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ABSTRACT

Context. The space-borne missions CoRoT and Kepler opened up a new opportunity for better understanding stellar evolution by
probing stellar interiors with unrivalled high-precision photometric data. Kepler has observed stellar oscillation for four years, which
gave access to excellent frequency resolution that enables deciphering the oscillation spectrum of evolved red giant branch and
asymptotic giant branch stars.
Aims. The internal structure of stars in the upper parts of the red and asymptotic giant branches is poorly constrained, which makes
the distinction between red and asymptotic giants difficult. We perform a thorough seismic analysis to address the physical conditions
inside these stars and to distinguish them.
Methods. We took advantage of what we have learnt from less evolved stars. We studied the oscillation mode properties of ∼2.000
evolved giants in a model described by the asymptotic pressure-mode pattern of red giants, which includes the signature of the helium
second-ionisation zone. Mode identification was performed with a maximum cross-correlation method. Then, the modes were fitted
with Lorentzian functions following a maximum likelihood estimator technique.
Results. We derive a large set of seismic parameters of evolved red and asymptotic giants. We extracted the mode properties up to the
degree ` = 3 and investigated their dependence on stellar mass, metallicity, and evolutionary status. We identify a clear difference in
the signature of the helium second-ionisation zone between red and asymptotic giants. We also detect a clear shortage of the energy of
` = 1 modes after the core-He-burning phase. Furthermore, we note that the mode damping observed on the asymptotic giant branch
is similar to that observed on the red giant branch.
Conclusions. We highlight that the signature of the helium second-ionisation zone varies with stellar evolution. This provides us with
a physical basis for distinguishing red giant branch stars from asymptotic giants. Here, our investigation of stellar oscillations allows
us to constrain the physical processes and the key events that occur during the advanced stages of stellar evolution, with emphasis on
the ascent along the asymptotic giant branch, including the asymptotic giant branch bump.
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1. Introduction

Red giant star seismology has proved to be a good tool for
constraining the stellar internal structure with the ultra-high
precision photometric data recorded by Convection, Rotation
and planetary Transits (CoRoT, Baglin et al. 2006), Kepler
(Borucki et al. 2010; Gilliland et al. 2010), Kepler 2 (K2,
Howell et al. 2014), and now Transiting Exoplanet Survey Satel-
lite (TESS, Ricker et al. 2015). In the case of evolved giants
observed by Kepler, recent studies have found an equiva-
lence between the solar-like oscillation ridges and the period-
luminosity sequences (Mosser et al. 2013a; Stello et al. 2014;
Yu et al. 2020) that have first been identified in the ground-
based observations with the microlensing surveys Massive Com-
pact Halo Objects (MACHO, Wood et al. 1999) and Optical
Gravitational Lensing Experiment (OGLE, Wray et al. 2004;
Soszyński & Wood 2013). Nevertheless, deciphering the oscil-

? Full Table C.1 is only available at the CDS via anonymous ftp
to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/650/A115

lation spectrum of evolved red giant branch (RGB) and asymp-
totic giant branch (AGB) stars is challenging because it requires
long time-series for the modes to be resolved; the lifetime of the
modes is longer than one year. Fortunately, with the unrivalled
four-year time series of Kepler, it is now possible to decipher
the low-frequency oscillation spectrum of evolved red giants and
asymptotic giants in detail. The pressure modes of red giants fol-
low a clear oscillation pattern. The so-called universal pattern
(UP) of red giants reads (Mosser et al. 2011)

νUP
n,` =

(
n +

`

2
+ ε − d0` +

α

2
[n − nmax]2

)
∆ν, (1)

where n is the mode radial order, ` is the degree, ε is the acous-
tic offset that allows locating the radial modes, ∆ν is the mean
large frequency separation, which is the mean frequency spac-
ing between consecutive radial modes, d0` is a reduced small
separation defined as d0` = δν0`/∆ν, where δν0` is the small fre-
quency separation between a mode of degree ` and its neigh-
bouring radial mode, α = (d log ∆ν/dn) is the curvature term
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that accounts for the linear dependence of the large frequency
separation on the radial order, and nmax = νmax/∆ν is the equiva-
lent radial order corresponding to the frequency of the maximum
oscillation power νmax. The reduced small separations d0` are
sensitive to any structure change that impacts the gradient of the
sound speed in the deep interior (Gough 1986). These reduced
small separations can be used to distinguish different stellar evo-
lutionary stages (Christensen-Dalsgaard et al. 1988).

Firstly identified in red giants by Beck et al. (2011), mixed
modes that result from the coupling between gravity waves
trapped in the stellar core and pressure waves trapped in the
stellar envelope carry valuable information on the physical
conditions inside the stellar core. The use of mixed modes
enables distinguishing core-helium-burning giants and shell-
hydrogen-burning giants (Beck et al. 2011; Bedding et al. 2011;
Elsworth et al. 2017). However, constraining the internal inner-
most structure of evolved giants is challenging because their
oscillation spectrum only exhibits pure pressure modes. Mixed
modes can no longer be identified because the inertia of the
g modes in the core becomes too high (Grosjean et al. 2014) and
the strength of the coupling between p and g modes decreases
(Mosser et al. 2017a). Despite the absence of mixed modes in
evolved RGB and AGB stars, some methods can still be used
to distinguish shell-H-burning stars from He-burning stars1. On
the basis of a local analysis, Kallinger et al. (2012) showed that
we can distinguish stars with different evolutionary stages using
the central acoustic offset εc

2. In addition, Mosser et al. (2019)
found that He-burning stars have a lower envelope autocorrela-
tion function than their RGB counterparts3, making the separa-
tion between these stellar populations possible.

The stellar evolution effects reported by Kallinger et al.
(2012) in the acoustic offset ε can be linked to clear stellar
structure differences. The acoustic offset is expected to contain
a contribution from the stellar core, hence the signature of struc-
ture changes (Roxburgh & Vorontsov 2000, 2003). However, it
also contains a contribution from the stellar envelope that is
dominant (Christensen-Dalsgaard et al. 2014). Then, the effects
of structure changes in the stellar envelope such as acoustic
glitches can be seen in the acoustic offset ε. We recall that a
glitch is a sharp structural variation inside the star that causes
a modulation in the frequency pattern. The existence of such
regions was first predicted (Vorontsov et al. 1988; Gough 1990)
and then confirmed for the Sun (Houdek & Gough 2007) for
main-sequence stars (Mazumdar et al. 2012, 2014; Verma et al.
2014; Deheuvels et al. 2016) and for red giants (Miglio et al.
2010; Broomhall et al. 2014; Vrard et al. 2015; Corsaro et al.
2015a). In stellar interiors, three regions with sharp varia-
tions have been studied: the base of the convective envelope,
the boundary of the convective core, and the helium second-
ionisation zone (Monteiro et al. 1994; Monteiro & Thompson
2005; Houdek & Gough 2007; Deheuvels et al. 2016). In the
case of red giants, it has been shown that the dominant
glitch has its origin in the helium second-ionisation zone
(Miglio et al. 2010). The modulation in the mode frequencies
has been measured for RGB stars and clump stars (Vrard et al.
2015). Vrard et al. (2015) showed that the different modulations
between these populations are linked to stellar evolution effects

1 We use the expressions shell-H-burning stars and RGB stars in an
equivalent manner. Core-He-burning stars and shell-He-burning stars
refer to clump and AGB stars, respectively. He-burning stars indistinctly
refer to core-He-burning stars and shell-He-burning stars.
2 This central acoustic offset εc is a local measurement of ε that is
computed with the central three radial modes that are closest to νmax.
3 Counterparts refer to stars that have the same ∆ν and νmax.

in the local acoustic offset ε. One of the guidelines of the present
work is to perform such an analysis for stars in evolved stages
on the RGB and the AGB.

Other physical processes can be constrained through the
analysis of oscillation spectra, such as mode excitation and
damping, especially by measuring the mode amplitudes and the
widths. While the physical mechanism causing pressure mode
excitation is identified as the Reynolds stresses induced by tur-
bulent convection (Goldreich & Keeley 1977; Belkacem et al.
2006), the physical mechanisms behind the mode damping are
not fully understood. Nevertheless, recent studies have been con-
ducted to compare modelled and observed mode widths across
the Hertzsprung–Russell (HR) diagram (Belkacem et al. 2012;
Houdek et al. 2017; Aarslev et al. 2018). They highlighted that
the perturbation of turbulent pressure is the dominant mech-
anism of mode damping in solar-like pulsators. Several stud-
ies have already provided mode widths for main-sequence stars
(e.g., Appourchaux et al. 2012, 2014; Lund et al. 2017) and red
giant stars (e.g., Baudin et al. 2011; Corsaro et al. 2012, 2015b;
Handberg et al. 2017), but their samples of stars are small. With
a larger sample of stars having ∆ν ∈ [3, 15] µHz, Vrard et al.
(2018) showed that the pressure mode widths of RGB stars
and clump stars are differently distributed and have notice-
able mass and temperature dependences. We performed such an
analysis for stars in the most evolved stages on the RGB and
the AGB.

In this framework, we analysed the oscillation spectrum of
∼2000 evolved red giants, clump stars, and asymptotic giants
observed by the Kepler telescope in detail. We extend the anal-
ysis of Vrard et al. (2015) and Vrard et al. (2018) to the most
evolved stages of stars on the RGB and on the AGB. We charac-
terised the pressure modes of evolved stars and the modulation
induced by the helium second-ionisation zone in order to obtain
seismic constraints for the stellar modelling of evolved red giants
and asymptotic giants.

This article is organised as follows. In Sect. 2 we describe
our set of data. In Sect. 3 we describe the methods we used
to extract the seismic parameters from the oscillation spectra,
namely the seismic parameters involved in Eq. (1), the signa-
ture of the helium second-ionisation zone, the visibilities of the
modes, the pressure mode widths, and the pressure mode ampli-
tudes. The analysis of these quantities is performed in Sect. 4.
Finally, Sects. 5 and 6 are devoted to discussion and conclusions,
respectively.

2. Data set

We selected the long-cadence data from Kepler, including the
very last data up to quarter Q17. The about 1470-day time-
series gives access to a frequency resolution reaching 7.8 nHz.
We focus on advanced stages of stellar evolution, including
RGB, clump, and AGB giants. We selected 2103 stars from
Kallinger et al. (2012) and Mosser et al. (2014, 2019) that have
∆ν ≤ 4.0 µHz. We then extracted their ∆ν and νmax from
the database of the previous works. The distribution of their
∆ν is shown in Fig. 1. The classical properties of these stars,
such as their mass and effective temperature, were extracted
from the APOKASC catalogue (Pinsonneault et al. 2014), which
is a survey of Kepler asteroseismic targets complemented by
spectroscopic data. More precisely, the stellar masses were
computed according to the semi-empirical asteroseismic scaling
relation presented in Kjeldsen & Bedding (1995) as corrected by
Pinsonneault et al. (2018). The correcting factor was computed
star by star and is a function of the stellar parameters. For some
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stars, the classical properties are not listed in the APOKASC
catalogue either because no asteroseismic data were returned for
them or because the power spectra were too noisy. This con-
cerns roughly 5% of our sample of stars, with half of this fraction
being associated with very low ∆ν-values (i.e., ∆ν ≤ 0.5 µHz). In
this case, we nevertheless obtained rough estimates of the stellar
mass and effective temperature using semi-empirical and empir-
ical scaling relations implying both the frequency at the maxi-
mum oscillation power νmax and large frequency separation ∆ν
(Kjeldsen & Bedding 1995; Kallinger et al. 2010; Mosser et al.
2010).

In order to identify the evolutionary status, we used two
classification methods. The first method is based on the esti-
mate of differences between RGB stars and He-burning stars
in the pressure-mode pattern, mainly through the acoustic off-
set ε (Kallinger et al. 2012). The second method is based on
the estimate of differences in the envelope autocorrelation func-
tion (Mosser et al. 2019). However, the disagreement between
these two classification methods rapidly grows at low ∆ν. For
example, we reach 35% disagreement for 112 stars having ∆ν ≤
1.0 µHz. Accordingly, we decided to only retain the evolutionary
status so obtained if both classification methods agree.

3. Method

Acoustic modes dominate in the oscillation spectrum of evolved
RGB and AGB stars. Gravity-dominated mixed modes start to
disappear in the oscillation spectrum when ∆ν ≤ 3 µHz because
of their high radiative damping and inertia (Dupret et al. 2009).
The oscillation pattern of evolved stars can then be described by
the asymptotic expression of the frequency of acoustic modes
(Eq. (1)).

3.1. Adjusting the mode frequencies νn,`

3.1.1. Best-matching template spectrum

The first step to be performed is the identification of the modes in
the oscillation spectrum, which is ensured by using Eq. (1). First,
we refined the analysis of the observed spectrum as follows. The
background component that is dominated by the stellar granula-
tion (Michel et al. 2008) was parametrised in the vicinity of νmax
by a power law of the form

B(ν) = Bmax

(
ν

νmax

)αB

, (2)

where Bmax and αB are free parameters (Mosser et al. 2012).
Then, we divided the observed spectrum by the background con-
tribution. For the sake of visibility, we reduced the stochastic
appearance of the oscillation pattern by smoothing the spec-
trum with a Gaussian function, for which the full width at half
maximum (FWHM) is FWHM = d02∆ν/4. We estimated d02
following an iterative process, starting with a rough estimate
extracted from the scaling relation d02 = 0.162 − 0.013 log ∆ν
(Mosser et al. 2013b).

Second, we built a template spectrum composed of radial,
dipole, and quadrupole pressure modes located at the pressure
mode frequencies derived from Eq. (1). The seismic parame-
ters ε and d0` were set following a scaling relation of the form
A + B log ∆ν, where the guess values of A and B were taken
from Mosser et al. (2013a). Then, the modes were modelled by
Lorentzian functions. The heights of the Lorentzian functions
were fixed by the underlying power excess distribution, which

Fig. 1. Upper panel: distribution of our sample of stars as a function
of ∆ν, with red giants in blue and He-burning stars in red. Stars with
unidentified or uncertain evolutionary stage are plotted in grey. The
inset is a zoom-in portion of the large panel. Lower panel: seismic dia-
gram of our sample of stars with the same colour code as in the upper
panel, where 1/νmax is a proxy for the luminosity. The solid black line
is the evolutionary track of a 1 M� model computed with MESA, using
the 1M_pre_ms_to_wd test suite case. Some key events are highlighted:
the RGB bump (RGB-b), the luminosity tip of the RGB (RGB-tip), and
the AGB bump (AGB-b).

we modelled by a Gaussian function centred on the frequency
of maximum oscillation power νmax (Mosser et al. 2012). Fur-
thermore, the curvature term was set following the curvature of
the red giant radial oscillation pattern as follows (Mosser et al.
2013b):

α = 0.015 ∆ν−0.32. (3)

We did not adjust the parameters in the expression of α since pre-
cise measurement of α is not crucial (Vrard et al. 2015). Finally,
we found the best-matching template spectrum by computing
the maximum cross-correlation with the smoothed spectrum.
Then, the observed mode frequencies were identified at the local
maxima close to the optimised frequency pattern. When mixed
dipole modes were present, the most intense of the closest modes
of the expected pure-pressure mode was adjusted. We report
that the best-matching template spectrum is less reliable when
∆νobs ≤ 0.4 µHz. In this case, most spectra do not exhibit a clear
and intense pattern of ` = 0, 1, 2 modes, making the mode iden-
tification difficult. Nevertheless, a mode identification could be
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performed for these stars by vertically stacking their power spec-
trum with increasing νmax (see e.g., Yu et al. 2020).

3.1.2. Detection thresholds

Because of the stochastic nature of the modes, some modes are
not sufficiently intense to be detected. Once the best-matching
template spectrum was found with the method described in
Sect. 3.1.1, we obtained a set of candidate modes. Then, in
order to reduce biases, we applied the robust detection method
of Appourchaux et al. (2006) to this set. To this end, the most
intense modes were selected by evaluating the S N function,
which corresponds to the most restrictive detection threshold
in terms of height-to-background ratio in the power spectrum
(Appourchaux et al. 2006). S N reads

S N = −

(
sdet

ln
(
PH1

) + 1
)
, (4)

where PH1 is the probability of accepting that the observed peak
is a mode and sdet is the rejection level relative to noise. We
chose PH1 such that the height-to-background ratio S N reached
20 when sdet = 8, and the rejection level sdet was defined by

sdet ≈ ln(T ) + ln(∆ν) − ln(pdet), (5)

where T is the observation time in units of 106 s, ∆ν is given
in µHz, and pdet is the rejection probability that we kept equal
to 5%. Second, we retained the candidate mode frequencies that
were close to the expected pressure-mode frequencies with a less
restrictive height-to-background ratio, which is given by Eq. (5).
Owing to the small amplitudes of the ` = 3 modes due to geo-
metric cancellation, we used a less restrictive detection threshold
for the ` = 3 modes. The threshold for selecting ` = 3 modes is
25% lower than for the other degrees.

3.2. Glitch inference

When the best-matching template spectrum is found, we can
search for the signature of glitches. To extract the signature of the
helium second-ionisation zone in evolved giants, we followed
the same technique as Vrard et al. (2015) for less evolved giants.
As the oscillation spectrum of evolved red giants shows a limited
number of radial orders, we calculated the frequency difference
considering all degrees as follows:

∆νn,` = νn+1,` − νn,`, (6)

which is different from Eq. (4) of Vrard et al. (2015) because it
is only based on radial modes. The frequency reference for these
local large frequency separations was taken as the mid-point
between consecutive mode frequencies. We isolated the glitch
signature δg,obs

n,` by computing the difference between the mea-
sured and the expected local large frequency separations accord-
ing to the universal pattern (Eq. (1))

δ
g,obs
n,` = ∆νn,` − ∆νUP

n,` , (7)

with ∆νUP
n,` =

(
1 + α

(
n − nmax + 1

2

))
∆ν (Mosser et al. 2013b).

We then fitted a damped oscillatory component of δg,obs
n,` accord-

ing to

δ
g,obs
n,` = A

(
νmax

ν

)2
∆ν cos

(
2π (ν − νmax)
G∆ν

+ Φ

)
, (8)

Table 1. Boundaries for the integration of the power spectral density.

νinf(n, `) νsup(n, `)

` = 0 (νn,0 + νn−1,2)/2 (3 νn−1,3 + νn,0)/4
` = 3 (3 νn−1,3 + νn,0)/4 (7 νn−1,3 − νn,0)/6
` = 1 (7 νn−1,3 − νn,0)/6 (4 νn−1,2 − νn,0)/3
` = 2 (4 νn−1,2 − νn,0)/3 (νn,0 + νn−1,2)/2

Notes. The boundaries are equivalent to the mid-point between consec-
utive modes, except when ` = 1 and ` = 3 modes are involved. This
is illustrated in Fig. 2. The boundary between the ` = 1 and the ` = 3
modes is chosen close to the ` = 3 mode frequency. We made this
choice to avoid any confusion between a ` = 3 mode and the neigh-
bouring dipole mixed-modes because the dipole mixed-modes extend
up to the ` = 3 modes.

where A and G are the amplitude and the period of the modu-
lation expressed in units of ∆ν, respectively, and Φ is the phase
centred on νmax (Vrard et al. 2015). Many studies have used a
more complicated function for the amplitude of the modulation.
As we are restricted by the low number of observed modes, we
preferred to use a simple frequency-dependent amplitude as was
used before in the study of the base of the solar convective zone
(Monteiro et al. 1994).

In evolved giants, quadrupole modes essentially behave as
pure pressure modes. The case of dipole modes is compli-
cated: They are most often reduced to a pressure-dominated
mixed mode or to a cluster of modes very close to the pressure-
dominated mixed mode. Because in most cases we have no way
to identify the mixed-mode pattern, in practice we also consider
dipole modes as pure pressure modes. This hypothesis is dis-
cussed below. We can add them in the fit of the glitch modu-
lation without deteriorating the fit of the modulation. Then, the
Nyquist criterion, which states that the frequency of the mod-
ulation must be strictly less than half the sample rate, writes
G ≥ 1 instead of G ≥ 2 when only radial modes are used.
When ∆ν ' 3 µHz, dipole modes are no longer pure-pressure
modes. It has been shown that adding the dipole modes of low-
est inertia in each ∆ν range could bias the fit of the modula-
tion, especially for the least evolved red giants (Broomhall et al.
2014; Dréau et al. 2020). Nevertheless, for the range of ∆ν we
consider here, Broomhall et al. (2014) reported that the use of
dipole modes of lowest inertia remarkably improves the robust-
ness of the fit. When mixed modes are present, we then took into
account the most intense dipole mode of the modes closest to the
expected location of the pure-pressure mode.

3.3. Computation of mode visibilities

We investigated the energy distribution among modes of differ-
ent degree ` in the case of evolved stars. The technique we used
to compute the mode visibilities is described in Mosser et al.
(2012). First, we computed the total mode energy, noted A2

` (n),
for which the radial order n lies between the lowest and highest
observed radial orders. This was done by subtracting the back-
ground component and integrating the power spectral density
over the whole spectral range where the mode is expected, that is,
around the p-mode frequency inferred from Eq. (1) (see Table 1
and Fig. 2). Then we computed the visibility V2

` of a mode of
degree ` as

V2
` =
〈A2

`〉

〈A2
0〉
, (9)
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Fig. 2. Oscillation spectrum of the star KIC 2695975 (∆ν = 1.538 µHz,
and νmax = 10.11 µHz), with an emphasis on the spectral range where
the power spectral density is integrated for each mode. Red, blue,
green, and light blue are associated with radial, dipole, quadrupole, and
octupole modes, respectively. This star has been classified as an RGB
star with the two identification methods adopted in this work.

where 〈A2
`〉 is the squared amplitude of the mode of degree `.

When mixed modes are present, the procedure was the same:
The energy A2

` (n) corresponds to the total energy of the mixed
modes associated with the radial order n. The errors on the visi-
bilities were computed from the errors on the boundary frequen-
cies listed in Table 1: The energy contained in the 1σ error region
of the boundary frequencies is interpreted as the error on the
parameter A2

` (n).

3.4. Mode fitting

The mode amplitudes and widths derived from the fit of
the modes provide unique constraints on the mode excita-
tion and damping. In this context, we adopted a frequentist
approach. The modes were fitted with Lorentzian profiles fol-
lowing the maximum likelihood estimator technique described
in Toutain & Appourchaux (1994). The fit was performed radial
order by radial order, so that we have three modes at most to fit
per iteration. Owing to their very low amplitudes, ` = 3 modes
cannot be fitted. Radial, dipole, and quadrupole modes were fit-
ted on top of the background using

L(n) =
∑
`=0,1,2

Hn,`

1 +
(
2 ν−νn,`

Γn,`

)2 + B(ν), (10)

where Hn,`, νn,`, and Γn,` are the height, frequency, and width
of the mode of radial order n and degree `, respectively. We
point out that the background was extracted separately, and we
kept it fixed when fitting the modes. The mode amplitude can be
deduced from the mode height and the width by

An,` =
√

Hn,`πΓn,`. (11)

Because of the low signal-to-noise ratios, the presence of mixed
modes, and the stochastic excitation, some modes were not cor-
rectly fitted. The measurements were rejected when the width
was too close to the frequency resolution (i.e., when Γn,l ≤

1.1δνres) or when the width was overestimated (i.e., when Γn,l ≥

∆ν/7). When mixed modes were present, we fitted the clos-
est mixed modes to the expected pure-pressure mode. Then,

following Benomar et al. (2014), Belkacem et al. (2015), and
Mosser et al. (2018), we inferred the mode width and the mode
amplitude that the mode would have if it were purely acoustic
through

Γ
p
n,` =

Γn,`

1 − ζ
and Ap

n,` =
An,`√
1 − ζ

, (12)

where ζ depends on the inertia of the fitted mixed mode. Char-
acterising the mixed-mode pattern is beyond the scope of this
work. However, we estimated the mode inertia that is defined
in Mosser et al. (2018), for example, using scaling relations
(Eqs. (17) and (18) from Mosser et al. 2017a for the coupling
factor q and the database from Vrard et al. 2016 for the period
spacings ∆Π1).

We finally computed the mean mode amplitude 〈A`〉 using
the three p modes of degree ` closest to νmax. We corrected the
wavelength dependence of the photometric variation integrated
over the Kepler bandpass according to

〈A`,bol〉 = 〈A`〉

(
Teff

TK

)0.80

, (13)

where TK = 5934 K (Ballot et al. 2011a). The average mode
width 〈Γ`〉 was computed as the weighted mean of the three
p modes of degree ` closest to νmax, where the mode amplitude
was used as weight (see e.g., Vrard et al. 2018).

4. Results

In this section, we characterise the oscillation spectrum of
evolved giants as precisely as possible. We compare our mea-
surements with previous studies that focused on less evolved
stages and with theoretical predictions.

4.1. Acoustic offset ε and reduced small separations d0`

From the fit of the spectrum described by Eq. (1) we derived
the global acoustic offset ε and the reduced small separations
d0` associated with the detected modes (see Fig. 3). Scaling rela-
tions were adjusted to our sets of seismic parameters in the form
A` + B` log (∆ν), where A` and B` are free parameters that are
summarised in Table 2, and ∆ν is given in µHz.

4.1.1. Acoustic offset ε

The oscillation spectrum of radial modes is depicted by the
global acoustic offset ε as shown in Fig. 3. The trend that we
observe for RGB stars is similar to what has been obtained
in previous studies (Mosser et al. 2013a; Yu et al. 2020). With
our method, which uses a global fit of the oscillation pat-
tern, we derive similar values of ε for RGB and He-burning
stars, in contrast to Kallinger et al. (2012), who used a local
approach. As they showed, the glitches have limited effect on
global measurements of the seismic parameters but they affect
local measurements considerably. In Sect. 4.2 we investigate
the local effects on the mode frequencies by studying the mod-
ulation left by the helium second-ionisation zone in p-mode
frequencies.

4.1.2. Reduced small separations d0`

Theoretical models predict that the effects of stellar evolution
are reflected in the reduced small separations d0`. They are sen-
sitive to any internal structure change that affects the gradient
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Fig. 3. Seismic parameters of the asymptotic pattern of red giants (Eq. (1)) after adjusting ∆ν with the best-matching template following the
procedure described in Sect. 3. Upper left panel: acoustic offset ε as a function of ∆ν, where blue triangles indicate RGB stars and red diamonds
He-burning stars. Stars with either an unidentified evolutionary stage or disagreement between the two classification methods described in Sect. 2
are represented in grey. Upper right panel: reduced small separation d02 as a function of ∆ν; the stellar mass is colour-coded. Bottom panels: same
labels as for the upper right panel, but for d01 and d03 as a function of ∆ν. The solid blue and red lines are the median values in 0.4 µHz ∆ν bins
for low-mass stars (M ≤ 1.2 M�) and for high-mass stars (M ≥ 1.2 M�), respectively. The dashed orange lines represent the scaling relations from
Mosser et al. (2013a), and the solid dark blue lines are the scaling relations derived in this study (listed in Table 2). The dot-dashed pink and dark
green lines correspond to the scaling relations for less evolved stars from Corsaro et al. (2012) and Huber et al. (2010), respectively. Mean error
bars estimated at low ∆ν (∆ν ≤ 1.0 µHz) and at high ∆ν (∆ν ≥ 1.0 µHz) are represented at the bottom of each panel.

Table 2. Fit of the seismic parameters ε and d0`, and the dimensionless
glitch parameters.

` A` B`
0 ε 0.614 ± 0.002 0.578 ± 0.003
1 d01 −0.081 ± 0.002 0.083 ± 0.005
2 d02 0.156 ± 0.001 −0.031 ± 0.003
3 d03 0.374 ± 0.002 −0.059 ± 0.005

C D
A 0.072 ± 0.003 −0.411 ± 0.006
G 1.879 ± 0.001 0.045 ± 0.002

Notes. The fits were performed for RGB stars alone. The acoustic
offset and the reduced small separations were fitted by a linear fit
A` + B` log (∆ν) , while the glitch parameters were fitted by a power
law C∆νD.

of the sound speed (Tassoul 1980; Roxburgh & Vorontsov 2003)
in the deep interiors. While a star ascends the RGB, the stellar
core contracts but does not undergo important structure changes.

Therefore the reduced small separations vary only slowly along
the RGB.

Figure 3 shows that d01 decreases when ∆ν decreases, as
observed by previous observational studies on less evolved stars
(Huber et al. 2010; Corsaro et al. 2012; Mosser et al. 2013a).
This points out the fact that during stellar evolution, dipole
p modes approach the doublet formed by ` = 0 and ` = 2
modes, in agreement with theoretical models (Montalbán et al.
2010; Stello et al. 2014). The variation of d01 during late stellar
evolution can be linked to the location of the turning points of
` = 1 modes. By examining the structure of low-mass red giant
models, Montalbán et al. (2010) found that d01 takes negative
values when the turning points of ` = 1 modes are deep in the
convective envelope. This is exactly what we observe and allows
us to extend the interpretation made for RGB stars to AGB
stars, which have negative d01. Stellar models of Montalbán et al.
(2010) also predict that core-He-burning stars have both positive
and negative d01, and that the turning points of ` = 1 modes are
located inside the radiative region. The determination of d01 in
clump stars is more difficult because the observed large spread
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Fig. 4. Modulation amplitude A, modulation period G, and modulation phase Φ as a function of ∆ν, with the same labels as in Fig. 3. The thick
solid lines are the median values in 0.5 µHz ∆ν bins, shown in blue for RGB stars and in red for He-burning stars. In the upper panels, dashed
blue lines are the fits presented in Table 2. In the upper left panel, the dashed orange line is the fit obtained for less evolved stars (Vrard et al.
2015), corrected with a factor that accounts for the differences between the methods we used to fit the modulation as described in Sect. 4.2. In the
upper right panel, dotted black lines delimit the domain of reliable measurements of G, which are described in Sect. 3, and the thin solid line is
the modulation period inferred from MESA models for a 1 M� star and starting from the RGB up to the AGB. The error bars are computed in the
same way as in Fig. 3. In the lower right panel, the stellar mass is colour-coded, and medians are represented by solid lines for low-mass stars
(M ≤ 1.2 M�) and by dashed lines for high-mass stars (M ≥ 1.2 M�). Because Φ varies with stellar evolution, we calculated the medians for RGB
and He-burning stars separately. We show them in blue for RGB and in red for He-burning stars.

in d01 mainly reflects the presence of mixed modes that perturb
the adjustment of the acoustic dipole modes.

The reduced small separation d02 is sensitive to the structure
differences between core He-burning stars and RGB stars: We
report that d02 is larger on average for core He-burning stars than
for RGB stars, as has been reported by Kallinger et al. (2012).
We note a clear mass effect: the lower the mass, the larger d02.
The first evidence of this mass dependence in red giants has been
discussed in Huber et al. (2010), in agreement with the theo-
retical models (Montalbán et al. 2012). We find that this mass
dependence is also visible for d01 and d03, as predicted by the
theoretical models of Montalbán et al. (2010), despite the pres-
ence of mixed modes that cause the values of these parameters to
become more scattered. However, Montalbán and collaborators
did not discuss the origin of this mass dependence. Further work
is therefore needed to physically understand this behaviour.

As for ` = 3 modes (see the bottom panel of Fig. 3), we
note that the reduced small separation d03 increases when ∆ν
decreases, as shown by the observations of Kepler (Huber et al.
2010) and stellar models (Montalbán et al. 2010). This expresses

the fact that the ` = 3 modes approach the left-hand side of
` = 0, 2 modes during stellar evolution. Further theoretical work
is needed to investigate and understand this behaviour.

4.2. Signature of the helium second-ionisation zone

The results obtained after fitting the modulation left by the
helium second-ionisation zone in ∆νn,` are shown in Fig. 4. In
Table 2 we present the scaling relations found for the dimension-
less amplitude A and period G, computed for RGB stars alone,
in the form C∆νD, where C and D are free parameters and ∆ν is
given in µHz.

4.2.1. Modulation amplitude A

When a star ascends the RGB or AGB (∆ν . 3 µHz for the
early AGB), the dimensionless amplitude of the modulation A
notably increases. During the clump phase, it is more difficult
to conclude because of the large spread of the amplitudes. We
verified that most of the stars with A ≥ 0.09 also have a dim
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Kepler magnitude, hence their oscillation spectrum is recorded
with a low signal-to-noise ratio, so that the measurement of
A is quite noisy. Globally, the amplitude of the modulation is
larger for He-burning stars than for RGB stars. This is consistent
with the results presented in Vrard et al. (2015) between clump
and RGB stars having ∆ν ≥ 3.0 µHz. We note that the val-
ues of the modulation amplitude are larger in our work than
in Vrard et al. (2015), as expected from the different methods
with which ∆νn,` and δg,obs(n, `) were computed. To compare our
results with those of Vrard et al. (2015), we then estimated how
different the modulation amplitudes are between the two meth-
ods. We note that our modulation amplitudes are 1.8 times larger
on average than those extracted in Vrard et al. (2015). Then, we
multiplied the fit reported in the latter study by 1.8 and com-
pared it with ours, as plotted in the upper left panel of Fig. 4.
Our results are also consistent with stellar evolution models that
indicate that the difference observed in the modulation ampli-
tude A between RGB and He-burning phases is correlated with
a difference of temperature and density at the level of the helium
second-ionisation zone (Christensen-Dalsgaard et al. 2014).

4.2.2. Modulation period G

We note that the modulation periodG slightly decreases through-
out the stellar evolution (Fig. 4). This means that the helium ioni-
sation zone slowly sinks into the stellar interior during evolution,
as predicted by stellar models (Fig. 6 of Broomhall et al. 2014).
The typical period does not globally differ between He-burning
stars and their RGB counterparts. Our measurements were com-
pared to the results derived with the stellar evolution code Mod-
ules for Experiments in Stellar Astrophysics (MESA) using the
1M_pre_ms_to_wd test suite case (Paxton et al. 2011, 2013,
2015, 2018, 2019). In Appendix A we describe how we extracted
the modulation period G from stellar models. Stellar mod-
els indicate that RGB stars and He-burning stars of the same
mass and same large separation should have the same mod-
ulation period G, in agreement with observations. However,
He-burning stars have more scattered G values than their RGB
counterparts. The large spread does not appear to stem from
the presence of mixed modes because Vrard et al. (2015) also
reported a spread like this for clump and RGB stars, although
they only used radial modes in the modulation fits. As reported
for the modulation amplitude A, the spread is rather well
explained by the dim magnitudes, hence by the low signal-to-
noise ratios in the oscillation spectra.

4.2.3. Modulation phase Φ

The modulation phase Φ differs depending on the evolution-
ary stage. By letting the phase vary in the interval [−π,+π], we
observe that He-burning stars globally show a negative phase
difference compared to their H-burning counterparts. This dif-
ference has been reported by Vrard et al. (2015) for clump
and RGB stars. The authors showed that the phase differ-
ence is related to the difference in ε reported in the study of
Kallinger et al. (2012) between clump and RGB stars. The link
between Φ and ε, which depends on the evolutionary stage,
is discussed in Sect. 5. Similarly to the modulation amplitude
A and the modulation period G, the spread of the modula-
tion phase Φ is larger for He-burning stars than for H-burning
stars. We verified that the spread of Φ becomes important when
the Kepler magnitude exceeds 11. The large spread of Φ could
then be explained by low signal-to-noise ratios in the oscillation
spectra.

4.2.4. Mass dependence of the glitch parameters

We also investigated the stellar mass dependence of the glitch
modulation parameters. We find evidence of a mass depen-
dence for the modulation amplitude, which varies as ARGB ∝

∆ν−0.41±0.01M−0.34±0.02 on the RGB with a similar dependence
during He-burning phases. Conversely, the modulation period is
weakly correlated with the stellar mass on the RGB and follows
GRGB ∝ ∆ν−0.05±0.01M−0.04±0.01, while it is practically indepen-
dent of the stellar mass during the He-burning phase. The mass
dependence of the modulation phase Φ is illustrated in Fig. 4.
We note a negative phase difference between low-mass and high-
mass RGB stars for ∆ν ≤ 2.0 µHz. The lack of data for He-
burning stars at low ∆ν prevents us from drawing any conclusion.
In case of less evolved stars, Vrard et al. (2015) did not find any
correlation between the stellar mass and the glitch parameters,
except for the modulation phase for clump stars. These mass
dependences remain empirical, and further theoretical work is
needed to determine their physical basis.

4.3. Mode widths

The mode widths 〈Γ`〉 were fitted by the function

〈Γ`〉 = a`
( Teff

4800 K

)b`
, (14)

where a` and b` are free parameters. The fits are presented in
Fig. 5 and summarised in Table 3.

We note that clump stars globally have larger radial mode
widths with a larger spread than those observed for RGB
stars, as mentioned in previous studies (Corsaro et al. 2012;
Vrard et al. 2018). However, when core-He-burning ends and
the star ascends the AGB (∆ν . 3 µHz), the radial mode widths
decrease and become comparable to measurements made on the
RGB.

In Fig. 5 we compare the dipole mode widths 〈Γ1〉 to the
radial mode widths 〈Γ0〉. On the RGB, we note that 〈Γ1〉 val-
ues are globally 20% higher than 〈Γ0〉 above ∆ν ≥ 3.5 µHz,
while they are globally similar below. For He-burning stars, the
` = 1 modes have larger widths than the ` = 0 modes above
∆ν ≥ 1.5 µHz. We identified three reasons that might explain
this behaviour. First, as mentioned in Sect. 3, we applied the
correction expressed by Eq. (12) to 〈Γ1〉 when the fitted modes
are mixed modes. However, the term ζ is close to 1, there-
fore the correction to 〈Γ1〉 introduces large uncertainties on the
inferred dipole p-mode widths. Second, most of the unexpect-
edly high 〈Γ1〉 values are in fact highly perturbed by mixed
modes. Gravity-dominated mixed modes can only be observed
if the condition

N ≤
1

4q

(
π

2
Γ0

δνres
− 5

)
(15)

is met (Mosser et al. 2018), where N = ∆ν/(ν2∆Π1) is the num-
ber of gravity modes per radial order n, ∆Π1 is the period spac-
ing, q is the coupling factor, Γ0 is the radial mode width, and δνres
is the frequency resolution. Using typical values of q (see e.g.,
Mosser et al. 2017a) and 〈Γ0〉, we can infer that the right-hand
side term of Eq. (15) is close to 20 at ∆ν ∼ 3 µHz for He-burning
stars. Then, Eq. (15) is hardly verified and only p-dominated
modes are mainly visible. In these cases, the mixed modes are
so close that the fits rather reproduce several confused mixed
modes than a unique pure pressure mode. Third, we note that all
the highest values of 〈Γ1〉 are systematically associated with low
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Fig. 5. Upper panels: 〈Γ0〉 as a function of ∆ν and Teff . Middle panels: ratio of 〈Γ1〉 and 〈Γ0〉 as a function of ∆ν and 〈Γ1〉 as a function of Teff . For
convenience, horizontal dotted black lines are plotted at specific values of 0.5, 1.0, 1.5, and 2.0. Bottom left panel: 〈Γ2〉 as a function of Teff . The
colours and symbols are the same as in Fig. 4. Mean error bars on the widths have been computed both at low Teff (Teff ≤ 4200 K) and at high Teff

(Teff ≥ 4200 K). These limits are equivalent to the limits in ∆ν chosen in Fig. 3. The fits presented in Table 3 are plotted with dashed light blue
lines for RGB stars. Bottom right: 〈Γ1〉 as a function of ∆ν with the dipole mode visibilities colour-coded. The solid and dashed lines correspond
to the median values for low-visibility dipole modes (V2

1 ≤ 1.5) and for high-visibility dipole modes (V2
1 ≥ 1.5), respectively, in blue for RGB

stars and in red for He-burning stars. The turquoise, dark blue, light blue and green stars are the individual stars KIC 6847371, KIC 11032660,
KIC 5461447, and KIC 6768042, respectively. They are studied in Sect. 5.3 to test the reliability of the measurements of the dipole mode width.
The median values are computed in 0.2 µHz wide ∆ν bins and in 50 K wide Teff bins.
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Table 3. Scaling relations for the mode widths and for the mode
amplitudes.

Population a` b`

〈Γ0〉 (µHz) RGB 10.8 (∗)

RGB 0.13 ± 0.02 6.36 ± 0.37
〈Γ1〉 (µHz) RGB 0.18 ± 0.01 9.73 ± 0.34
〈Γ2〉 (µHz) RGB 0.14 ± 0.02 7.41 ± 0.40

c` d`
〈A0,bol〉 (ppm) M ≤ 1.2 M� 1013 ± 20 −0.64 ± 0.02

M ≥ 1.2 M� 902 ± 36 −0.68 ± 0.03
〈A1,bol〉 (ppm) M ≤ 1.2 M� 928 ± 19 −0.59 ± 0.02

M ≥ 1.2 M� 853 ± 35 −0.64 ± 0.03
〈A2,bol〉 (ppm) M ≤ 1.2 M� 1090 ± 31 −0.74 ± 0.02

M ≥ 1.2 M� 1031 ± 30 −0.75 ± 0.02

Notes. The mode widths 〈Γ`〉 and the mode amplitudes 〈Abol,`〉 are fitted
by Eqs. (14) and (16), respectively. (∗)The exponent b`=0 indicated in
the first row for 〈Γ0〉 is the value expected on the RGB (Belkacem et al.
2012).

Fig. 6. Radial mode amplitude 〈A0,bol〉 computed from Eq. (13) as a
function of νmax with the stellar mass colour-coded. The dashed lines
are the fits presented in Table 3, shown in blue for low-mass stars (M ≤
1.2 M�) and in red for high-mass stars (M ≥ 1.2 M�). The error bars are
computed in the same way as in Fig. 5.

` = 1 mode visibilities in the interval ∆ν ∈ [1.5, 2.5] µHz. These
dipole modes with a low amplitude are unexpectedly large and
are further discussed in Sect. 5.3. The comparison between 〈Γ2〉

and 〈Γ0〉 is not discussed here because 〈Γ0〉 ∼ 〈Γ2〉, as expected.
We also investigated the temperature dependence of 〈Γ`〉

(Fig. 5). The fits performed on each stellar population (cf.
Table 3) indicate that 〈Γ`〉 and Teff are strongly correlated,
regardless of the degree `. Vrard et al. (2018) also reported that
〈Γ0〉 is correlated with Teff for less evolved giants, but this cor-
relation is not as pronounced as in the present study. A strong
correlation like this is expected across the HR diagram accord-
ing to theoretical work (Belkacem et al. 2012).

4.4. Mode amplitudes

The radial mode amplitude 〈A0,bol〉 defined in Eq. (13) is plotted
as a function of νmax in Fig. 6 and was adjusted by the scaling
relation

〈A`,bol〉 = c` νd`
max, (16)

where c` and d` are free parameters and νmax is given in µHz.
The radial mode amplitudes follow the same trend as high-
lighted in recent studies (e.g., Huber et al. 2011; Stello et al.
2011; Mosser et al. 2012; Vrard et al. 2018). The radial mode
amplitude does not differ between RGB stars and He-burning
stars. For both stellar populations, the radial mode amplitude fol-
lows a power law with an exponent roughly equal to −0.70. Fur-
thermore, the previous studies reported a clear mass dependence
regardless the evolutionary stage: the higher the mass, the lower
the radial mode amplitude (see Fig. 6).

4.5. Mode visibilities

The energy distribution between modes of different degree ` can
be studied through the mode visibilities (Eq. (9)). They are pre-
sented in Fig. 7 and were fitted by the linear function

V2
` = α + β(Teff − 4800 K), (17)

where α and β are free parameters and Teff is given in K (see
Table 4).

We verified that the high values of V2
1 and V2

2 can be
explained by very weak radial mode amplitudes. For some He-
burning stars, the dipole mixed modes extend up to the frequency
range where ` = 3 modes are located. When mixed modes are
too close to the ` = 3 modes, a fraction of the energy asso-
ciated with mixed modes can be accidentally accounted for as
part of the energy of ` = 3 modes. Consequently, some V2

1 val-
ues may be underestimated, and V2

3 is inevitably overestimated.
In the case of less evolved stars, Mosser et al. (2012) suggested
that the scatter in V2

1 could be related to the conditions that gov-
ern the coupling between g modes and p modes, giving rise to
mixed modes. In the case of He-burning stars, this could explain
the spread we obtain because these stars clearly exhibit mixed
modes when ∆ν & 3.0 µHz.

Although we note a large spread for the mode visibilities,
it is clear that the non-radial mode visibilities increase when
Teff decreases both for RGB stars and He-burning stars, as
expected from theoretical predictions (Ballot et al. 2011a). The
only exception is the visibility of ` = 1 modes in He-burning
stars. This is due to the presence of several dipole modes with
very low visibilities in the interval Teff ∈ [4200, 4500] K, as
reflected by the gap between the medians computed for RGB
and He-burning stars. The mode visibilities in evolved stars
similarly behave as in less evolved stars, except in the case of
` = 3 modes, since we note that V2

3 increases towards low Teff ,
whereas Mosser et al. (2012) observed the opposite trend.

The visibility of dipole modes V2
1 is represented as a function

of νmax in the upper right panel of Fig. 7. We observe a clear dif-
ference between RGB stars and He-burning stars in the interval
νmax ∈ [7, 20] µHz, with He-burning stars having weaker V2

1 than
their RGB counterparts. In parallel, we previously reported that
Γ1 is greater for He-burning stars in this interval (Fig. 5). It is cer-
tain that mixed modes perturb the extraction of the pure pressure
dipole mode widths when ∆ν ≥ 1.5 µHz, but the presence of low-
visibility dipole modes reflects a shortage of dipole mode energy,
which could be linked to a higher dipole mode damping, hence
to a higher dipole mode width. We study this question in Sect. 5.
Furthermore, we find that quadrupole modes have larger ampli-
tudes in the H-burning phases than on the He-burning phases in
the interval νmax ∈ [15, 35] µHz, as represented in the middle
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Fig. 7. Upper panels: visibility of the ` = 1 modes as a function of Teff in the left panel and of νmax in the right panel. The colours and symbols
are the same as in Fig. 5. The error bars are computed in the same way as in Fig. 5. Similarly, error bars on the visibilities are given for both low
νmax (νmax ≤ 4.5 µHz) and high νmax (νmax ≥ 4.5 µHz). The dashed lines are the fits presented in Table 4, in light blue for RGB stars and in light
red for He-burning stars. The thin solid light blue and light red lines are the fits obtained for less evolved stars (Mosser et al. 2012) for RGB stars
and for He-burning stars, respectively. The thin solid black line is the theoretical prediction (Ballot et al. 2011b). Middle panels: same labels as in
the upper panels, but for the visibility of ` = 2. Lower left panel: same labels as in the upper left panel, but for the visibility of ` = 3 modes. The
median values are computed in 50 K wide Teff bins and in 1.5 µHz wide νmax bins.

right panel of Fig. 7. This difference may be linked to the mixed
character of the quadrupole modes, which is more pronounced
during the clump phase in the interval νmax ∈ [15, 35] µHz.

Nevertheless, we note a large spread of the dipole mode
visibilities. The dipole mode visibilities of He-burning stars
become comparable with those measured on the RGB at low ∆ν
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Table 4. Fits of the mode visibilities presented in Fig. 7.

Population α β (103 K−1)

V2
1 Solar-like (∗) 1.54 −0.06

RGB 1.13 ± 0.02 −1.006 ± 0.012
He-burning 1.33 ± 0.05 −0.261 ± 0.013

V2
2 Solar-like (∗) 0.58 −0.07

RGB 0.66 ± 0.12 −0.148 ± 0.058
He-burning 0.55 ± 0.01 −0.390 ± 0.006

V2
3 Solar-like (∗) 0.036 −0.02

RGB 0.07 ± 0.02 −0.007 ± 0.005
He-burning 0.07 ± 0.01 −0.041 ± 0.006

Notes. The mode visibilities are fitted by Eq. (17). (∗)The expected
coefficients are derived for solar-like oscillators, including RGB stars
(Ballot et al. 2011a).

(∆ν ≤ 1.5 µHz), when mixed modes disappear in the oscillation
spectrum. The physical mechanisms that govern the coupling
between the p-mode and the g-mode cavities might therefore be
linked to the observation of low dipole mode visibilities. Even
if the presence of depressed modes in advanced stages of stellar
evolution is not clear, the simultaneous presence of low dipole
mode visibilities and dipole mixed modes could help to identify
the physical processes that cause the depressed modes in less
evolved stages, which are still under debate (Fuller et al. 2015;
Stello et al. 2016; Cantiello et al. 2016; Mosser et al. 2017b).

4.6. Comparison with other peak-bagging methods

The measurements inferred from our frequentist peak-bagging
are compared with those4 of the automated Bayesian peak-
bagging algorithm A

B

BA (Kallinger 2019), which uses the
Bayesian nested sampling algorithm MULTINEST (Feroz et al.
2009). The average radial mode widths and bolometric ampli-
tudes derived in the Bayesian approach were computed in the
same way as in Sect. 3.4. The comparison is shown in Fig. 8.

The radial mode widths 〈Γ0〉 derived with our frequen-
tist peak-bagging are globally larger than those obtained with
A

B

BA by about 25%. This overestimate is frequency depen-
dent because it increases for higher values of 〈Γ0〉. Conversely,
our radial bolometric mode amplitudes are weakly underesti-
mated by about 5% with respect to the A

B

BA values. Vrard et al.
(2018) also reported that the radial mode width was overesti-
mated by about 10% in the frequentist approach with respect to a
Bayesian approach. Moreover, we approximated the background
component by Eq. (2) around νmax, while Kallinger (2019) mod-
elled it with two super-Lorentzian functions (Kallinger et al.
2014). The background parametrisation has a non-negligible
impact on the mode fitting, and stellar background bias is one of
the main sources of frequency-dependent systematic errors in the
measurements of mode widths and heights (Appourchaux et al.
2014). The way that the stellar background was modelled may
therefore partly explain the differences we find between mea-
surements.

5. Discussion

5.1. Stellar classification at advanced stages

Using a global measurement of the large separation ∆ν and the
oscillation pattern of red giants (Eq. (1)), we did not find any

4 https://github.com/tkallinger/KeplerRGpeakbagging

Fig. 8. Top panel: ratio of the average radial mode widths 〈Γ0〉 obtained
in this study and those obtained with a Bayesian method (Kallinger
2019). The median values are computed in 0.015 µHz wide Γ0,freq bins.
Bottom panel: same as in the upper panel, but for the average radial
mode bolometric amplitude 〈A0,bol〉. The colours and symbols are the
same as in Fig. 4. The median values are computed in 20 ppm A0,freq
bins. The dotted line represents the 1:1 agreement. Mean error bars are
represented at the top of each panel.

difference in the acoustic offset ε between RGB stars and He-
burning stars. In parallel, we highlighted a difference in the sig-
nature of the helium second-ionisation zone between these stel-
lar populations, especially in the modulation phase Φ. This phase
difference locally affects the measurement of ∆ν according to
Eq. (7). A local change in ∆ν can be linked to a local change in
ε by differentiating Eq. (1), leading to

δε = −(n + ε)
δ∆ν

∆ν
· (18)

In the case of RGB and clump stars, Vrard et al. (2015) showed
that the values of δε inferred from δ(log ∆ν) that is related with
the helium second-ionisation zone match the typical difference
in ε between RGB and clump stars. They identified the glitch
signatures as the physical basis of the stellar population iden-
tification method based on the acoustic offset ε. We extended
the conclusions raised by Vrard et al. (2015) to more advanced
evolutionary stages, that is, between RGB and He-burning stars,
including clump and AGB stars. The difference in the local
measurements of ε between RGB and AGB stars reported by
Kallinger et al. (2012) is caused by the different glitch signature
of the helium second-ionisation zone, especially for the modula-
tion phase Φ.
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Fig. 9. Left panel: distribution of He-burning stars in terms of νmax. In blue we show the number of low-mass He-burning stars (M ≤ 1.2 M�),
and in green we show the number of high-mass He-burning stars (M ≥ 1.2 M�). The colour bar indicates the location in νmax where we expect the
AGB bump for a given mass following Eq. (19) and adopting Teff = 4800 (νmax/40.0)0.06 (Mosser et al. 2010). The blue and green arrows roughly
indicate the location of the AGB bump for low-mass and high-mass stars, respectively, which is characterised by a local excess of stars. Right
panel: Evolution speed dνmax/dτ, where τ is the stellar age, as a function of νmax for different stellar masses. The models computed with MESA
start from the end of the clump phase, which is marked by a diamond. The start and the end of the AGB bump are marked by a circle and a star,
respectively.

5.2. AGB bump

After leaving the clump phase where helium-burning takes place
in the core, the star enters the AGB phase. During the early
asymptotic giant branch (eAGB) and in the case of low-mass
and intermediate-mass stars, two turning-backs of the evolution-
ary track can be seen in a narrow interval of luminosity, sim-
ilarly to what can be seen during the RGB bump: This is the
so-called AGB bump (AGBb). It is caused by the onset of the
shell-He burning and was first identified in the Large Magellanic
Cloud colour–magnitude diagram (Gallart 1998). The AGBb is
observationally characterised by a local excess of stars in the
luminosity distribution of stellar populations. Such an incre-
ment has been identified at log (L/L�) ∼ 2.2 (Bossini et al.
2015). For a star of M = 1.0 M� and Teff = 4500 K, this is
equivalent to νmax ∼ 8 µHz according to the scaling relation
(Kjeldsen & Bedding 1995)

νmax

νmax,�
=

M
M�

(
L
L�

)−1 (
Teff

Teff,�

)7/2

. (19)

Accordingly, we selected He-burning stars that left the clump
phase (i.e., νmax . 25 µHz). Their distribution as a function of
νmax is shown in Fig. 9. By tracking stellar evolution towards
low νmax, we note a depleted region followed by a peak for
low mass-stars (at νmax ∼ 8 µHz) and for high-mass stars (at
νmax ∼ 11 µHz). The depleted region could be explained by a dif-
ference in the evolution speed. We have computed models with
the MESA code, using the 1M_pre_ms_to_wd test suite case to
investigate the evolution speed between the end of the clump
phase and the ascent on the AGB. The results are presented in
the right panel of Fig. 9. For a given mass, we note that the evo-
lution is faster between the end of the clump phase and the start
of the AGBb than right after the AGBb since the variation of νmax
with time is more important before the AGBb. The fast evolution
speed before the AGBb results in a small statistical probability to
meet low-mass stars in the interval νmax ∈ [8, 15] µHz and high-
mass stars in the interval νmax ∈ [14, 18] µHz. Investigating the
AGBb in depth is part of our future work.

5.3. A strong damping during the eAGB phase?

Very low degree modes have similar eigenfunctions in the stel-
lar outer layers, so that they are excited in similar conditions
and show similar power spectral densities. However, as men-
tioned in Sect. 4.5, many He-burning stars have very low dipole
mode visibilities below νmax = 20 µHz. In parallel, we found that
most of the He-burning stars with low dipole mode visibilities
have larger dipole mode widths. These low dipole mode visi-
bilities reflect a lack of energy that could be linked to a strong
dipole mode damping. Accordingly, we analysed the correlation
between low visibility and large damping of dipole modes in
detail by fitting the mixed-mode pattern during the early-AGB
phase.

To this end, we considered single stars that have been iden-
tified as eAGB stars according to the classification method of
Mosser et al. (2014). We selected five eAGB stars that have both
low visibility dipole modes and a mixed-mode pattern clear
enough to fit individual mixed modes and measure their widths
(KIC 6847371, 11032660, 5461447, 10857623, and 6768042).
We compared these widths to the pure-pressure dipole-mode
width with Eq. (12). The results shown in Appendix B are unfor-
tunately not unequivocal. Three of these eAGB stars present
a strong dipole-mode damping, which is within the 1σ uncer-
tainty for KIC 6847371 and KIC 5461447 and within the 2σ
uncertainty for KIC 11032660. Nevertheless, this is not what we
observe for KIC 10857623 and KIC 6768042. We face several
constraints to reduce the uncertainties (or to fit other spectra),
such as a low signal-to-noise ratio, a high ratio ζ of the mode
inertia in the core and the total mode inertia (which leads to high
uncertainties through Eq. (12)), limited frequency resolution,
rotational splittings, and buoyancy glitch signature. We therefore
tested another method to process these constraints together.

In a star in spherical equilibrium (thus non-rotating and with-
out magnetic field), we expect the energy equipartition between
modes of even and odd degrees to be satisfied. The lack of energy
observed for dipole modes can be studied by comparing the
energy of even-degree modes to that of odd-degree modes. To
this end, we computed the ratio between the visibilities of odd
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Fig. 10. Ratio of the mode visibilities of odd and even degrees as a
function of νmax. Same labels as in Fig. 4. For convenience, horizontal
dashed black lines are plotted at specific values of 0.75, 1.00, and 1.25.
The error bars are computed in the same way as in Fig. 3. The median
values are computed in 1.5 µHz νmax bins.

and even degrees,

V`,odd2

V`,even2
=

V2
1 + V2

3

1 + V2
2

. (20)

Modes that have a degree of same parity are close one to each
other, as illustrated in Fig. 2. As a result, studying the global
contribution of the energy then limits the impact of the energy
leakage between individual degrees. We use the measurement
of the odd/even visibility ratio as an indicator of the variation
of the visibilities of ` = 1 modes (Fig. 10). The variation is in
fact dominated by the dipole modes for two reasons. On the one
hand, the visibility of the octupole modes is very low for geomet-
rical reasons. On the other hand, the quadrupole modes essen-
tially behave as pure pressure modes for evolved giants, and
always have a more pronounced pressure character than dipole
modes. Below νmax = 20 µHz, the energy equipartition seems
to be invalid for He-burning stars. The dipole mode visibility is
weaker than predicted by theory for He-burning stars. This lack
of dipole mode energy is linked to a large dipole mode damping
according to our study, and invalidates the energy equipartition
between the different low-degree modes.

For RGB stars we can note that the visibility of ` = 1 modes
is globally lower at high νmax (see Fig. 7) and is especially lower
than the expected value (1.54), which makes V`,even2 greater than
V`,odd2 above νmax = 25 µHz. This difference was first observed
by Mosser et al. (2012) for less evolved red giants and can the-
oretically be explained by a difference of dipole mode damping
(Dziembowski 2012). The radiative damping causes an energy
loss at the envelope base that decreases when the star ascends
the RGB (Dziembowski 2012, see Figs. 6 and 7). For a star with
an initial mass M0 = 2 M�, the energy loss by gravity wave
emission at the envelope base is expected to cancel out when
νmax ' 28 µHz on the RGB. This is consistent with our obser-
vations because we note that V2

1 increases with evolution below
νmax ≤ 28 µHz (see the upper right panel of Fig. 7). On the RGB,
radiative damping may explain the damping of energy of dipole
modes observed at high νmax. On the AGB, the dipole mode visi-
bility evolves in the opposite direction. Given that the evanescent
region between the g-mode and the p-mode cavities grows while
the star ascends the AGB, mixed modes become less visible, and

consequently, the only visible dipole modes are trapped in the
envelope, as observed on the RGB. It might therefore be rel-
evant to investigate the radiative damping in order to determine
whether it can explain the damping of dipole modes on the AGB.

6. Conclusion

So far, we have performed the first exhaustive study of the seis-
mic analysis of evolved giants, including ∼2000 stars ascending
the RGB towards the luminosity tip and He-burning stars both in
the clump phase and ascending the AGB. We successfully char-
acterised the oscillation spectrum of stars with ∆ν ≥ 0.5 µHz and
extracted the radial, dipole, and quadrupole mode parameters.
By investigating the signature of the helium second-ionisation
zone, we identified the physical origin on which the classifica-
tion method based on ε and presented in Kallinger et al. (2012)
relies at low ∆ν, that is, between RGB and AGB stars. We found
that the amplitude and phase of the modulation introduced in the
mode frequencies differ in RGB and in He-burning stars, that
is, in core-He-burning and AGB stars. Work is in progress to
investigate these differences with modelling. These differences
affect local measurements of ε and enable classifying RGB and
He-burning stars. Thus, we extended the work of Vrard et al.
(2015), who drew the same conclusions, but considering RGB
stars versus clump stars. As a consequence, we now have two
methods relying on the same physical basis to decipher stellar
evolution effects in evolved giant stars. On the one hand, we can
adopt a local analysis where the signature of the helium second-
ionisation zone is included in the acoustic offset ε. In this case,
the possible values of ε reflect stellar evolution effects. On the
other hand, we can adopt a global analysis where the values
taken by ε are squeezed together and the stellar evolution effects
in ε fade. However, in this case, we can still emphasise the stel-
lar evolution effects by considering an additional term in Eq. (1)
representing the signature of the helium second-ionisation zone
on mode frequencies.

Having access to seismic diagnoses of evolved giants is
promising for the understanding of stellar evolution, espe-
cially during the AGBb. The AGBb is expected to occur at
log (L/L�) ∼ 2.2 after the core He-burning phase. The investi-
gation of the AGBb will be approached in a forthcoming paper.
Furthermore, we highlighted that after the core He-burning
phase, (i) the evolution is faster for low-mass stars, (ii) the dipole
mode energy decreases, and (iii) the pressure-mode damping
slowly becomes comparable to that measured on the RGB. This
suggests that other physical processes need to be investigated in
order to understand the mode damping and the observed visi-
bilities as soon as core He-burning stops, that is, when the core
becomes radiative again.
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Appendix A: Location of the helium
second-ionisation zone

The modulation period G defined in Eq. (7) can be linked to
the location of the helium second-ionisation zone. The structural
variations caused by the helium glitch can be seen in the first
adiabatic exponent profile, defined by

γ1 =

(
d log P
d log ρ

)
s
, (A.1)

where P and ρ are the pressure and the density, respectively,
and the subscript s indicates that the derivative is taken at con-
stant entropy. It is commonly assumed that the signature of
the helium glitch arises from the dip in the γ1 profile caused
by the helium second-ionisation zone (Monteiro & Thompson
2005; Houdek & Gough 2007). In stellar models, we therefore
took the acoustic radius at this local minimum as the location of
the helium second-ionisation zone, for instance, tHeII, defined by

tHeII =

∫ rHeII

0

dr
cs(r)

· (A.2)

In this expression, rHeII is the distance of the local minimum
from the centre of the star, and cs is the adiabatic sound speed.
The helium glitch introduces an oscillatory component in the
eigenfrequency pattern of the star, which is proportional to
(Gough & Thompson 1988; Vorontsov et al. 1988; Gough 1990)

δν ∝ sin
(
4πτHeIIνn,` + ΦHeII

)
, (A.3)

where φHeII is the phase of the glitch modulation and τHeII is the
acoustic depth of the helium glitch relative to the surface of the
star of radius R∗,

τHeII =

∫ R∗

rHeII

dr
cs(r)

· (A.4)

The modulation introduced in the local large separation
(Eq. (6)) can also be expressed in the form of Eq. (A.3) with
a phase shift compared to ΦHeII. Consequently, the modulation
period G and the acoustic depth τHeII can be linked according to

τHeII =
1

2G∆ν
· (A.5)

Furthermore, the total acoustic length of the stellar cavity is
defined by

T0 =
1

2∆ν
, (A.6)

so that we can convert the acoustic depth τHeII into the acoustic
radius tHeII with the relation tHeII = T0 − τHeII. This transforma-
tion allows us to reduce the biases that result from the unknown
exact position of the stellar surface (Christensen-Dalsgaard et al.
1995; Ballot et al. 2004). Finally, the modulation periodG can be
inferred from the location of the helium second-ionisation zone
with the expression

G =
1

1 − tHeII/T0
· (A.7)

Appendix B: Mixed-mode measurements in the
eAGB phase

We selected individual stars identified as eAGB stars accord-
ing to the classification method of Mosser et al. (2014) and fit-
ted their mixed dipole modes near νmax to extract an estimate
of the mode widths. The mixed dipole mode widths were then
used to infer the pure-pressure dipole mode widths according to
Eq. (12).

Results are shown in Figs. B.1 and B.2, and in the fifth
column of Table B.2. Their average values are presented in
Table B.1.
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Fig. B.1. Mixed-mode pattern for KIC 6847371 (V2
1 = 1.23 ± 0.10) at radial order n = 5 (top left) and at n = 6 (top right), for KIC 11032660

(V2
1 = 1.14 ± 0.10) at n = 5 (middle left) and at n = 6 (middle right), for KIC 5461447 (V2

1 = 1.15 ± 0.15) at n = 6 (bottom left), and for
KIC 10857623 (V2

1 = 1.01 ± 0.12) at n = 7 (bottom right). The stars are marked by stars in the lower right panel of Fig. 5 except for KIC
10857623 because we were unable to reliably extract its dipole mode widths following the method described in Sect. 3.4. Resolved modes are
plotted by individual Lorentzians in blue, with the parameters given in Table B.2, while the unresolved modes at ν = 18.246 µHz (KIC 11032660),
ν = 20.913 µHz, and ν = 20.984 µHz (KIC 10857623) are plotted by sinc2 functions.
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Fig. B.2. Same labels as in Fig. B.1 for KIC 6768042 (V2
1 = 1.38±0.13)

at radial order n = 7 (top) and at n = 8 (bottom). The mode located at
ν = 24.873 µHz is unresolved and has been fitted by a sinc2 function.

Table B.1. Pressure dipole mode widths compared to the radial mode
widths.

KIC ∆ν νmax 〈Γ
p
n,1〉 〈Γ0〉

(µHz) (µHz) (µHz) (µHz)

6847371 2.69 19.84 0.189 ± 0.070 0.128 ± 0.032
11032660 2.83 19.66 0.142 ± 0.051 0.121 ± 0.026
5461447 2.97 21.76 0.163 ± 0.051 0.088 ± 0.017
10857623 2.49 16.11 0.083 ± 0.029 0.121 ± 0.023
6768042 2.96 23.37 0.138 ± 0.069 0.150 ± 0.024

Notes. The average value of the dipole mode widths is computed as
the arithmetic mean of the pressure mode widths Γ

p
n,1 presented in

Table B.2.

Table B.2. Estimates of the ratio ζ between the mode inertia in the core
and the total mode inertia, the mixed dipole mode widths Γn,1, heights
Hn,1 and the pressure dipole mode widths Γ

p
n,1 for the stars KIC 6847371

at radial order n = 5 and 6, KIC 11032660 at n = 5 and 6, KIC 5461447
at n = 6, KIC 10857623 at n = 7, and KIC 6768042 at n = 7 and 8.

KIC ν ζ Γn,1 Γ
p
n,1 Hn,1

(µHz) (nHz) (µHz) (ppm2 µHz−1)

6847371
17.221 0.912 14.0 0.173 148 042
17.312 0.933 8.9 0.134 119 977
17.385 0.951 12.6 0.256 185 682
17.444 0.961 12.8 0.330 132 426
19.763 0.917 10.8 0.130 142 715
19.836 0.900 13.5 0.135 185 918
19.916 0.895 8.1 0.077 595 653
19.981 0.908 17.5 0.190 419 721
20.056 0.929 18.0 0.254 114 214
20.121 0.944 9.1 0.163 272 377
20.198 0.958 9.8 0.233 121 588

11032660
18.054 0.901 9.1 0.092 66 802
18.103 0.906 11.9 0.126 223 603
18.176 0.922 14.7 0.189 223 744
18.246 0.940 8.1 (∗) 0.135 147 870
18.300 0.956 8.5 0.191 149 941
18.365 0.967 8.2 0.246 156 975
20.836 0.892 12.3 0.113 106 265
20.918 0.872 13.5 0.105 108 367
20.999 0.881 8.2 0.069 231 565
21.092 0.911 14.1 0.158 200 770

5461447
21.715 0.947 13.9 0.263 65 961
21.844 0.902 12.9 0.131 88 352
22.007 0.835 15.5 0.094 39 418
22.121 0.879 14.9 0.123 110 662
22.218 0.925 13.7 0.183 118 859
22.315 0.954 18.4 0.398 49 835

10857623
20.745 0.924 9.7 0.127 63 988
20.820 0.891 8.8 0.081 56 137
20.913 0.848 7.8 (∗) 0.051 140 292
20.984 0.851 7.8 (∗) 0.052 99 708
21.065 0.882 12.1 0.103 163 003

6768042
24.763 0.839 22.1 0.138 70 787
24.873 0.832 7.9 (∗) 0.047 80 691
24.967 0.878 16.6 0.136 155 491
25.088 0.928 16.3 0.225 101 482
25.204 0.953 11.5 0.243 107 916
27.504 0.927 10.5 0.143 35 161
27.639 0.863 11.3 0.082 45 895
27.780 0.790 14.5 0.069 87 860
27.904 0.820 8.7 0.048 174 133
28.037 0.899 14.0 0.138 45 005
28.070 0.909 11.7 0.129 32 445
28.182 0.940 15.3 0.254 39 866

Notes. The different estimates of Γ
p
6,1 are inferred from Eq. (12). For

these particular stars, the term ζ is not derived from scaling relations as
described in Sect. 3, but is extracted from the database of Mosser et al.
(2018). (∗)The measurement of the modes located at ν = 18.246 µHz
(KIC 11032660), ν = 20.913 µHz and ν = 20.984 µHz (KIC 10857623),
and ν = 24.873 µHz (KIC 6768042) are limited by the resolution.

A115, page 18 of 19

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202040240&pdf_id=12


G. Dréau et al.: Seismic analysis of evolved giants

Appendix C: Table available at the CDS with results
of pressure mode-fitting

The approach described in Sect. 3 allowed us to thoroughly
characterise the pressure modes of 2103 evolved red giants
observed by Kepler with ∆ν ≤ 4.0 µHz. A selection of the seis-
mic parameters, obtained in Sect. 4, is shown in Table C for
25 stars. The complete set of global seismic parameters of the
whole sample of stars is available at the CDS. The stellar mass
and effective temperature were extracted from the APOKASC

catalogue (Pinsonneault et al. 2014). For some stars, the stel-
lar mass and the effective temperature are not listed in the
APOKASC catalogue. It concerns roughly 5% of our sample,
with half of this fraction being associated with very low ∆ν-
values (i.e., ∆ν ≤ 0.5 µHz). For these stars, we nevertheless
obtained rough estimates of the stellar mass and effective tem-
perature using semi-empirical and empirical scaling relations
implying both the frequency at the maximum oscillation power
νmax and large frequency separation ∆ν (Kjeldsen & Bedding
1995; Kallinger et al. 2010; Mosser et al. 2010).

Table C.1. Seismic parameters.

KIC ∆ν M Teff ε δε d01 δd01 d02 δd02 d03 δd03
(µHz) (M�) (K)

01026309 1.944 2.58 4514 0.795 0.011 −0.043 0.017 0.126 0.007 0.391 0.016
01160789 3.524 0.86 4724 0.950 0.014 −0.053 0.021 0.144 0.011 0.389 0.022
01162746 3.804 0.85 4762 0.956 0.016 −0.093 0.023 0.173 0.012 0.343 0.026
01163359 2.644 1.67 4560 0.855 0.012 −0.013 0.017 0.143 0.008 0.342 0.017
01432587 1.082 0.85 4295 0.635 0.011 −0.042 0.017 0.171 0.009 0.378 0.017
01435573 3.587 0.90 4698 0.945 0.017 −0.091 0.023 0.181 0.013 0.358 0.022
01572780 2.693 0.97 4738 0.854 0.013 −0.054 0.022 0.171 0.012 0.392 0.023
01719297 1.215 1.29 4255 0.664 0.010 −0.083 0.016 0.157 0.009 0.362 0.017
01720425 3.667 1.09 4798 0.945 0.015 −0.044 0.021 0.169 0.011 0.382 0.022
01725552 1.221 1.53 4344 0.654 0.010 −0.090 0.020 0.146 0.010 0.362 0.018
01725732 0.707 0.87 4100 0.565 0.010 −0.148 0.014 0.182 0.008 0.396 0.014
01726211 3.720 1.32 4862 0.963 0.016 −0.010 0.024 0.162 0.014 0.338 0.022
01865595 1.815 1.34 4386 0.755 0.011 −0.044 0.018 0.128 0.009 0.406 0.019
01868101 3.785 1.28 4633 0.966 0.015 −0.030 0.017 0.149 0.009 0.376 0.021
01872517 3.299 1.14 4543 0.915 0.015 −0.043 0.019 0.148 0.011 0.356 0.020
01995358 3.238 1.17 4824 0.930 0.015 −0.029 0.020 0.155 0.011 0.429 0.020
02011582 3.863 2.15 4684 0.943 0.015 −0.060 0.020 0.130 0.010 0.328 0.020
02017541 1.457 1.33 4242 0.690 0.011 −0.055 0.018 0.155 0.009 0.364 0.018
02018392 3.789 1.52 4669 0.943 0.015 −0.035 0.021 0.136 0.009 0.316 0.019
02141932 3.013 1.37 4429 0.894 0.014 −0.017 0.019 0.146 0.009 0.426 0.021
02142095 3.694 1.17 4839 0.932 0.015 −0.046 0.019 0.151 0.009 0.391 0.019
02156178 3.824 0.95 4853 0.932 0.018 −0.047 0.030 0.188 0.016 0.391 0.031
02157059 3.002 1.27 4424 0.874 0.013 −0.056 0.017 0.161 0.009 0.353 0.017
02157901 3.795 1.05 4760 0.933 0.017 −0.049 0.027 0.205 0.017 0.374 0.031
02164874 1.779 1.45 4447 0.765 0.011 −0.029 0.019 0.142 0.009 0.359 0.018

Notes. The columns correspond to, from left to right, the KIC number, the large separation ∆ν, the stellar mass M, the effective temperature Teff ,
the acoustic offset ε, the uncertainty on ε, the reduced small separations d0` and the uncertainties on d0`. The list of the full data set, including the
glitch parameters, the mean mode widths, amplitudes, visibilities and the evolutionary stages, is available at the CDS.
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