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c Département Tronc Commun, École Polytechnique de Thiès, Sénégal
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Abstract

Plasmodium species exhibit differential preferences for red blood cells (RBCs) of different ages.
From a fundamental standpoint, we develop an original approach to show that such a differential
ecological characteristic of Plasmodium species within their human host is fundamental to capture
species diversity within the same host. This is based on a within-host malaria infection model coupled
with a discrete maturity stage of RBCs production. The parasitized RBCs stage is an age-structured
model with a continuous variable representing the time since the concerned RBC is parasitized. We
show that with such difference in the RBCs preferences, the long-term coexistence of different species
is possible under a certain condition, basically based on a suitable order on the basic reproduction
numbers of each species. In particular, we show that the dynamical behavior of the model is not trivial
and can range from the extinction of all species, the persistence of a single species, to the coexistence of
more than one species. We also describe how our general analysis can be applied in some co-infection
configurations including three malaria species: P. Falciparum, P. Vivax, and/or P. Malariae. This
improved understanding of the within-host parasite multiplication in a context of mixed Plasmodium
species interactions.

Key words. Malaria; RBC preference; Within-host coexistence; Mathematical modelling; Non-linear
dynamical system

1 Introduction

Human malaria is caused by diverse species of Plasmodium spp. [36] (e.g. P. falciparum, P. vivax, P.
malariae, P. ovale, P. knowlesi). While P. falciparum and P. vivax are the most common, P. falciparum
causes the most severe disease and almost all fatalities, whereas P. vivax is usually considered to be
benign [8]. The malaria parasite has a ‘complex’ life cycle involving sexual reproduction occurring in the
insect vector [2] and two stages of infection within a human (or animal host), a liver stage [16] and blood
stage [7]. Human infection starts by the bite of an infected mosquito, which injects the sporozoite form
of Plasmodium during a blood meal. The sporozoites enter the host peripheral circulation, and rapidly
transit to the liver where they infect liver cells (hepatocytes) [16]. The parasite replicates within the
liver cell before rupturing to release extracellular parasite forms (merozoites), into the host circulation,
where they may invade red blood cells (RBCs) to initiate blood stage infection [30]. Then follows a series
of cycles of replication, rupture, and re-invasion of the RBC. Some asexual parasite forms commit to
an alternative developmental pathway and become sexual forms (gametocytes) [34]. Gametocytes can
be taken up by mosquitoes during a blood meal where they undergo a cycle of sexual development to
produce sporozoites [2], which completes the parasite life cycle.
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The prevalence of mixed human malaria parasite infection is globally widespread. Even in areas of
low transmission, a high proportion of within-host malaria infections is with more than one species of
Plasmodium at the same time [28]. Many studies indicate the distributional prevalence of mixed-species
malaria infections in different locations across the world, e.g. [1, 18, 23, 28, 37]. Mixed Plasmodium
spp. infections is then common but often unrecognized or underestimated [23, 28]. From a biological
standpoint, this can be explained by both observer error, difficulty in distinguishing the young ring-form
parasites of the five malaria species of humans, and that many infections are at densities below the
threshold of detection by microscopy [28].

From a fundamental standpoint, several mathematical models have been developed to study the
within-host parasite multiplication in a context of mixed malaria infections, e.g. [9, 11, 22, 45]. In most
cases, those studies highlight the competition exclusion principle amount genotype (or strain) of a given
species (i.e., only one strain survives while the other strains go to extinction) [11, 22, 45], except in some
configuration where a particular modelling assumption on RBCs infection rate is introduced [9]. Note
that such competitive exclusion of mixed-strain infections is also supported by experimental studies, e.g.
[40, 42]. Furthermore, based on these results, some studies conclude that two species of the malaria
parasites cannot co-persist within a single host, e.g. [45], which is quite in contradiction with mixed
Plasmodium species infections developed earlier. One reason of that apparent contradiction is that all
those modelling studies tackle the issue of malaria infections with more than one genotype from a particular
species within a single host, and not the case of multi-species Plasmodium infections within a single host.
However, there are several widespread empirical evidences that support the occurrence of within-host
malaria infections with more than one species of Plasmodium at the same time [1, 18, 23, 28, 28, 37].
Indeed, Plasmodium spp. exhibit differential preferences for RBCs of different ages. In the human parasite
species, P. vivax and P. ovale have a predilection for reticulocytes, P. malariae for mature RBCs, and
P. falciparum for all types [32]. Here, we will show that such a differential ecological characteristics of
Plasmodium species within their vertebrate host is fundamental to capture species diversity within the
same host. These Plasmodium species interactions have important clinical and public health implications,
as treatment and control of one parasite have an effect on the clinical epidemiology of the sympatric
species, see e.g. [23, 28, 37].

We first introduce the mathematical model and define its parameters. Next, we establish some useful
properties that include the existence of a positive global in time solution of the system, the parasite
invasion process, and the threshold asymptotic dynamics of the model. We investigate the existence of
nontrivial stationary states of the model. In particular, we show that the dynamical behavior of the
system is not trivial and can range from the extinction of all species, the persistence of a single species,
to the coexistence of more than one species. We also describe how our general analysis can be applied
in some co-infection configurations: (i) P. Falciparum and P. Vivax, (ii) P. Falciparum and P. Malariae,
and (iii) P. Vivax and P. Malariae. Finally, we discuss some scenarios that can be captured by the model,
as well as the biological implications of model assumptions and limitations.

2 The model description

We describe the within-host malaria infection coupled with RBCs production. Fig. 1 below presents the
flow diagram of the model considered here. This model is an extension of the model previously introduced
in [13] for the understanding dynamics of Plasmodium gametocytes production. For uninfected RBCs
(uRBCs) dynamics, we consider three maturity stages for the RBCs: reticulocyte (Rr), mature RBC
(Rm) and senescent RBC (Rs). Here, Rj refers to the j-stage RBCs population size and we denote as
J = J the set of RBCs maturity stages. All these three maturity stages are vulnerable to P. falciparum
while P. Vivax and P. Malariae only target reticulocyte and senescent, respectively. For the parasitized
stage, we consider an age-structured dynamics for the parasitized RBCs (pRBC). Here the age is a
continuous variable representing the time since the concerned RBC is parasitized. Such a continuous
age structure will allow us to track the development and maturity of pRBCs, but also to have a refined
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description of the pRBC rupture and of the merozoites release phenomenon.

Uninfected RBC dynamics. We denote by Rr(t), Rm(t) and Rs(t), respectively the density of retic-
ulocytes, mature RBCs and senescent RBCs at time t.

In the absence of malaria parasites, the evolution of circulating red blood cells is assumed to follow a
discrete maturity stage system of ordinary differential equations that takes the form

dRr(t)
dt = Λ0 − µrRr(t),

dRm(t)
dt = µrRr(t)− µmRm(t),

dRs(t)
dt = µmRm(t)− µsRs(t).

(2.1)

The parameters 1/µr, 1/µm and 1/µs respectively denote the duration of RBC reticulocyte stage, mature
stage and senescent stage while Λ0 represents the normal value of the RBC production from marrow
source (i.e. the production rate of RBC). System (2.1) can also be found in [29]. Stationary states of
(2.1), called hereafter parasite-free equilibrium, is given by

R∗j =
Λ0

µj
, j ∈ J .

Defining the total concentration of RBCs by R∗ = R∗r + R∗m + R∗s, we then introduce the proportion of
each uRBC stage at the parasite-free equilibrium by

q∗j =
R∗j
R∗

, j ∈ J .

Parameters of this system are selected from [4, 20, 29] (Table 1) so that in the absence of parasite the
equilibrium normal distribution is given by

(R∗r ;R
∗
m;R∗s) = (62.50; 4853; 83.30)× 106 cell/ml.

This leads to the normal concentration of RBC R∗ = (R∗r +R∗m +R∗s) around 4.99 × 109 cell/ml that
corresponds to the usual normal value.

Multi-species malaria infection dynamics. Here we consider the interaction between n malaria
species together with the circulating RBCs. We respectively denote by uk(t) and pk(t, a) the density of
merozoites and pRBC at time t induced by the k-species. The variable a denotes the time since the
concerned RBC is parasitized. Then the malaria infection dynamics reads as:

Ṙr(t) = Λ0 − µrRr(t)−
(

n∑
k=1

γkr βkuk(t)

)
Rr(t),

Ṙm(t) = µrRr(t)− µmRm(t)−
(

n∑
k=1

γkmβkuk(t)

)
Rm(t),

Ṙs(t) = µmRm(t)− µsRs(t)−
(

n∑
k=1

γksβkuk(t)

)
Rs(t),

pk(t, 0) = βkuk(t)
∑
j∈J

γkjRj(t),

∂tpk(t, a) + ∂apk(t, a) = − (µk(a) + µ0) pk(t, a),

u̇k(t) =
∫∞

0 rkµk(a)pk(t, a)da− µv,kuk(t), with k = 1, 2, · · · , n,

(2.2)

coupled with the initial condition

Rj(0) = Rj,0, pk(0, a) = pk,0(a), uk(0) = uk,0. (2.3)
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P. falciparum
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S1 : RBC development

Vulnerable RBC∑
j=r,m,s

γkjRj(t)
to species kRBC invasion

RBC infection

Immature tropho.
pk(t, a)

0 < a < 28

k-merozoites

uk(t)

Natural
mortality µ0

Mature tropho.
pk(t, a)

28 < a < 38

Natural
mortality µ0

Schizonts
pk(t, a)

38 < a < 48

Natural
mortality µ0

Parasites
released

∫∞
0
rkµk(a)pk(t, a)da

S2 : Parasite development

Figure 1: (S1) The RBC development chain, (S2) the parasite development chain. TD= average duration
of a stage of development. Λ0 is the RBC production rate from the marrow source. 1/µr (resp. 1/µm,
1/µs) is the duration of the RBC reticulocyte (resp. mature, senescent) stage. A continuous parameter a
denotes the time since the concerned RBC is parasitized. Imature trophozoite-stage (0 < a < 26 hours),
Mature trophozoite-stage (26 < a < 38 hours) and Schitzont-stage (38 < a < 48 hours). In the case of
P.Falciparum infection, one has (γr = γm = γs = 1) while for Vivax one has (γr = 1, γm = γs = 0) and
for malariae (γr = γm = 0, γs = 1), see e.g. [32].
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Table 1: Model variables and parameters
Param. Description (unit) Values[source]

State variables

Rr(t) Density of reticulocytes at time t (Cell/ml)
Rm(t) Density of mature RBCs at time t (Cell/ml)
Rs(t) Density of senescent RBCs at time t (Cell/ml)
pk(t, a) Density of parasitized RBCs by the k-species at time t,

which are parasitized since time a (Cell/ml)
uk(t) Density of merozoites at time t due to the k-species (Cell/ml)

Parameters

Λ0 Production rate of RBC (RBC/h/ml) 1.73× 106 [4, 29]
1/µr Duration of the RBC reticulocyte stage (h) 36 [29]
1/µm Duration of the RBC mature stage (days) 116.5 [29]
1/µs Duration of the RBC senescent stage (h) 48 [29]
µ0 Natural death rate of uRBC (RBC/day) 0.00833 [4]
µv,k Decay rates of malaria parasites of the k-species (RBC/day) 48 [20]
rk Number of merozoites produced per pRBC by the k-species 16 [4, 32]
τk Erythrocytic cycle duration for the k-species (h) 48 for P. Falciparum [32]

48 for P. Vivax [32]
72 for P. Malariae [32]

Rk0 Basic reproduction number of the k-species variable
βk Infection rate of the k-species Calculateda

Initial conditions

Rj(0) Density of RBCs at the maturity stage j R∗j
pk(0, ·) Density of pRBCs 0
uk(0) Density of malaria paristes of the k-species 107

a βk,s are calculated by (6.1)

System (2.2) will be considered under the following natural assumption

Λ0 > 0, βj > 0, τj > 0, αj > 0, rj > 0, γkj ≥ 0,

and ∑
j∈J

γkj > 0, ∀k = 1, · · · , n.

The latter inequality means that the k-th malaria species can consume at least one RBCs stage, i.e. either
reticulocytes, mature or senescent.

We briefly sketch the interpretation of the parameters arising in (2.2). Parameters µ0 and µv,k,
respectively, denote the natural death rates for pRBC and free k-merozoites. Function µk(a) denotes the
additional death rate of pRBC due to the k-parasites at age a and leading to the rupture. The rupture of
pRBC at age a results in the release of an average number rk of merozoites into the blood stream, so that
pRBC then produce, at age a, merozoites at rate rkµk(a). Together with this description, the quantity∫∞

0 rkµk(a)pk(t, a)da corresponds to the number of merozoites produced by the k-pRBC at time t. The
parameter βk describes the contact rate between uRBC and free k-merozoites. Here the rupture function
µk(a) is taken of the form

µk(a) =

{
0 if a < τk

αk if a > τk
, (2.4)
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where τk is the erythrocytic cycle duration of the k-species. An important characteristic of Plasmodium
species is the development of parasites within RBCs. The k-parasite species within a RBC takes an
average of τk hours to mature and release free merozoites. The development of parasites within RBCs is
characterized by the rupture function µk (2.4). With such formulation, the overall average development
period is ≈ τk hours. Indeed, let Dk(a) = exp

(
−
∫ a

0 µk(σ)dσ
)

the probability that a pRBC remains
parasitized after a hours (without taking into account other mechanisms such as the natural mortality).
Then, the average parasite’s development period is

∫∞
0 Dk(a)da = τk + 1/αk. We fix, e.g. αk = 10 for all

species, such that
∫∞

0 Dk(a)da = τk + 1/αk ≈ τk. The value of αk is therefore not strictly significant as
soon as the last approximation holds.

Next, let us introduce the following notations, for a ≥ b,

Πk(a, b) = e−µ0(a−b) exp

(
−
∫ a

b
µk(τ)dτ

)
, k = 1, · · · , n. (2.5)

Note that parameters Πk are finite constants under the model parameter assumption. Furthermore,
Πk(a, b) is the probability that a pRBC by the k-th species, which is parasitized since b hours, remains
so after a hours of infection.

Parameters γkj describe the preference of parasites’ targets (j ∈ J ) of the k-species. For example, P.
Falciparum do not have any preference for RBC so that γr = γm = γs = 1. For P. Vivax infection one
has γr = 1 and γm = γs = 0, so that target RBCs mostly consist in reticulocyltes while for P. Malariae
infection, the target RBCs are mostly senescent cells, that is γr = γm = 0 and γs = 1 [32].

It is useful to write System (2.2) into a more compact form. To that end, we introduce the vectors
R(t) = (Rr(t), Rm(t), Rs(t))

T , p(t, a) = (p1(t, a), · · · , pn(t, a))T and u(t) = (u1(t), · · · , un(t))T . Here xT

is set for the transpose of a vector or matrix x. Then, System (2.2) can be rewritten as

Ṙ(t) = Λ− (m0 + ω)R(t)− diag(γβu(t))R(t),

p(t, 0) = diag(βu(t))γTR(t),

∂tp(t, a) + ∂ap(t, a) = − (µ(a) + µ0) p(t, a),

u̇(t) =

∫ ∞
0

rµ(a)p(t, a)da− µvu(t),

(2.6)

where diag(w) is a diagonal matrix with the diagonal elements given by w and we have formally set

Λ =

 Λ0

0
0

 , γ =

 γ1
r · · · γnr
γ1
m · · · γnm
γ1
s · · · γns

 , ω =

 0 0 0
−µr 0 0

0 −µm 0

 ,

β = diag (βj)j=1,··· ,n , µ(a) = diag (µj(a))j=1,··· ,n , m0 = diag (µj)j∈J ,

m = m0 + ω, µv = diag (µv,j)j=1,··· ,n , r = diag (rj)j=1,··· ,n , µ0 = µ0I,

(2.7)

and where I is the identity matrix. Furthermore, we set

Π(a, b) = e−µ0(a−b) exp

(
−
∫ a

b
µ(σ)dσ

)
, a ≥ b ≥ 0,

which is the survival probability matrix in which components Πk,s are given by (2.5).

3 General remarks

In this section, we establish some useful properties of solutions of (2.2) that include the existence of a
positive global in time solution of the system.
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We first formulate system (2.6) in an abstract Cauchy problem. For that aim, we introduce the
Banach space X = R3 × Rn × L1(0,∞,Rn)× Rn endowed with the usual product norm ‖ · ‖X as well as
its positive cone X+. Let A : D(A) ⊂ X → X be the linear operator defined by D(A) = R3 × {0Rn} ×
W 1,1(0,∞,Rn)× Rn and

A (R, 0Rn ,p,u) =
(
−m0R, −p(0), −p′ − (µ+ µ0)p, −µvu

)
. (3.1)

Finally, let us introduce the non-linear map F : D(A)→ X defined by

F (R, 0Rn ,p,u) =

(
Λ− ωR− diag(γβu)R, diag(βu)γTR, 0,

∫ ∞
0

rµ(a)p(a)da

)
.

By identifying ϕ(t) together with (R(t), 0Rn ,p(t, ·),u(t))T and ϕ0 together with the associated initial
condition (2.3), system (2.6) rewrites as the following Cauchy problem

dϕ(t)

dt
= Aϕ(t) + F (ϕ(t)),

ϕ(0) = ϕ0.

(3.2)

Since system (2.2) is designed to model a biological process, its solutions should remain positive and
bounded. By setting X0 = D(A) and X0+ = X0 ∩ X+, the positivity and boundedness of the solutions of
system (2.2) is provided by the following result.

Theorem 3.1 There exists a unique strongly continuous semiflow {Φ(t, ·) : X0 → X0}t≥0 such that for
each ϕ0 ∈ X0+, the map ϕ ∈ C ((0,∞),X0+) defined by ϕ = Φ(·, ϕ0) is a mild solution of (3.2), namely, it
satisfies

∫ t
0 ϕ(s)ds ∈ D(A) and ϕ(t) = ϕ0 +A

∫ t
0 ϕ(s)ds+

∫ t
0 F (ϕ(s)) ds for all t ≥ 0. Moreover, {Φ(t, ·)}t

satisfies the following properties:

1. Let Φ(t, ϕ0) = (R(t), 0Rn ,p(t, ·),u(t))T ; then the following Volterra formulation holds true

p(t, a) =


Π(a, a− t)p0(a− t) if t ≤ a,

Π(a, 0) diag(βu(t− a))γTR(t− a) if t > a.
(3.3)

coupled with the R(t) and m(t) equations of (2.6).

2. For all ϕ0 ∈ X0+ one has for all t ≥ 0,

∑
j∈J

Rj(t) +
n∑
k=1

∫ ∞
0

pk(t, a)da ≤ max

Λ

c0
,
∑
j∈J

Rj,0 +
n∑
k=1

∫ ∞
0

pk,0(a)da

 , (3.4)

and

n∑
k=1

uk(t) ≤ max

rmaxαmax

µv,min
max

Λ

c0
,
∑
j∈J

Rj,0 +

n∑
k=1

∫ ∞
0

pk,0(a)da

 ,

n∑
k=1

uk,0

 , (3.5)

where Λ = Λ0 + µs max
{

Λ0
µr
, Rr,0

}
+ µs max

{
Λ0
µm
, µrµmRr,0, Rm,0

}
and c0 = min{µs, µ0}, rmax =

max{rj}j=1,··· ,n, αmax = max{αj}j=1,··· ,n and µv,min = min{µv,j}j=1,··· ,n.

3. The semiflow {Φ(t, ·)}t is bounded dissipative and asymptotically smooth, that is

Bounded dissipative: there exists a bounded set B ⊂ X0 such that for any bounded set U ⊂ X0,
there exists τ = τ(U,B) ≥ 0 such that Φ(t, U) ⊂ B for t ≥ τ .

Asymptotically smooth: for any nonempty, closed, bounded set U ⊂ X0, there exists a nonempty
compact set J = J(U) such that J attracts {ϕ ∈ U : Φ(t, ϕ) ∈ U,∀t ≥ 0}.
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4. There exists a nonempty compact set B ⊂ X0+ such that

(i) B is invariant under the semiflow {Φ(t, ·)}t.
(ii) The subset B attracts the bounded sets of X0+ under the semiflow {Φ(t, ·)}t.

We recall that a nonempty set J ⊂ X is said to attract a nonempty set B ⊂ X if δX (Φ(t, B), J)) → 0
as t → +∞, where δX (B, J) = supu∈B infv∈J ‖u − v‖X is a semi-distance on X . Moreover, notice that
the notion of asymptotically smooth is used here within the terminology of Hale, Lasalle and Slemrod
[19]. However, this is strictly equivalent to the notion of asymptotically compact within the terminology
of Ladyzhenskaya [24].
Proof. It is easy to check that the operator A is a Hille-Yosida operator. Then standard results apply
to provide the existence and uniqueness of a mild solution to (2.6) (we refer to [25, 41] for more details).
The Volterra formulation is also standard and we refer to [21, 44] for more details.

The Rr equation of (2.2) gives Ṙr(t) ≤ Λ0 − µrRr(t), that is

Rr(t) ≤ max

{
Λ0

µr
, Rr,0

}
.

Similarly, from the Rm and Rs equations of (2.2), we successfully obtain

Rm(t) ≤ max

{
Λ0

µm
,
µr
µm

Rr,0, Rm,0

}
and

Rs(t) ≤ max

{
Λ0

µs
,
µr
µs
Rr,0,

µm
µs
Rm,0, Rs,0

}
.

Next, for estimate (3.4), let ϕ0 ∈ X0+; then adding up the Rj ,s equations together with the pk,s
equations of (2.2) yields

d

dt

∑
j∈J

Rj(t) +
n∑
k=1

∫ ∞
0

pk(t, a)da

 ≤ Λ0 − µsRs(t)− µ0

n∑
k=1

∫ ∞
0

pk(t, a)da,

that is

d

dt

∑
j∈J

Rj(t) +

n∑
k=1

∫ ∞
0

pk(t, a)da

 ≤ Λ0 + µs(Rr(t) +Rm(t))− µs
∑
j∈J

Rj(t)− µ0

n∑
k=1

∫ ∞
0

pk(t, a)da.

Setting Λ = Λ0 + µs max
{

Λ0
µr
, Rr,0

}
+ µs max

{
Λ0
µm
, µrµmRr,0, Rm,0

}
and c0 = min{µs, µ0}, it comes

∑
j∈J

Rj(t) +

n∑
k=1

∫ ∞
0

pk(t, a)da ≤ max

Λ

c0
,
∑
j∈J

Rj,0 +
n∑
k=1

∫ ∞
0

pk,0(a)da

 .

From where one deduces estimate (3.4). Finally, by uk,s equations of (2.2), we have

u̇k(t) ≤ rkαk
∫ ∞

0
pk(t, a)da− µv,kuk(t),

that is
n∑
k=1

u̇k(t) ≤
n∑
k=1

rkαk

∫ ∞
0

pk(t, a)da−
n∑
k=1

µv,kuk(t).
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Then, by (3.4) the later inequality leads to

n∑
k=1

uk(t) ≤ max

rmaxαmax

µv,min
max

Λ

c0
,
∑
j∈J

Rj,0 +
n∑
k=1

∫ ∞
0

pk,0(a)da

 ,
n∑
k=1

uk,0

 ,

with rmax = max{rj}j=1,··· ,n, αmax = max{αj}j=1,··· ,n and µv,min = min{µv,j}j=1,··· ,n. Estimate (3.5)
follows and which ends item 2. of the theorem.

The bounded dissipativity of the semiflow {Φ(t, ·)}t is a direct consequence of estimate 2. It remains
to prove the asymptotic smoothness. For that end, let B be a forward invariant bounded subset of X0+.
According to the results in [35] it is sufficient to show that the semiflow is asymptotically compact on B.

Therefore, let us consider a sequence of solutions
{
ϕq = (Rq, 0Rn ,p

q,uq)T
}
q≥0

that is equibounded in

X0+ and let consider a sequence {tq}q≥0 such that tq → +∞. Let us show that the sequence {ϕq(tq)}q≥0 is
relatively compact in X0+. For that end, we consider the sequence of map {wq(t) = ϕq(t+ tq)}q≥0. Since
Rq and uq are uniformly bounded in the Lipschitz norm, Arzela-Ascoli theorem implies that, possibly
along a sub-sequence, one may assume that Rq(t + tq) → R̂ and uq(t + tq) → û(t) locally uniformly for
t ∈ R. It remains to deal with the sequence {pq(tq, .)}q≥0. Let us denote by p̃q(t, .) = pq(t+ tq, .). Using
the Volterra integral formulation it comes

p̃qk(t, a) =


pk,0(a− t− tq)Πk(a, a− t− tq), for t+ tq < a,

βku
q
k(t+ tq − a)

(∑
j∈J

γkjR
q
j(t+ tq − a)

)
Πk(a, 0), for t+ tq ≥ a,

for all k = 1, · · · , n.

Finally, since βku
q
k(t + tq − a)

(∑
j∈J

γkjR
q
j(t+ tq − a)

)
Πk(a, 0) converges as q → ∞ towards some

function ξk(t, a) = βkûk(t− a)

(∑
j∈J

γkj R̂j(t− a)

)
Πk(a, 0) locally uniformly, one easily concludes that

pqk(tq, .) = p̃qk(0, .)→ βkûk(t− ·)

∑
j∈J

γkj R̂j(t− ·)

Πk(·, 0) in L1 (0,∞;R) and ∀k = 1, · · · , n.

Item 3. of the theorem then follows.
For item 4., items 2. and 3. show that Φ is point dissipative, eventually bounded on bounded sets,

and asymptotically smooth. Thus, item 4. follows from Theorem 2.33 of [38].
The next result is concerned with spectral properties of the linearized semiflow Φ at a given equilibrium

point ϕ̄ ∈ X0+. The associated linearized system at the point ϕ̄ reads as

dϕ(t)

dt
= (A+B[ϕ̄])ϕ(t),

where A is the linear operator defined in (3.1) while B[ϕ̄] ∈ L (X0,X ) is the bounded linear operator
defined by :

B[ϕ̄]ϕ =


−ωR− diag(γβū)R− diag(γβu)R̄

diag(βū)γTR + diag(βu)γT R̄
0L1(0,∞,Rn)∫∞

0 rµ(a)p(a)da

 .

We then have the following lemma.

9



Lemma 3.2 Let us set Ω = {λ ∈ C : Re (λ) > −min(µr, µm, µs, µ0, µv,k)}. Then, the spectrum σ (A+B[ϕ̄])∩
Ω 6= ∅, only consists of the point spectrum and one has

σ (A+B[ϕ̄]) ∩ Ω = {λ ∈ Ω : ∆(λ, ϕ̄) = 0} ,

where function ∆(., ϕ̄) : Ω→ C is defined by

∆(λ, ϕ̄) = det [D(λ, ϕ̄)] , (3.6)

with D(λ, ϕ̄) = diag (∆k(λ, ϕ̄))k=1,··· ,n such that

∆k(λ, ϕ̄) = 1− βk
λ+ µv,k

∑
j∈J

γkj R̄j

∫ ∞
0

rkµk(a)e−λaΠk(a, 0)da.

Proof. Let us denote by A0 : D(A0) ⊂ X0 → X0 the part of A in X0 = D(A), which is defined by

A0ϕ = Aϕ, ∀ϕ ∈ D(A0) = {ϕ ∈ D(A) : Aϕ ∈ D(A)} .

Then, it is the infinitesimal generator of a C0-semigroup on X0 denoted by {TA0(t)}t≥0. Let ϕ =

(R, 0Rn ,p(·),u)T . We find that

TA0(t)ϕ =

{ (
e−m0tR, 0Rn ,Π(a, a− t)p(a− t), e−µvtu

)T
,∀a ≥ t,(

e−m0tR, 0Rn , 0L1(0,∞,Rn), e
−µvtu

)T
, ∀a < t.

Then, for t ≥ a0 we have

||TA0(t− a0)ϕ||X ≤ exp

(
− min
j∈{J ,0}

µj(t− a0)

)
‖ϕ‖X , ∀t ≥ a0.

We deduce that the growth rate of this semigroup satisfies

ω0 (A0) := lim
t→+∞

ln
(
||TA0(t)||L(X )

)
t

≤ − min
j∈{J ,0}

µj .

Then, since operator B[ϕ̄] is compact, the results in [6] (pages 691-712) or [14] apply and provided that

the essential growth rate of
{
T(A+B[ϕ̄])0

(t)
}
t≥0

–the C0-semigroup generated by the part of (A+B[ϕ̄]) in

X0– satisfies
ω0,ess ((A+B[ϕ̄])0) ≤ ω0,ess (A0) < ω0 (A0) ≤ − min

j∈{J ,0}
µj .

Applying the result in [15, 43], the latter inequality ensures that Ω ∩ σ (A+B[ϕ̄]) 6= ∅ and it is only
composed of point spectrum of (A+B[ϕ̄]).

It remains to derive the characteristic equation. Let λ ∈ ρ (A+B[ϕ̄]), where ρ(·) stands for the
resolvent. For φ = (S,v,q,w) ∈ X , we have (λI − A)ϕ − B[ϕ̄]ϕ = φ, and from where we have the
following fixed point equation

ϕ = (λI −A)−1φ+ (λI −A)−1B[ϕ̄]ϕ.

Then, standard computations apply to obtain (3.6).
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4 Parasite invasion process and threshold dynamics

4.1 Basic reproduction number and invasion fitness

The basic reproduction number, usually denoted as R0, is defined as the total number of parasites arising
from one newly pRBCs introduced into an uninfected host, see e.g. [3, 12]. It can typically be used to
study the spread of the k-th species in an uninfected host. In an environment with n malaria species, the
parasite will spread if R0 > 1, with

R0 = max
k=1,··· ,n

Rk0, (4.1)

where the quantity

Rk0 = Ψk

∑
j∈J

γkjR
∗
j

is the basic reproduction number of the k-th species. This expression involves the disease-free equilibrium
of uRBCs

∑
j∈J γ

k
jR
∗
j and the fitness function Ψk of the k-th species are given by

Ψk =
βk
µv,k

∫ +∞

0
rkµk(a)Πk(a, 0)da, (4.2)

for all k = 1, · · · , n. See Appendix A for details on computation.
The quantity Ψk is the reproductive value of the k-th species. Note that Πk(a, 0) is the survival

probability of a pRBC until a hours. Once multiplied by rkµk(a) and integrated over all infection ages a
it gives the total number of merozoites truly produced by a pRBC.

With the definition of µk in (2.4), we obtain

Ψk =
βkrkαke

−µ0τk

µv,k(αk + µ0)
.

This equation traduces that (i) during its lifetime 1/µv,k, (ii) a merozoite can infects RBCs at rate βk, (iii)
pRBCs survives the erythrocytic cycle duration with probability e−µ0τk , and (iv) produces rk merozoites
with a probability αk/(αk + µ0).

The Rk0 allows quantifying the invasion capability of the k-th species in an uninfected (or disease-free)
environment, and the k-th species can invade the disease-free environment if Rk0 > 1. However, the spread
a new species (let say the l-th species) in an environment already infected by a resident species (let say
the k-species) is typically studied using adaptive dynamics, see e.g. [17, 31]. We calculate the invasion
fitness f(k, l) of the new and rare species l. The new species l will invade the resident k if and only if
f(k, l) > 0. Here, we calculate (Appendix A) the invasion fitness f(k, l) as

f(k, l) =

3∑
j=1

(
Ψlγ

l
j −Ψkγ

k
j

)
R∗j

j∏
i=1

µi

µi + γki βkūk︸ ︷︷ ︸
feedback of resident species k

, (4.3)

where we have used the correspondences r ≡ 1, m ≡ 2 and s ≡ 3.
The environmental feedback of the resident species k conditions the ability of the new invader l to

invade the resident population. It depends on the conditions set out by the resident, in particular on the
RBCs resource already taken by the resident species k.

Accordingly, as soon as the RBCs preferences of parasites’ targets do not differ between species (i.e.,
γkj = γj , for all species k), (4.3) is rewritten

f(k, l) = (Ψl −Ψk)

3∑
j=1

γjR
∗
j

j∏
i=1

µi

µi + γki βkūk
. (4.4)
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It follows that the model (2.2) admits an optimisation principle based on R0, because the sign of the
invasion fitness f(k, l) in (4.4) is given by the sign of the difference between Rl0 = Ψl

∑
j∈J γjR

∗
j and

Rk0 = Ψk
∑

j∈J γjR
∗
j . Conversely, if the RBCs preferences of parasites’ targets differ for at least two

species (i.e., we can find k and l such that
(
γkr , γ

k
m, γ

k
s

)
6=
(
γlr, γ

l
m, γ

l
s

)
), equation (4.3) does not hold and

the optimization principle does not apply. Accordingly, the coexistence of at least species k and l is then
possible.

4.2 Threshold dynamics

This section is devoted to the threshold dynamics result of System (2.2). First, let us introduce some
useful notations and remarks. Consider the following metric space

M = int(R3
+)× L1

+((0,+∞),R)n × Rn+

endowed with the distance induced by the norm in R3 × L1((0,+∞),R)n × Rn. Furthermore, for each
given species k = 1, . . . , n, let ξk :M→ R+ be the continuous function defined by

ξk(R,p,u) = uk +

∫ +∞

0
pk(a)da, ∀(R,p,u) ∈M,

and the sets
Mk

0 = {(R,p,u) ∈M : ξk(R,p,u) > 0} ,

∂Mk
0 = {(R,p,u) ∈M : ξk(R,p,u) = 0} =M\Mk

0,

M0 :=

{
(R,p,u) ∈M : ξ(R,p,u) :=

n∑
k=1

ξk(R,p,u) > 0

}
,

∂M0 := {(R,p,u) ∈M : ξ(R,p,u) = 0} =M\M0.

Next, we will mainly focus on the proof of the malaria species extinction and persistence below.

Theorem 4.1 Let k ∈ {1, . . . , n} be given. Let (R,u,p) be a mild solution of (2.2) with Rj(0) > 0 for
j ∈ J .

(Extinction) If either Rk0 < 1 or uk(0) +
∫∞

0 pk(0, a)da = 0, then

lim
t→+∞

uk(t) = 0 and lim
t→+∞

∫ ∞
0

pk(t, a)da = 0.

Therefore, if R0 < 1, then the parasite-free equilibrium is globally asymptotically stable.

(Uniform persistence) If R0 > 1, then the parasite-free equilibrium becomes unstable, and there exists
ε > 0 such that for each initial condition in M we have

lim inf
t→+∞

n∑
k=1

(
uk(t) +

∫ +∞

0
pk(t, a)da

)
≥ ε.

We proceed in several steps for the proof of Theorem 4.1. The following result ensures that the metric
spacesM,Mk

0 and ∂Mk
0 are positively invariant with respect to the semiflow generated by System (2.2).

Proposition 4.2 The metric spaces M, and the subsets Mk
0, ∂Mk

0, for all k = 1, · · · , n, are positively
invariant with respect to the semiflow generated by System (2.2).
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A consequence of Proposition 4.2 is that both M0 and ∂M0 are positively invariant.
Proof of Proposition 4.2. Due to the influx Λ0 in the Rr-equation, one has from standard arguments that
for each given non-negative initial conditions of (2.2), Rr(t) > 0, ∀t > 0. Therefore using successively the
Rm-equation and the Rs-equation one can easily prove that for all t > 0 Rs(t) > 0 and Rm(t) > 0. This
ensures that the metric space M is positively invariant with respect to the semiflow generated by (2.2).

It remains to prove the positive invariance of the subsets Mk
0,s and ∂Mk

0,s. We first claim below
results.

Claim 4.3 Define, for each λ > −(µ0 + αk), the map a→ Θk(λ, a) as

Θk(λ, a) :=

∫ +∞

a
rkµk(s)e

−λ(s−a)Πk(s, a)ds, ∀a ≥ 0.

Next, let R̂j > 0, j ∈ J be given and define

T k0 = Ψk

∑
j∈J

γkj R̂j ,

where Ψk,s are define by (4.2). Then there exists λk > −min{µ0 + αk, µv,k} such that

1. λk and T k0 − 1 have the same sign and

Θk(λ, 0)βk
∑
j∈J

γkj R̂j = µv,k + λk. (4.5)

2. Θk(λk, a)′ = [λk + µ0 + µk(a)]Θk(λk, a)− rkµk(a) for almost every a ≥ 0.

3. If (R,u,p) is a mild solution of (2.6) then the map t→ Γk(t) defined as

Γk(t) := uk(t) +

∫ ∞
0

Θk(λk, a)pk(t, a)da, t ≥ 0

satisfies

Γk(t) = eλk(t−t0)Γk(t0) +

∫ t

t0

eλk(t−s)Θk(λk, 0)βkuk(s)
∑
j∈J

γkj (Rj(s)− R̂j)ds, ∀t ≥ t0 ≥ 0. (4.6)

We also claim that

Claim 4.4 Let (R,u,p) be a mild solution of (2.6) with uk(0) ≥ 0, pk(0, ·) ∈ L1
+((0,+∞),R), k =

1, . . . , n and Rj0 > 0, j = 1, 2, 3. Then there exists R±j > 0, j = 1, 2, 3 such that

R−j < Rj(t) < R+
j , ∀t ≥ 0.

Before proving the above claims, let us complete the proof of the proposition.
Let (R,u,p) be a mild solution of (2.6) with initial condition in M. Thus, Claim 4.4 implies that

there exist R±j > 0, j ∈ J such that

R−j ≤ Rj(t) ≤ R
+
j , ∀t ≥ 0.

Let R̂j = R+
j (resp. R̂j = R−j ), j ∈ J and λ+

k (resp. λ−k ) be the real value such that Claim 4.3 is satisfied.
Thus, using item 3. of Claim 4.3 with

Γ±k (t) := uk(t) +

∫ ∞
0

Θk(λ
±
k , a)pk(t, a)da, t ≥ 0,
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we have {
Γ+
k (t) ≥ eλ

+
k tΓ+

k (0), t ≥ 0,

Γ−k (t) ≤ eλ
−
k tΓ−k (0), t ≥ 0.

Therefore,

uk(t) +

∫ ∞
0

Θk(λ
+
k , a)pk(t, a)da ≤ eλ

+
k t

(
uk(0) +

∫ ∞
0

Θk(λ
+
k , a)pk(0, a)da

)
, ∀t ≥ 0 (4.7)

and

eλ
−
k t

(
uk(0) +

∫ ∞
0

Θk(λ
−
k , a)pk(0, a)da

)
≤ uk(t) +

∫ ∞
0

Θk(λ
−
k , a)pk(t, a)da, ∀t ≥ 0. (4.8)

The result follows by using (4.7) and (4.8) combined with the fact that∫ ∞
0

Θk(λ
±
k , a)pk(0, a)da = 0⇔

∫ ∞
0

pk(0, a)da = 0.

The proof of Claim 4.4 is rather standard and we refer to [26] for instance. It now remains to prove
Claim 4.3.
Proof of Claim 4.3. Let us first note that a→ Θk(λ, a) is well defined for each λ > −(µ0 + αk). Indeed,
it is easy to see that

Θk(λ, a) = eλaΠk(0, a)Θk(λ, 0)−
∫ a

0
rkµk(s)e

−λ(s−a)Πk(s, a)ds, ∀a ≥ 0, (4.9)

with

Θk(λ, 0) =

∫ +∞

0
rkµk(s)e

−λsΠk(s, 0)ds =
rkαke

−(µ0+λ)τk

αk + µ0 + λ
.

This ensures that the Θk(λ, a) is convergent for λ > −(αk + µ0). To prove item 1., we note that

Θk(λ, 0)

µv,k + λ
βk
∑
j∈J

γkj R̂j =
rkαke

−(µ0+λ)τk

(µv,k + λ)(αk + µ0 + λ)
βk
∑
j∈J

γkj R̂j (4.10)

is well defined, positive, decreasing and continuous for λ > −λ̂ with λ̂ = min{µ0 +αk, µv,k}. Note that for
λ = 0, the right hand side of (4.10) is T k0 . The result follows from intermediate values theorem arguments.
This completes the proof of item 1. Item 2. is a consequence of (4.9) together with

d

da

(
eλkaΠk(0, a)

)
= [λk + µ0 + µk(a)]eλkaΠk(0, a), a.e a ≥ 0.

Next, we prove that item 3., holds true. To do this, it is sufficient to show that it is satisfied for the set of
initial conditions for which t→ Γk(t) is differentiable and proceeds by density. In this case, observe that
for each t > 0,

dΓk(t)

dt
= u̇k(t) +

∫ ∞
0

Θk(λk, a)∂tpk(t, a)da

=

∫ ∞
0

rkµk(a)pk(t, a)da

−µv,kuk(t)−
∫ ∞

0
Θk(λk, a)[∂apk(t, a) + (µk(a) + µ0) pk(t, a)]da

=

∫ ∞
0

rkµk(a)pk(t, a)da− µv,kuk(t) + Θk(λ, 0)pk(t, 0)

+

∫ ∞
0

[
Θk(λk, a)′ −Θk(λ, a) (µk(a) + µ0)

]
pk(t, a)da.
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Hence using (4.5), we get

dΓk(t)

dt
= −µv,kuk(t) + Θk(λk, 0)βkuk(t)

∑
j∈J

γkjRj(t) + λk

∫ ∞
0

Θk(λk, a)pk(t, a)da

= λkuk(t) + Θk(λk, 0)βkuk(t)
∑
j∈J

γkj (Rj(t)− R̂j) + λk

∫ ∞
0

Θk(λk, a)pk(t, a)da

= λkΓk(t) + Θk(λk, 0)βkuk(t)
∑
j∈J

γkj (Rj(t)− R̂j), t > 0.

The result follows by the variation of constants formula.

We now turned to the proof of Theorem 4.1.
Proof of Theorem 4.1.
Extinction. If uk(0) +

∫∞
0 pk(0, a)da = 0, then the result follows from the positive invariance of ∂Mk

0.
Next, assume that Rk0 < 1. Let us first recall that Rk0 = Ψk

∑
j∈J γ

k
jR
∗
j < 1. Let ε > 0 such that

T k0 = Ψk
∑

j∈J γ
k
j (R∗j + ε) < 1. Then, setting R̂j = R∗j + ε in Claim 4.3, there exists λεk ∈ R such that

sign(λεk) = sign(T k0 − 1) < 0. Recalling that lim supt→+∞Rj(t) ≤ R∗j , we can find t0 ≥ 0 such that

Rj(t) ≤ R∗j + ε, ∀t ≥ t0. (4.11)

Next, define

Γεk(t) = uk(t) +

∫ ∞
0

Θk(λ
ε
k, a)pk(t, a)da, ∀t ≥ 0.

Then, we deduce from (4.6) that

Γεk(t) ≤ eλ
ε
k(t−t0)Γεk(t0), ∀t ≥ t0.

Therefore,
uk(t) ≤ eλ

ε
k(t−t0)Γεk(t0), ∀t ≥ t0 ⇒ lim

t→+∞
uk(t) = 0. (4.12)

Finally, from the Volterra formulation (3.3) we find, for each t ≥ t0,∫ +∞

0
pk(t, a)da =

∫ t−t0

0
Πk(a, 0) βkuk(t−a)

∑
j∈J

γkjRj(t−a)da+

∫ +∞

t−t0
Πk(a, a− t+ t0)pk(t0, a− t+ t0)da

so that (4.11) and (4.12) imply∫ +∞

0
pk(t, a)da ≤

∫ t

0
e−µ0aβkΓ

ε
k(t0)eλ

ε
k(t−a)

∑
j∈J

γkj (R∗j + ε)da+ e−µ0(t−t0)

∫ +∞

0
pk(t0, a)da.

The result follows by taking the limit when t→ +∞.
Uniform persistence. We first notice that the instability of the parasite-free equilibrium when

R0 > 1 is a consequence of Lemma 3.2. Indeed, at the parasite-free equilibrium (let say ϕ̄0) the functions
∆k satisfy ∆k(0, ϕ̄0) = 1 − Rk0 < 0 and ∆k(λ, ϕ̄0) → 1 as λ → ∞. Which ensures the existence of a
strictly positive eigenvalue and the instability of ϕ̄0 with respect to the semiflow follows.

For the uniform persistence, recall that, by Proposition 4.2,M0, ∂M0 andM are positively invariant
with respect to the semiflow generated by System (2.2). Then, the semiflow restricted to M possesses
a compact global attractor. Thus, to prove the uniform persistence of the parasites with respect to the
decomposition (M0, ∂M0), it is sufficient to prove that ∂M0 is ξ-ejective [27, 38]. We then claim that
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Claim 4.5 If R0 > 1, then ∂M0 is ξ-ejective; i.e. there exists η > 0 such that if

0 < ξ(R(0),u(0),p(0, ·)) < η,

then there exists t0 > 0 such that
ξ(R(t0),u(t0),p(t0, ·)) ≥ η.

Proof of Claim 4.5. Since R0 = max
(
Rk0
)
k
> 1, there exists k ∈ {1, . . . , n} such that Rk0 =

Ψk
∑

j∈J , γ
k
jR
∗
j > 1. First, observe that

lim
δ→0+

Ψk

3∑
i=1

i∏
j=1

µj
µj + δ

γki R
∗
i = Rk0 > 1,

where we have used the correspondences r ≡ 1, m ≡ 2 and s ≡ 3. Thus, by continuity, there exits δ1 > 0
such that

Ψk

3∑
i=1

i∏
j=1

µj
µj + δ

γki R
∗
i > 1, ∀δ ∈ [0, δ1]. (4.13)

Next, we argue by contradiction. Let δ0 ∈ (0, δ1) be given and fixed such that

0 ≤ ξ(R(t),u(t),p(t)) < η, ∀t ≥ 0⇒ 0 ≤
n∑
k=1

(
uk(t) +

∫ +∞

0
pk(t, a)da

)
< η, ∀t ≥ 0, (4.14)

with

η := δ0

(
max
l=1,...,n

βl

)−1

.

Then, we have
n∑
l=1

γljβlul(t) ≤ max
l=1,...,n

βl

n∑
l=1

ul(t) ≤ δ0, j = 1, 2, 3,

so that 
Ṙ1(t) ≥ Λ0 − µ1R1(t)− δ0R1(t), t > 0,

Ṙ2(t) ≥ µ1R1(t)− µ2R2(t)− δ0R2(t), t > 0,

Ṙ3(t) ≥ µ2R2(t)− µ3R3(t)− δ0R3(t), t > 0.

Thus, we deduce that

lim inf
t→+∞

R1(t) ≥ Λ0

µ1 + δ0
=

µ1

µ1 + δ0
R∗1, lim inf

t→+∞
R2(t) ≥ Λ0

µ2 + δ0

µ1

µ1 + δ0
=

µ2

µ2 + δ0

µ1

µ1 + δ0
R∗2

and

lim inf
t→+∞

R3(t) ≥ Λ0

µ3 + δ0

µ2

µ2 + δ0

µ1

µ1 + δ0
=

µ3

µ3 + δ0

µ2

µ2 + δ0

µ1

µ1 + δ0
R∗3.

Because
i∏

j=1

µj
µj + δ0

R∗i >

i∏
j=1

µj
µj + δ1

R∗i , ∀i = 1, 2, 3,

there exists t0 ≥ 0 such that for each i = 1, 2, 3,

Ri(t) ≥
i∏

j=1

µj
µj + δ1

R∗i , ∀t ≥ t0. (4.15)
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Hence, setting R̂i =
∏i
j=1

µj
µj + δ1

R∗i , i = 1, 2, 3, in Claim 4.3, from (4.13) it follows that

T k0 = Ψk

3∑
j=1

γkj R̂j > 1.

This provides that the λk in Claim 4.3 have the sign of sign(T k0 − 1) > 0. Furthermore, (4.15) implies
that the map t→ Γk(t) provided by Claim 4.3 satisfies

Γk(t) = eλk(t−t0)Γk(t0) +

∫ t

t0

eλk(t−s)Θk(λk, 0)βkuk(s)

3∑
j=1

γkj (Rj(s)− R̂j)ds, t ≥ t0

≥ eλk(t−t0)Γk(t0), t ≥ t0.

Hence,

lim
t→+∞

Γk(t) = +∞⇔ lim
t→+∞

(
uk(t) +

∫ +∞

0
Θk(λk, a)pk(t, a)da

)
= +∞.

Because a→ Θk(λk, a) belongs to L∞+ ((0,+∞),R), the foregoing limit contradict (4.14).

5 Nontrivial equilibrium of System (2.2)

Here, we provide some useful results and remarks on the nontrivial equilibrium of System (2.2), i.e., other
equilibria than the parasite-free equilibrium. To simplify the presentation, in this section we use the
correspondences J ≡ (1, 2, 3) for the uRBCs stages.

Lemma 5.1 Let (R̄, ū, p̄) is a nonnegative equilibrium of System (2.2), with R̄ = (R̄j)j=1,2,3, ū =
(ūk)k=1,··· ,n, p̄ = (p̄k)k=1,··· ,n. Then,

1. We have the following fixed point problem{
R = R∗ −m−1diag(γβū)R̄,

ū =
[
µ−1
v r

∫ +∞
0 µ(a)Π(a, 0)da diag(γTR∗)β

]
ū,

(5.1)

where
p̄(a) = Π(a, 0)diag(βū)γT R̄ = Π(a, 0)diag(γT R̄)βū. (5.2)

2. The equilibrium (R̄, ū, p̄) satisfies

R̄i = R∗i −
1

µi

i∑
j=1

n∑
k=1

βkūkγ
k
j R̄j , i = 1, 2, 3,

ūk

3∑
j=1

γkjR
∗
j = ūkRk0

3∑
j=1

γkj R̄j , k = 1, . . . , n,

p̄k(a) =
1

Rk0
Πk(a, 0)βkūk

3∑
j=1

γkjR
∗
j , k = 1, . . . , n.

(5.3)

3. Let k ∈ {1, . . . , n} be a given species. If Rk0 < 1 then, the k-th component of the equilibrium (R̄, ū, p̄)
is such that ūk = 0 and p̄k ≡ 0.
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Proof. The proof of item 1. is straightforward and directly comes from System (2.6). Item 2. is the
explicit formulation of (5.1)-(5.2) and the definition of Rk0,s in (4.1). For Item 3, assume that Rk0 < 1.
Since the map R→M(R) is increasing, from (5.1), it comes R ≤ R∗ and

u ≤M(R∗)u⇒ uk ≤ Rk0uk ⇒ uk = 0.

Since Π(a, 0)diag(γTR)β is an invertible diagonal matrix, from (5.2), it follows that pk ≡ 0.
Next, let us introduce S and S ′ subsets of index {1, . . . , n} such that

k ∈ S ⇔ Rk0 ≤ 1,

k ∈ S ′ ⇔ Rk0 > 1.

The following result holds.

Theorem 5.2 Let (R̄, ū, p̄) is a non-negative equilibrium of System (2.2), with R̄ = (R̄j)j=1,2,3, ū =
(ūk)k=1,··· ,n, p̄ = (p̄k)k=1,··· ,n. Then,

1. For all k ∈ S, ūk = 0 and p̄k ≡ 0. Consequently, when R0 ≤ 1 the parasite-free equilibrium is the
unique equilibrium of (2.2).

2. If ūk > 0 then, the following properties hold

(i) p̄k(a) > 0 for all a ≥ 0, and p̄k(a) =
1

Rk0
Πk(a, 0)βkūk

∑3
j=1 γ

k
jR
∗
j .

(ii) For each i = 1, 2, 3; R̄i =
∏i
j=1

µj
µj + x̄j

R∗i , with x̄i :=
∑

k∈S′ βkūkγ
k
i .

(iii)
1

Rk0

∑3
i=1 γ

k
i R
∗
i =

∑3
i=1 γ

k
i

∏i
j=1

µj
µj + x̄j

R∗i .

3. (R̄, ū, p̄) is a positive equilibrium with the k-th component ūk > 0 if and only if
(
x̄i =

∑
l∈S′ βlūlγ

l
i

)
i=1,2,3

is a solution of

1

Rk0

3∑
i=1

γki R
∗
i =

3∑
i=1

γki

i∏
j=1

µj
µj + x̄j

R∗i .

Proof. We start with the proof of Item 1. If Rk0 < 1, then we infer from Lemma 5.1 that ūk = 0 and
p̄k ≡ 0. Denote by ∂S the subset of S such that

k ∈ ∂S ⇔ Rk0 = 1.

Next, we argue by contradiction. Suppose that there is a non-empty set of index V ⊂ ∂S such that Rk0 = 1
and uk > 0 for all k ∈ V. Thus, we infer from (5.3) that

Rk0 = 1, ∀k ∈ V ⇔
3∑
i=1

γki R
∗
i =

3∑
i=1

γki R̄i, ∀k ∈ V (5.4)

and

R̄i = R∗i −
1

µi

i∑
j=1

∑
k∈V

βkūkγ
k
j R̄j , i = 1, 2, 3. (5.5)

Hence, multiplying (5.5) by γki and summing up to i = 3 we get

3∑
i=1

γki R̄i =

3∑
i=1

γki R
∗
i −

3∑
i=1

γki
µi

i∑
j=1

∑
k∈V

βkūkγ
k
j R̄j . (5.6)

18



Combining (5.6) together with (5.4), we obtain

3∑
i=1

γki
µi

i∑
j=1

∑
k∈V

βkūkγ
k
j R̄j = 0⇒

∑
k∈V

βkūk
γki
µi
γki R̄i = 0, i = 1, 2, 3.

Since γki γ
k
i = γki , we obtain∑

k∈V
βkūkγ

k
i R̄i = 0, i = 1, 2, 3⇒

∑
k∈V

βkūk

3∑
i=1

γki R̄i = 0.

Hence

βkūk

3∑
i=1

γki R̄i = 0, k ∈ V.

Thus, using the fact that
∑3

i=1 γ
k
i R̄i =

∑3
i=1 γ

k
i R̄
∗
i > 0, we conclude that ūk = 0 for all k ∈ V. This gives

a contradiction and the proof of Item 1. is completed.
Next, for Item 2., we only need to prove (ii) because the properties (i) and (iii) are consequences of

(ii) and Lemma 5.1. Let x̄i be defined by x̄i =
∑

k∈S′ βkūkγ
k
i , i = 1, 2, 3. Since ūk = 0 for all k /∈ S ′ we

also have x̄i =
∑n

k=1 βkūkγ
k
i , i = 1, 2, 3. Then (5.3) ensures that

R̄i = R∗i −
1

µi

i∑
j=1

x̄jR̄j , i = 1, 2, 3.

For i = 1, we have

R̄1 = R∗1 −
1

µ1
x̄1R̄1 ⇔ R̄1 =

µ1

µ1 + x̄1
R∗1

and for i = 2,

R̄2 = R∗2 −
1

µ2

(
x̄1R̄1 + x̄2R̄2

)
⇔ R̄2 =

1

µ2 + x̄2

(
µ2R

∗
2 − x̄1R̄1

)
=

1

µ2 + x̄2

(
µ2R

∗
2 −

x̄1

µ1 + x̄1
µ1R

∗
1

)
.

From the equality µ2R
∗
2 = µ1R

∗
1, we get

R̄2 =
µ2R

∗
2

µ2 + x̄2

(
1− x̄1

µ1 + x̄1

)
=

µ2

µ2 + x̄2

µ1

µ1 + x̄1
R∗2.

For i = 3,

R̄3 = R∗3 −
1

µ3

(
x̄1R̄1 + x̄2R̄2 + x̄3R̄3

)
⇔ R̄3 =

1

µ3 + x̄3

[
µ3R

∗
3 − x̄1R̄1 − x̄2R̄2

]
.

Hence

R̄3 =
1

µ3 + x̄3

[
µ3R

∗
3 −

x̄1

µ1 + x̄1
µ1R

∗
1 −

x̄2

µ2 + x̄2

µ1

µ1 + x̄1
µ2R

∗
2

]
and recalling that µ3R

∗
3 = µ2R

∗
2 = µ1R

∗
1, we obtain

R̄3 =
µ3R

∗
3

µ3 + x̄3

[
1− x̄1

µ1 + x̄1
− x̄2

µ2 + x̄2

µ1

µ1 + x̄1

]
=

µ3R
∗
3

µ3 + x̄3

[
µ1

µ1 + x̄1
− x̄2

µ2 + x̄2

µ1

µ1 + x̄1

]
=

µ3R
∗
3

µ3 + x̄3

µ1

µ1 + x̄1

[
1− x̄2

µ2 + x̄2

]
=

µ3

µ3 + x̄3

µ1

µ1 + x̄1

µ2

µ2 + x̄2
R∗3,

which ends the proof of Item 2.
Finally, Item 3. is a consequence of Item 2, and this completes the proof of the theorem.
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6 Applications

This section describes how our general analysis can be applied in some configurations : (FV-model)
co-infection by P. Falciparum and P. Vivax, (FM-model) co-infection model by P. Falciparum and P.
Malariae, (VM-model) co-infection model by P. Vivax and P. Malariae, and (FVM-model) co-infection
by the three malaria species. Due to our general model formulation (2.2), to explore a given scenario we
only need to define the parasites preference targets matrix γ introduced by (2.7) and apply results in
Section 5. Furthermore, By Theorems 4.1 and 5.2, the parasite-free equilibrium is the unique equilibrium
of the general model (2.2) whenR0 < 1. Moreover, the parasite-free equilibrium is globally asymptotically
stable when R0 < 1 and unstable when R0 > 1. We now focus on the equilibria of different models
scenarios derived from the general model formulation when R0 > 1.

Next, for all simulations, the infection rates (βk,s) are estimated thanks to the basic reproduction
number (R0,k). Indeed, by (4.1)-(4.2) we have for each k-species

βk = Rk0

 rkαke
−µ0τk

µv,k(αk + µ0)

∑
j∈J

γkjR
∗
j

−1

. (6.1)

Finally, all other model parameters and initial conditions are summarized in Table 1.

6.1 FV-model: co-infection by P. Falciparum and P. Vivax

With the parasites preference targets matrix γ =

1 1
1 0
1 0

, the general Model (2.2) leads to the FV-model

where subscripts k = F, V stand for Falciparum and Vivax respectively. Recalling the definition of R0

and Rk0 (k = F, V ) given by (4.1) we have the following results on the equilibria of the FV-model.

Theorem 6.1 1. If RF0 > 1 and RV0 ≤ 1 then, the FV-model has two equilibria : the parasite-free
equilibrium and the boundary equilibrium with ūV = 0, p̄V ≡ 0, x̄r = βF ūF and

R̄r =
µr

µr + x̄r
R∗r , R̄m =

µr
µr + x̄r

µm
µm + x̄r

R∗m, R̄s =
µr

µr + x̄r

µm
µm + x̄r

µs
µs + x̄r

R∗s,

p̄F (a) =
1

RF0
x̄rΠF (a, 0)

∑
j∈J

R∗j , ∀a ≥ 0,

where x̄r > 0 is the unique solution of

1 =
RF0
RV0

[
q∗r +

µm
µm + x̄r

q∗m +
µm

µm + x̄r

µs
µs + x̄r

q∗s

]
.

2. If RF0 ≤ 1 and RV0 > 1 then, the FV-model has two equilibria : the parasite-free equilibrium and the
boundary equilibrium with ūF = 0, p̄F ≡ 0 and

βV ūV = µr(RV0 − 1), R̄j =
R∗j

RV0
, j ∈ J ,

p̄V (a) =
βV ūV

RV0
ΠV (a, 0)R∗r , ∀a ≥ 0.

3. The FV-model has two equilibria : the parasite-free equilibrium and the positive equilibrium with
ūF > 0, ūV > 0 if and only if

RF0 > RV0 > 1, (6.2)
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and

1 >
RF0
RV0

[
q∗r +

µm

µm + µr
(
RV0 − 1

) (q∗m +
µs

µs + µr
(
RV0 − 1

)q∗s
)]

. (6.3)

Furthermore, by setting x̄r = βF ūF + βV ūV and x̄m = βF ūF , we have βV ūV = µr(RF0 − 1) − x̄m
and

R̄r =
µr

µr + x̄r
R∗r , R̄m =

µr
µr + x̄r

µm
µm + x̄m

R∗m, R̄s =
µr

µr + x̄r

µm
µm + x̄m

µs
µs + x̄m

R∗s,

p̄j(a) =
1

Rj0
Πj(a, 0)βiūi

∑
i∈J

γijR
∗
i , ∀a ≥ 0, i = F, V,

where x̄m ∈]0, µr(RF0 − 1)[ is the unique solution of

1 =
RF0
RV0

[
q∗r +

µm
µm + x̄m

q∗m +
µm

µm + x̄m

µs
µs + x̄m

q∗s

]
.

Finally, if (6.2) is satisfied and not (6.3), the positive equilibrium does not exist and we have a
boundary equilibrium with ūF = 0, p̄F ≡ 0. Similarly, if RV0 > RF0 > 1, the positive equilibrium
does not exist and we have a boundary equilibrium with ūV = 0, p̄V ≡ 0.

6.2 FM-model: co-infection by P. Falciparum and P. Malariae

With the parasites preference targets matrix γ =

1 0
1 0
1 1

, the general Model (2.2) leads to the FM-model

where subscripts k = F,M stand for Falciparum and Malariae respectively. Recalling the definition of
R0 and Rk0 (k = F,M) given by (4.1) we have the following results on the equilibrium of the FM-model.

Theorem 6.2 1. If RF0 > 1 and RM0 ≤ 1 then, the FM-model has two equilibria : the parasite-free
equilibrium and the boundary equilibrium with ūM = 0, p̄M ≡ 0, x̄r = βF ūF and

R̄r =
µr

µr + x̄r
R∗r , R̄m =

µr
µr + x̄r

µm
µm + x̄r

R∗m, R̄s =
µr

µr + x̄r

µm
µm + x̄r

µs
µs + x̄r

R∗s,

p̄F (a) =
1

RF0
x̄rΠF (a, 0)

∑
j∈J

R∗j , ∀a ≥ 0,

where x̄r > 0 is the unique solution of

1

RF0
=

µr
µr + x̄r

q∗r +
µr

µr + x̄r

µm
µm + x̄r

q∗m +
µr

µr + x̄r

µm
µm + x̄r

µs
µs + x̄r

q∗s .

2. If RF0 ≤ 1 and RM0 > 1 then, the FM-model has two equilibria : the parasite-free equilibrium and
the boundary equilibrium with ūF = 0, p̄F ≡ 0, βM ūM = µs(RM0 − 1) and

R̄r = R∗r , R̄m = R∗m, R̄s =
R∗s
RM0

,

p̄M (a) = µs
RM0 − 1

RM0
ΠM (a, 0)R∗s, ∀a ≥ 0.

3. The FM-model has two equilibria : the parasite-free equilibrium and the positive equilibrium with
ūF > 0, ūM > 0 if and only if

RF0 > 1, RM0 > 1, (6.4)
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and
µr

µr + x̄max
r

q∗r +
µr

µr + x̄max
r

µm
µm + x̄max

r

q∗m +
1

RM0
q∗s <

1

RF0
< q∗r + q∗m +

1

RM0
q∗s , (6.5)

where x̄max
r = µs(RM0 − 1)q∗s . Furthermore, we have x̄r = βF ūF , x̄s = βF ūF + βM ūM and

R̄r =
µr

µr + x̄r
R∗r , R̄m =

µr
µr + x̄r

µm
µm + x̄m

R∗m, R̄s =
µr

µr + x̄r

µm
µm + x̄m

µs
µs + x̄s

R∗s,

βM ūM = µs(RM0 − 1)− 1

q∗s

RM0
RF0

x̄r,

p̄j(a) =
1

Rj0
Πj(a, 0)βiūi

∑
i∈J

γijR
∗
i , ∀a ≥ 0, i = F,M,

where x̄r ∈]0, x̄max
r [ is the unique solution of

1

RF0
=

µr
µr + x̄r

q∗r +
µr

µr + x̄r

µm
µm + x̄r

q∗m +
1

RM0
q∗s .

Finally, if (6.4) is satisfied and not (6.5), the positive equilibrium does not exist and we have a
boundary equilibrium either with ūF = 0, p̄F ≡ 0, or with ūM = 0, p̄M ≡ 0.

6.3 VM-model: co-infection by P. Vivax and P. Malariae

With the parasites preference targets matrix γ =

1 0
0 0
0 1

, the general Model (2.2) leads to the VM-model

where subscripts k = V,M stand for Vivax and Malariae, respectively. Recalling the definition of R0 and
Rk0 (k = V,M) given by (4.1), we have the following results on the equilibrium of the VM-model.

Theorem 6.3 1. If RV0 ≤ 1 < RM0 , then the VM-model admits two non-negative equilibria, namely,
the parasite-free equilibrium and a boundary equilibrium (Rr, Rm, Rs, 0, pM (a), 0, uM ).

2. If RM0 ≤ 1 < RV0 , then the VM-model admits two non-negative equilibria, namely, the parasite-free
equilibrium and the boundary equilibrium (Rr, Rm, Rs, pV (a), 0, uV , 0).

3. If 1 < RV0 < RM0 , then VM-model admits two non-negative equilibria, namely, the parasite-free
equilibrium and the coexistence equilibrium (Rr, Rm, Rs, pV (a), pM (a), uV , uM ).

Finally, the components of these equilibria are given by

Rm =
µr
µm

Rr =
µs
µm

RM0
RV0

Rs =
µr
µm

R∗r
RV0

, uV =
µr
βV

(RV0 − 1), uM =
µs
βM

(
RM0
RV0
− 1

)
,

pV (a) =
R∗r
RV0

βV uV ΠV (a, 0), pM (a) =
R∗s
RM0

βMuMΠM (a, 0).

Theorems 6.1, 6.2 and 6.3 allow, respectively, in summarizing the qualitative dynamics of the FV-,
FM-, and VM-models with respect to the basic reproduction numbersRk0,s (k = F, V,M). These dynamics
range from the extinction of both species, the persistence of one of those species, to the coexistence of
both species for each model, FV-model (Figure 2), FM-model (Figure 3), and VM-model (Figure 4). We
refer to Section B for the proof of Theorem 6.1. The proof of Theorems 6.2 and 6.3 is very similar to the
proof of Theorem 6.1.
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Figure 2: Overview of the FV-model qualitative dynamics. (A) Possible equilibria of the FV-model
with respect to RF0 and RV0 . (B) Exclusion of species V, with (RF0 ,RV0 ) = (7, 1.01). (C) Coexistence of
both species F and V, with (RF0 ,RV0 ) = (7, 3). (D) Exclusion of species F, with (RF0 ,RV0 ) = (7, 8). The

function f is defined by f(x) = x
[
q∗r + µm

µm+µr(x−1)

(
q∗m + µs

µs+µr(x−1)q
∗
s

)]−1
, and other model parameters

are given by Table 1.

7 Discussion

Human malaria is caused by diverse species of Plasmodium spp. [36] (e.g., P. falciparum, P. vivax, P.
malariae, P. ovale, P. knowlesi). The prevalence of mixed human malaria parasite infection is globally
widespread, and mixed Plasmodium spp. infections is then common but often unrecognized or underes-
timated [23, 28]. From a fundamental standpoint, several mathematical models have been developed to
study the within-host parasite multiplication in the context of mixed malaria infections, e.g. [9, 11, 22, 45].
These studies mostly tackle the issue of malaria infections with more than one genotype from a particular
species within a single host, and not the case mixed-species Plasmodium infection within a single host.
By ignoring the phenotypic plasticity in red blood cells (RBCs) preference, which is fundamental in the
context of mixed-species Plasmodium infections, those studies can somewhat lead to a quite confusive con-
clusion with respect to the copersistence of multiple Plasmodium species within the same host. Indeed,
Plasmodium spp. exhibit differential preferences for RBCs of differing ages. In human parasite species, P.
vivax and P. ovale have a predilection for reticulocytes, P. malariae for mature RBCs, and P. falciparum
for all types [32].

Here, we show that such a differential ecological characteristics of Plasmodium species within their
vertebrate host is fundamental to capture species diversity within the same host. For that end, we
formulate a within-host malaria infection coupled with RBCs production. For uninfected RBCs (uRBCs)
dynamics, we consider the reticulocyte, mature RBC and senescent RBC. For the parasitized stage, we
consider an age-structured dynamics for the parasitized RBCs (pRBC). Here, the age is a continuous
variable representing the time since the concerned RBC is parasitized. Such a continuous age structure
will allow us to track the development and maturity of pRBCs, but also to have a refined description of
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Figure 3: Overview of the FM-model qualitative dynamics. (A) Possible equilibria of the FM-
model with respect to RF0 and RM0 . (B) Exclusion of species M, with (RF0 ,RM0 ) = (5, 4). (C) Coexistence
of both species F and M, with (RF0 ,RM0 ) = (3.5, 4). (D) Exclusion of species F, with (RF0 ,RM0 ) =

(.9, 2.5). The functions f and g are defined by f(x) =
[
q∗s
x + µr

µr+µs(x−1)q∗s

(
q∗r + µm

µm+µs(x−1)q∗s
q∗m

)]−1
,

g(x) =
(
q∗r + q∗m + q∗s

x

)−1
, and other model parameters are given by Table 1.

the pRBC rupture and of the merozoites release phenomenon [13].
By equality (4.4), we have shown that without any difference for the RBCs preferences, the general

Model (2.2) admits an optimisation principle based on R0. Therefore, in such configurations, Model (2.2)
is actually for a multistrains infection of the same species. Furthermore, the long-term coexistence of
different strains is not possible and the model exhibits a competitive exclusion principle, i.e., only the
strain with the highest R0 survives while the others go to extinction. This is in accordance with the
results in [11, 22, 40, 42, 45] for instance.

Our analysis suggests that the co-existence of Plasmodium species can be characterized as soon as
the basic reproduction numbers Rk0,s are known. E.g., the co-existence of P. Vivax and P. Malariae is
guarantee by the simple inequality

(
1 < RV0 < RM0

)
, Figure 4. For the co-infection model by P. Falci-

parum and P. Vivax, the persistence of both species at equilibrium is ensured by conditions (6.2)-(6.3).
However, based on the model’s parameters in Table 1, the condition (6.3) is almost always satisfied. Con-
sequently, the simpler condition

(
RF0 > RV0 > 1

)
can be a good approximation of (6.2)-(6.3) ensuring the

co-existence of both species at equilibrium (Figure 2A). Similarly, condition (6.4)-(6.5) for the co-existence
of P. Falciparum and P. Malariae can be simply approximate by

(
RM0 > RF0 > 1

)
, Figure 3.

Furthermore, the competitive advantage of a given species in mixed malaria infections within the host
is then determined by the RBCs age preference and the basic reproduction number of the individual
species. Species with a higher basic reproduction number, a wider age preference for RBCs and an earlier
age preference for RBCs will have a better competitive ability (i.e., either by exclusion of other species or
by coexistence with them). Indeed, for the FV-model, P. Vivax has wider age preference for reticulocytes
compared to P. Falciparum such that the former is associated with a broader region of competitive
ability in the plane RV0 -RF0 (Figure 2A). Similarly, P. Falciparum and P. Vivax have a broader region of
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Figure 4: Overview of the VM-model qualitative dynamics. (A) Possible equilibria of the VM-
model with respect to RV0 and RM0 . (B) Exclusion of species M, with (RV0 ,RM0 ) = (7, 4). (C) Coexistence
of both species V and M, with (RV0 ,RM0 ) = (4, 7). (D) Exclusion of species V, with (RV0 ,RM0 ) = (0.9, 4).
Other model parameters are given by Table 1.

better competitive ability, respectively, in the configurations of the FM-model (Figure 3A) and VM-model
(Figure 4A). Such competitive advantage, depending on the RBCs age preference and growing capacity,
is also pointed in [5] for the case of rodent malaria.

The general model formulation (2.2) allows considering a variety of Plasmodium species interactions
within the host. For example, it can be interesting to determine conditions for the co-existence of P.
Falciparum, P. Vivax and P. Malariae within the same host (the FVM-model). Such FVM-model is

obtained with the parasite preference targets matrix γ =

1 1 0
1 0 0
1 0 1

. By similar argument as for other

co-infection configurations, we find that evolutionary co-existence of the three species is guaranteed if the
following sufficient conditions hold

RM0 > RV0
∏
j=m,s

(
1 +

µr
µj

(RV0 − 1)

)
,

1 < RV0 < RF0 ≤ RV0 +RV0
µr
(
RV0 − 1

)
µm + µr

(
RV0 − 1

)(q∗m + q∗s).

(7.1)

Such co-existence evolutionary dynamics of the FVM-model is illustrated with RV0 = 1.2, RM0 = 1.01 ×

RV0
∏
j=m,s

(
1 +

µr
µj

(RV0 − 1)

)
≈ 25.4, and RF0 = 0.5×

(
2RV0 +RV0

µr
(
RV0 − 1

)
µm + µr

(
RV0 − 1

)(q∗m + q∗s)

)
≈ 1.8,

such that (7.1) is satisfied (Figure 5).
These Plasmodium species evolutionary coexixtence within the same host have important clinical and

public health implications. While there is little evidence to guide the treatment of mixed infections,
malaria treatment and vaccination targeted at one malaria species could affect the clinical epidemiology
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Figure 5: Coexistence of the three species F, V and M. Here we fix RV0 = 1.2, RM0 = 1.01 ×

RV0
∏
j=m,s

(
1 +

µr
µj

(RV0 − 1)

)
≈ 25.4, and RF0 = 0.5×

(
2RV0 +RV0

µr
(
RV0 − 1

)
µm + µr

(
RV0 − 1

)(q∗m + q∗s)

)
≈ 1.8,

such that (7.1) is satisfied. Other model parameters are given by Table 1.

of sympatric Plasmodium spp, see e.g. [23, 28, 37]. Therefore, identifying patients with mixed infections
is crucial for therapeutic decisions, prompt treatment, and effective patient management [10, 23, 33, 37,
39]. Our analysis suggest that quantifying the reproduction numbers Rk0,s of each species gives suitable
information on the potential co-existence of those species within the same host, and can then be helpful
to design appropriate treatment/control measures. Furthermore, the R0 aggregates all basic life-history
quantitative traits of pathogenicity (generally well characterized from a biological standpoint) into a single
fitness metric.

The model proposed here does not take into account immune-mediated parasite killing, which is a
potential limitation. Immunity can be considered to target merozoites, parasitized red blood cells and/or
immature gametocytes. However, here we do not explicitly model the gametocytes dynamics, and as
pointed in [13], immune-mediated parasite killing targeting merozoites has very little impact on the
overall model dynamics, probably because merozoites are only short-lived. Finally, immunity targeting
parasitized red blood cells raises the question of model parameterization, particularly within our age-
structured formulation.
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A Invasion process

A.1 Basic reproduction number

Let bk(t) be the density of newly produced merozoites at time t by the species k. Then, from (2.6) one
has

b(t) =

∫ ∞
0

rµ(a)p(t, a)da, ∀t ≥ 0.

Linearizing the Volterra formulation (3.3) at the parasite-free equilibrium, it comes

p(t, a) =


Π(a, a− t)p0(a− t) if t ≤ a,

Π(a, 0) diag(βu(t− a))γTR∗ if t > a.

From where together with the equality diag(βu(t− a))γTR∗ = diag(γTR∗)βu(t− a),

b(t) =

∫ t

0
rµ(a)Π(a, 0)diag(γTR∗)βu(t− a)da+

∫ +∞

t
rµ(a)Π(a, a− t)p0(a− t)da, ∀t ≥ 0.

On the other hand, it follows from the u-component of (2.6) that

u̇(t) = b(t)− µvu(t), t ≥ 0,
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that re-writes as

u(t) = e−µvtu(0) +

∫ t

0
e−µv(t−s)b(s)ds, ∀t ≥ 0.

As a consequence t→ b(t) satisfies the following renewal equation :

b(t) =

∫ t

0

∫ t−a

0
e−µv(t−a−s)rµ(a)Π(a, 0)diag(γTR∗)βb(s)dsda

+

∫ t

0
rµ(a)Π(a, 0)e−µv(t−a)diag(γTR∗)βu(0)da

+

∫ +∞

t
rµ(a)Π(a, a− t)p0(a− t)da

=

∫ t

0

[∫ t−s

0
e−µv(t−a−s)rµ(a)Π(a, 0)diag(γTR∗)βda

]
b(s)ds

+

∫ t

0
rµ(a)Π(a, 0)e−µv(t−a)diag(γTR∗)βu(0)da

+

∫ +∞

t
rµ(a)Π(a, a− t)p0(a− t)da.

Due to the above formulation, the basic reproduction number R0 is calculated as the spectral radius of
the diagonal matrix

M(R∗) :=

∫ +∞

0

[∫ l

0
e−µv(l−a)rµ(a)Π(a, 0)da

]
dl diag(γTR∗)β

which, by using Fubini’s theorem, is also given by

M(R∗) = µ−1
v r

∫ +∞

0
µ(a)Π(a, 0)da diag(γTR∗)β.

Therefore, the basic reproduction number Rk0 of species k is calculated as the k-th diagonal element of
M(R∗) that is

Rk0 =
rkβk
µv,k

∫ +∞

0
µk(a)Πk(a, 0)da

∑
j∈J

γkjR
∗
j

=
βkrkαke

−µ0τk

µv,k(αk + µ0)

∑
j∈J

γkjR
∗
j .

A.2 Invasion fitness

Let us assume that System (2.2), composed only by the k-th species, reaches the equilibrium Ēk =(
R̄kr , R̄

k
m, R̄

k
s , p̄k(·), ūk

)
before a new species, let say l, occurs. Note that Ēk is the environmental feedback

of the resident species k. By Theorem 5.2, we have ūk > 0 and
R̄kj = R∗j

∏j
i=1

µi
µi+γki βkūk

,

p̄k(·) = βkūkΠ(·, 0) 1
Rk0

∑3
j=1 γ

k
jR
∗
j ,

1 = Ψk
∑
j∈J

γkjR
∗
j

∏j
i=1

µi
µi+γki βkūk

.

We introduce a small perturbation in (2.2), due to the species l, so that the evolution of the system
reads as follows: Rj(t) = R̄kj +Bj(t) and for all z ∈ {1, · · · , n},

pz(t, a) = p̄k(a)δzk + g(t, a)δzl and uz(t) = ūkδ
z
k + h(t)δzl ,
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where δ·· is the Kronecker delta. Therefore, the perturbations g and h are governed by the below linearized
system of equations around Ēk

g(t, 0) = βlh(t)
∑
j∈J

γljR̄
k
j ,

(∂t + ∂a) g(t, a) = − (µl(a) + µ0) g(t, a),

ḣ(t) =
∫∞

0 rlµk(a)g(t, a)da− µv,lh(t).

(A.1)

Denoting by blk(t) the density of newly produced merozoites at time t by the l-species in a resident
population of k-species, a similar argument as in Section A.1 gives

blk(t) =

∫ t

0

∫ t−s

0
e−µv,l(t−a−s)βlrlµl(a)Πl(a, 0)

∑
j∈J

γljR̄
k
j da

 blk(s)ds
+

∫ t

0
βlrlµl(a)Πl(a, 0)e−µv,l(t−a)

∑
j∈J

γljR̄
k
jh(0)da+

∫ +∞

t
rlµl(a)Πl(a, a− t)g(0, a− t)da.

From where, the number of merozoites, R(l, Ēk), of the l-species in the resident population of k-species
is given by

R(l, Ēk) =

∫ +∞

0

[∫ s

0
e−µv,l(s−a)βlrlµl(a)Πl(a, 0)da

]
ds
∑
j∈J

γljR̄
k
j

=
βlrlαle

−µ0τl

µv,l(αl + µ0)

∑
j∈J

γljR̄
k
j = Ψl

∑
j∈J

γljR
∗
j

j∏
i=1

µi

µi + γki βkūk
.

Then, the invasion fitness f(k, l) of the new l-species in a resident population of k-species is given by

f(k, l) =R(l, Ēk)− 1 = Ψl

∑
j∈J

γljR
∗
j

j∏
i=1

µi

µi + γki βkūk
− 1

=Ψl

∑
j∈J

γljR
∗
j

j∏
i=1

µi

µi + γki βkūk
−Ψk

∑
j∈J

γkjR
∗
j

j∏
i=1

µi

µi + γki βkūk

=
∑
j∈J

(
γljΨl − γkj Ψk

)
R∗j

j∏
i=1

µi

µi + γki βkūk
.

B Proof of Theorem 6.1

For Item 1., by Theorem 5.2, we first conclude that ūV = 0 and p̄V ≡ 0. Since S ′ = {F}, by Theorem
5.2, ūF > 0. Furthermore, we have x̄r = βF ūF = x̄m = x̄s and x̄r is a positive solution of

1

RF0
(R∗r +R∗m +R∗s) =

µr
µr + x̄r

R∗r +
µr

µr + x̄r

µm
µm + x̄r

R∗m +
µr

µr + x̄r

µm
µm + x̄r

µs
µs + x̄r

R∗s. (B.1)

Let x̄r → f(x̄r) be defined as the right hand side of (B.1). Notice that f is a continous decreasing map
on [0,+∞) with

f(0) = R∗r +R∗m +R∗s >
1

RF0
(R∗r +R∗m +R∗s)

and f(+∞) = 0. Therefore, there exists a unique x̄r > 0, solution of (B.1).
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For Item 2., by Theorem 5.2, we first conclude that ūF = 0 and p̄F ≡ 0. Since S ′ = {V }, Theorem
5.2 gives ūV > 0. Furthermore, we have x̄r = βV ūV and x̄m = x̄s = 0 and x̄r > 0 is a solution of

1

RV0
R∗r =

µr
µr + x̄r

R∗r .

Therefore, we have x̄r = βV ūV = µr(RV0 − 1). By Lemma 5.1, we have

p̄V (a) =
1

RV0
ΠV (a, 0)βV ūVR

∗
r =

µr(RV0 − 1)

RV0
ΠV (a, 0)R∗r , ∀a ≥ 0,

and

R̄r =
µr

µr + x̄r
R∗r =

1

RV0
R∗r .

Again by Lemma 5.1, it comes

R̄m =
µr

µr + x̄r

µm
µm + x̄m

R∗m =
µr

µr + x̄r
R∗m =

1

RV0
R∗m

and

R̄s =
µr

µr + x̄r

µm
µm + x̄m

µs
µs + x̄s

R∗s =
µr

µr + x̄r
R∗s =

1

RV0
R∗s.

Finally for Item 3., Theorem 5.2 ensures that there exists a co-existence equilibrium if and only if
there exists ūF > 0, ūV > 0 such that

x̄r = βF ūF + βV ūV and x̄m = βF ūF = x̄s

satisfy the following system
1

RF0
(R∗r +R∗m +R∗s) =

µr
µr + x̄r

R∗r +
µr

µr + x̄r

µm
µm + x̄m

R∗m +
µr

µr + x̄r

µm
µm + x̄m

µs
µs + x̄s

R∗s,

1

RV0
R∗r =

µr
µr + x̄r

R∗r .

Therefore, there exists a co-existence equilibrium if and only if there exist uF > 0, uV > 0 such that R∗r +R∗m +R∗s =
RF0
RV0

[
R∗r +

µm
µm + βF ūF

R∗m +
µm

µm + βF ūF

µs
µs + βF ūF

R∗s

]
,

βF ūF + βV ūV = µr
(
RV0 − 1

)
.

The map

x→ f(x) =
RF0
RV0

[
R∗r +

µm
µm + x

R∗m +
µm

µm + x

µs
µs + x

R∗s

]
is continuous and decreasing in [0,+∞). Thus, there exists a unique solution ūF > 0, ūV > 0 and only if
RV0 > 1 and

f(µr
(
RV0 − 1

)
) < R∗r +R∗m +R∗s < f(0),

that is 
R∗r +R∗m +R∗s >

RF0
RV0

[
R∗r +

µm

µm + µr
(
RV0 − 1

) (R∗m +
µs

µs + µr
(
RV0 − 1

)R∗s
)]

,

R∗r +R∗m +R∗s <
RF0
RV0

[R∗r +R∗m +R∗s] .

The proof is complete since the second inequality of the above system holds true if and only if
RF0
RV0

> 1.
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