetics. The duration of the scan was 30 minutes with a time

repetition of 0.5 second so that N = 3600 time points were available at the end of experience. After
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preprocessing as explained in Becq et al. [2020b], p = 51 time series for each rat were extracted.

Each time series captures the functioning of a given region of the rat brain based on an anatomical

atlas.

For each rat, we compute the estimators of

• the vector of long-memory parameters, d̂,

• the magnitude of the correlations, ρ̂ = {ρ̂ℓ,m, 1 ⩽ ℓ < m ⩽ p} with ρ̂ℓ,m =
Ω̂ℓ,m√

Ω̂ℓ,ℓΩ̂m,m

,

• the phases, ϕ̂ = {ϕ̂ℓ,m, 1 ⩽ ℓ < m ⩽ p}.

Estimation was done with CFW-PR(4,4) filters. Densities of the estimators are represented on the

figures using R default kernel-based estimation.

6.2 Results and group comparisons

Figure 6 shows the empirical distribution of the estimated empirical estimators d̂. As expected,

the long-memory parameters for dead rats are close to zero. The distributions are centered around

zero, with a Gaussian-like shape. For rats under anesthetics, the densities are not centered around

zero and the variance between brain regions is higher than what is observed for dead rats. Long-

memories for rats under anesthetic ISO W are higher than under other anesthetics.

The distributions of the magnitudes and the phases of the estimated correlations, ρ and ϕ, for

each rats, are shown respectively in Figure 7 and Figure 8. First, as expected, the magnitudes

obtained for the dead rats seem significantly different from those of the live rats. For dead rats,

distributions have a small support, that is, only 9 on the 5100 values (0.18%) satisfy ρ̂ > 0.3. Note

also that no major differences are observed between the rats. Next, ISO W and ETO L present

quite similar distributions, with possibly high magnitudes. By contrast, the correlations for MED L

anesthetic are lower. These results tend to show that MED L anesthetic is more potent than the

other anesthetics, leading to fewer connections between brain regions.

First of all, as expected, the quantities obtained for the dead rats appear significantly different

from those of the living rats. For dead rats, the distributions have a small support, that is, only

9 values out of 5100 (0.18%) satisfy ρ̂ > 0.3. Also note that no major differences are observed

between the rats. Then, ISO W and ETO L show quite similar distributions, with possibly high

magnitudes. On the other hand, the correlations for the anesthetic MED L are weaker. These
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Figure 6: Plot of the empirical distribution of the long memory parameters d̂ obtained for the 4
groups of rats. Each color corresponds to a rat.

results tend to show that the anesthetic MED L is more potent than other anesthetics, resulting

in fewer connections between brain regions.

The phase parameter can be interpreted as an asymmetry of the coupling at large lags among the

components of the signals for each brain region (a null phase is equivalent to time-reversibility).

The distributions displayed in Figure 8 correspond to the empirical densities of the upper triangular

matrices of phases, {ϕℓ,m, 1 ⩽ ℓ < m ⩽ p}. This explains why the distributions are not symmetric.

For dead rats, we observe mainly uniform distributions. For live rats, Figure 8 shows that the dis-

tributions have heavy tails. The tails are heavier for MED L anesthetic than for other anesthetics.

This can be explained by the fact that the phase is non-informative when the magnitude is close

to zero. As indicated previously, this problem of identifiability occurs for example in the case of

fractional co-integration. Following Baek et al. [2020] another parametrization could be proposed

to overcome it. The parametrization chosen here, nevertheless, seems more appropriate since the

magnitude is crucial in this real data application.

To illustrate this fact, Figure 9 shows the distributions of the estimated phases ϕ corresponding
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Figure 7: Plot of the empirical distribution of the correlation magnitudes ρ̂ obtained for the 4
groups of rats. Each color corresponds to a rat.

to magnitudes satisfying ρ > 0.3 (this choice is motivated by the observation on the support of

dead rats’ correlations above). The distributions then have smaller tails. It can be observed that

the supports of the phases are larger for live rats than for dead rats. Next, the 95%-quantiles of

absolute values (i.e. q such that 95% of absolute values of phases are lower than q) are respectively

2.95, 1.90, 1.89, 1.61 for dead rats, ISO W, ETO L and MED L. It seems that ISO W has a higher

support, meaning that shifts appear in the connections between brain regions, with respect to other

anesthetics. Yet, we have not tested whether the difference is significant.

6.3 Graphs with correlations and phases

We first compute the adjacency matrix obtained for each rat within each group. Edges correspond

to a magnitude higher than 0.3. The value of the threshold is motivated by the observation of the

supports obtained for dead rats. We then select the edges which are present in all the graphs of

the rats of the group. One graph is then obtained per group. For each group, we then compute

the mean of the estimated phase for each detected edge. Figure 10 illustrates the graphs obtained
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Figure 8: Plot of the empirical distribution of the phases ϕ̂ obtained for the 4 groups of rats without
thresholding the correlations. Each color corresponds to a rat.
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for the 4 different groups.

We have colored each edge according to the mean phase when it satisfies |ϕℓ,m| > 1.1|ϕ∗ℓ,m| where
ϕ∗ℓ,m = −π

2 (dℓ− dm), (ℓ,m) ∈ {1, . . . , p}2. The value ϕ∗ℓ,m corresponds to the phase of causal linear

representations with power-law coefficients [Kechagias and Pipiras, 2014] and to the ARFIMA

modeling used in Achard and Gannaz [2016] with similar data. The more the edges are colored,

the more the behavior of the phase differs from the preceding modeling.

The DEAD group has indeed no edges. The MED L group has fewer edges than the two other

groups of anesthetic. It hence seems that MED L anesthetic inhibits more the activity. Next

ETO L group and ISO W group have a similar number of edges (respectively 133 and 145), but

the phases differ. More than half of the mean phases are outside the interval [−1.1|ϕ∗|, 1.1|ϕ∗|] for
ETO L and ISO W groups, with similar proportions. This observation is interesting because it

illustrates that the modeling of these data is complex. The introduction of a general phase enables

to take this complexity into account. Concerning the physical interpretation, no easy conclusion

can be given. As it was mentioned in Buxton [2013], the time scale of BOLD (Blood oxygenation

level dependent) response is very small in comparison with the neuronal activity. The observed

delay is equal to a few seconds. Considering the different time scales involved in the production

of the BOLD response, we may hypothesize that lags are not the underlying phenomenon that

produces phase differences in fMRI signals. However, as stated in Buxton [2013], the time scale

can vary in the same subject depending on the physiological baseline state, which is known to be

modified under anesthesia.

7 Conclusion

This work was motivated by an application in neuroscience, namely the inference of fractal con-

nectivity from fMRI recordings. We have studied the local Whittle estimators for multivariate

time series presenting long-memory. Our modeling allows for a complex covariance structure with

phase components that can be interpreted as shifts in the coupling between time series. We have

introduced quasi-analytic wavelet filters to handle the possible non-stationarity in the real data

application. The resulting procedures offer a consistent estimation of the main parameters of the

model. Indeed, we have established that so called Common-Factor wavelets are an efficient tool for

recovering the long-memory structure as well as the covariance structure, including magnitude and
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Figure 10: Plot of the average graphs with correlations and phases obtained for 4 groups of rats:
DEAD, ISO W, ETO L and MED L. Only edges corresponding to a mean correlation’s magnitude
higher than 0.3 are displayed. Red edges correspond to positive mean phases higher than 1.1|ϕ∗|,
blue edges correspond to negative mean phases lower than -1.1|ϕ∗|, and grey edges to mean phases
between -1.1|ϕ∗| and 1.1|ϕ∗|. The quantities ϕ∗ are equal to ϕ∗ℓ,m = −π

2 (dℓ − dm).
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phase. A simulation study on linear processes and on multivariate Brownian motions illustrates

the good performance of the proposed procedure. The real data application highlights the ability

of the procedure to distinguish dead rats from live rats. We also show the differences between three

anesthetics and the fact that one of them slows down brain activity more intensively.
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A Expression of the CFW-C(M,L) filter

This section aims at giving the expression of the CFW-C(M,L) filters which are used to compute

the wavelet coefficients. Let first recalls the expression of common-factor wavelets.

A.1 Expression of the CFW-C(M,L) pair

Let us recall the expression of the low-pass filter ĥ(L)(.) and the high-pass filter ĥ(H)(.):

ĥ(L)(λ) =
√
2

(
1 + e−iλ

2

)M
q̂L,M (λ) d̂L(λ) and ĥ(H)(λ) = ĥ(L)(λ+ π)e−iλ , (14)

for all λ ∈ R. All the same, for all λ ∈ R,

ĝ(L)(λ) =
√
2

(
1 + e−iλ

2

)M
q̂L,M (λ) d̂L(λ)e

−iλL and ĝ(H)(λ) = ĝ(L)(λ+ π)e−iλ. (15)
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Let us now explicit φ̂(·). We have φ̂(·) = φ̂h(·) + iφ̂g(·) with

φ̂h(λ) = 2−1/2
∞∏
j=1

2−1/2ĥ(L)(2−jλ) = 2−1/2
∞∏
j=1

(1 + e−i2−jλ

2

)M
q̂L,M (2−jλ)d̂L(2

−jλ),

and φ̂g(λ) = 2−1/2
∞∏
j=1

(1 + e−i2−jλ

2

)M
q̂L,M (2−jλ)d̂L(2−jλ)e

−i2−jλL.

When q̂(.) = 1, the expressions above become

φ̂h(λ) =
∞∏
j=1

(1 + e−i2−jλ

2

)M
d̂L(2−jλ), (16)

φ̂g(t) =
∞∏
j=1

(1 + e−i2−jλ

2

)M
d̂L(2−jλ)e

−i2−jλL. (17)

Next, we can explicit ψ̂(·). We have ψ̂(·) = ψ̂h(·) + iψ̂g(·) with

ψ̂h(λ)

= 2−3/2ĥ(H)(λ/2)
∞∏
j=2

2−1/2ĥ(L)(2−jλ)

= 2−1
(1− eiλ/2

2

)M
q̂L,M (λ/2 + π)d̂L(λ/2 + π)e−iλ/2

∞∏
j=2

(1 + e−i2−jλ

2

)M
q̂L,M (2−jλ)d̂L(2

−jλ),

and

ψ̂g(λ) = −2−1/2
(1− e−iλ/2

2

)M
q̂L,M (λ/2 + π) d̂L(λ/2 + π)e+i(λ/2+π)Le−iλ/2

∞∏
j=2

(1 + e−i2−jλ

2

)M
q̂L,M (2−jλ)d̂L(2−jλ)e

−i2−jλL.
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When q̂(.) = 1, the expressions above become

ψ̂h(λ) = 2−1/2
(1− e−iλ/2

2

)M
d̂L(λ/2 + π)e−iλ/2

∞∏
j=2

(1 + e−i2−jλ

2

)M
d̂L(2

−jλ)

ψ̂g(λ) = −2−1/2
(1− e−iλ/2

2

)M
d̂L(λ/2 + π)e+i(λ/2+π)Le−iλ/2

∞∏
j=2

(1 + e−i2−jλ

2

)M
d̂L(2−jλ)e

−i2−jλL.

We shall use the following equality

∞∏
ℓ=1

(
1 + e−i2−ℓλ

2

)
=

1− e−iλ

−iλ
= e−iλ/2 sin(λ/2)

λ/2
.

See e.g. [Mallat, 1999, page 245]. It yields

φ̂h(λ) = 2−1/2
(sin(λ/2)

λ/2

)M ∞∏
j=1

d̂L(2−jλ), (18)

φ̂g(t) = 2−1/2
(sin(λ/2)

λ/2

)M ∞∏
j=1

d̂L(2−jλ)e
−i2−jλL, (19)

and

ψ̂h(λ) = 2−1/2 sin(λ/4)M
(sin(λ/4)

λ/4

)M
d̂L(λ/2 + π)e−iλ

∞∏
j=2

d̂L(2
−jλ), (20)

ψ̂g(λ) = 2−1/2 sin(λ/4)M
(sin(λ/4)

λ/4

)M
d̂L(λ/2 + π)e+i(λ+π)Le−iλ

∞∏
j=2

d̂L(2−jλ)e
−i2−jλL. (21)

A.2 A first property

The function d̂L(.) satisfies, for all λ ∈ R,

d̂L(λ) = eiλ(−L/2+1/4)
[
cos(λ/4)2L+1 + i (−1)L+1 sin(λ/4)2L+1

]
. (22)

We deduce the following lemma.
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Lemma 9.

sup
λ∈R

∣∣∣d̂L(λ)∣∣∣ = 1.

The proof is straightforward and it is thus omitted.

Using the fact that, for all λ ∈ R,
∣∣∣ sin(λ)λ

∣∣∣ ⩽ 1, a direct consequence is the following result.

Lemma 10.

sup
λ∈R

|φ̂(λ)| ⩽ C∞,

with C∞ = 1.

A.3 Expression of the wavelet filters

Recall that

Wj,k(ℓ) =

∫ ∞

−∞

∑
s∈Z

Xℓ(s)φ(t+ s)ψj,k(t)dt.

Hence,

Wj,k(ℓ) =
∑
s∈Z

τj(2
jk − s)Xℓ(s), j ⩾ 0, k ∈ Z ,

with τ̂j(λ) =
∑
s∈Z

τj(2
jk − s)eiλ s =

∫ ∞

−∞

∑
ℓ∈Z

φ(t+ ℓ) e−iλ ℓ2−j/2ψ(2−jt)dt.

B Properties of CFW-C(M,L) filters

Let us introduce the following properties.

(W1) Finite support. φ and ψ have finite support.

(W2) Vanishing moments. There exist M ⩾ 0 and Cm > 0 such that for all j ⩾ 0 and λ ∈ R,∣∣∣ψ̂(λ)∣∣∣ ⩽ Cm |λ|M ,
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with Cm positive constant possibly depending on M .

(W3) Uniform smoothness. There exist α > 1 and Cs > 0 such that for all λ ∈ R,∣∣∣ψ̂(λ)∣∣∣ ⩽ Cs
(1 + |λ|)α

,

with α and Cs depending on L and M .

(W4) Scaling function. There exist Cφ depending on M such that, for all λ ∈ (−π, π), for all

k ∈ Z \ {0},
|φ̂(λ+ 2k π)| ⩽ Cφ |λ|M .

Properties (W1), (W2), (W3) and (W4) correspond respectively to (W1), (W2), (W3) and (W4)

of Moulines et al. [2007, 2008], Achard and Gannaz [2016] in the context of real-wavelets. We can

establish that they are satisfied by CFW-C(L,M) wavelets. Assumption (W1) is given in Lemma

4. The wavelets supports are finite when L and M are finite.

Proposition 11. When M ⩾ 2, and L ⩾ 1, CFW-C(M,L) wavelets satisfy (W2), (W3) and (W4),

with α =M and constants Cm = 1, Cs = 2 · 5M and Cφ = 2.

The proof is given in Section B.1.

A remarkable property of CFW − C(M,L) filters is that the regularity of the wavelets is only

determined by the parameter M , since all parameters and constants in the proposition above only

depend on M . All the same, the quasi-analyticity only depends on the parameter L, through

Theorem 3.

With these assumptions, we can establish some properties about wavelet filters. At a given scale

j ⩾ 0, for any k ∈ Z, wavelet coefficients Wj,k(ℓ) of a process Xℓ(·) can be decomposed as

Wj,k(ℓ) =
∑
s∈Z

τj(2
jk − s)Xℓ(s), j ⩾ 0, k ∈ Z .

See Section A.3. We recover [Moulines et al., 2007, Proposition 3]. More precisely, we can establish

the following results.
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Proposition 12. Suppose (W1), (W2), (W3), and (W4) and Lemma 10 hold. Then, for all j ⩾ 0,

for all λ ∈ R, ∣∣∣τ̂j(λ)− 2j/2φ̂(λ)ψ̂(2jλ)
∣∣∣ ⩽ Cτ2

j(1/2−α)|λ|M , (23)∣∣∣φ̂(λ)ψ̂(2jλ)∣∣∣ ⩽ C∞Cm
∣∣2jλ∣∣M , (24)∣∣∣φ̂(λ)ψ̂(2jλ)∣∣∣ ⩽ C∞Cs

(1 + 2j |λ|)α
, (25)∣∣∣2−j/2τ̂j(2−jλ)∣∣∣ ⩽ Cmτ |λ|M , (26)

and, for all j, j′ ⩾ 0, for all |2−jλ| ⩽ π,∣∣∣2−j/2τ̂j(2−jλ)∣∣∣ ⩽ Csτ (1 + |λ|)−α, (27)∣∣∣2−j/2τ̂j(2−jλ)∣∣∣ ⩽ Cmsτ |λ|M (1 + |λ|)−α−M , (28)

with Cτ , Cmτ , Csτ , and Cmsτ positive constants only depending on α,M , Cm, Cs and Cφ.

The proof is given in Section B.2.

The following property corresponds to (79) in [Moulines et al., 2007, Proposition 3]. In the real

wavelets context, it is a consequence of (W1) to (W4) but we prove it separately here to explicit

the constants.

Proposition 13. Consider CFW-C(M,L) wavelets, with M ⩾ 2. For all j ⩾ 1,

sup
|λ|⩽π

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)∣∣∣2 − ∣∣∣ψ̂(λ)∣∣∣2∣∣∣∣ ⩽ Ca 2
−γ j |λ|2M , (29)

sup
1⩽|λ|⩽2jπ

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)∣∣∣2 − ∣∣∣ψ̂(λ)∣∣∣2∣∣∣∣ ⩽ Ca 2
−γ j |λ|2 (1 + |λ|)−α , (30)

with γ = 2 and Ca = 2 · 52M · (M + L+ 1).

The proof is given in Section B.3.

45



B.1 Proof of Proposition 11

We first establish that CFW-C(M,L) filters satisfy properties (W2)–(W4).

B.1.1 Property (W2)

Let λ ∈ R. Recall that ψ̂h(λ) and ψ̂g(λ) are given respectively by (20) and (21). Observe that

|sin(λ/4)|M ⩽ 4−M |λ|M . Since sup |d̂L| = 1, assumption (W2) follows with a constant Cm = 1, for

all M ⩾ 1.

B.1.2 Property (W3)

Let λ ∈ R. Recall that ψ̂h(λ) is given by (20). Since supλ∈R

∣∣∣d̂L(λ)∣∣∣ ⩽ 1, we obtain

∣∣∣ψ̂h(λ)∣∣∣ ⩽ |sin(λ/4)|M
∣∣∣∣sin(λ/4)λ/4

∣∣∣∣M .

Since sin(x/4)
|x/4| (1 + |x|) =

∣∣∣ sin(x/4)x/4

∣∣∣+ 4 |sin(x/4)| ⩽ 5 for any x ∈ R \ {0}, it follows that

∣∣∣ψ̂h(λ)∣∣∣ ⩽ |sin(λ/4)|M
(

5

1 + |λ|

)M
.

Consequently,
∣∣∣ψ̂h(λ)∣∣∣ ⩽ (

5
1+|λ|

)M
. A similar result can be proved for filter ψ̂g. By triangular

inequality, we get ∣∣∣ψ̂(λ)∣∣∣ ⩽ Cs
(1 + |λ|)α

,

with α =M and a constant Cs equal to 2 · 5M .

B.1.3 Property (W4)

Let λ = ω + 2kπ, |ω| ⩽ π, k ∈ Z, k ̸= 0. We distinguish two cases:
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• If k is odd,

Using the expressions of φ̂h(λ) and φ̂g(λ) given respectively by (16) and (17),

φ̂h(λ) =
(
cos(λ/4)

)M
d̂L(λ/2)

∞∏
j=2

(1 + e−i2−jλ

2

)M
d̂L(2−jλ),

φ̂g(λ) =
(
cos(λ/4)

)M
d̂L(λ/2)e

−iλL/2
∞∏
j=2

(1 + e−i2−jλ

2

)M
d̂L(2−jλ)e

−i2−jλL.

Observe that

∣∣cos(λ/4)∣∣M = |cos(ω/4 + kπ/2)|M = |sin(ω/4)|M ⩽ |ω|M/4M .

With Lemma 9, we obtain that

|φ̂h(λ)| ⩽ |ω|M/4M and |φ̂g(λ)| ⩽ |ω|M/4M .

Hence,

|φ̂(λ)| ⩽ |ω|M · 2/4M .

• If k is even, k ⩾ 2,

Let us use the expressions of φ̂h(λ) and φ̂g(λ) given respectively by (18) and (19). We have,

∣∣∣sin(λ/2)
λ/2

∣∣∣M =
∣∣∣sin(ω/2)

ω/2

∣∣∣ ∣∣∣ω
λ

∣∣∣M ⩽
∣∣∣ω
λ

∣∣∣M ⩽
∣∣∣ω
π

∣∣∣M .
Using Lemma 9,

|φ̂h(λ)| ⩽ |ω|M/πM and |φ̂g(λ)| ⩽ |ω|M/πM .

Hence,

|φ̂(λ)| ⩽ |ω|M · 2/πM .

We deduce that (W4) follows with Cφ = 1 when M ⩾ 1.
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B.2 Proof of Proposition 12

This section aims at recovering similar results than those given in [Moulines et al., 2007, Proposition

3] with explicit constants.

B.2.1 Proof of inequality (23)

Observe that t 7→
∑

k∈Z φ̂(λ + 2kπ)ei t (λ+2kπ) is 2π-periodic, integrable, and that its ℓ-th Fourier

coefficient is 2πφ(t− ℓ),

1

2π

∫ ∞

−∞

(∑
k∈Z

φ̂(λ+ 2kπ)ei t (λ+2kπ)
)
e−iℓλdλ =

1

2π

∫ ∞

−∞
φ̂(λ)ei(t−ℓ)λdλ = φ(t− ℓ).

It follows that ∑
ℓ∈Z

φ(t− ℓ)e−i t λ =
∑
k∈Z

φ̂(λ+ 2kπ)ei t (λ+2kπ).

Hence, as in [Moulines et al., 2007, p180],

τ̂j(λ) =

∫ ∞

−∞

(∑
k∈Z

φ̂(λ+ 2kπ)ei t (λ+2kπ)
)
2−j/2ψ(2−jt)dt

=
∑
k∈Z

φ̂(λ+ 2kπ)

∫ ∞

−∞
2−j/2ψ(2−jt)ei t (λ+2kπ)dt

= 2j/2
∑
k∈Z

φ̂(λ+ 2kπ)ψ̂(2j(λ+ 2kπ)).

We obtain

∣∣∣τ̂j(λ)− 2j/2φ̂(λ)ψ̂(2−jλ)
∣∣∣ = 2j/2

∣∣∣∣∣∣
∑

k∈Z,k ̸=0

φ̂(λ+ 2kπ)ψ̂(2j(λ+ 2kπ))

∣∣∣∣∣∣ . (31)

Property (W3) yields, for all λ ∈ (−π, π),∣∣∣ψ̂(2j(λ+ 2kπ))
∣∣∣ ⩽ Cs

|2j(λ+ 2kπ)|α
⩽

Cs
(2jπ (2 |k| − 1))α

.
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Using the inequality above and (W4) in (31), we get∣∣∣τ̂j(λ)− 2j/2φ̂(λ)ψ̂(2jλ)
∣∣∣ ⩽ Cτ2

j(1/2−α)|λ|M ,

with Cτ = CsCφ2ζ(α), with ζ(·) the Riemann zeta-function. Since α > 1, Cτ < ∞. If α ⩾ 2,

ζ(α) ⩽ π2/6 < 2, and, hence, one can take Cτ = 4CsCφ.

B.2.2 Proof of inequality (24) and inequality (25)

Using (W2), (W3) and Lemma 10, inequalities (24) and (25) are straightforward.

B.2.3 Proof of inequality (26) and inequality (27)

With inequalities (23), (24) and (25), we get

|τ̂j(λ)| ⩽ C∞Cm
∣∣2jλ∣∣M + Cτ2

j(1/2−α)|λ|M

and |τ̂j(λ)| ⩽
2j/2

(1 + |2jλ|)α
(
C∞Cs2

−j/2 + Cτ2
−jα(1 + 2j |λ|)α|λ|M

)
.

It follows that

|τ̂j(λ)| ⩽ Cmτ
∣∣2jλ∣∣M

and 2−j/2
∣∣τ̂j(2−jλ)∣∣ ⩽ Csτ

1

(1 + |λ|)α
when |λ| ⩽ π,

with Cmτ = C∞Cm + Cτ , and Csτ = C∞Cs + Cτ (1 + π)α+M .

B.2.4 Proof of inequality (28)

With (26), inequality (28) is straightforward with Cmsτ = Cmτ (1 + π)α+M .
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B.3 Proof of Proposition 13

Let j ⩾ 1 and |λ| ⩽ 2jπ. Inequalities (23) and (24) imply that∣∣∣∣∣∣∣2−j/2τ̂(2−jλ)∣∣∣2 − ∣∣∣φ̂(2−jλ)ψ̂(λ)∣∣∣2∣∣∣∣
⩽
∣∣∣2−j/2τ̂(2−jλ)− φ̂(2−jλ)ψ̂(λ)

∣∣∣ (∣∣∣2−j/2τ̂(2−jλ)∣∣∣+ ∣∣∣φ̂(2−jλ)ψ̂(λ)∣∣∣)
⩽ Cτ2

−jα ∣∣2−jλ∣∣M (Cmτ + C∞Cm) |λ|M

⩽ Ca1 2
−γ1 j |λ|2M ,

with Ca1 = Cτ (Cmτ +CmC∞) and γ1 =M + α. Similarly, using rather inequalities (23), (27) and

(25), ∣∣∣∣∣∣∣2−j/2τ̂(2−jλ)∣∣∣2 − ∣∣∣φ̂(2−jλ)ψ̂(λ)∣∣∣2∣∣∣∣ ⩽ Cb1 2
−γ1 j |λ|M (1 + |λ|)−α ,

with Cb1 = Cτ (Csτ + CsC∞).

Next, ∣∣∣∣∣∣∣φ̂(2−jλ)ψ̂(λ)∣∣∣2 − ∣∣∣ψ̂(λ)∣∣∣2∣∣∣∣ ⩽ ∣∣∣ψ̂(λ)∣∣∣2 ∣∣∣∣∣φ̂(2−jλ)∣∣2 − 1
∣∣∣

The control of the right-hand side is obtained with the following result.

Lemma 14. There exists a constant CZ = (M +L+1) such that for all j ∈ N, for all
∣∣2−jλ∣∣ < π,∣∣∣2 ∣∣φ̂h(2−jλ)∣∣2 − 1

∣∣∣ ⩽ CZ
∣∣2−jλ∣∣2 ,∣∣∣2 ∣∣φ̂g(2−jλ)∣∣2 − 1

∣∣∣ ⩽ CZ
∣∣2−jλ∣∣2 .

Proof. The proof is only derived for φ̂h(·). It is similar for φ̂g(·). Recall that

21/2φ̂h(2
−jλ) =

(sin(λ/2j+1)

λ/2j+1

)M ∞∏
ℓ=j+1

d̂L(2−ℓλ).
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The triangular inequality implies that

∣∣∣2 ∣∣φ̂h(2−jλ)∣∣2 − 1
∣∣∣ ⩽ ∣∣∣∣(sin(λ/2j+1)

λ/2j+1

)2M
− 1

∣∣∣∣ ∞∏
ℓ=j+1

∣∣∣d̂L(2−ℓλ)∣∣∣2 +
∣∣∣∣∣∣

∞∏
ℓ=j+1

∣∣∣d̂L(2−ℓλ)∣∣∣2 − 1

∣∣∣∣∣∣
⩽ 2M

∣∣∣∣∣∣∣∣sin(λ/2j+1)

λ/2j+1

∣∣∣∣− 1

∣∣∣∣+ ∞∑
ℓ=j+1

∣∣∣∣∣∣∣d̂L(2−ℓλ)∣∣∣2 − 1

∣∣∣∣ ,
where we have used the equality (xK − 1) = (x − 1)

∑K−1
m=0 x

m for all x ∈ R, K ∈ N, and the fact

that for all x ∈ R \ {0}, |sin(x)/x| ⩽ 1 and
∣∣∣d̂L(x)∣∣∣ ⩽ 1.

Taylor inequality states that for all x ∈ R \ {0}, |sin(x)− x| ⩽ |x|3 /6. Additionally, for all∣∣2−ℓλ/4∣∣ ⩽ 1, ∣∣∣∣∣∣∣d̂L(2−ℓλ)∣∣∣2 − 1

∣∣∣∣ = ∣∣∣cos(2−ℓλ/4)2(2L+1) − 1 + sin(2−ℓλ/4)2(2L+1)
∣∣∣

⩽ (2L+ 1) sin
(
2−ℓλ/4

)2
+
(
2−ℓλ/4

)2(2L+1)

⩽ (2L+ 1)
(
2−ℓλ/4

)2
+
(
2−ℓλ/4

)2
.

We get

∣∣∣2 ∣∣φ̂h(2−jλ)∣∣2 − 1
∣∣∣ ⩽ M

3

∣∣2−j−1λ
∣∣2 + (2L+ 1)

∣∣2−jλ∣∣2 ∞∑
ℓ=3

2−2ℓ +
∣∣2−jλ∣∣2 ∞∑

ℓ=3

2−2ℓ

⩽
(M
6

+
L

2
+

1

2
)
∣∣2−jλ∣∣2 .

Hence, ∣∣∣2 ∣∣φ̂h(2−jλ)∣∣2 − 1
∣∣∣ ⩽ CZ

∣∣2−jλ∣∣2 ,
with CZ = (M + L+ 1)/2.

We deduce that ∣∣∣∣∣∣∣φ̂(2−jλ)ψ̂(λ)∣∣∣2 − ∣∣∣ψ̂(λ)∣∣∣2∣∣∣∣ ⩽ CZ
∣∣2−jλ∣∣2 ∣∣∣ψ̂(λ)∣∣∣2 .
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Using respectively (W2) and (W3), we get∣∣∣∣∣∣∣φ̂(2−jλ)ψ̂(λ)∣∣∣2 − ∣∣∣ψ̂(λ)∣∣∣2∣∣∣∣ ⩽ Ca2 2
−γ2 j |λ|2M ,when |λ| ⩽ π,∣∣∣∣∣∣∣φ̂(2−jλ)ψ̂(λ)∣∣∣2 − ∣∣∣ψ̂(λ)∣∣∣2∣∣∣∣ ⩽ Cb2 2
−γ2 j |λ|2 (1 + |λ|)−2α ,when 1 ⩽ |λ| ⩽ 2jπ.

with Ca2 = C2
mCZπ

2, Cb2 = C2
s CZ and γ2 = 2.

We obtain inequality (29) and (30) with Ca = max{Ca1, Ca2, Cb1, Cb2}, γ = min{γ1, γ2}. Observe

that for all M ⩾ 2 γ1 > 2, and, hence, γ = 2 and we can take Ca = 2.52M (M + L+ 1).

C Proof of Proposition 2 and of Lemma 4

Proposition 7.2 of Mallat [1999] states that φg(.) and φh(.) have the same support of the conjugate

mirror filters associated to h(L)(.) and g(L)(.). When q̂L,M (.) = 1, (14) and (15) yield

ĥ(L)(λ) = 2−M+1/2
( M∑
k=0

(e−iλ)k
)
d̂L(λ) and ĝ(L)(λ) = 2−M+1/2

( M∑
k=0

(e−iλ)k
)
eiλd̂L(λ),

for all λ ∈ R. Moreover (22) writes as

d̂L(λ) = 1 +
L∑
ℓ=1

d(ℓ)(e−iλ)ℓ, with d(ℓ) = (−1)n
(
L

ℓ

) ℓ−1∏
k=0

1/2− L+ k

3/2 + k
, ℓ = 1, . . . , L

(see e.g. Section 2.2 of Achard et al. [2020]). We deduce that ĥ(L)(.) and ĝ(L)(.) are polynomials of

eiλ with coefficients varying on. They are, hence, associated with conjugate mirror filters defined on

{0, . . . ,M +L} and on {−1−L, . . . ,M −1}. Hence, the support of φg(.) and φh(.) are respectively
[0,M + L] and on [−1 − L, . . . ,M − 1]. Consequently, the support of φ(.) is [−1 − L, . . .M + L],

and has length M + 2L+ 1.

Using again Proposition 7.2 of Mallat [1999], we deduce that the supports of ψg(.) and ψh(.) are

respectively [−(M + L − 1)/2, (M + L + 1)/2] and [−(M + L)/2, (M + L)/2], and thus that the

support of ψ(.) has length M + L+ 1/2. Proposition 2 follows.

52



Remark. For CFW-PR(M,L) and CFW-C(M,L) filters, the presence of the filter q̂L,M (.) in ĥ(L)(.)

and ĝ(L)(.) changes the supports. No theoretical statement provides the degree of q̂L,M (.), but in

practice, q̂L,M (.) is a polynomial of e−iλ of degree M +L− 1. Then, the resulting supports of φh(.)

and φg(.) are [0, 2M + 2L− 1] and [−1− L, 2M + L− 1]. Similarly, we deduce that the supports

of ψh(.) and ψg(.) are [−M − L,M + L] and [−M − L+ 1/2,M + L+ 1/2].

Consider now the wavelet coefficients {Ŵj,k, j ⩾ 0, k ∈ Z}, as defined in Lemma 4. Denote [tφ, Tφ]

the support of φ(.), and suppose Tφ−tφ ⩾ 1. The functions X̂(t) =
∑N

k=1X(k)φ(t−k) and X̃(t) =∑
k∈ZX(k)φ(t − k) coincide for t ∈

[
Tφ, N + tφ + 1

]
. Recall that nj is the number of coefficients

at a scale j ⩾ 0 such that
∫
R X̂(t)ψj,k(t)dt =

∫
R X̃(t)ψj,k(t)dt. Easy calculation then yields nj =

max
{
0, ⌊2−j(N − Lϕ + 1)− Lψ + 1⌋

}
, where Lϕ, Lψ are the respective length of the supports of

functions ϕ(.) and ψ(.). As a consequence, nj = max
{
0, ⌊2−j(N − 2L−M − 1)− L−M − 1/2⌋

}
,

for all M ⩾ 1, L ⩾ 0.

Now, suppose that N−1L → 0 and that 2j ⩽ NL−1. Then, for all j such that 2jN−1L → 0 when

N goes to infinity, nj 2
jN−1 → 1 when N goes to infinity. This concludes Lemma 4.

D Asymptotic behavior of the wavelet covariance

This section deals with the proofs of the results of Section 3. We will prove stronger results than

Proposition 5 which are stated below. To better highlight the role of the number of vanishing

moments M and the regularity α, we keep these parameters, even if, for CFW-PR(M,L) and

CFW-C(M,L) filters, we have α =M by Proposition 11. Hence, we formulate here the assumption

on the parameters on both α and M ,

(C-b) −α/2 + β/2 + 1/2 < dℓ < M/2 for all ℓ = 1, . . . , p, M ⩾ 2 and 0 < β < 2.

Assumption (C-b) is equivalent to assumption (C-a).

Proposition 5 follows from the following proposition.

Proposition 15. Let X be a p-multivariate long range dependent process with long memory pa-

rameters d1, . . . , dp with generalized spectral density f(·) satisfying (M-1) with short-range behavior
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(M-2). Consider {Wj,k(ℓ), ℓ = 1, . . . , p, j ⩾ 0, k ∈ Z} the wavelet coefficients of X obtained with

CFW-C(M,L) filters, M,L ⩾ 2. Then we have, for all j ⩾ 0, k ∈ Z,

∣∣∣2−j (dℓ+dm)Cov(Wj,k(ℓ),Wj,k(m))− Ωℓ,m

∫ ∞

−∞
|λ|−dℓ−dm esign(λ)ϕℓ,m

∣∣∣ψ̂(λ)∣∣∣2 dλ
∣∣∣

⩽ C ′
1max{2−jβ, L 2−2 j}.

where C ′
1 is a constant only depending on M and Cf , β, ∥Ω∥ , {dℓ, ℓ = 1, . . . , p}.

D.1 Proof of Proposition 15

Let j ⩾ 0, k ∈ Z. The quantity Cov(Wj,k) can be decomposed as

Cov(Wj,k) = A
(+)
j +A

(−)
j , with A

(+)
j =

∫ π 2j

0
f(2−jλ) 2−j

∣∣τ̂j(2−jλ)∣∣2 dλ ,

A
(−)
j =

∫ 0

−π 2j
f(2−jλ) 2−j

∣∣τ̂j(2−jλ)∣∣2 dλ .

Also recall that Γj(d) is the diagonal matrix with diagonal entries 2−j d1 , . . . , 2−j dp .

We now sum up the main points for the convergence of Cov(Wj,k).

1. Behavior of A
(+)
j .

We introduce

B
(+)
j =

∫ π 2j

0
Γj(d)

−1Λ(λ)ΘΛ(λ)Γj(d)
−1 2−j

∣∣τ̂j(2−jλ)∣∣2 dλ,

I
(+)inf
j =

∫ π 2j

0
Γj(d)

−1Λ(λ)ΘΛ(λ)Γj(d)
−1
∣∣∣ψ̂(λ)∣∣∣2 dλ,

I
(+)sup
j =

∫ ∞

π 2j
Γj(d)

−1Λ(λ)ΘΛ(λ)Γj(d)
−1
∣∣∣ψ̂(λ)∣∣∣2 dλ,

I(+) = I
(+)inf
j + I

(+)sup
j =

∫ ∞

0
Γj(d)

−1Λ(λ)ΘΛ(λ)Γj(d)
−1
∣∣∣ψ̂(λ)∣∣∣2 dλ.

The steps of the convergence are:
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(a) 2−j(dℓ+dm−β)
∣∣∣A(+)

j −B
(+)
j

∣∣∣ is bounded using the regularity of the spectral density fS(·)
at the origin, that is, (M-2), together with inequality (26).

(b) 2−j(dℓ+dm−β)
∣∣∣B(+)

j − I
(+)inf
j

∣∣∣ is bounded using the convergence of the filter τj to ψ̂(.),

through Proposition 13. We shall need inequality (26) to control the integral around

zero and inequality (27) to control the upper part.

(c) 2−j(dℓ+dm−β)
∣∣∣I(+)sup
j

∣∣∣ is bounded using the regularity of ψ̂(.), that is, using (W3).

All together, we shall obtain the convergence of A
(+)
j to I(+), which gives the property.

2. Behavior of A
(−)
j

We can apply the same arguments as for A
(+)
j and obtain the convergence of A

(−)
j to I(−),

with

I(−) =

∫ 0

−∞
Γj(d)

−1Λ(λ)ΘΛ(λ)Γj(d)
−1
∣∣∣ψ̂(λ)∣∣∣2 dλ.

In the following, (ℓ,m) ∈ {1, . . . , p}2 will denote two arbitrary indexes.

D.1.1 Spectral approximation,
∣∣∣A(+)

j −B
(+)
j

∣∣∣
First notice that Γj(d)

−1Λ(2jλ) = Λ(λ). Hence,∣∣∣A(+)
j −B

(+)
j

∣∣∣ ⩽ ∫ π

0
|f(λ) −Λ(λ)ΘΛ(λ)| |τ̂j(λ)|2 dλ

⩽
∫ π

0
|Λ(λ)ΘΛ(λ)| ◦

∣∣fS(λ)− 1
∣∣ |τ̂j(λ)|2 dλ.

Property (M-2) gives

(
|Λ(λ)ΘΛ(λ)| ◦

∣∣fS(λ)− 1
∣∣)
ℓ,m

⩽ Cf ∥Ω∥ |λ|−dℓ−dm+β .

With a change of variable,

∣∣∣A(+)
j −B

(+)
j

∣∣∣
ℓ,m

⩽ Cf ∥Ω∥ 2j(dℓ+dm−β)
∫ 2jπ

0
|λ|−dℓ−dm+β

∣∣∣2−j/2τ̂j(2−jλ)∣∣∣2 dλ.
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We split the integral in two parts. First, with (26),∫ 1

0
|λ|−dℓ−dm+β

∣∣∣2−j/2τ̂j(2−jλ)∣∣∣2 dλ ⩽ C2
mτ

∫ 1

0
|λ|−dℓ−dm+β+2M dλ.

As the parameters satisfy (C-b), the integral is bounded by a constant depending on (dℓ, dm, β,M).

The bound is independent on L since the constant Cmτ does not depend on L.

Next, using the regularity given by (27),

∫ 2jπ

1
|λ|−dℓ−dm+β

∣∣∣2−j/2τ̂j(2−jλ)∣∣∣2 dλ ⩽ C2
sτ

∫ ∞

1

|λ|−dℓ−dm+β

(1 + |λ|)2α
dλ.

Property (C-b) ensures that the right hand side is bounded by a constant depending on dℓ, dm, β,

α, M , and not depending on L.

D.1.2 Asymptotic of the filters,
∣∣∣B(+)

j − I
(+)inf
j

∣∣∣
This step uses the convergence of the filter τ̂j to ψ̂(.), through Proposition 13. First,

Γj(d) 2
jβ
∣∣∣B(+)

j − I
(+)inf
j

∣∣∣Γj(d) ⩽ 2jβ
∫ 2jπ

0
Λ(λ)ΘΛ(λ)

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)∣∣∣2 − ∣∣∣ψ̂(λ)∣∣∣2∣∣∣∣ dλ.

Using (30), for 1 ⩽ |λ| ⩽ 2jπ,

∣∣∣∣∣∣2−j/2τ̂j(2−jλ)∣∣2 − ∣∣∣ψ̂(λ)∣∣∣2∣∣∣∣ ⩽ Ca 2
−γ j |λ|2−α . Thus,

(∫ 2jπ

1
Λ(λ)ΘΛ(λ) 2jβ

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)∣∣∣2 − ∣∣∣ψ̂(λ)∣∣∣2∣∣∣∣ dλ
)

(ℓ,m)

⩽ ∥Ω∥ Ca 2j(β−γ)
∫ 2jπ

1
|λ|−dℓ−dm+2−α dλ.

Depending on −dℓ − dm + 2 − α + 1 being negative, equal to zero or positive, the integral on the

right-hand side is bounded up to a constant by 1, by j or by 2j(−dℓ−dm+2−α+1). In the two first

cases the right hand side goes to zero when j goes to infinity since γ > β. In the last case, using

(C-b), we obtain the bound 2j(β−dℓ−dm−α+1) which goes to zero when j goes to infinity.
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When M ⩾ 2, γ = 2, −dℓ − dm + 2 − 2α + 1 < 0 and Ca = 2 (M + L + 1). With a fixed M , this

term is, hence, bounded up to a constant by L 2j(β−2).

It remains to consider the integral on (0, 1). Property (29) states that

(∫ 1

0
Λ(λ)ΘΛ(λ) 2jβ

∣∣∣∣∣∣∣2−j/2τ̂j(2−jλ)∣∣∣2 − ∣∣∣ψ̂(λ)∣∣∣2∣∣∣∣ dλ)
(ℓ,m)

⩽ ∥Ω∥ Ca 2j(β−γ)
∫ 1

0
|λ|−dℓ−dm+2M dλ.

The right-hand side tends to 0 when j goes to infinity since β < γ and max{dℓ, ℓ = 1, . . . , p} <
M + 1/2.

When M ⩾ 2, γ = 2 and Ca = 2 (M +L+ 1). With a fixed M , this term is, hence, bounded up to

a constant by max{1, L 2j(β−γ)} = max{1, L 2j(β−2)}.

D.1.3 Regularity of the filters,
∣∣∣I(+)sup
j

∣∣∣
This step uses the regularity of ψ̂(.). Indeed, property (W3) entails that∣∣∣I(+)sup

j,ℓm

∣∣∣ ⩽ ∥Ω∥ 2j(dℓ+dm)

∫ ∞

2jπ
|λ|−dℓ−dm

∣∣∣ψ̂(λ)∣∣∣2 dλ

⩽ C2
s ∥Ω∥ 2j(dℓ+dm)

∫ ∞

2jπ

|λ|−dℓ−dm

(1 + |λ|)2α
dλ

⩽ C2
s ∥Ω∥ π−β 2j(dℓ+dm−β)

∫ ∞

2jπ
|λ|−dℓ−dm+β−2α dλ,

where last inequality results from the fact that when |λ| ⩾ 2jπ, then 1 ⩽ |λ|β2−jβπβ. Property (C-

b) thus implies that 2−j(dℓ+dm−β)
∣∣∣I(+)sup
j,ℓm

∣∣∣ is bounded by a constant depending of dℓ, dm, β, ∥Ω∥,
and M .
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D.2 Proof of Proposition 6

Recall that

ψ̂(λ) = ψ̂h(λ) + i ψ̂g(λ) =
(
1− eiηL(λ)

)
ψ̂h(λ) ,

with αL(λ) = 2(−1)L atan
(
tan2L+1(λ/4)

)
,

ηL(λ) = −aL(λ/2 + π) +

∞∑
j=1

aL(2
−j−1λ) .

Theorem 3 states that, for all λ ∈ R,∣∣∣ψ̂(λ)− 21R+(λ) ψ̂h(λ)
∣∣∣ = UL(λ)

∣∣∣ψ̂h(λ)∣∣∣ ,
with

UL(λ) ⩽ 2
√
2

(
log2

(
max(4π, |λ|)

2π

)
+ 2

) (
1− δ(λ, 4πZ)

max(4π, |λ|)

)2L+1

. (32)

We deduce from Theorem 3 the following results, which gives inequalities in a form that can be

more useful in future developments.

Corollary 16. For all q̂L,M (.) real polynomial of (e−iλ), for all |λ| ⩽ 2π,∣∣∣∣∣∣∣ψ̂(λ)∣∣∣2 − 41R+(λ)
∣∣∣ψ̂h(λ)∣∣∣2∣∣∣∣ ⩽ 12

√
2

(
1− |λ|

2π

)2L+1 ∣∣∣ψ̂h(λ)∣∣∣2 .
For 2π ⩽ |λ| ⩽ 4π, ∣∣∣∣∣∣∣ψ̂(λ)∣∣∣2 − 41R+(λ)

∣∣∣ψ̂h(λ)∣∣∣2∣∣∣∣ ⩽ 12
√
2

(
|λ|
4π

)2L+1 ∣∣∣ψ̂h(λ)∣∣∣2 .
The proof is straightforward and it thus omitted.
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Let us introduce also

Iinfj =

∫ π 2j

−π 2j
Γj(d)

−1Λ(λ)ΘΛ(λ)Γj(d)
−1
∣∣∣ψ̂(λ)∣∣∣2 dλ,

I
inf,analytic
j =

∫ π 2j

0
Γj(d)

−1Λ(λ)ΘΛ(λ)Γj(d)
−1 4

∣∣∣ψ̂h(λ)∣∣∣2 dλ,

I
sup,analytic
j =

∫ ∞

π 2j
Γj(d)

−1Λ(λ)ΘΛ(λ)Γj(d)
−1 4

∣∣∣ψ̂h(λ)∣∣∣2 dλ.

Following the proof of Proposition 15, the steps of the proof are the following:

1. 2−j(dℓ+dm−β)
∣∣∣Cov(Wj,k)− Iinfj

∣∣∣ is bounded, up to a constant, by L2−2j . This result was

already obtained in the proof of Proposition 15.

2. 2−j(dℓ+dm−β)
∣∣∣Iinfj − I

inf,analytic
j

∣∣∣ is bounded up to a constant by max{1, L−(2M−dℓ−dm+1)2jβ},
using the quasi-analyticity property, stated in Corollary 16.

3. 2−j(dℓ+dm−β)
∣∣∣Isup,analyticj

∣∣∣ is bounded. This result is straightforward with step 1.(c) in the

proof of Proposition 15, since |ψ̂h(λ)| ⩽ |ψ̂(λ)|.

Hence, it only remains to prove step 2. That is, we want to establish that the quantity∫ 2jπ

−2jπ
|λ|−dℓ−dm

∣∣∣∣∣∣∣ψ̂(λ)∣∣∣2 − 41R+(λ)
∣∣∣ψ̂h(λ)∣∣∣2∣∣∣∣ dλ

is bounded up to a constant by max{2−jβ, L−M−1}.

To this aim, we will use (32) (and Corollary 16) and the inequality

|ψ̂h(λ)| ⩽ 5M | sin(λ/4)|M (1 + |λ|)−M , (33)

for all λ ∈ R \ {0} (see Section B.1.2).

We decompose the integral on the sub-intervals (−2π, 2π), (−4π,−2π), (2π, 4π), (−2jπ,−4π),

(−2jπ,−4π) and (4π, 2jπ).

59



On (−2π, 2π).

With assumption (W2), Corollary 16 leads to∫ 2π

−2π
|λ|−dℓ−dm

∣∣∣∣∣∣∣ψ̂(λ)∣∣∣2 − 41R+(λ)
∣∣∣ψ̂h(λ)∣∣∣2∣∣∣∣dλ

⩽ 24
√
2

∫ 2π

0

(
1− |λ|

4π

)2L+1

|λ|−dℓ−dm+2Mdλ,

⩽ 24
√
2 (4π)−dℓ−dm+2M+1B(2M − dℓ − dm + 1, 2L+ 2),

where B(., .) is the Beta function. Using Stirling’s approximation, for fixed M , dℓ, dm, when L

goes to infinity the right-hand side is equivalent to

36
√
2 Γ(2M − dℓ − dm + 1)(4π)−dℓ−dm+2M+1 (2L+ 2)−(2M−dℓ−dm+1) .

This bound is negligible with respect to L−M−1, since dℓ + dm < M under (C-b).

On (−4π,−2π) and (2π, 4π).

Observe that (33) yields |ψ̂h(λ)| ⩽ 5M (4π − λ)M . With Corollary 16, we get∫ 4π

2π
|λ|−dℓ−dm

∣∣∣∣∣∣∣ψ̂(λ)∣∣∣2 − 41R+(λ)
∣∣∣ψ̂h(λ)∣∣∣2∣∣∣∣dλ

⩽ 12
√
2 52M (4π)

∫ 4π

2π

(
1− λ

4π

)2L+1

(4π − λ)2Mdλ,

⩽ 12
√
2 52M (4π)2M+2B(2M + 1, 2L− 1).

Using Stirling’s approximation, for fixedM and L going to infinity, the right-hand side is equivalent,

up to a multiplicative constant to L−2M−1. It is therefore lower than L−M−1 for sufficiently large

L.

A similar result is obtained on (−4π,−2π).
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On (−2jπ,−4π) and (4π, 2jπ).

Let us first consider the integral on an interval (4kπ, 4kπ+2π), with k ∈ N, k ⩾ 2. Inequality (33)

implies that |ψ̂h(λ)| ⩽ 5M
∣∣∣4kπ−λλ

∣∣∣M/2
|λ|−M/2. With (32), we get

∫ 4kπ+2π

4kπ
|λ|−dℓ−dm

∣∣∣∣∣∣∣ψ̂(λ)∣∣∣2 − 41R+(λ)
∣∣∣ψ̂h(λ)∣∣∣2∣∣∣∣dλ

⩽ 12
√
2 52M log2(k)

∫ 4kπ+2π

4kπ
|λ|−dℓ−dm

(
4kπ

λ

)2L+1 (
1− 4kπ

λ

)M
|λ|−Mdλ.

Since −M − dℓ − dm < 0, |λ|−M−dℓ−dm < (4kπ)−M−dℓ−dm for all λ > 4kπ. With the change of

variable µ = 4kπ
λ , we obtain the upper bound

12
√
2 52M log2(k)(4kπ)

−M−dℓ−dm+1

∫ 1

0
(µ)2L−1 (1− µ)M |dµ,

⩽ 12
√
2 52M (4kπ)−M−dℓ−dm+1 log2(k)B(M + 1, 2L), (34)

with B(., .) the Beta function.

Second, we consider the integral on an interval (4kπ− 2π, 4kπ), with k ∈ N, k ⩾ 2. Inequality (33)

implies that |ψ̂h(λ)| ⩽ 5M
∣∣∣4kπ−λλ

∣∣∣M/2
|λ|−M/2. With (32), we get

∫ 4kπ

4kπ−2π
|λ|−dℓ−dm

∣∣∣∣∣∣∣ψ̂(λ)∣∣∣2 − 41R+(λ)
∣∣∣ψ̂h(λ)∣∣∣2∣∣∣∣dλ

⩽ 12
√
2 52M log2(k)

∫ 4kπ

4kπ−2π
|λ|−dℓ−dm

(
1− 4kπ − λ

λ

)2L+1 (4kπ − λ

λ

)M
|λ|−Mdλ

⩽ 12
√
2 52M log2(k)(4kπ − 2π)−M−dℓ−dm(4kπ)

∫ 1

0
(1− µ)2L−1 (µ)M dλ,

where we have done the change of variable µ = 4kπ
λ − 1. We obtain the bound

12
√
2 52M (4(k − 1)π)−M−dℓ−dm+1 log2(k)B(M + 1, 2L), (35)

with B(., .) the Beta function.
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Next,

∫ 2jπ

4π
|λ|−dℓ−dm

∣∣∣∣∣∣∣ψ̂(λ)∣∣∣2 − 41R+(λ)
∣∣∣ψ̂h(λ)∣∣∣2∣∣∣∣dλ

⩽
2j−2∑
k=2

∫ 4kπ

4kπ−2π
|λ|−dℓ−dm

∣∣∣∣∣∣∣ψ̂(λ)∣∣∣2 − 41R+(λ)
∣∣∣ψ̂h(λ)∣∣∣2∣∣∣∣ dλ

+

2j−2∑
k=1

∫ 4kπ+2π

4kπ
|λ|−dℓ−dm

∣∣∣∣∣∣∣ψ̂(λ)∣∣∣2 − 41R+(λ)
∣∣∣ψ̂h(λ)∣∣∣2∣∣∣∣dλ. (36)

The two terms on the right hand side are bounded by (34) and (35). SinceM ⩾ 2 and dℓ+dm > −1,

−M−dℓ−dm < −1. Hence,
∑2j

k=1 log2(k) k
−M−dℓ−dm can be bounded by a constant, not depending

on j. We deduce that, for fixed M , up to a constant, the right-hand side of (36) is bounded by

B(2M−2, 2L). Stirling’s approximation states that B(M+1, 2L) is equivalent to L−M−1, for fixed

M and L going to infinity.

The bound on (−2jπ, 4π) is similar.

E Asymptotic behavior of the estimators

We detail some points that are changed with the complex wavelet setting in the proofs of consistency

and of asymptotic normality, with respect to the real wavelets setting.

First, recall that, for all j ⩾ 0, nj denotes the number of non zero wavelet coefficients {Wj,k, k ∈ Z}.
Under the assumptions that 2−j0L is bounded and that 2−j0N → ∞, the sequence nj is equivalent

to 2−jN when j goes to infinity. These assumptions are made in both Theorem 7 and Theorem 8.

Hence, nj behaves similarly to in Achard and Gannaz [2016] and in Gannaz [2023].
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E.1 Proof of Theorem 7

For complex wavelets the approximation of the wavelet covariance does not admit the same bound

as for real wavelets. Hence, the study of the term

S
(1)
ℓ,m(µ) =

j1∑
j=j0

njµj

[
Cov(Wj,k(ℓ),Wj,k(m))

2j(d
0
ℓ+d

0
m)

−G0
ℓ,m

]
,

defined on page 499 of Achard and Gannaz [2016], is modified. Consequently, Proposition 8 and

Proposition 9 of Achard and Gannaz [2016] do not hold anymore. They are replaced respectively

by Proposition 17 and Proposition 18 below.

Let us take ℓ and m in 1, . . . , p, and define, for any sequence µ = {µj , j ⩾ 0},

Sℓ,m(µ) =
∑
j,k

µj

(
Wj,k(ℓ)Wj,k(m)

2j(d
0
ℓ+d

0
m)

−G0
ℓ,m

)
=

j1∑
j=j0

µj

(
Iℓ,m(j)

2j(d
0
ℓ+d

0
m)

− njG
0
ℓ,m

)
.

Sℓ,m(µ) is decomposed in two terms S
(0)
ℓ,m(µ) and S

(1)
ℓ,m(µ),

S
(0)
ℓ,m(µ) =

j1∑
j=j0

µj
1

2j(d
0
ℓ+d

0
m)

∑
k

(Wj,k(ℓ)Wj,k(m)− Cov(Wj,k(ℓ),Wj,k(m))) ,

S
(1)
ℓ,m(µ) =

j1∑
j=j0

njµj

[
Cov(Wj,k(ℓ),Wj,k(m))

2j(d
0
ℓ+d

0
m)

−G0
ℓ,m

]
.

Proposition 17. Assume that the sequences µ belong to the set {{µj}j⩾0, |µj | ⩽ 1
nj
}. Suppose that

(C-a) holds. Under condition (C), sup{µ, |µj |⩽ 1
nj

} Sℓ,m(µ) is uniformly bounded by 2−j0β +L2−2j0 +

j1L
−M−1 +N−1/22j1/2 up to a multiplicative constant, that is,

sup
µ∈{(µj)j⩾0, |µj |⩽ 1

nj
}
{Sℓ,m(µ)} = OP(2

−j0β + L2−2j0 + j1L
−M−1 +N−1/22j1/2).
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Proof. From Proposition 6, there exists C > 0 such that

|S(1)
ℓ,m(µ)| ⩽ C

j1∑
j=j0

(
2−βj + L2−j + L−M−1

)
nj |µj |. (37)

Under the assumption |µj | ⩽ 1
nj
, we have the inequality |S(1)

ℓ,m(µ)| ⩽ C
∑j1

j=j0

(
2−βj+L2−j+L−M−1

)
.

The right-hand bound is equivalent to 2−j0β + L2−2j0 + j1L
−M−1 up to a constant.

The term S(0) is unchanged and the proposition follows as in the proof of Proposition 8 of Achard

and Gannaz [2016].

Proposition 18. Let 0 < j0 ⩽ j1 ⩽ jN . Suppose that (C-a) holds. Assume that the sequences µ

belong to the set

S(q, γ, c) = {{µj}j⩾0, |µj | ⩽
c

n
|j − j0 + 1|q2(j−j0)γ , ∀j = j0, . . . j1}

with 0 ⩽ γ < 1. Under condition (C), supµ∈S(q,γ,c) Sℓ,m(µ) is uniformly bounded by 2−j0β+L2−2j0+

log(N)L−M−1 +Hγ(N
−1/22j0/2) up to a constant,

sup
µ∈S(q,γ,c)

{Sℓ,m(µ)} = OP(2
−j0β + L2−2j0 + j1L

−M−1 +Hγ(N
−1/22j0/2))

with Hγ(u) =


u if 0 ⩽ γ < 1/2,

log(1 + u−2)q+1 u if γ = 1/2,

log(1 + u−2)q u2(1−γ) if 1/2 < γ < 1.

In particular, for any 0 ⩽ γ < 1, under the assumptions 2−j0β + N−1/22j0/2 → 0, and L2−2j0 +

log(N)L−M−1 → 0, we have supµ∈S(q,γ,c){Sℓ,m(µ)} = oP(1).
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Proof. Under the assumptions of the proposition, one deduce from inequality (37) that,

sup
µ∈S(q,γ,c)

|S(1)
ℓ,m(µ)| ⩽ cC

1

n

j1∑
j=j0

nj
(
2−βj + L2−j + L−M−1

)
2γ(j−j0))(j − j0 + 1)q

⩽ cC 2−βj0
j1−j0∑
i=0

2−(1+β−γ)i(i+ 1)q + cC L2−j0
j1−j0∑
i=0

2−(2−γ)i(i+ 1)q

+ cC j1L
−M−1

j1−j0∑
i=0

2−(1−γ)i(i+ 1)q.

The sums on the right-hand side of the inequality tend to 0 under the assumptions of the proposition,

since 1− γ > 0.

The term S(0) is unchanged and the proposition follows as in the proof of Proposition 9 of Achard

and Gannaz [2016].

The rest of the proof is very similar to the real case and it is omitted. Remark that a key of the

proof is Oppenheim’s inequality, which holds for complex matrices, see Horn and Johnson [1990].

E.2 Proof of Theorem 8

Expressions of the asymptotic variances.

For u ⩾ 0, (δ1, δ2) ∈ (−α,M)2, define Ĩu(δ1, δ2)

Ĩu(δ1, δ2) =
2π

K(δ1)K(δ2)

∫ π

−π
D̃u,∞(λ; δ1)D̃u,∞(λ; δ2) dλ ,

where Du,∞(λ; δ) is an approximation of the cross-spectral density between wavelet coefficients

{W(j, k), k ∈ Z} and {W(j + u, 2uk + τ), τ = 0, . . . , 2u − 1, k ∈ Z},

Du,τ (λ; δ) =
∑
t∈Z

|λ+ 2tπ|−δψ̂(λ+ 2tπ) 2u/2ψ̂(2u(λ+ 2tπ)) e−i2uτ(λ+2tπ) ,

D̃u,∞(λ; δ) =

2−u−1∑
τ=0

Du,τ (λ; δ) .
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We introduce

Id∆(δ1, δ2) =
2

κ∆
Ĩ0(δ1, δ2)

+
2

κ2∆

∆∑
u=1

(2uδ1 + 2uδ2) 2−u
2− 2−∆+u

2− 2−∆
((u+ η∆−u − η∆)(η∆−u − η∆) + κ∆−u) Ĩu(δ1, δ2)

if ∆ <∞,

Id∞(δ1, δ2) = Ĩ0(δ1, δ2) +

∞∑
u=1

(2uδ1 + 2uδ2) 2−u Ĩu(δ1, δ2) , if ∆ = ∞.

Define also

G � Id �G(∆) = Diag
(
vec
(
G0
)) (

Id∆(d0a + d0b , d
0
a′ + d0b′)(a,b),(a′,b′)∈{1,...,p2}

)
Diag

(
vec
(
G0
))
. (38)

Additionally, let us denote

IG∆(δ1, δ2) = Ĩ0(δ1, δ2) +
∆∑
u=1

(2uδ1 + 2uδ2)2−u
2− 2−∆+u

2− 2−∆
Ĩu(δ1, δ2) if ∆ <∞,

IG∞(δ1, δ2) = Ĩ0(δ1, δ2) +
∞∑
u=1

(2uδ1 + 2uδ2)2−u Ĩu(δ1, δ2) if ∆ = ∞.

Let us also define

G � IG �G(∆) = Diag
(
vec
(
G0
)) (

IG∆(d0a + d0b , d
0
a′ + d0b′)(a,b),(a′,b′)∈{1,...,p2}

)
Diag

(
vec
(
G0
))
. (39)

Let us reformulate Theorem 8 with the exact expression of the asymptotic variance.

Theorem 19. Suppose that conditions of Theorem 7 are satisfied and that assumption (M-3) hold.

Let j0 < j1 ⩽ jN with jN = max{j, nj ⩾ 1} such that

j1 − j0 → ∆ ∈ {1, . . . ,∞}, log(N)2(N2−j0(1+2β) +N−1/22j0/2) → 0.

Define n =
∑j1

j=j0
nj.

Consider CFW-C(M,L) filters with M ⩾ 2 and log(N)2N1/22−j0/2(L2−j0 + L−M−1) → 0.
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Then,

•
√
n(d̂−d0) converges in distribution to a centered Gaussian distribution with a variance equal

to

V(d)(∆) =
1

2 log(2)2
(G0−1 ◦G0 + Ip)

−1Υ(∆) (G0−1 ◦G0 + Ip)
−1, (40)

where Ip is the identity matrix in Rp×p and with entry (a, a′) of Υ(∆), for (a, a′) ∈ {1, . . . , p}2,
given by

Υa,a′(∆) =
∑

b,b′=1,...,p

(G0−1)a,b(G
0−1)a′,b′

(
G � Id �G(a,a′),(b,b′)(∆) +G � Id �G(a,b′),(a′,b)(∆)

)
where quantities G � Id �G(∆) are defined by (38).

• vec
(√

n
(
Ĝ(d̂)−G0

))
converges in distribution to a centered Gaussian distribution with a

variance equal to VG(∆), with

V
(G)
(a,b),(a′,b′)(∆) = G � IG �G(a,a′),(b,b′)(∆) +G � IG �G(a,b′),(a′,b)(∆) (41)

where quantities G � IG �G(∆) are defined by (39).

Proof.

The properties of wavelet filters in the proofs of Gannaz [2023] are used through Proposition 31

of Gannaz [2023]. The inequalities (I1) and (I2) in Gannaz [2023] correspond respectively to (28)

and (23) of Proposition 12. Inequality (I3) in Gannaz [2023] follows with the proof of Proposition

31 of Gannaz [2023]. The constants in (28) and (23) do not depend of L, which allows to use these

inequalities as in the proofs of Gannaz [2023].

The other property of the wavelets used in the proofs of Gannaz [2023] is the convergence of

|φ̂(2−jλ)| to 1 when j goes to infinity (page 29 of Gannaz [2023]). When L2−2j goes to zero,

Lemma 14 yields

lim
j→∞

∣∣|φ̂(2−jλ)|2 − 1
∣∣ = 0,

which is the desired result.

Finally, the approximation of the sample wavelet covariance is changed. It is sufficient, to use
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results of Proposition 6 (instead of Proposition 1 of Gannaz [2023]), to check that, for all (ℓ,m) ∈
{1, . . . , p}2,

lim
j→∞

√
nj

∣∣∣2−j (dℓ+dm−β)Cov(Wj,k(ℓ),Wj,k(m))−Gℓ,m

∣∣∣ = 0.

Hence, based on Proposition 6 and Lemma 4, when N−12j1L→ 0, it is sufficient to have

lim
j→∞

N1/22−j/2
(
L2−2j + L−M−1

)
= 0,

since when j goes to infinity, j0 ⩽ j ⩽ j1, nj is equivalent to N2−j .

The rest of the proof does not present major changes. It is thus omitted.
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