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A B S T R A C T

The amount and spatial distribution of forest aboveground biomass (AGB) were estimated using a range of
regionally developed methods using Earth Observation data for Poland, Sweden and regions in Indonesia
(Kalimantan), Mexico (Central Mexico and Yucatan peninsula), and South Africa (Eastern provinces) for the year
2010. These regions are representative of numerous forest biomes and biomass levels globally, from South
African woodlands and savannas to the humid tropical forest of Kalimantan. AGB retrieval in each region relied
on different sources of reference data, including forest inventory plot data and airborne LiDAR observations, and
used a range of retrieval algorithms. This is the widest inter-comparison of regional-to-national AGB maps to
date in terms of area, forest types, input datasets, and retrieval methods. The accuracy assessment of all regional
maps using independent field data or LiDAR AGB maps resulted in an overall root mean square error (RMSE)
ranging from 10 t ha−1 to 55 t ha−1 (37% to 67% relative RMSE), and an overall bias ranging from −1 t ha−1 to
+5 t ha−1 at pixel level. The regional maps showed better agreement with field data than previously developed
and widely used pan-tropical or northern hemisphere datasets. The comparison of accuracy assessments showed
commonalities in error structures despite the variety of methods, input data, and forest biomes. All regional
retrievals resulted in overestimation (up to 63 t ha−1) in the lower AGB classes, and underestimation (up to 85 t
ha−1) in the higher AGB classes. Parametric model-based algorithms present advantages due to their low
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demand on in situ data compared to non-parametric algorithms, but there is a need for datasets and retrieval
methods that can overcome the biases at both ends of the AGB range. The outcomes of this study should be
considered when developing algorithms to estimate forest biomass at continental to global scale level.

1. Introduction

1.1. Background

Forests cover around one third of the Earth’s land surface, are an
essential socio-cultural element of modern society, support biodiversity
and influence the climate system via coupled carbon-water-energy cy-
cles (Bonan, 2008). Quantifying forest aboveground woody biomass
(AGB), i.e. the amount of woody matter within a forest, has profound
social and economic importance, since it is a source of materials and
energy for direct human use, and its structure and temporal dynamics
exert substantial influence on the functioning of terrestrial ecosystems,
with direct impacts on biodiversity, as well as on the carbon and energy
cycles and consequently the whole Earth system (e.g. Bonan, 2008; Le
Quéré et al., 2018; Pan et al., 2011). As such, AGB can be used to
evaluate the dynamics of global vegetation and Earth system models
(e.g. Thurner et al., 2017; Carvalhais et al., 2014), was recognised by
the Global Climate Observing System (GCOS) as an Essential Climate
Variable (ECV) (Bojinski et al., 2014), and plays an important role in
several essential biodiversity variables (EBV) (Pereira et al., 2013).
However, quantification of AGB still presents a scientific challenge with
significant implications for our current knowledge about the Earth
system (Pan et al., 2011; Le Quéré et al., 2018).

Knowledge of the spatial distribution of forest AGB is typically de-
rived from ground measurements collected by national forest in-
ventories. From these, regional- to national-scale summary data are
generated for the FAO’s quinquennial Global Forest Resource
Assessment (FRA) reports (FAO, 2005, 2010; FAO, 2015), aiming at
giving a global portrait of biomass stocks and their changes in time.
Vast areas covered by forests mean that ground-based forest inventories
need a large amount of resources to provide accurate information on
the extent, spatial distribution and dynamics of forest AGB. However,
forest inventory data in developing countries can be fairly inaccurate
(Saatchi and Moghaddam, 2000) and often many years out of date
(Shvidenko and Schepaschenko, 2014). A review of the country FRA
reports (FAO, 2010) showed that 45 countries (i.e. around 20%) in-
dicated high quality for the reference data used (mostly located in
Europe and North America), while 171 did not report on quality (most
African and Asian countries). In addition, forest inventory data are not
always comparable and biomass estimates may be biased due to dif-
fering national forest definitions and differences in methods used to
produce the estimates, such as the choice of the minimum tree diameter
sampled (Searle and Chen, 2017) and plot size (Réjou-Méchain et al.,
2014). The only practical approach for consistent global or regional
woody biomass estimation therefore lies in systematic use of Earth
Observation (EO) data, either in parameterised model-based ap-
proaches or in combination with high-quality reference data. Satellite
data have long been used for forest cover mapping, clear-cut or burnt
area monitoring and detection of disturbances (Hansen et al., 2013;
Healey et al., 2005; Fraser and Li, 2002; Rignot et al., 1997). However,
without biomass information this is insufficient to quantify the role of
forests in the global carbon and energy cycles and other biogeochemical
cycles. In addition, financial mechanisms aiming to reduce emissions
and enhance carbon stocks, such as the Reducing Emissions from De-
forestation and Forest Degradation (REDD+) initiative and carbon
trading schemes, require credible and consistent measurement, re-
porting and verification (MRV) systems that are spatially explicit with a
wall-to-wall extension and provide a full carbon account of forest
ecosystems (Steffen et al., 1998).

1.2. Current status of biomass estimation from space

Studies aiming at wall-to-wall estimation of AGB at regional and
global scale have used passive optical, active or passive microwave, and
LiDAR data obtained from Earth Observation space platforms either
stand-alone or in synergy (e.g. Saatchi et al., 2011; Baccini et al., 2012;
Thurner et al., 2014; Gallaun et al., 2010; Hu et al., 2016, Liu et al.,
2015). Multispectral optical imagery contains information on the pho-
tosynthetic parts of vegetation rich in chlorophyll, while microwave
active sensors, such as Synthetic Aperture Radar (SAR), contain in-
formation on the dielectric (essentially moisture content) and structural
properties of objects, soil surface and plants. The main advantage of
microwave radar sensors is that, unlike optical imagery, radar images
are unaffected by cloud cover, allowing usable image acquisitions even
in the cloudiest places on Earth. Spaceborne LiDAR sensors, on the
other hand, give a sampled retrieval pattern along the orbit and to
measure elapsed time between emitted and received light pulses which
can be used to estimate forest canopy height at each footprint location.
However, these datasets present different degrees of saturation to AGB,
where saturation refers to the AGB level at which the sensitivity of the
signal (i.e. backscatter, reflectance) becomes too small to be measur-
able, or where the signal fails to penetrate the canopy (Fagan and
DeFries, 2009). This is particularly relevant for dense tropical forest,
which is a key biome where accurate biomass information is needed.

The search for consistent approaches over forested areas in the
tropics prompted the use of satellite data calibrated against in situ
biomass, with special emphasis on forest height estimates derived from
the first spaceborne LiDAR, the Geoscience Laser Altimeter System
(GLAS) on board the Ice, Cloud and land Elevation Satellite (ICESat)
(Lefsky, 2010). This led to the development of two pan-tropical biomass
maps (Saatchi et al., 2011; Baccini et al., 2012) at reporting grid size of
1 km and 500m respectively. The former reported a relative RMSE at
pixel level of approximately 30%, while the latter reported similar
figures in terms of RMSE (38–50 t ha−1). These maps exhibited sig-
nificant regional differences, although these decreased when biomass
estimates were aggregated to country or biome scale (Mitchard et al.,
2013, 2014; Rodriguez-Veiga et al., 2016).

Avitabile et al. (2016) fused Saatchi et al. (2011), and Baccini et al.
(2012) datasets into a 1 km pan-tropical map using a bias-removal
approach by incorporating additional field observations and locally-
calibrated high-resolution biomass maps. The bias in the overall mean
AGB was reduced to+ 5 t ha−1, compared with the biases in the input
maps of+ 21 t ha−1 and+28 t ha−1 respectively.

Using very long time series of C-band radar data from Envisat ASAR,
Santoro et al. (2015a) produced a Growing Stock Volume (GSV) map
for the northern hemisphere at 1 km spatial resolution. The relative
RMSE of the retrievals at provincial level was between 12% and 45%
(average 29%) when compared to National Forest Inventory data from
the major forested countries. This map provided the basis for a carbon
stock map of the boreal and temperate forests (Thurner et al., 2014).

A first composite global dataset of forest AGB was developed within
the European Commission-funded GEO-CARBON project. The product
merged, at a pixel size of 0.01°, the Saatchi et al. (2011), and Baccini
et al. (2012) pan-tropical datasets with the boreal and temperate da-
taset (Santoro et al., 2015a; Thurner et al., 2014) and used the IPCC
Tier 1 biomass values for the few remaining areas not covered by these
datasets (Avitabile et al., 2014, 2016). This exercise, despite being
hindered by limitations in the input EO data used by individual biomass
maps, approximations in the retrieval approaches and the fact that the
individual maps were based on data acquired at different times between
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2000 and 2010, is still the most consistent global AGB map to date. Hu
et al. (2016) also published a global AGB map at 1 km resolution de-
rived using GLAS metrics interpolations, MODIS NDVI and Land Cover
products and the SRTM DEM, together with climate data. However, the
dataset used to calibrate the map consisted of 3348 forest inventory
plots of different sizes (including very small plots of 0.05 ha). The ca-
libration dataset was also geographically biased as the plots were
mostly located in continental China (> 55% of plots) and Brazil (23%
of plots), while almost no plots were used from Europe, North America,
Australia, and Africa. These issues might explain the large differences
observed in this map when compared to previous global and pan-tro-
pical maps (Rodríguez-Veiga et al., 2017; Hu et al., 2016).

Liu et al. (2015) used vegetation optical depth (VOD) retrieved from
several passive microwave satellite sensors to map time series of AGB
for all vegetation types globally over the period 1993–2012 at 27.5 km
resolution. Unfortunately, this approach was calibrated using the
Saatchi et al. (2011) map, which added the uncertainties from this
product to the final map, and make it difficult to validate due to the
coarse resolution of the product.

At continental scale, MODIS data and forest inventory plots have
been used to map AGB over Europe (Gallaun et al., 2010) at 500m
resolution, and Africa (Baccini et al., 2008) at 1 km resolution. The
woodlands and savannas of Africa were also mapped at 25m spatial
resolution using ALOS PALSAR data (Bouvet et al., 2018).

At national and regional scales, several examples have been pub-
lished, such as for Mexico (Rodriguez-Veiga et al., 2016; Cartus et al.,
2014), Canada (Beaudoin et al., 2014), Cameroon (Mermoz et al.,
2014), China (Yin et al., 2015; Piao et al., 2005; Liu et al., 2012), the
Amazon basin (Saatchi et al., 2007), Russia (Houghton et al., 2007),
USA (Kellndorfer et al., 2011) and Colombia (Anaya et al., 2009), with
spatial resolutions ranging from 30m to 1 km and in most cases using a
combination of optical and SAR imagery. Regional approaches use field
AGB measurements to calibrate the algorithms, often complemented
with airborne LiDAR datasets (Asner et al., 2014, 2013; Perrin et al.,
2016; Lu et al., 2012). These regionally-calibrated products can use a
wider variety of datasets, as well as regional expertise, to provide the
best possible estimates of biomass. In contrast, global, pantropical or
continental products suffer from limitations in the amount and re-
presentativeness of data available for calibration and validation. Pan-
tropical maps from Saatchi et al. (2011), and Baccini et al. (2012)
circumvented the paucity of ground data for calibrating their non-
parametric machine learning approaches at large scale by using AGB
estimated from LiDAR footprints from the space-borne ICESAT-GLAS
instrument. However, they still used a fair amount of ground-based
values of AGB to calibrate the relationship between AGB and LiDAR
footprint metrics. An algorithm that avoids the use of in situ data for
model training is the BIOMASAR algorithm (Santoro et al., 2015a,
2011; Cartus et al., 2012); the algorithm is, however, constrained with
information on maximum biomass which are derived from inventory
data, regional and national statistics, as well as remote sensing-based
biomass estimates (Santoro et al., 2015a, 2011; Cartus et al., 2012).
Inaccurate data sources ultimately translate into local estimation biases
(Santoro et al., 2011).

The long list of AGB datasets presented above highlights that bio-
mass mapping methods are largely driven by data availability and are
scale-dependent. National and regional products can be generated by
different parametric and non-parametric approaches. Non-parametric
methods, such as machine learning techniques, usually out-perform
parametric approaches (Evans and Cushman, 2009) and are preferred at
national and regional level if enough ground data are available. At
global or continental level the lack of representative in situ measure-
ments is the motivation for using physically-based approaches that re-
quire few ground data (if any).

This paper describes a diverse set of regional approaches to AGB
mapping in different biomes carried out during the European Space
Agency (ESA) Data User Element GlobBiomass project (GlobBiomass,

2015; Schmullius et al., 2015; Balzter et al., 2016; Schmullius, 2017).
This study aimed to produce spatially consistent and accurate maps of
AGB, using all available EO data and regional knowledge with the
objective of supporting the development of global biomass retrieval
algorithms and the assessment of thereof resulting estimates. These
maps can be used for direct estimation of carbon emission factors or
emissions contributing to greenhouse gas inventories. Further aims
were: i) to better understand the strengths and weaknesses of existing
methods to map AGB using available EO datasets, ii) to establish how
differences in forest structure and reference data affect methods to in-
vert EO data to AGB. Five regional AGB maps derived using reference
data and EO imagery and various retrieval methods were generated for
the year 2010 at 25–100m spatial resolution. The regions were selected
to encompass a wide range of biomes and forest types. Each region was
at least 300,000 km2 in size; it was either nationwide for Poland
(temperate forest) and Sweden (boreal forest), or covered a substantial
part of Indonesia (Kalimantan, tropical forest), Mexico (the Yucatan
peninsula & Central Mexico, tropical forest-woodland transition), and
South Africa (Eastern forest belt, subtropical dry forest). All maps were
evaluated quantitatively against an independent dataset, and qualita-
tively by local experts. They were also compared with existing con-
tinental scale AGB maps (Saatchi et al., 2011; Baccini et al., 2012;
Thurner et al., 2014) where these overlapped the study areas.

2. Study regions

The study regions cover the most common range of woody AGB
from low (<50 t ha−1) to high (> 300 t ha−1) and are representative
of major climates and forested biomes, including boreal, temperate, dry
tropical savanna and wet tropics (Fig. 1).

Sweden is mostly situated in the boreal region, while Poland lies in
the temperate forest zone. Sweden and Poland occupy approximately
447,000 km² and 313,000 km², of which 60% and 30% are forests,
respectively. Coniferous forests predominate, though broadleaved for-
ests occupy a significant area in Poland.

The study areas in Central Mexico, the Yucatan peninsula and
Kalimantan represent a wide variety of tropical and subtropical forest

Fig. 1. Mean annual precipitation vs. mean annual temperature (Fick and
Hijmans (2017) for global forests and study sites sampled at 0.5 ° grid scale. The
climate space is divided into global terrestrial biomes (Whittaker, 1962, 1970).
The global distribution of forests is according to the Global Land Cover
(GLC2000) map (Bartholomé and Belward, 2005).
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ecosystems. The Yucatan peninsula study area with approximately
160,000 km2 comprises a mix of tropical moist, tropical dry forests and
mangroves, whilst an area of 353,000 km2 in Central Mexico covers
subtropical coniferous forest, tropical dry forest, tropical moist forest,
xeric shrublands, and includes some of the forests with the highest
biomass density in Mexico (the Oyamel forest). The Indonesian part of
Borneo (Kalimantan) covers 73% of Borneo’s land mass (approximately
540,000 km²). The ecosystems of Kalimantan include different forest
types: mangrove forests, peat swamp and freshwater swamp forests, the
most extensive extent of heath forests in Southeast Asia, lowland dip-
terocarp forests, ironwood forests, forests on limestone and ultrabasic
soils, hill dipterocarp forests and various montane formations
(MacKinnon et al., 1996).

The South African study area of approximately 334,000 km2 is si-
tuated along a 1300 km North-South transect running to the East of the
country next to Zimbabwe, Mozambique, Swaziland, and the Indian
Ocean, and is dominated by forested landscape. This area contains
various forest types: savanna (68% of the area), commercial planta-
tions, and scattered remnants of indigenous dense forests (Mucina and
Rutherford, 2006).

3. Data

Remote sensing imagery from different airborne and satellite sen-
sors (optical, LiDAR and SAR) were utilized in this study (Table 1).
Except for Sweden, the main dataset used was the freely available ALOS
PALSAR 2009 and 2010 mosaics of gamma nought (γ° = σ°/cosθ,
where σ° is the radar backscattering coefficient and cosθ is the local
incidence angle) produced by JAXA at 25m pixel spacing in HH and HV
polarizations (Shimada et al., 2014). The ALOS PALSAR mosaics are
processed according to a standard protocol (Shimada et al., 2014)
which involves calibration, multi-looking (16 looks), projection, ortho-
rectification and slope correction using the Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model (DEM) data. A destriping
process (Shimada and Isoguchi, 2002) was also applied to try and
equalise intensity differences between neighbouring strips normally
attributed to seasonal and daily differences in soil moisture conditions.
As part of our methods, if significant strip effects still remained locally,
substitution by another year’s mosaic or histogram matching of the
problematic strip with neighbouring strips was performed. A multi-
temporal multichannel filter (Quegan and Yu, 2001) using a 7× 7
window was also applied to all the annual mosaics. At this point, the
remaining speckle effect was considered negligible.

Landsat 5 and 7 ETM+Surface Reflectance (SR) imagery computed
by the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) method (http://ledaps.nascom.nasa.gov/) (Masek et al.,
2006) were used to generate annual (± 1 yr) median value composites
from good quality pixels for all spectral bands in Mexico and Poland.
Landsat Percent Tree Cover (PTC) products (Hansen et al., 2013; Sexton
et al., 2013) for the year 2010 were acquired from USGS Land Cover
Institute (https://landcover.usgs.gov/), and the Global Land Cover Fa-
cility (http://glcf.umd.edu/) for Mexico and Eastern South Africa, re-
spectively. Additionally, freely available 30m spatial resolution eleva-
tion data from the Shuttle Radar Topography Mission (void-filled SRTM
Plus NASA V3) was obtained for Mexico, Eastern South Africa and
Kalimantan from the USGS Earth Explorer repository (http://
earthexplorer.usgs.gov/). SPOT-4 High Resolution Visible Infrared
(HRVIR) and SPOT-5 High Resolution Geometric (HRG) data were ac-
quired between 2008 and 2010 (approximately 80% from 2010) for
Sweden; all images were geometrically precision-corrected to the
Swedish National Grid, and the pixel size for all bands was resampled to
25m using cubic convolution.

The accuracies of the resulting maps were evaluated using either
AGB forest inventory plots or airborne LiDAR-derived AGB maps, col-
lected and produced according to different protocols (Table 1), and
with characteristics specific to each region. Airborne LiDAR-derived Ta
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AGB maps were used in Kalimantan for calibration and validation, but
only for validation in Eastern South Africa (Naidoo et al., 2015). A
subset of LiDAR-derived AGB maps or the field data (15–30%) was
excluded in each region and used as an independent validation dataset.
The subset was extracted by stratifying the reference dataset into dif-
ferent AGB classes in order to have a similar distribution of AGB in both
the calibration and validation datasets.

4. Methods

4.1. Biomass estimation methods

Both parametric and non-parametric methods were used to predict
AGB. These can be further grouped into data-driven and model-based
methods. The method for each region was selected based on data
availability and the expertise of each regional research group. Teams
working in areas with forest inventory and other in situ data of suffi-
cient number and quality for calibration purposes used non-parametric
machine learning algorithms, while areas with insufficient in situ data
used parametric models, such as model-based regression, and when
available, complemented the ground observations with airborne LiDAR
biomass predictions (Table 1).

The probabilistic outputs from the non-parametric MaxEnt algo-
rithm (Phillips et al., 2006, 2004) were used for Mexico (Rodriguez-
Veiga et al., 2016). Machine learning algorithms Random Forest
(Breiman, 2001; Cartus et al., 2014) and a k-Nearest Neighbours (kNN)
(Tomppo et al., 2008; Reese et al., 2003) were applied in Poland and
Sweden respectively, both requiring large amounts of field plots for
calibration. The parametric method used in Kalimantan used a two-step
calibration approach where field plots are first used to calibrate air-
borne LiDAR measurements covering a larger area, and these were then
used to calibrate a multivariate linear regression model with back-
scatter intensity and texture parameters from the SAR imagery as pre-
dictors (Englhart et al., 2011, 2012). Bayesian inversion of a semi-

empirical model (the water cloud model - WCM) was used to relate
PALSAR backscatter to AGB in South Africa (Bouvet et al., 2018). This
method relies on a small number of at least 1 ha in situ AGB plots,
ancillary data and simulations from the Multi-static Interferometric and
Polarimetric Electromagnetic model for Remote Sensing (MIPERS)
(Villard and Borderies, 2007; Villard, 2009) for parameterization.

4.2. Accuracy assessment methods

A standardised accuracy assessment was carried out for all regional
AGB maps by making use of the independent reference data. The as-
sessment was based on stratifying the reference AGB into contiguous
ranges of values and quantifying the estimation bias, the standard de-
viation of the error and the Root Mean Square Error (RMSE) within
each range. The selected ranges varied with test site, depending on the
maximum value of biomass for the site and the need to have a sufficient
number of reference data within each range.

In more detail, we have a set of reference AGB values, Bref
i( ) (from in

situ or LiDAR data), and their estimates, Best
i( ), where the reference values

are restricted to a given range, < <B B Bref
i

1
( )

2. For this range we define
the bias, b, as the average value of the error −B Best

i
ref

i( ) ( ) , and we also
calculate the standard deviation (SD) of the errors, σ. The RMSE in the
given range is then given by +σ b2 2 , and the relative RMSE as

= ×Rel RMSE RMSE B. / 100ref . Also of interest is the Coefficient of
Variation (CV) of the error, given by σ b/ . When the CV exceeds 1, the
RMSE is dominated by random error, but when it is less than 1 the
dominant error source is bias in the estimator. In particular, if CV=10,
then bias makes up 10% of the RMSE, while if CV=0.48 it contributes
90%.

5. Results

The constructed AGB maps for the year 2010 were generated with a
pixel size of 25m for Mexico-Yucatan Peninsula, Central Mexico,

Fig. 2. Above-ground biomass (AGB) maps for a) the Mexico-Yucatan Peninsula, b) Indonesia-Kalimantan, c) Eastern South Africa, d) Central Mexico, e) Sweden, and
f) Poland. Warmer colours indicate higher AGB.
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Fig. 3. AGB histograms per forest biome (Olson et al., 2001) derived from the combined regional maps in this study (light grey) aggregated to 1 km spatial resolution
compared to the AGB histogram from the GEO-CARBON global map (dark grey) within the study areas. Flooded grasslands and savannas biome is not included in this
analysis due to the small amount of data available from the study regions, while the temperate grasslands, savannas, and shrublands biome was not encountered in
the study regions.
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Eastern South Africa, Sweden, and Poland, and 100m for Indonesia-
Kalimantan (Fig. 2).

The regional maps cover the whole range of expected woody AGB
densities from low to high biomass. The histogram of the combined
regional maps was comparable to the histogram of AGB extracted from
the global AGB map of the GEO-CARBON project in the different forest
biomes (Olson et al., 2001) covered by this study (Fig. 3). The most
substantial differences are on the tropical and subtropical grasslands,
savannas and shrublands, and in the montane grasslands and shrub-
lands biomes, where the GEO-CARBON map showed a strongly skewed
histogram towards low AGB (<50 t ha−1) and very low frequency of
higher AGB classes, while this study showed a more distributed de-
clining trend from low to high AGB classes in those biomes. Ad-
ditionally, the GEO-CARBON map shows the same skewed histogram
towards low AGB in the Mediterranean forests, woodlands, and scrub
biome, while this study’s histogram showed to be slightly skewed to-
wards higher AGB (50-100 t ha−1). In the tropical and subtropical moist
broadleaf forests biome histograms are similarly skewed towards high
AGB, but GEO-CARBON’s histogram showed higher frequency at the
highest AGB range (> 250 t ha−1).

The accuracies of the regional AGB maps were assessed using the
independent validation datasets (Table 2, Figs. 4 and Fig. 5). LiDAR
AGB datasets were aggregated to the corresponding satellite map re-
solution for validation, while plot datasets used the average value of the
pixels within the plot boundaries.

The accuracy analysis reveals several commonalities but also some
important differences between study regions. All regions over-estimate
AGB for the lower AGB ranges and, with the exception of Eastern S.
Africa which covers a very limited biomass range, under-estimate in the
upper ranges, especially in the highest AGB class. The bias in the lowest
AGB class is substantial in absolute terms for all regions except Central
Mexico and Eastern S. Africa, but even in these regions it has values that
are 47% and 40% of the mid-range values (i.e., 15 and 10 t ha−1), re-
spectively. For most regions the bias decreases in absolute value before
increasing again. This is expected for regression-based approaches,
which ensure that the regression curve passes through the point defined
by mean of the reference and estimated data, but occurs for all
methods.

There are striking differences in the balance between bias and
random error in the RMSE, as is clear from Table 2 and Fig. 4. In Ka-
limantan, bias and random error are of similar magnitude except in the
middle AGB ranges, where random error dominates. For Central Mexico
and Eastern S. Africa, random error is dominant except for the highest
AGB class in Central Mexico, where it is comparable to bias. Note that
in these two regions the bias is roughly constant across all ranges (ex-
cept for the highest range in Central Mexico) so it decreases sharply
relative to the mid-range values. In the Yucatan Peninsula and Sweden,
bias and random error are comparable in the lower biomass ranges, the
middle ranges are dominated by random error, while bias is the largest
component of error in the highest AGB ranges. For Poland, bias is by the

Table 2
Accuracy assessment of the regional AGB maps stratified by reference AGB range: Sample size (N), Root Mean Square Error (RMSE), Relative RMSE (Rel. RMSE),
Standard Deviation of the error (SD), Bias, and Coefficient of Variation (CV) of the error (when CV > 1 the random error dominates, when CV < 1 the bias does).

Study region Reference AGB range (t ha−1) N RMSE
(t ha−1)

Rel. RMSE
(%)

Bias
(t ha−1)

SD
(t ha−1)

CV

Indonesia Kalimantan 0-50 141 54 415 37 39 1.1
50-100 21 71 91 52 50 1.0
100-150 38 66 50 39 54 1.4
150-200 117 42 24 16 39 2.4
> 200 184 60 24 −40 44 1.1
Overall 501 55 37 4 55 13.8

Central Mexico 0-30 83 21 159 7 19 2.7
30-60 48 30 69 8 29 3.6
60-90 25 34 47 −3 34 11.3
90-120 12 42 40 2 42 21.0
120-150 6 24 19 4 24 6.0
> 150 2 64 32 −41 49 1.2
Overall 176 28 67 5 28 5.6

Mexico Yucatan peninsula 0-30 130 33 237 21 26 1.2
30-60 109 33 75 15 30 2.0
60-90 111 23 31 6 22 3.7
90-120 85 25 24 −14 21 1.5
120-150 54 46 34 −42 17 0.4
> 150 35 67 40 −65 16 0.2
Overall 524 35 50 −1 35 35.0

Eastern South Africa 0-20 2,216 8 100 4 8 2.0
20-40 734 14 48 7 11 1.6
40-60 233 15 33 7 11 1.6
> 80 5 7 11 3 5 1.7
Overall 3188 10 63 5 9 1.8

Sweden 0-30 901 38 271 30 23 0.8
30-60 871 35 76 24 25 1.0
60-90 850 29 39 12 26 2.2
90-120 606 29 28 −6 29 4.8
120-150 361 43 32 −29 32 1.1
150-180 245 61 37 −50 35 0.7
> 180 155 82 42 −74 36 0.5
Overall 3989 32 39 −13 29 2.2

Poland 0-50 13 67 258 63 23 0.4
50-100 19 54 67 49 24 0.5
100-150 17 26 20 8 25 3.1
150-200 16 32 18 −21 25 1.2
200-250 11 73 30 −70 20 0.3
> 250 8 86 32 −85 16 0.2
Overall 84 54 39 3 54 18.0
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Fig. 4. Scatterplots of average predicted AGB versus average reference AGB per reference AGB range. Error bars indicate the standard deviation (random error) of the
predicted AGB per reference AGB range. The dotted line indicates a fitting curve to the calculated points (second order polynomial) and the dashed line corresponds
to the y= x line. If the error bars do not overlap the y= x line then bias is the dominant error in that AGB range.
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Fig. 5. Distribution of a) bias, b) relative root mean square error, c) relative RMSE, and d) coefficient of variation of the error across the reference AGB range for all
regional maps.

Fig. 6. Boxplots by region of reference and predicted
AGB in this study, Baccini et al. (2012); Saatchi et al.
(2011); Avitabile et al. (2016) and Thurner et al.
(2014). The central mark of each box represents the
median of the distribution, while the lower and upper
limits of the box represent the 25th and 75th percen-
tiles. The whiskers cover the range of extreme values.
Outliers are not included. All the maps were ag-
gregated to 1 km spatial resolution.
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far the dominant error source apart from the two middle ranges of AGB.
It is also noticeable that the SD of the error does not vary greatly

across the different AGB ranges for each region, though is markedly
different between regions (see Table 2 and Fig. 4). Hence, roughly
speaking, the random error is not strongly dependent on the true AGB,
and its value relative to the true AGB decreases as AGB increases
(Fig. 5). It can also be seen that the contribution of the random error to
the RMSE increases as AGB increases up to approximately 100 t ha−1,
then reduces sharply with increasing AGB (Fig. 5).

The values given for the overall bias in each region are close to zero
(Table 2). This implies that all the methods cause the fitting curve (or
its equivalent) to go through the point defined by the averages of the
reference and estimated data, in common with normal regression
methods which force this to happen. This explains why the overall
RMSE and SD are nearly the same, since SD2 = (RMSE)2 – (overall
bias)2 and the overall bias is constrained to be nearly zero (Table 2).

Previously published pan-tropical (Saatchi et al., 2011; Baccini
et al., 2012; Avitabile et al., 2016) and northern hemisphere (Thurner
et al., 2014) mapping studies show AGB distributions and spatial pat-
terns that are different from those for the regional maps from this study
and the independent validation data (Figs. 6 and 7). In particular, in
Mexico the distributions from Baccini et al. (2012) are shifted towards
much higher values than is found in the present study and the valida-
tion data.

Similar estimates can be found in areas with high AGB levels such as
Kalimantan, but they deviate from the reference AGB in areas of lower
AGB such as Eastern South Africa, Yucatan and Central Mexico. In
Central Mexico, the Saatchi et al. (2011) AGB distribution is similar to
those in our study and the validation data, but for the Yucatan pe-
ninsula and Eastern South Africa it is shifted towards higher values
while for Kalimantan is shifted towards lower values. In Avitabile et al.
(2016) and this study, the AGB distribution is similar to that obtained
from the validation data in Yucatan and Central Mexico but in Eastern
South Africa the Avitabile et al. (2016) data are shifted toward lower
values while this study is shifted towards higher values. In Kalimantan,
the distributions of the validation data and all the maps, except for
Avitabile et al. (2016), are highly skewed towards high values. Only the
Avitabile et al. (2016) AGB map provides estimates similar to the true

AGB in the Mexican sites. In Sweden, the AGB distributions estimated in
this study and in Thurner et al. (2014) largely agree with the validation
data. In Poland, the AGB distribution from Thurner et al. (2014) looks
highly skewed and shifted towards lower values than the estimates from
this study and in the validation subset.

6. Discussion

6.1. Evaluation of the maps

The analysis of the regional maps affirms important properties of
AGB estimation methods, some of which have been previously reported
in the literature (e.g. Cartus et al., 2014; Carreiras et al., 2012; Englhart
et al., 2012; Baccini et al., 2008; Sandberg et al., 2011; Rauste, 2005;
Avitabile et al., 2016; Avitabile and Camia, 2018). The accuracy as-
sessment shows underestimation in the upper AGB ranges in which the
major error component of the RMSE originates from bias (Table 2). The
exception is in Eastern South Africa, where the reference values of AGB
are below 80 t ha−1. Additionally, although less apparent in Eastern
South Africa and Central Mexico, AGB values below 100 t ha−1 are
overestimated, regardless of the choices of data and method used to
retrieve AGB (Table 2 & Fig. 4). Fig. 4 is derived from an independent
dataset not used in model fitting, but similar behaviour is seen for data
used in model fitting. This means that, although direct linear regression
is not being used, all model fits used to predict AGB have an intercept at
zero AGB that is too high, and/or the gradient of the model is too large
for lower AGB values.

A major problem with the observed biases is that they depend on the
true value of the AGB. If not, the data could easily be calibrated to
remove them. Even though the analysis quantifies how the bias depends
on the true AGB in each region, this does not lead to any way to correct
the estimated values. Although some of the methods incorporate bias
reduction measures, e.g. MaxEnt (Xu et al., 2016; Saatchi et al., 2011),
and post-processing bias reduction techniques are also available, there
is a risk of undesirable effects such as inflation of the overall mean
square error due to an increase of the variance (Kosmidis, 2014; Xu
et al., 2016). Addressing this problem requires new algorithms that
intrinsically remove the bias (if this is possible), new data that do not

Fig. 7. Comparison of four AGB maps over two sites in the Yucatan peninsula (Mexico), showing the regional AGB map presented in this study, and the maps by
Avitabile et al. (2016); Saatchi et al. (2011), and Baccini et al. (2012).
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suffer saturation of the signal for higher biomass (assuming this is the
primary cause of the observed underestimation in this range of bio-
mass), or accepting that such bias will occur because AGB is only in-
directly related to the remote sensing observables considered in these
studies.

However, as has been shown, for some regions and methods bias is
not the dominant effect (i.e. Kalimantan and Central Mexico); instead,
the most important type of error is random scatter of the data points in
the model inversions, i.e., the model inversions are noisy. Some of this
scatter may be reducible if its source can be identified, e.g., there may
be errors due to inaccuracies in the ground data, geolocation errors (so
that the reference data and inversions are spatially mismatched), radar
speckle may have been insufficiently reduced (though our methodology
ensures this should be of negligible importance in our analysis), or the
remote sensing signal may be weakly correlated to AGB due to the
limited sensitivity to biomass of the sensor. Moreover, if the dominant
error term comes from scatter, it can be reduced by spatial averaging
(whereas bias cannot) at the expense of reduced spatial resolution and
aggregation to coarser spatial units.

Pan-tropical (Saatchi et al., 2011; Baccini et al., 2012; Avitabile
et al., 2016) and northern hemisphere maps (Thurner et al., 2014) were
compared to in situ data and the estimates from this study. Some si-
milarities were found between our study and Avitabile et al. (2016) in
the Mexico sites and Thurner et al. (2014) in Sweden. Even though
Avitabile’s map is a fusion of Saatchi’s and Baccini’s data, the fusion
method used additional ground measurements and higher resolution
regional maps to correct for the bias of the original estimates. This is the
case in Mexico, where the Avitabile et al. (2016) product was calibrated
with another regional AGB product (i.e. Cartus et al., 2014). However,
in Eastern South Africa, Avitabile’s map does not have calibration data
and systematically underestimates AGB with maximum predicted AGB
values just above 20 t ha−1, close to a factor of three less than the
higher AGB values reported in the validation dataset (60 t ha−1). In
general, the distributions of the AGB estimates from this study are
closer to those of the independent validation data than those of the
published AGB global maps.

6.2. Strengths and weaknesses of proposed retrieval methods and available
datasets

Several methods were used to predict AGB and showed specific
strengths and weaknesses (The requirement for only a limited number
of ground data points is an advantage of semi-empirical methods, such
as the Water Cloud Model (WCM) + Bayesian inversion used in Eastern
South Africa where only one parameter of the regression needs to be
derived from in situ biomass data. However, the formulation of the
WCM for this region does not produce estimates for AGB above ˜100 t

ha-1, and it is tuned for regions such as savannas with biomass below
the saturation level at L-band (Mermoz et al., 2015). A method for
global mapping, BIOMASAR (Santoro et al., 2011), is also based on the
WCM and does not need in situ data to fit the model parameters.
However, the BIOMASAR algorithm is understood to estimate growing
stock volume (GSV), so a further step is needed to estimate AGB, which
requires spatial information on specific wood density and biomass ex-
pansion factors, or similar proxies.

Table 3). A key factor in the performance of regional methods was
the amount and quality of available in situ data. In regions with
abundant in situ data from a forest inventory, non-parametric data-
driven methods, such as k-NN and MaxEnt were chosen, but in regions
where data were scarce a model-based parametric approach was se-
lected. Large numbers of forest plots were available in Sweden (22,548
plots) and Mexico (5140 plots). Poland (285 plots) and Kalimantan
(247 forest plots) had fewer, but in Kalimantan airborne LiDAR biomass
maps were developed to increase the size of the training and validation
dataset. In the data-scarce region of the South Africa savannas only 37
1-ha AGB plots were available, but they were complemented with air-
borne LiDAR-based biomass maps derived from locally developed
LiDAR models calibrated against field data (Naidoo et al., 2015) for
validation. LiDAR airborne data was used for calibration and validation
in Kalimantan, while only as validation in Eastern South Africa. This
study assumed the AGB predicted by the LiDAR airborne to be error-
free. However, the use of LiDAR data might introduce substantial errors
in the AGB prediction originated from the ground-to-LiDAR model used
(Saarela et al., 2016; Holm et al., 2017), which are not accounted for in
this study.

The requirement for only a limited number of ground data points is
an advantage of semi-empirical methods, such as the Water Cloud
Model (WCM) + Bayesian inversion used in Eastern South Africa where
only one parameter of the regression needs to be derived from in situ
biomass data. However, the formulation of the WCM for this region
does not produce estimates for AGB above ˜100 t ha−1, and it is tuned
for regions such as savannas with biomass below the saturation level at
L-band (Mermoz et al., 2015). A method for global mapping, BIOMA-
SAR (Santoro et al., 2011), is also based on the WCM and does not need
in situ data to fit the model parameters. However, the BIOMASAR al-
gorithm is understood to estimate growing stock volume (GSV), so a
further step is needed to estimate AGB, which requires spatial in-
formation on specific wood density and biomass expansion factors, or
similar proxies.

The most used dataset in this study was the L-band SAR ALOS
PALSAR annual mosaics (Shimada et al., 2014; Shimada and Ohtaki,
2010), which were used in all regional methods except for Sweden. The
saturation level of L-band SAR was found in previous studies to vary
between 40 t ha−1 and 150 t ha-1 (Balzter et al., 2002a, b, Tansey et al.,

Table 3
Strengths and weaknesses of proposed methods/datasets when considering global implementation.

METHOD STRENGTHS WEAKNESSES

Two step LiDAR+ SAR multiple linear regression • Low demand on in situ data

• Can combine different EO
datasets

• Requires airborne LiDAR (costly and not always available)

• Overestimation at low AGB

• Underestimation at high AGB
WCM+Bayesian inversion • Low demand on in situ data • Requires large in situ plots (1 ha) (not always available)

• Assumes saturation of L-band SAR above 100 t ha−1 (i.e., only applicable on low
AGB areas)

Random Forests • Can combine different EO
datasets

• Medium / high demand on in situ data

• Overestimation at low AGB

• Underestimation at high AGB
MaxEnt • Can combine different EO

datasets
• High demand on in situ data

• Overestimation at low AGB

• Underestimation at high AGB
kNN • Can combine different EO

datasets
• SPOT data not freely available

• High demand on in situ data

• Overestimation at low AGB

• Underestimation at high AGB
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2004, Lucas et al., 2010; Hame et al., 2013) and generally HV gave
higher saturation levels than HH polarization (Le Toan et al., 1992;
Saatchi et al., 2007; Mitchard et al., 2009; Hamdan et al., 2011;
Mitchard et al., 2012; Saatchi et al., 2011; Englhart et al., 2011;
Hamdan et al., 2014). The saturation level at L-band depends on the
geometry of the radar measurements, and therefore on forest type and
environmental effects (Yu and Saatchi, 2016), as it can be observed in
the different relationships found in the Yucatan peninsula and Central
Mexico (Fig. 8). Use of the annual mosaics was also a limitation, as
better results have been obtained with the use of multi-temporal SAR
datasets due to the decrease in the retrieval error in AGB ranges to
which the sensitivity of the SAR signal is weak (Antropov et al., 2013;
Santoro et al., 2015b, 2006; Thiel and Schmullius, 2016; Antropov
et al., 2017; Cartus et al., 2012). However, this was necessary due to the
cost of acquiring the multiple ALOS PALSAR images used to generate
the mosaics over large areas and for a given year.

For the model-based approaches, information provided by optical
sensors, such as Landsat Percent Tree Cover (e.g. in Eastern South
Africa), was needed for parameterisation (Bouvet et al., 2018). Such
datasets were also used in the non-parametric machine learning
methods, where they contributed towards improving model perfor-
mance. Three out of the five regional methods used optical data as
predictor variables. DEM data from SRTM were also used in Mexico and
Poland as a predictor variable and in South Africa and Kalimantan for
correcting or masking terrain effects, respectively. The use of topo-
graphic information by machine learning approaches for forests located
in mountainous areas contributed to the estimation of AGB in Central
Mexico.

The evaluation of the maps showed that a crucial limitation of the
retrievals is that underestimation occurs at high AGB ranges, and
overestimation at low AGB ranges. Remote sensing of AGB (using either
reflectance or radar backscatter) is subject to decreasing sensitivity to
AGB as biomass increases. Hence changes in AGB above a saturation
level result in changes in the remotely sensed variable that are small
compared to the variability in the signal. In these circumstances it is
readily understood how linear regression would lead to these effects.
The regression line always passes through the point defined by the
mean of the reference data and the mean of the estimates, and the
fitting effectively rotates the line about this point in order to reduce the
sum of squared differences between the linear estimates and the re-
ference data. For a concave curve, such as is produced by saturation, it
is then inevitable that over-estimation will occur for low biomass and
under-estimation for high biomass: getting a good fit for low biomass
tends to steepen the line, while for high biomass it reduces the slope,
and the regression line trades one against the other. In the case just
discussed the model does not properly capture the relationship between
the signal and the reference AGB, either due to insufficient calibration

data in the upper AGB range, or by fitting an inappropriate model to the
AGB observations. However, if instead a fitting curve is used that cor-
rectly represents the saturation, bias is still to be expected for higher
values of biomass. This occurs because, by definition, the backscatter
values in the saturation zone are the result of random variation around
the saturation level, with at most a weak dependence on biomass.
Hence, although it is possible to use an estimator that assigns values of
biomass above the saturation level, these represent the scatter in the
data and the estimator will be biased towards the saturation level.

However, for correctly fitted data the overestimation at low AGB
ranges is more difficult to explain. For SAR datasets, it could be con-
nected to the high variability of the signal under soil moisture changes,
as well as soil roughness (Mattia et al., 2009), but these do not apply to
an optical-based method or to methods using SAR and optical data in
synergy. Alternatively, it could be linked to the underestimation at high
AGB ranges, as models provide the best fit by minimising an overall
error term or cost function. The overestimation in the lower reference
AGB ranges may stem from the model compensating for its inability to
predict high AGB values accurately. In Kalimantan, the estimations
were the highest, above 300 t ha−1, and underestimation can only be
observed above 200 t ha−1. That underestimation occurs at such a high
AGB level might be due to the large number of reference data points at
high AGB levels compared to all other regions, which resulted in a fitted
model with the largest errors and biases in the mid AGB ranges, be-
tween 50 and 150 t ha−1, for which fewer calibration data were
available (Table 2 and Fig. 4).

Avitabile et al. (2016) also found overestimations in the low AGB
range and underestimations in the high AGB range when validating
pan-tropical datasets (Saatchi et al., 2011; Baccini et al., 2012) against
reference data. Several studies using the Random Forests regression
algorithm have found similar behaviour at both ends of the AGB range,
and report it as an effect of the averaging of tree-based algorithms
(Baccini, 2004; Baccini et al., 2008; Avitabile et al., 2011; Urbazaev
et al., 2018). Blackard et al. (2008) reported the same using a tree-
based method (i.e. recursive partitioning regression), but suggested that
saturation of optical data could explain the underestimation for high
AGB densities, and scaling issues between plot and pixel could explain
the underestimations at low AGB. This effect, characteristic of tree-
based algorithms, could also explain the results in Poland, but cannot
explain them in the other regions. Additionally other studies, such as
Tsui et al. (2013) which used Kriging, Chopping et al. (2011) which
used a geometric–optical canopy reflectance model, Del Frate and
Solimini (2004) which used Neural Networks, or Sun et al. (2011), and
Chi et al. (2015) which used multiple linear regression methods showed
the same effects. Kattenborn et al. (2015) also reported the same effect
for four semi- or non-parametric regression models (Random Forest,
Generalized Additive Model, Generalized Boosted Regression Models

Fig. 8. Scatterplots of average ALOS PALSAR HV backscatter versus average reference AGB by reference AGB range. Error bars indicate the standard deviation of the
ALOS PALSAR HV backscatter per reference AGB range for the Yucatan peninsula (left) and Central Mexico (right).

P. Rodríguez-Veiga et al. Int J Appl  Earth Obs Geoinformation 77 (2019) 53–68

64



and Boosted Generalized Additive Model), and suggested insufficient
calibration data at the low and high AGB ends as the main cause.
However, the consistency across all these studies suggests that there is a
fundamental problem in retrieving biomass from the available data,
which may only be solved by the use of SAR data with higher sensitivity
to small scattering elements such as C-band (e.g. Sentinel-1) on the
lower AGB range, and data with greater sensitivity to large scattering
objects (i.e. high biomass) such as the P-band (Villard and Le Toan,
2015) to be exploited by the ESA BIOMASS mission.

7. Conclusions

The regional forest AGB mapping methods presented here reflect
both the variety of training data available in different regions and the
diverse range of algorithmic choices of each regional team. However,
the retrieved AGB values agree better with independent in situ data
than those published recently (Saatchi et al., 2011; Baccini et al., 2012;
Avitabile et al., 2016; Thurner et al., 2014). As the different methods
were not compared on the same site, we cannot comment on relative
performance. However, we can form conclusions based on the com-
monalities observed from the comparison of standardized accuracy
assessments.

The key EO dataset used in most methods was the L-band ALOS
PALSAR mosaics, which provides the highest sensitivity to AGB of the
currently available spaceborne sensors. However, it is clear that all
current spaceborne sensors (SAR and optical) are inadequate for accu-
rately estimating AGB beyond 100-150 t ha−1. The case studies pre-
sented here highlight challenges of using sub-optimal datasets for this
task. Any estimation beyond this range was dominated by negative bias
or presented large errors for any of the given study sites. The assess-
ment indicates, however, that one could push this limit in certain
conditions, as seen in Kalimantan or Central Mexico. This could be
linked to the use of large amounts of in situ data in the case of
Kalimantan. In Central Mexico, a forest structure which leads to a
higher L-band saturation level, or the contribution of additional datasets
(i.e. the DEM) could be the cause.

There is also a general problem with overestimation at low AGB
densities which cannot be entirely explained by the datasets used, but
rather as an intrinsic problem of the proposed algorithms to correctly
capture the relationship between EO data and AGB in the low AGB
range. This means that we might have to consider alternative regression
schemes, or accept the biases at both ends of the biomass range, pro-
vided that the modelling framework captures the relationship between
observations and biomass.

This aspect shall deserve substantial attention in future studies as
currently existing models for large-scale biomass estimation rely on
simplifying assumptions that may not fully encompass the complex
interaction of the remote sensing signal with vegetation

The amount and type of reference data is also very relevant in terms
of achieving the most reasonable AGB prediction model. Eastern South
Africa used large plots (i.e. 1 ha), more suitable for calibration of EO
methods (Réjou-Méchain et al., 2014), which might explain the good
results for the low AGB ranges in this study area. Mexico, Sweden,
Poland and Kalimantan relied on datasets of numerous small plots for
calibration, supplemented with LiDAR in the case of Kalimantan. In the
future, similar research should be based on homogeneous field-based
datasets to avoid possible discrepancies resulting from the training
data.

Better quality and more abundant large plots for calibration of the
algorithms (Réjou-Méchain et al., 2014), the use of SAR time series
(from Sentinel-1, ALOS 2 PALSAR 2, or future NovaSAR and NISAR)
(Santoro et al., 2011; Antropov et al., 2017), the increasing availability
of airborne or spaceborne LiDAR sensors like GEDI (Dubayah et al.,
2014; Goetz et al., 2015) and MOLI (Kimura et al., 2017), satellites
specifically designed for biomass estimation such as NISAR (Rosen
et al., 2016, 2015), TanDEM-L (Moreira et al., 2015), and the P-band

BIOMASS SAR mission (Le Toan et al., 2011), and algorithms capable of
reducing the errors in the low and high AGB ranges, are a promising
way forward to improve global biomass estimates and reduce biases
and errors in the map products in all biomass ranges.
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