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Abstract: Frequent cloud cover and fast regrowth often hamper topical forest disturbance monitoring
with optical data. This study aims at overcoming these limitations by combining dense time series of
optical (Sentinel-2 and Landsat 8) and SAR data (Sentinel-1) for forest disturbance mapping at test
sites in Peru and Gabon. We compare the accuracies of the individual disturbance maps from optical
and SAR time series with the accuracies of the combined map. We further evaluate the detection
accuracies by disturbance patch size and by an area-based sampling approach. The results show that
the individual optical and SAR based forest disturbance detections are highly complementary, and
their combination improves all accuracy measures. The overall accuracies increase by about 3% in
both areas, producer accuracies of the disturbed forest class increase by up to 25% in Peru when
compared to only using one sensor type. The assessment by disturbance patch size shows that the
amount of detections of very small disturbances (< 0.2 ha) can almost be doubled by using both data
sets: for Gabon 30% as compared to 15.7–17.5%, for Peru 80% as compared to 48.6–65.7%.

Keywords: forest; disturbance; monitoring; Earth Observation; Sentinel; SAR; Gabon; Peru; FNF
mapping; change detection

1. Introduction

The mapping of forest disturbances is an important component in sustainable forest management
and in implementing climate policy initiatives, such as the UN’s Reducing Emissions from Deforestation
and Forest Degradation (REDD+) programme. In this paper, we use the term forest disturbance as an
umbrella term for all forest changes that result from both deforestation and from forest degradation.
According to both FAO and UNFCCC, deforestation is a conversion from forest land to non-forest
land. Since, in many cases, we do not know the future fate of the disturbance patches, we cannot
further classify them. Instead, the analysis of this study puts a focus on the size of the detected
disturbance patches. Today, remote sensing applications are widely used to monitor tropical forests
and their changes at large spatial scales. Most tropical forest monitoring systems are based on optical
data sets and focus on large-deforestation areas, for which user accuracies around 90% and producer
accuracies above 75% are reported [1–3]. In addition, recent developments have led to automated
forest monitoring systems that are based on medium to high spatial resolution Earth Observation
(EO) data and allow tracking forest changes in near real-time (NRT), such as Global Forest Watch
Alerts for the humid tropical forests [4] and the DETER system in Brazil [5]. While methods for large
area deforestation monitoring have improved considerably over the last years, there still is a lack of
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methods that accurately detect forest degradation and small forest changes. Forest degradation is
thought to be a major source of carbon emissions [6], and thus needs to be better understood and
integrated in REDD+ Monitoring & Measurement, Reporting and Verification (MRV) systems. A key
driver of forest degradation is timber extraction by selective logging, where only a small subset of
trees is harvested. The intensity of selective logging varies, depending on the amount of wood that
is harvested, but usually the individual patches of change are small. Other less prominent drivers
of forest degradation in developing countries include fuelwood collection and charcoal production,
uncontrolled fire, and livestock grazing [7]. To accurately detect small patches of forest disturbance
from selective logging and other degradation drivers, EO data of both high spatial and temporal
resolution is required because gaps left by e.g., individual tree extraction are very small and quickly
overgrow in tropical climates. EO data that have the potential to map forest degradation are now
available: the Sentinel missions provide data at 10 m spatial resolution both in the optical and Synthetic
Aperture Radar (SAR) domain and data are provided every five to 12 days.

Apart from rapid forest regrowth, tropical forest disturbance mapping with optical data is also
limited by the number of available cloud-free observations. C-band SAR data from the Sentinel-1 mission
(central frequency of 5.404 GHz) can be acquired independent of weather conditions and daytime,
leading to very dense time series of EO data. The two-satellite constellation of Sentinel-1 has a potential
six-day exact repeat cycle, but the tropical regions are only covered by one satellite, leading to a 12-day
repeat cycle. Some tropical areas are only covered by one descending or one ascending orbit. Information
on revisit frequency and the available pass directions can be obtained from the Sentinel-1 observation
scenario from ESA (https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario). By
combining the vast amounts of new EO data from the Sentinel-1 (S-1), Sentinel-2 (S-2), and Landsat
8 (L8) missions, it is possible to strongly increase the temporal density of available EO data and
additionally exploit multi-sensor information for forest monitoring. The Sentinel-2 constellation and
Landsat 8 have repeat cycles of five days and 16 days, respectively. Together, these two missions
provide up to eight images per month for tropical regions and strongly increase the temporal density
of image time series. However, the number of usable cloud-free observations is site specific as it
strongly depends on regional cloud cover. An assessment of available Landsat 7 and 8 images for Peru
showed that, on average, less than 50% of all potential observations are cloud-free observations and
cloud cover has significant intra-annual and regional variation [8]. The combination of all available
cloud-free optical observations and SAR data allows to develop near real-time forest disturbance
mapping systems at high spatial resolution, which can be used to more accurately detect small scale
forest disturbances.

The aim of this study is to analyze if the joint use of SAR (S-1) and optical (S-2 and L8) time series
data in forest monitoring approaches can increase forest disturbance detection accuracies in the humid
tropics. Forest disturbance maps from SAR and optical data are highly complementary, in that they
detect different disturbed forest areas. Therefore, the assumption was that higher accuracy values can
be obtained by merging detections from both sensor types. In this study, we demonstrate this at two
humid tropical forest test sites located in Peru and in Gabon. Our approach includes the generation
of a benchmark forest/non-forest mask, which serves as the starting point for the forest disturbance
mapping. Separate forest disturbance maps are then calculated from the SAR and optical time series.
The final forest disturbance maps combine the forest disturbance results from SAR and optical time
series by a simple union process. The benchmark forest/non-forest masks and all the forest disturbance
maps (SAR, optical, combined) are validated with a set of sample plots that were visually interpreted
in VHR and HR imagery.

State-of-the-Art

Forest Disturbance Monitoring with Optical Data

The opening of the U.S. Geological Survey (USGS) Landsat data archive in 2008 [9] and the
launch of new satellite missions with an open data policy, such as ESA’s Sentinel Missions [10], has

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
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formed the basis for time series analysis of optical satellite data at high spatial and high temporal
resolution [9,11–13]. Although the Sentinel-2 Multi Spectral Instrument (MSI) and the Landsat
8 Operational Land Imager (OLI) bands are not fully compatible in terms of radiometry, recent
investigations on radiometric consistency between the two sensors revealed a high correlation between
corresponding bands. Dense optical image time series allow for developing new Land Use and Land
Cover (LULC) mapping approaches and novel methods for detecting dynamic and gradual, as well as
long-term, change processes.

Satellite systems that operate at daily acquisition [14] rates, such as MODIS, can achieve consistent
temporal coverage, even in tropical regions. But small disturbances are largely omitted due to the
coarse spatial resolution of 250–500 m [15]. Many different algorithms have been proposed to detect
forest changes while using time series of medium spatial resolution optical satellite imagery [16–25].
In the last decade, yearly deforestation mapping and the derivation of deforestation rates have become
operational at global [1] and national level e.g., [2,16,17], but there is still only fragmented information
available on the extent and magnitude of small forest disturbance and forest degradation [18]. As
stated in the GOFC-GOLD REDD sourcebook [19], measuring forest degradation or forest regrowth
and related forest carbon stock changes is more challenging than measuring deforestation alone, since
degradation monitoring requires more frequent and better imagery and processing.

Cloud cover strongly influences tropical forest disturbance detection accuracies in both space and
time [4]. When there are temporal gaps in the time series, rapid vegetation recovery can obscure the
signs of disturbance events [20]. Previous studies using multiple years of cloud-free Landsat data in less
cloudy regions showed that the regrowth of trees rapidly masks the spectral signature, even of forest
clear cuts [21,22]. Thus, a higher percentage of forest disturbances can only be detected with dense time
series of optical data. Dense time series are essential for the continued development of near real-time
monitoring systems, such as the Global Forest Watch Humid Tropical Forest Alerts [8], and can provide
much needed alert information on location and exact timing of illegal logging activities [23].

In terms of methodology, we can divide the time series analysis methods that were used for forest
change detection into four broad categories: (1) threshold based change detection; (2) curve fitting;
(3) trajectory fitting; and, (4) trajectory segmentation. Existing algorithms often use a combination of
these categories. A more detailed description and comparison of these categories can be found in [24].
Thresholding procedures that separate forest from non-forest or intact from degraded forest in a time
series are used in the Vegetation Change Tracker (VCT) and Global Forest Watch algorithm [8,25].
Curve fitting approaches for monitoring forest dynamics have been applied in several studies [26,27].
A large number of forest monitoring approaches today are based on trajectory fitting and trajectory
segmentation. Most of the disturbance types show a distinct temporal behavior before and after a
degradation event, resulting in a “characteristic spectro-temporal signature” that can be exploited
to detect and classify forest changes [22]. Trajectory fitting and segmentation algorithms include
LandTrendr, Breaks For Additive Season, and Trend (BFAST) and the Continuous Change Detection
and Classification (CCDC) algorithm [28–31]. The dense time series of satellite data also allow to detect
forest disturbances from harmonic regression models. The Exponentially Weighted Moving Average
Change Detection (EWMACD) algorithm and its evolution, the dynamic algorithm Edyn [32,33], use
the residuals from harmonic regression over many years of Landsat data in conjunction with statistical
quality control charts to signal vegetation changes. As a conclusion from the literature review, we can
state that algorithms that try to detect lesser-magnitude or small-scale disturbances show higher levels
of commission error.

Forest Disturbance Monitoring with SAR data

SAR-based forest monitoring approaches are among the most promising remote sensing approaches
for the NRT mapping of forest disturbances in the tropics, thanks to the ability of SAR to operate in
all weather conditions at any time of day or night. However, SAR data based approaches for forest
disturbance mapping have not been well developed yet and operational applications have not yet
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been implemented [8]. The release of the global JERS, PALSAR, and PALSAR-2 mosaics at 25 m
resolution has fostered studies that are related to forest monitoring with SAR. ALOS PALSAR mosaics
were used to produce the first SAR-based annual (2007–2010) global maps of forest and non-forest cover,
from which some maps of forest losses and gain were generated based on thresholds [34]. Tropical
forest change monitoring with SAR data is usually performed by measuring backscatter intensity
changes over time. Forest disturbances and regrowth have been assessed atsubcontinental scale over
South-East Asia while using SAR intensity changes [35]. Indirect approaches relate the backscatter
signal to forest biomass using regional empirical regression models [36,37] and then calculate biomass
changes over time. Such an approach has been tested in a small area in Central Mozambique [38]:
forest aboveground biomass (AGB) is estimated from SAR backscatter at two periods, and then changes
in AGB are determined by subtracting the two estimates. This method is relevant in the context of
REDD+ measurement, reporting, and verification (MRV), because both disturbance areas and biomass
losses are estimated in one approach. However, the method suffers from error propagation, as errors
in both maps may be summed. Applications that are based on ALOS PALSAR data are constrained by
the small number of available observations: one observation per year in the case of the mosaics and
one observation every 42 days at best with the original data. Most applications are therefore limited to
bi-temporal analyses.

Other SAR based forest disturbance mapping approaches use three-dimensional (3D) information
from radargrammetry and InSAR to detect gaps in the forest canopy [39–41]. The complementarity of
SAR sensors of different frequency for forest disturbance monitoring was demonstrated at a test site in
the Republic of the Congo for Sentinel-1 C-band and TerraSAR-X data [24].

C-band SAR data is less suited for forest disturbance assessment and above-grove biomass
estimation than L-band SAR due to its shorter wavelength, which limits the penetration into the canopy
(as evidenced in [42]). C-band SAR has therefore been used to a much lesser degree than L-band data
in past forest monitoring studies. However, the dense time series of the Sentinel-1 constellation offer a
unique opportunity to systematically monitor forests at a repeat cycle of six to 12 days, depending
on the data type and location. In addition, the continuity of Sentinel data is guaranteed up to 2030
with S-1C/D and S-2C/D, and the next generation of Sentinel satellites is already planned beyond 2030,
allowing the development of long-term environmental monitoring systems.

A number of recent studies have already used Sentinel-1 data for forest disturbance mapping.
Most of the approaches measure changes in SAR backscatter intensity over time, either directly from
image to image or by calculating the coefficient of variation of a data stack for a pre-defined time
period. Empirical thresholds are then applied to derive the forest disturbances. Such approaches have
been tested for forest disturbance mapping in the Republic of the Congo [14,43] and for mapping
forest fire-affected areas in Indonesia [44]. A recent research study at a tropical forest site in Bolivia
showed that the Sentinel-1 time series data can provide much more timely detections than Landsat and
ALOS PALSAR-2 data [45]. Most of the studies for detecting disturbances from Sentinel-1 data assume
that forest disturbances are necessarily characterized by a decrease in C-band backscatter within the
disturbed area, which does not always seem to be the case [46]. Therefore, a new method that uses the
geometric effects of SAR shadowing to detect forest change areas from Sentinel-1 SAR data has been
proposed by [47]. Depending on viewing geometry, SAR shadowing occurs at forest edges and new
forest edges thus result in new SAR shadows that can be easily detected in the time series. Ascending
and descending orbit data are needed to detect new shadows on two sides of the forest disturbance
patch. The entire disturbed area is then reconstructed from the newly detected shadows using a convex
envelope boundary operator. This new method is used for the SAR based forest disturbance detection
in this study and Section 4 describes it in more detail.

Forest Disturbance Monitoring Combining SAR and Optical Data

Optical and SAR data have been combined in remote sensing applications for many years [48,49].
Combination methods on a data-level that preserve spectral as well as spatial characteristics of both
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sensors are difficult to design. The combination of SAR and optical data on a result-level avoids this
problem by classifying each source individually. The results are then combined while using various
methods, such as probabilistic theory, evidence theory, fuzzy theory, neural networks, or ensemble
learning classifiers. This way, the characteristics of both sensors can successfully be preserved [49,50].

There are a number of recent studies that argue in support of a combined use of SAR and optical
data for tropical forest monitoring [3,50–53]. Recent results indicate that a combined use can improve
tropical forest monitoring for burnt area detection [14], for forest/non-forest mapping [52,54,55],
for biomass assessment [56–58], and for deforestation and degradation monitoring [45,51,59]. A
combination of ALOS PALSAR data and Landsat data was also used to enhance the discrimination of
mature forest, secondary forest, and non-forest areas [60]. A recently presented workflow for near
real-time deforestation detection integrates medium resolution optical data and SAR data in a Bayesian
approach [45,50]. By integrating optical Landsat 7/8 data with ALOS PALSAR-2 L-band and Sentinel-1
C-band SAR data, deforestation areas in Bolivia were detected with a mean time lag of 31 days, and
detections show a user accuracy of 88% and a producer accuracy of 89. The time lag increased by a
considerable six weeks when only using Landsat data and by one week when only using Sentinel-1
data [3]. However, the study only focuses on deforestation areas and does not address small forest
disturbances that are difficult to detect from medium resolution data, such as Landsat, but require
high resolution data instead.

What is still missing in current research developments is an in-depth analysis of forest disturbance
detection capabilities that can be achieved by combining data from the Sentinel-2 and Sentinel-1
missions. These two satellite missions currently have the highest temporal coverage of freely available
data and provide imagery at high spatial resolution. One reason why these data sets have not been
joined more extensively yet could be that many research studies using time series of data rely on
processing services, such as Google Earth Engine (https://earthengine.google.com/), where Sentinel-2
surface reflectance data has only been included recently.

2. Material and Methods

2.1. Test Sites

The study is performed at two test sites in humid tropical forest regions: one test site is located
in Peru, near the city of Yurimaguas, and the second test site is located in Gabon, near the city
of Fougamou.

The Peruvian test site (see Figure 1) covers approximately 6000 km2 around the city of Yurimaguas
(76◦05′W, 5◦45′S), which is located at the river Huallaga near the border between the Loreto and San
Martin regions. It is the same test site that was previously used to demonstrate the SAR shadow method
for forest disturbance detection [47]. Most of the study area lies within the tropical rainforest zone,
which is characterized by a mean temperature of all months higher than 18 ◦C, an annual precipitation
of at least 1500 mm, and at most three dry months during winter. In Yurimaguas, the mean long-term
temperature is 26 ◦C and the mean annual rainfall is 2200 mm [61,62]. Only in June, July, August, and
September the mean monthly rainfall is lower than 200 mm [61]. The Peruvian test site is intensively
used and characterized by shifting cultivation, plantations, and mining activities. The patterns of
forest degradation strongly differ in extent and temporal behavior. Areas with traditional subsistence
farming based on shifting cultivation typically show forest disturbances smaller than 0.5 ha, which
by FAO definition is forest degradation [63]. The forests in the area are partly primary and mostly
secondary forests, i.e., previously disturbed forests. Forest/Non-forest maps that follow the FAO
forest definition [63] and forest disturbance maps are derived for the entire test site. Due to limited
availability of reference data, the validation was performed at a small subset of 88.33 km2, which
includes the major forest change drivers and is mainly characterized by areas of shifting cultivation
and by forest disturbances that are smaller than 0.5 ha in size.

https://earthengine.google.com/
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Figure 1. Test site Peru.

The Gabonese study area (see Figure 2) is approximately 6480 km2 large and it extends over parts
of the provinces of Ngouine, Ogooue-Maritime and Moyen-Ogooue. It completely lies within the
ecological zone of tropical rainforests. In Fougamou (10◦35′E, 1◦13′S), the largest city in the study area,
the climatic conditions are very similar to Yurimaguas with a mean long-term temperature of 26 ◦C
and a mean annual precipitation of 1995 mm with the dry season between June and September, where
precipitation does not exceed 100 mm (https://de.climate-data.org/location/32332/#climate-graph). The
presence of cloud cover in Gabon is nearly continuous throughout the year. The main drivers for
deforestation at the test site are (i) mining activities in the north; (ii) large palm oil plantations in the
south; and (iii) agricultural activities along roads and rivers. The main driver for forest degradation is
industrial selective logging [64], which occurs in several concession areas and is characterized by a
large number of very small forest disturbances (<0.2 ha) and related logging roads [65].

2.2. Data Sets

For Peru, the set of optical images consists of data from Landsat 8 (WRS: 008-064) and Sentinel-2
(granule: 18MUU) from 03/2015–05/2017. We used optical data from 03/2015 to 03/2016 to generate the
initial forest/non-forest mask. Forest disturbance mapping is based on all optical and SAR data from
03/2016 to the end of 12/2016. Optical data from 2017 were only used to confirm the mapped disturbances
in the confirmation loop that is described in the respective chapter on data processing. Sentinel-1 data
is from both ascending and descending relative orbits (orbit 43—ascending; orbit 49—descending).
The time interval between two consecutive acquisitions with the same orbit orientation is 24 days.
Images in ascending orbit are acquired three days after images in descending orbit. The polarization
mode is single VV until the end of 2016. In short, for Peru, we generate a forest/non-forest mask for
status March 2016 and a disturbance map for the period March-December 2016.

https://de.climate-data.org/location/32332/#climate-graph
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Figure 2. Test site Gabon.

For Gabon, we used optical data from Landsat 8 (WRS: 185-061) and Sentinel-2 (granule: 32MPD)
from 2013 to 2017 and Sentinel-1 SAR data (VV and VH polarizations) from 2015 to 2017. We calculated
the initial benchmark forest/non-forest mask based on Landsat 8 data from the year 2013. Initially, we
calculated all changes from 2013–2017 from optical data only. For the aim of this study to combine
optical and SAR data, we only evaluate the changes between 15 December 2015 and 8 April 2017 in
order to have temporally consistent stacks of data from both optical and SAR sensors. In short, for
Gabon, we have a FNF map for status 2013 and a forest disturbance map for December 2015–April 2017.

2.3. Pre-Processing

Optical Data Pre-processing

We downloaded all Sentinel-2 data from the Copernicus Data Hub (https://scihub.copernicus.eu),
as Level-1C products. Pre-processing of Sentinel-2 data is performed with the Sentinel-2 Reflectance
Data Processing module implemented in the JOANNEUM RESEARCH in-house software IMPACT.
First, all of the downloaded Level-1C S-2 images are atmospherically corrected to bottom-of-atmosphere
(BoA) values using the integrated Sen2Cor processor version 2.5.5 [66]. The aerosol type is set to “rural”,
whichbetter fits both test sites then the alternative options “maritime” or “auto”. The atmosphere
type and ozone content are set to “auto”, leading to an automatic determination by the algorithm [66].
Subsequently, we resample the 20 m bands to 10 m spatial resolution and then stack all 10 m and 20 m
bands to a 10-band output image. Clouds and cloud shadows must be masked out prior to classification
to avoid later misclassifications. The Sen2Cor processor also generates a scene classification map
based on threshold operations while using different single spectral bands, band ratios, and indices [66].
We use this scene classification to derive final cloud and cloud shadow masks. Areas classified
as clouds with either “medium” or “high” probability and areas classified as cloud shadows are
extracted from the scene classification and written to a binary mask. This mask is slightly altered
by morphological operations (erode, expand), cloud holes are filled, and the masked areas are then
removed from the pre-processed S-2 imagery. We also perform a topographic correction that is based

https://scihub.copernicus.eu
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on an implementation of the Minnaert correction in IMPACT software [67] using the Shuttle Radar
Topography Mission (SRTM) model at 30 m spatial resolution as digital elevation model.

Landsat 8 data are available as surface reflectance products (Level-2 data) through the USGS
EarthExplorer (https://earthexplorer.usgs.gov). An accurate cloud mask is also available for each image.
It is computed with the CFMask algorithm, which is the C version of the Function of Mask (FMask)
algorithm that was developed by [68]. Itperforms an automated object-based cloud and cloud shadow
detection in Landsat images [69,70]. Cloud and cloud shadows are removed from the imagery and the
Landsat 8 data is resampled to 10 m cell size to be consistent with S-2 spatial resolution.

When images from different sensors are used in a combined time series, geometric consistency
is a requisite, since geometric errors almost certainly lead to misclassifications [12]. To register the
L8 scenes to the S-2 scenes, we use a fully automated multi-modal image matching algorithm that is
based on the concept of mutual information maximization [71].

SAR Data Pre-processing

We processed S-1 SAR data using the “s1tiling processing chain” [72], based on the free Orfeo
Toolbox (website: www.orfeo-toolbox.org). Pre-processing comprised the following steps: calibration,
orthorectification, multi-image filtering [73–75], and splitting into the S-2 tiling grid that is referenced
to the U.S. Military Grid Reference System (MGRS). The SAR data sets are calibrated to gamma nought
backscatter and orthorectified to 10 m resolution in UTM projection that was based on the SRTM model
at 30 m resolution. A multi-image filter [74,75] is applied to decrease the speckle effect and to enhance
the equivalent number of looks (ENL). A 3 × 3 spatial window was chosen, and each image was filtered
only with the images acquired before its own acquisition date, in order to simulate NRT conditions.
Further details on the pre-processing of the SAR data can be found in chapter 2.2.1 of [47].

2.4. Main Processing

The overall workflow is depicted in Figure 3 and explained in detail in the respective chapters below.

2.4.1. Generating an Initial Benchmark Forest Mask

The first step of the forest disturbance monitoring workflow is the generation of an initial
benchmark forest/non-forest (FNF) mask (see Figure 3), which accurately represents the forest area
right at the beginning of the change detection window. The forest masks were derived with slightly
different approaches for Gabon and Peru, due to differences in optical data availability. For the Peru
test site, the FNF map is based on all optical data from 03/2015-03/2016, in total 13 images from both
Landsat 8 and Sentinel-2 sensors. We started with deriving training data for the FNF classification
from a low cloud covered Sentinel-2 scene from 10 March 2016 and from RapidEye and VHR data
sets from 2015 and early 2016 (for details see Section 2.4.3). Subsequently, we used the Sentinel-2
scene from 10 March 2016 and the training data (forest and non-forest areas) to train a classifier and
derive a classification model with the Orfeo Toolbox (www.orfeo-toolbox.org). We then tested different
classification approaches (Maximum Likelihood, Random Forest, Normalized Difference Vegetation
Index (NDVI), and Normalized Difference Infrared Index (NDII7) thresholding) and different input
data options, and found the Random Forest based machine learning classifier to deliver the best
overall accuracies for the benchmark FNF map [76]. We then applied the Random Forest classification
model derived from the 10 March 2016 Sentinel-2 scene to all other pre-processed optical images from
03/2015-03/2016, resulting in 13 individual FNF maps with class categories “forest”, “non-forest”, and
“no data” (e.g., clouds). For the final FNF map, we apply a weighted majority approach, where FNF
masks that lie near the reference date (10 March 2016) in the temporal domain are attributed the highest
weights. This weighting approach increases the overall accuracy of the FNF map by 3% [76].

https://earthexplorer.usgs.gov
www.orfeo-toolbox.org
www.orfeo-toolbox.org
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For Gabon, we calculated the FNF mask for the benchmark year 2013. This reference year was a
specification from the related project. In 2013, Sentinel-2 data was not yet available. Therefore, the
FNF mask in Gabon is solely based on Landsat 8 data. For the FNF mask classification, we chose the
Landsat 8 scene with lowest cloud cover in 2013 (02.08.2013). We collected the required training data
(forest and non-forest areas) from VHR image chips that were distributed over the test site and then
used the Random Forest classifier of OrfeoToolbox to train and classify the Landsat 8 scene while using
all Landsat 8 spectral bands. The remaining cloud holes were filled with the classification results of
additional scenes with low cloud cover (01.07.2013; 17.07.2013) to guarantee a complete coverage of
the final FNF mask.

2.4.2. Disturbance Detection

Optical data

Both of the study areas are located in the humid tropics, where the seasonality of the spectral
signal of forests is much less pronounced than for dry tropical forests or temperate forests. Therefore,
the applied change detection method does not need to account for seasonality as in the dry tropics [77],
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and we can apply straightforward thresholding approaches. Single spectral bands usually show higher
variance in time series than indices, which is why indices are commonly used as input data to times
series analyses. Our initial tests revealed that NDVI and NDII7 (Normalized Difference Infrared Index
with Landsat band 7: (band4-band7) / (band4 + band7)) show the best overall accuracies for forest
disturbance detection. However, the Landsat 8 surface reflectance data in Peru and Gabon showed
artifacts in the optical bands that, according to the USGS, were caused by the Global Climate Modeling
(GCM) grid’s aerosol values not being correctly interpolated to the Landsat grid. We use the NDII7
index as input to disturbance mapping with Landsat 8 instead of NDVI to bypass this radiometric issue,
as NDII7 does not include the optical bands. The NDVI (for Sentinel-2) and NDII7 (for Landsat 8) are
individually calculated for all pre-processed and radiometrically adjusted images for the time window
10.03.2016 to 31.12.2016 at the Peruvian test site and for the time window 15.12.2015 to 08.04.2017 at
the Gabonese test site. An additional eight weeks are also processed for the optical data disturbance
confirmation. All of the pixels with NDVI and NDII7 values exceeding the thresholds indicate a forest
disturbance and are therefore named “disturbance indicator” (see Figure 3).

The forest disturbance detection workflow is described in [52] and follows recommendations
from other operational approaches [8]. It is based on the temporal behavior of index values and a
thresholding approach. From reference data plots, we derive a threshold value for the NDVI and
the NDII7, which separates the forested and non-forested areas. When an index value falls below
the defined threshold, it is considered to be a preliminary potential forest disturbance detection. At
this point, it is still unknown if this detection represents a real forest disturbance, or just remnants
of an undetected cloud, a radiometric artifact or simply a false classification in the benchmark FNF
map. Therefore, single outlier detection is only considered as a “possible disturbance”. We then
developed a confirmation tool to analyze these preliminary disturbance detections in time. Subsequent
observations are used to either confirm the disturbance detection if their spectral values are also below
the defined threshold or to reject the detection if spectral values of subsequent images are above the
valid threshold. If three consecutive outliers are detected, the forest disturbance is confirmed and
added to the final disturbed forest output file (referred to as “Optical Only” in subsequent text).

The final optical data based forest disturbance file is a 10 m raster product that sums all of the
confirmed changes within the forest area for the observation period. A minimum mapping unit of
0.04 ha is applied.

SAR data

The near real time forest disturbances detection method based on SAR data has been described
in detail in [47] and was successfully tested in Peru. Classical methods for SAR based forest change
detection are based on the hypothesis that the radar backscatter decreases when forest disturbances
occur. However, backscatter does not necessarily decrease, because soil moisture and/or trees that
remain on the ground can also lead to an increase of the radar backscatter [46].

To overcome this problem, the new method [47] is based on the detection of radar shadowing.
Shadowing occurs in radar images because of the particular side-looking viewing geometry of radar
systems. A shadow in a radar image is an area that cannot be reached by any radar pulse. The incidence
angle and the tree height, shadows created by trees at the border between forest and non-forest areas,
can be observed in high-resolution radar images, depending on the viewing direction (Figure 4). A
sudden drop in backscatter in the radar time series characterizes new radar shadows. Thanks to
the purely geometrical nature of the shadowing effects, this decrease of backscatter is expected to be
persistent over time. New shadows should consequently remain visible for a long time and are easily
detectable when dense time series of radar data, such as Sentinel-1 time series, are available. Ascending
and descending orbit data are needed to detect new shadows on two sides of a forest disturbance
patch. The entire disturbed area is then reconstructed from the newly detected shadows while using a
convex envelope boundary operator. For every SAR image of the time series, new SAR shadows are
identified and combined with previous/subsequent detections in the complementary orbit direction.



Remote Sens. 2020, 12, 727 11 of 29

If a disturbed area can be reconstructed, it is written to a disturbance detection file for this specific
date and the area is removed from the forest area in the FNF mask. The single date detections are then
summed over the time window of interest to a final SAR disturbance map (“S1 Only”).
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Figure 4. Illustration of the S-1 C-band SAR shadowing effect at the border between forests and
deforested area. Left: schematic illustration, middle: 10 m C-band S-1 SAR image before forest
disturbance, right: 10 m C-band S-1 SAR image after forest disturbance: the arrows point at the
new shadows.

Combination of Optical and SAR

SAR and optical data are combined by merging the final forest disturbance maps of both sensor
types. For the chosen time window of interest, we processed and confirmed the forest disturbance
detections for each sensor type separately (see workflow illustration Figure 3), and we then combined
the sensor type specific forest disturbance map results with a simple “Union” process in a Geographic
Information System. The union process joins all detections of the two forest disturbance maps, thus
increasing the overall detected disturbed forest area.

2.4.3. Evaluation Concept for FNF Mapping

The evaluation of the FNF maps is based on systematic random sampling points [78] that were
visually interpreted in VHR image chips (see Figure 5, example of Peru). The VHR image chips
were ordered based on a pre-defined systematic sampling grid. Within each grid cell a random
sampling was applied. We additionally derived inclusion probabilities and area estimates from the
final forest/non-forest classifications since the VHR image chips do not cover the entire mapped area.
Tables A1 and A2 provide the confusion matrices for Peru including all accuracy measures (overall,
user, and producer accuracy; confidence levels).

2.4.4. Evaluation Concept for Disturbance Mapping

We use two different approaches to validate the disturbance maps: a plot-based approach based
on digitized disturbance patches and an area-based approach based on stratified random sample
points. Both validation approaches are meaningful for different assessments. The plot-based approach
is viable for example in an alert system, where it is more important to pinpoint the location, where
something is happening than delineating the exact outline. The area-based approach is needed e.g., in
the frame of REDD reporting, where the disturbed forest area is needed as activity data.

For the plot-based approach, we calculate the detected area percentage for each reference plot. A
plot is considered to be correctly detected if a user defined percentage of its area is detected. For Peru
and Gabon, we use a 10% threshold. If a percentage of the plot area higher than 10% is detected by the
disturbance mask, the plot is considered correctly identified. For Peru, the 148 reference disturbance
plots cover an area of roughly 108 ha. In terms of plot size, only 34 of the 142 plots are larger than 1 ha
and 35 are smaller than 0.2 ha. For Gabon, the 362 reference disturbance plots cover an area of 6420 ha.
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In terms of plot size, 51 plots are larger than 1 ha and 166 are smaller than 0.2 ha. These patches are an
arbitrary subset based on available VHR data and they do not necessarily represent the whole test site.
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Figure 5. Forest/non-forest (FNF) evaluation in Peru: example of the systematic random
sampling design.

The area-based approach allows for the computation of user, producer, and overall accuracy
based on the representative areas of reference plots in each stratum (non-forest, undisturbed forest,
and disturbed forest). We performed a visual interpretation of HR and VHR (RapidEye, Worldview-2,
Spot-6) data in order to obtain reliable ground truth data for this assessment. For Peru, we used
RapidEye data from 14 August 2016, ArcGIS Basemap (WorldView-2) data from 20.06.2015, Google
Earth imagery from 2015 and 2018, and all Sentinel-2 data from 10.01.2016 to 25.12.2016. The area-based
validation was carried out at a sub-region covering 88.33 km2 for which RapidEye data was available.
For Gabon, we visually interpreted a combination of RapidEye, WorldView and Spot-6 data and the
full Sentinel-2 time series for the time window 12/2015–4/2017. The validation was carried out at the
full extent. The overall number of plots and the plots per stratum are based on recommendations for
land cover accuracy estimation [79,80]. The disturbance result from the “Union” combination was
used to estimate the map areas per stratum. For Peru, we sampled a total of 575 reference points
within a subset of the map (see Figure 6) with 75 sample points for the stratum “D” (disturbed forest),
114 sample points for stratum “NF” (non-forest) and 384 sample points for stratum “F” (undisturbed
forest). The respective area weights are provided in Table A3. For Gabon, we sampled a total of 855
reference points within 14 subset areas of the map, for which also VHR imagery was available. The 855
total plots are composed of 112 sample points for stratum “Dlarge” (disturbed forest areas ≥ 25 ha),
81 sample points stratum “Dsmall” (disturbed forest areas < 25 ha), 121 sample points for stratum
“NF” (non-forest) and 541 sample points for stratum “F” (undisturbed forest). Table A9 provides the
respective area weights.
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Figure 6. Peru validation site. Green areas show the initial optical forest mask as of 03/2016. Red
polygons are the disturbances detected by the “Union” approach. The dots are the 575 validation points
from stratified random sampling of which 385 are located within forest in 3/2016 (yellow) and 170 are
within non-forest areas (blue) based on visual interpretation of VHR and HR imagery.

For the area-based accuracy assessment, we calculate the confusion matrices for the three,
respectively, four, different strata and for all sensor specific disturbance maps—i.e., “S1 only”, “Optical
only”, and “Union”. The confusion matrices are provided in Tables A3–A5 for Peru and Tables A9–A11
for Gabon. We estimate the products’ user and producer accuracies from the error matrix using
the estimated area proportions and Equations (6)–(8) from [79]. The benchmark non-forest mask is
an essential a priori information, and errors in forest/non-forest masking strongly influence forest
disturbance detection accuracies. We therefore derived a second set of confusion matrices, where all
non-forest areas and misclassified sample points related to FNF mask errors are removed from the
reference data set and where area weights of the strata are then recalculated accordingly, in order to
evaluate the methods’ accuracies independently from forest mask errors. The results are provided in
Tables A6–A8 for Peru and Tables A12–A14 for Gabon).

3. Results

3.1. Results of Benchmark Forest/Non-Forest Masking

According to the FNF maps, at the Peru site 81.0% of the area is forest and 19.0% is non-forest,
at the Gabon site 94.7% is forest and 5.3% is non-forest. These values were used for the sampling
design and to calculate the respective plot weights. In total, we interpreted 5010 samples for Peru
and 6000 samples for Gabon. Table 1 summarizes the main validation results. The user and producer
accuracies for forest are very high, while the values for NF are considerably lower. However, the
overall accuracies are also high due to the large share of forest (0.93 for Peru and 0.99 for Gabon).
Tables A1 and A2 provide the individual confusion matrices including all accuracy measures.
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Table 1. Forest/Non-Forest mask validation Peru and Gabon.

User Accuracy Producer Accuracy Overall Accuracy
class Peru Gabon Peru Gabon Peru Gabon

F 0.944 0.947 0.968 0.994 0.930 0.988
NF 0.867 0.893 0.785 0.884

3.2. Results of Forest Disturbance Mapping in Peru

The three different disturbance results from the “S1 Only” approach, the “Optical Only” approach,
and the “Union” approach show very different results in terms of overall detected disturbed forest
area. This is shown in Figure 7 and Table 2. The “Union” approach detects almost twice the area of
the “Optical Only” approach. The overlapping area of the “S1 Only” and “Optical Only” disturbance
maps (yellow areas in Figure 7) is only 70.88 ha, which explains why the “Union” disturbance area is
significantly larger than in the two single sensor based disturbance maps.
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Figure 7. Comparison of forest disturbance detection results in Peru showing the high complementarity
of S-1 and optical data. Top left: “S1 Only” map; top right: “”Optical only” map; bottom left: Union
of “S1 Only” and “Optical Only” maps (yellow areas are detected by both approaches); bottom right:
enlarged area of “Union” map (black rectangle).

Table 2. Area of detected forest disturbances at the Peru validation site for each mapping approach.

Mapping Approach Detected Area of Forest Disturbances in ha

S1 Only 248.77
Optical Only 153.90

S1/Optical Union 331.79
S1/Optical Intersect Area 70.88

Adjusted Area Estimate (Reference) 225.61
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We use two different approaches to estimate the final disturbance map accuracies. The first
accuracy assessment approach is targeted to analyze detection accuracy by disturbance patch size.
Disturbance patch size is a critical issue in forest disturbance mapping but it is seldom addressed in
publications on forest monitoring. Many studies only map disturbances larger than 0.5 ha and thus
only focus on deforestation and do not include small and patchy forest degradation. In our analysis,
a disturbance patch is considered detected when > 10% of the disturbed patch area is mapped. The
results for Peru are shown in Table 3; those for Gabon are shown in Table 4.

Table 3. Detection accuracy per disturbance patch size for Peru.

Plot Size Number of Disturbance Areas S1 Only Optical Only Union

>1 ha 34 0.882 0.853 0.971
0.5–1 ha 36 0.806 0.778 0.889

0.2–0.5 ha 43 0.698 0.674 0.884
<0.2 ha 35 0.486 0.657 0.800

all sizes 148 0.716 0.736 0.885

Table 4. Detection accuracy per disturbance patch size for Gabon.

Plot Size Number of Disturbance Areas S1 Only Optical Only Union

>1 ha 51 0.686 0.647 0.784
0.5–1 ha 44 0.523 0.364 0.636

0.2–0.5 ha 101 0.248 0.277 0.416
<0.2 ha 166 0.157 0.175 0.295

all sizes 362 0.301 0.293 0.530

The second accuracy assessment is based on the stratified random sampling approach described
in detail in Section 2.4.4. Tables 5 and 6 provide summaries of the accuracy estimates. They include two
analyses per test site. The first analysis also includes the non-forest areas, thus it reflects the accuracy
of the map. The second analysis is only carried out for plots that are forest at the beginning of the
disturbance detection window. Non-forest areas and all misclassifications of the FNF map are removed.
This reflects the accuracy of the change detection method. Broadly speaking, the first analysis is a map
validation, while the second analysis is a method validation. The validations are based on 575 points
(including NF) and 385 points (only forest) for Peru, and 855 points (including NF) and 691 points
(only forest) for Gabon. For Peru, we differentiated three classes, where F = undisturbed forest; D =

disturbed forest; NF = non-forest at the beginning of the disturbance detection window. For Gabon,
the disturbed class was split in two classes that were based on the area of disturbance plots: Dlarge =

disturbed forest area ≥ 25 ha; Dsmall = disturbed forest area < 25 ha. Large area disturbances are mostly
related to new palm oil plantations. At the Peru subset, there are no disturbances larger than 25 ha,
therefore no subdivision was made. The mapped area of the strata and their respective weights are
derived from the “Union” disturbance map. The detailed confusion matrices, including plot numbers
and applied area weights, can be found in the Tables A3–A8 for Peru and Tables A9–A11 for Gabon.
We can calculate adjusted area estimates for each class based on the omission and commission errors
and the respective area weights [79].

The above accuracy assessments clearly show that misclassifications in the forest/non-forest map
contribute a major component to the overall error of the disturbance maps. When the FNF mask errors
are removed, the overall accuracies increase significantly.
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Table 5. Disturbance map validation for Peru.

Peru disturbance map validation including NF class:
User Accuracy Producer Accuracy Overall Accuracy

class S1
Only

Optical
Only Union S1 Only Optical

Only Union S1
Only

Optical
Only Union

F 0.821 0.773 0.852 0.949 0.946 0.950 0.819 0.788 0.842
D 0.644 0.788 0.640 0.461 0.382 0.710

NF 0.842 0.842 0.842 0.590 0.569 0.602
Peru disturbance map validation only within the forest area (method validation):

User Accuracy Producer Accuracy Overall Accuracy

class S1
Only

Optical
Only Union S1 Only Optical

Only Union S1
Only

Optical
Only Union

F 0.957 0.925 0.985 0.998 0.998 0.998 0.956 0.926 0.983
D 0.950 0.963 0.941 0.459 0.332 0.710

Table 6. Disturbance map validation for Gabon.

Gabon disturbance map validation including NF class:
User Accuracy Producer Accuracy Overall Accuracy

class S1
Only

Optical
Only Union S1 Only Optical

Only Union S1
Only

Optical
Only Union

F 0.826 0.901 0.941 0.989 0.985 0.987 0.837 0.892 0.930
Dlarge 0.982 0.925 0.929 0.316 0.739 0.904
Dsmall 0.778 0.352 0.469 0.388 0.150 0.392

NF 0.942 0.942 0.942 0.497 0.580 0.593
Gabon disturbance map validation only within the forest area (method validation):

User Accuracy Producer Accuracy Overall Accuracy

class S1
Only

Optical
Only Union S1 Only Optical

Only Union S1
Only

Optical
Only Union

F 0.882 0.935 0.977 0.985 0.966 0.973 0.883 0.912 0.955
Dlarge 1.000 0.961 0.963 0.376 0.795 0.928
Dsmall 0.800 0.528 0.613 0.610 0.396 0.675

4. Discussion

Forest/Non-Forest Mask:

The benchmark FNF maps show good overall accuracies for both the Peru (93.0%) and the Gabon
test site (98.8%), but the omission and commission errors for the non-forest class are larger than 10% at
both test sites. The overall accuracies for Gabon are similar to those reported by other studies: 98.1%
for the national forest map of year 2000 and 95.9% for the Global Forest Watch dataset of year 2000
evaluated at a 1 ha minimum mapping unit and > 30% tree cover [81]. The accuracies are generally
lower at the Peru site, with an omission error of 21.5% for the non-forest class. The lower accuracies in
Peru seem to be related to a lower total percentage of forest area and a higher complexity of land use at
the test site. Non-forest areas at the Peru test site make up 20% of the total area, which is a much higher
percentage than at the Gabon test site with 5.6%. Large parts of the forested area are composed of
secondary forests with rapid regrowth rates and the overall percentage of forest changes is higher than
in Gabon. The primary cause of forest loss in the Loret and San Martin region of Peru where the test
site is located is clearing for agriculture and pastures and large-scale industrial oil-palm plantations [2].
A rapid regrowth with shrubs, bushes, and low height trees is very common soon after agricultural
clearing. Even from visual interpretation of VHR imagery it is often difficult to decide if an area is
already forest regrowth or still non-forest. Non-forest areas are mostly characterized by different forms
of agricultural use, but also by shrublands and grasslands.

The situation is different in Gabon, where 88.5% of the entire country is covered by forests and large
parts of the forest are still primary forests [81]. Large parts of the test site in Gabon are characterized by
homogeneous forests. Non-forest areas are not distributed evenly at the Gabon test site, but they are
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concentrated around villages and oil palm plantations in the South. These site characteristics largely
explain the higher FNF map accuracies at the Gabon site.

The different methodologies that are used to derive the FNF maps could also explain some of the
observed errors. The Peru FNF map is based on 13 images spanning 12 months. Some changes that
occurred towards the end of the time window might not have been accounted for with the applied
majority approach, even if a temporal weighting is applied.

Forest Disturbance Detection:

When interpreting the forest disturbance results, it has to be considered that forest disturbances
are quite different in character at both of the test sites. Forest disturbances at the Peru test site are
characterized by the logging of mostly secondary forests for subsequent agricultural use, which is
in-line with other findings [2]. There is almost no selective logging of individual trees, but the size
of forest disturbance areas is mostly small (60% are smaller than 0.5 ha). At the Gabon site, we find
three different disturbance types: large-area deforestation for oil palm plantations in the South, small
scale logging for subsequent agricultural/urban use near villages, and a large amount of industrial
selective logging and logging roads in the forest concession areas. Gabon contributes 4.7 ± 0.9% of total
forest loss in the Congo basin [64]. Selective logging is by far the most prominent forest disturbance
type in Gabon, which is different to the other Congo Basin countries, where small scale clearing for
agriculture is the most important driver of forest loss [64]. In the final disturbance map of the combined
approach, 85% of the detected forest disturbance areas are smaller than 0.2 ha and 94% are smaller
than 0.5 ha. Disturbance patch size is a critical issue in forest disturbance mapping, but it is seldom
addressed in publications on forest monitoring. Many studies only map disturbances that are larger
than 0.09 ha [8] to 1 ha [81] and, thus, only focus on deforestation and do not include small and patchy
forest degradation. In terms of area changes, a large deforestation for oil-palm plantations contributes
approximately 55% of the total forest change area.

When comparing the accuracies based on the stratified sampling of the three approaches in
Peru-“S1 Only”, “Optical Only”, and “Union”-we find highest overall accuracies for the “Union”
approach (0.84), but differences in overall accuracy are small (“S1 Only”: 0.82, “Optical Only”: 0.79).
When comparing SAR and optical results for the forest disturbance class, the “Optical Only” approach
shows higher user accuracy and lower producer accuracy than the “S1 Only” approach. However,
the producer accuracy is lower than 0.5 for both approaches showing high omission errors for both
data types. For the “Union” approach, the producer accuracy increases up to 0.71 suggesting that SAR
and optical map results are highly complementary. This is also confirmed by the area statistics. Of
the 331.79 ha of disturbance area in the “Union” disturbance map, only 42.70 ha are detected by both
“S1 Only” and the “Optical Only” approach. This is only about one-fifth of the recalculated adjusted
disturbed forest area (225.61 ha). The remaining area is only detected by one of the two approaches.
The area statistics also show that the NDVI and NDII7 thresholds used for the optical approach in
Peru are slightly too conservative. Only 153.90 ha are detected as disturbed, which is 30% less than the
calculated adjusted area.

The producer accuracy of the NF class in Peru is quite low (0.6), suggesting that parts of the forest
area in the benchmark FNF mask are indeed not tree-covered at the beginning of the change detection
window. The accuracies at this subset are lower than the overall accuracy of the FNF mask for the
entire Peru test site. This can be explained by the higher complexity of land use at the subset. It is
also partly a problem of the different minimum mapping units used for generating and validating the
FNF mask and the disturbance detection. Misclassifications in the benchmark FNF map can make
up a large part of the overall error in disturbance detection. This error can be more important than
the errors related to the change detection methodology, since the overall area percentage of forest
disturbances in one year is only very small. This highlights the importance of using accurate and
up-to-date benchmark forest masks in operational forest disturbance monitoring.
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When we remove the NF class in the second validation approach, the overall and the user
accuracies improve considerably. For the “S1 Only” approach, the user accuracy of the disturbed forest
increases from 0.64 to 0.95, as many of detected changes turned out to have been non-forest already at
the start of the change detection period. These areas are vegetated and often used for agriculture. In
the optical images their spectral signals are quite similar to those of forest and are thus misclassified as
forest and no change is detected. However, the S1 approach detects a SAR shadow that is related to an
existing forest border. In Peru, the S1 disturbance detection starts with the same date as the optical
approach. A shadow is detected in the first S1 image of the time series and, thus, a change is written to
the change map, even though the shadow was already present before.

In Gabon, of the 15,723 ha detected as disturbed forest in the “Union” approach, only 5241 ha
are detected by both of the approaches. However, in Gabon the “Optical Only” approach detects a
much larger disturbed area than the “S1 Only” approach—13,763 ha vs. 7201 ha. This effect is mostly
caused by the large deforestation area for a palm oil plantation. The applied S1 disturbance detection
approach is not suitable for such large disturbance areas, as the detected shadows on both sides are too
far apart to reconstruct the disturbance area with a convex envelope boundary operator. Also very
small or very narrow patches are difficult to detect with the S1 approach used in this study. If the
gap is too small, the distinct shadow is lost and detection fails. Also thin and elongated disturbance
patches stretching in the east–west direction are difficult to detect, as the sensor is side-looking from
east or west due to its near-polar orbit.

It can also be expected, that due to their smaller pixel size, the S-2 results are better than the results
only based on Landsat data. Shortcomings in all optical approaches are problems with regrowth and
the selection of appropriate thresholds. Regrowth and cloud cover are the main limitations of optical
disturbance monitoring in the tropics, as discussed in the Introduction. A recent study on forest loss
monitoring from 2000–2014 in the Congo Basin with Landsat data showed that in Gabon on average
only 1.1 cloud-free observations were available per year [64]. Regrowth cannot properly be detected
with such a sparse time series.

Several forest change detection maps and accuracy analyses for both Peru and Gabon have been
produced by other research teams in recent years. Most of them are based on Landsat data and
validations are mostly carried out at Landsat pixel level, i.e., 30 × 30 m [8,64]. In Peru, a Landsat-based
national analysis of forest cover loss from 2000 to 2010 revealed that the majority of gross forest
cover loss (92.2%) was attributed to clearing for agriculture and tree plantations. The rest was due to
natural disturbance, mostly represented by flooding and river meandering (6.0%), and fires (1.5%). The
classification was based on training data derived primarily from Landsat composites and forest cover
loss was mapped at 30 m Landsat pixel scale. Validation was performed while using a point-based
sampling design at Landsat pixel level (30 × 30 m) [2]. The pixels are visually analyzed for forest cover
loss while using Landsat (2000) and RapidEye (2011) data at 5 m spatial resolution. The reported
producer accuracy for forest loss is 75.4%. This is significantly higher than our “Optical Only” producer
accuracy at the Peru test site of 38.2% and similar to the combined map producer accuracy of 71.0%.
We assume that the observed differences are primarily related to sampling unit size-30 × 30 m for the
analysis vs. 10 × 10 m in our study-and the complexity of land use at our test site subset. The reference
plot area we use for the validation is only 11.11% of that used in [2] and our reference data set includes
very small disturbances (0.01 ha) that are neglected in the other study.

Peru was also one of the first countries used to demonstrate and validate the near real-time GFW
HTFA (Global Forest Watch—Humid Tropical Forest Alerts) methodology [8]. Detected forest loss
was grouped by patch size: Loss detection consisting of a single Landsat pixel (approximately 0.1 ha)
totaled only 4% of total detected loss, 33% of detected loss patches were less than one hectare, and
63% were larger or equal one hectare in size. The reported user accuracies on a Landsat-pixel level
of 30 × 30 m are between 86.5%, when including boundary pixels, and 96.2% with boundary pixels
removed [8]. Producer accuracies are not provided in [8], but most of the omitted samples were from
tree cover loss patches < 10 ha (= less than 100 Landsat pixels). For a better comparison between
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our results and the GFW dataset we also derived mapping accuracies for the GFW dataset for the
exact same validation plots and time frame at the Peru test site. The dataset is based on the GFW
version 1.6 (https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.6.html)
and includes all changes of 2016 (“lossyear” = 2016) clipped with our FNF mask of March 2016. Thus,
the time frame for disturbance detections is identical to the observation period we used in this study.
Therefore, the results can be directly compared. For geometric congruency, we also performed a
geometric adjustment to the S-2 geometry with the same parameters as used for the adjustment of the
original Landsat 8 data. Table 7 shows the GFW validation results. The user accuracies of disturbances
are quite comparable between our approaches (“S1 Only”: 0.95, “Optical Only”: 0.963, “Union”: 0.941
from Table 5) and GFW (0.969 from Table 7), especially the “Optical Only” result is very similar, which
makes sense, as GFW is also a result based on optical data. The same is true for the overall accuracy
values. Producer accuracy of disturbances for the “Optical Only” result is a bit lower than for the GFW
result, which is probably due to the very conservative thresholds selected in the assessments. When
comparing the GFW result to the “Union” approach however, the producer accuracy of “Union” is
much higher (0.71—Table 5) than that of the GFW data set (0.377—Table 7). This clearly shows the
added value of including the additional S-1 data. Figure 8 provides a visual comparison of the “Union”
mapping result and the GFW mapping result.

Table 7. Global Forest Watch changes of 2016 (version 1.6).

Class F D Total Map Area [ha] Weights

F 331 22 353 5805.32 0.963
D 1 31 32 225.61 0.037

Total 333 53 385 6030.93 1.000

Class F D Total User Producer Overall

F 0.903 0.060 0.963 0.938 0.999 0.939
D 0.001 0.036 0.037 0.969 0.377

Total 0.904 0.096 1.000
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For Gabon, a recent study compares the forest change estimates from 2000 to 2010 between
national forest maps and the Global Forest Change (GFC) map from the University of Maryland [81].
The results indicate that net deforestation is not significantly different to 0, which suggests that the loss
of forest is counter balanced by regeneration. The MMU of 1 ha used by GFC in the change analysis [81]
strongly differs to that of our presented study, where we detect and validate forest disturbances at
a MMU of 0.04 ha. At this spatial level, we also detect small forest disturbances that are typical of
industrial selective logging. Selective logging is the most prominent forest disturbance type in Gabon,

https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.6.html
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accounting for more than 60% of forest disturbances [64]. At a 1 ha MMU such small forest disturbance
features cannot be detected and, therefore, also not included in the analysis.

Despite or even because of the aforementioned shortcomings, S-1 and optical data are highly
complementary. Combining the two data sets significantly increases the accuracy, especially the
producer accuracy of disturbances and, as other studies have demonstrated, it also allows for a more
rapid detection needed for near real-time alerting [3].

The results show that some forest disturbance patches are indeed detected by both sensor types
and related mapping approaches. However, different types of disturbances are often only captured by
only one sensor, which confirms the benefit of sensor combination. The contributions of optical and
SAR data to the forest disturbance mapping success are variable and they depend on the land use and
forest characteristics of a specific site. The dependencies are primarily based on type and typical height
of forest (primary, secondary); weather and atmospheric conditions; topography; dominant LU types
outside of the forest; change drivers (selective logging, plantations, agriculture, shifting cultivation,
fire) and related size of disturbance plots; data availability (ascending, descending for SAR); density of
the time series; and regrowth speed, and orientation of the satellite (especially S1) with respect to the
disturbance site.

5. Conclusions

Our study confirms, that combining optical and SAR data considerably improves the accuracies
of forest disturbance maps. The overall accuracies increase by about 3% at both test sites in Peru and
Gabon. Producer accuracies of the disturbance class increase by 13% in Gabon and by 25% in Peru
when compared to using only one sensor type. The assessment by disturbance patch size shows, that
about 30% of very small disturbances (< 0.2 ha) in Gabon can be detected by using both data sets
compared to 17.5/15.7% when using a single sensor. The detection of forest disturbances of this small
size from satellite imagery has not been studied yet, as most studies base their validations on Landsat
pixel-size validation plots. A combination of S-1 and optical data at data level instead of at result level
could proof to be difficult. The detected forest disturbance patches are often not identical but instead
highly complementary. This is something to be tested in future research. We could also show that a
combination of optical and SAR data at result level does not yield the same amount of accuracy gain
at the two test sites (PA increase of 13% in Gabon and of 25% in Peru). More studies are needed in
different parts of the tropics and under different forest conditions to better understand the potential
and limitations of sensor type combinations for tropical forest disturbance detections.

Further improvements should focus on developing more advanced methods for deriving forest
disturbances from SAR and optical data. Simple thresholding, as applied in this study for the optical
data, could be replaced by more advanced time series analysis approaches. However, the applicability
of such approaches in tropical areas is limited by frequent cloud cover and the lack of dense time
series. Here, Planet imagery could play a major role in the future. Commercial Planet data will
be available at a daily repetition rate and the new generation of Planet imagery will be spectrally
congruent with Sentinel-2. A combination of these two data sets to generate a dense optical time series
could stimulate the development of more sophisticated time series analysis tools for tropical forest
disturbance monitoring. Such tools are already being used in other fields of remote sensing with good
results. In the SAR domain, advancements to the proposed method should focus on an improved
detection of larger deforestation patches.. Alternatively, a combination of SAR backscatter-based
approaches, which are able to detect large deforestation, and the shadow detection method used in this
study could also improve the detection accuracy. Our study supports the use of high resolution, dense
time series data for improved forest monitoring, specifically for the detection of small areas of forest
disturbance. We could clearly show the high complementarity of the SAR and optical data sets for
forest disturbance detection and, therefore, pledge for further development of multi-sensor approaches.
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Appendix A

This appendix contains the detailed accuracy assessment results as tables. For each table, the
upper part is a plot based confusion matrix; the lower part is a confusion matrix with the respective
summed weights of the plots. Map categories are the rows, reference categories are the columns.

FNF maps:

Table A1. Confusion matrix for 2016 FNF map of Peru (plots and area weights). Map categories are the
rows, reference categories are the columns.

Class Forest Non-Forest Total Map
Area [ha] Weights

Forest 3663 216 3879 489,899 0.810
Non-Forest 151 980 1131 114,603 0.190

Total 3814 1196 5010

Class Forest Non-Forest Total User CI at
95% Producer CI at

95% Overall CI at
95%

Forest 0.765 0.045 0.810 0.944 ±0.0072 0.968 ±0.0046 0.930 ±0.0070
Non-Forest 0.025 0.164 0.190 0.867 ±0.0198 0.785 ±0.0222

Total 0.790 0.209 1.000

Table A2. Confusion matrix for 2013 FNF map of Gabon (plots and area weights). Map categories are
the rows, reference categories are the columns.

Class Forest Non-Forest Total Map
Area [ha] Weights

Forest 5561 37 5598 648,460 0.947
Non-Forest 43 359 402 36422 0.053

Total 5604 396 6000

Class Forest Non-Forest Total User CI at
95% Producer CI at

95% Overall CI at
95%

Forest 0.941 0.006 0.947 0.947 ±0.0021 0.994 ±0.0017 0.988 ±0.0026
Non-Forest 0.006 0.048 0.054 0.893 ±0.0303 0.884 ±0.0332

Total 0.946 0.054 1.000

Disturbance maps—Peru:

Table A3. “S1 Only” Peru disturbance map validation.

Class F D NF Total Map Area
[ha] Weights

F 330 15 57 402 6693.80 0.758
D 2 38 19 59 331.79 0.038

NF 18 0 96 114 1807.39 0.205
Total 350 53 172 575 8832.98 1.000

Class F D NF Total User Producer Overall

F 0.622 0.028 0.107 0.758 0.821 0.949 0.819
D 0.001 0.024 0.012 0.038 0.644 0.461

NF 0.032 0.000 0.172 0.205 0.842 0.590
Total 0.656 0.052 0.292 1.000
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Table A4. “Optical Only” Peru disturbance map validation.

Class F D NF Total Map Area
[ha] Weights

F 331 27 70 428 6693.80 0.758
D 1 26 6 33 331.79 0.038

NF 18 0 96 114 1807.39 0.205
Total 350 53 172 575 8832.98 1.000

Class F D NF Total User Producer Overall

F 0.586 0.048 0.124 0.758 0.773 0.946 0.788
D 0.001 0.030 0.007 0.038 0.788 0.382

NF 0.032 0.000 0.172 0.205 0.842 0.569
Total 0.620 0.077 0.303 1.000

Table A5. “Union” Peru disturbance map validation.

Class F D NF Total Map Area
[ha] Weights

F 329 5 52 386 6693.80 0.758
D 3 48 24 75 331.79 0.038

NF 18 0 96 114 1807.39 0.205
Total 350 53 172 575 8832.98 1.000

Class F D NF Total User Producer Overall

F 0.646 0.010 0.102 0.758 0.852 0.950 0.842
D 0.002 0.024 0.012 0.038 0.640 0.710

NF 0.032 0.000 0.172 0.205 0.842 0.602
Total 0.680 0.034 0.286 1.000

Table A6. “S1 Only” Peru disturbance method validation (only forest area).

Class F D Total Map Area
[ha] Weights

F 330 15 345 5805.32 0.963
D 2 38 40 225.61 0.037

Total 332 53 385 6030.93 1.000

Class F D Total User Producer Overall

F 0.921 0.042 0.963 0.957 0.998 0.956
D 0.002 0.036 0.037 0.950 0.459

Total 0.923 0.077 1.000

Table A7. “Optical Only” Peru disturbance method validation (only forest area).

Class F D Total Map Area
[ha] Weights

F 331 27 358 5805.32 0.963
D 1 26 27 225.61 0.037

Total 332 53 385 6030.93 1.000

Class F D Total User Producer Overall

F 0.890 0.073 0.963 0.925 0.998 0.926
D 0.001 0.036 0.037 0.963 0.332

Total 0.891 0.109 1.000



Remote Sens. 2020, 12, 727 23 of 29

Table A8. “Union” Peru disturbance method validation (only forest area).

Class F D Total Map Area
[ha] Weights

F 329 5 334 5805.32 0.963
D 3 48 51 225.61 0.037

Total 332 53 385 6030.93 1.000

Class F D Total User Producer Overall

F 0.948 0.014 0.963 0.985 0.998 0.983
D 0.002 0.035 0.037 0.941 0.710

Total 0.950 0.050 1.000

Disturbance maps Gabon:

Table A9. “S1 Only” disturbance map validation Gabon.

Class F Dlarge Dsmall NF Total Map Area
[ha] Weights

F 530 51 20 41 642 46,394.94 0.884
Dlarge 0 55 0 1 56 1732.60 0.033
Dsmall 7 0 28 1 36 1179.65 0.023

NF 7 0 0 114 121 3169.56 0.060
Total 544 106 48 157 855 52,476.75 1.000

Class F Dlarge Dsmall NF Total User Producer Overall

F 0.730 0.070 0.028 0.056 0.884 0.826 0.989 0.837
Dlarge 0.000 0.032 0.000 0.001 0.033 0.982 0.316
Dsmall 0.004 0.000 0.017 0.001 0.022 0.778 0.388

NF 0.003 0.000 0.000 0.057 0.060 0.942 0.497
Total 0.738 0.103 0.045 0.115 1.000

Table A10. “Optical Only” disturbance map validation Gabon.

Class F Dlarge Dsmall NF Total Map Area
[ha] Weights

F 516 7 29 21 573 46,394.94 0.884
Dlarge 4 99 0 4 107 1732.60 0.033
Dsmall 17 0 19 18 54 1179.65 0.023

NF 7 0 0 114 121 3169.56 0.060
Total 544 106 48 157 855 52,476.75 1.000

Class F Dlarge Dsmall NF Total User Producer Overall

F 0.796 0.011 0.045 0.032 0.884 0.901 0.985 0.892
Dlarge 0.001 0.031 0.000 0.001 0.033 0.925 0.739
Dsmall 0.007 0.000 0.008 0.007 0.022 0.352 0.150

NF 0.003 0.000 0.000 0.057 0.060 0.942 0.580
Total 0.808 0.041 0.053 0.098 1.000
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Table A11. “Union” disturbance map validation Gabon.

Class F Dlarge Dsmall NF Total Map Area
[ha] Weights

F 509 2 10 20 541 46,394.94 0.884
Dlarge 4 104 0 4 112 1732.60 0.033
Dsmall 24 0 38 19 81 1179.65 0.023

NF 7 0 0 114 121 3169.56 0.060
Total 544 106 48 157 855 52,476.75 1.000

Class F Dlarge Dsmall NF Total User Producer Overall

F 0.832 0.003 0.016 0.033 0.884 0.941 0.987 0.930
Dlarge 0.001 0.031 0.000 0.001 0.033 0.929 0.904
Dsmall 0.007 0.000 0.011 0.005 0.022 0.469 0.392

NF 0.003 0.000 0.000 0.057 0.083 0.942 0.593
Total 0.843 0.034 0.027 0.096 1.000

Table A12. “S1 Only” disturbance method validation Gabon (only forest area).

Class F Dlarge Dsmall Total Map Area
[ha] Weights

F 530 51 20 601 42,399.24 0.896
Dlarge 0 55 0 55 2169.83 0.046
Dsmall 7 0 28 35 2763.15 0.058
Total 537 106 48 691 47,332.23 1.000

Class F Dlarge Dsmall Total User Producer Overall

F 0.790 0.076 0.030 0.896 0.882 0.985 0.883
Dlarge 0.000 0.046 0.000 0.046 1.000 0.376
Dsmall 0.012 0.000 0.047 0.058 0.800 0.610
Total 0.802 0.122 0.077 1.000

Table A13. “Optical Only” disturbance method validation Gabon (only forest area).

Class F Dlarge Dsmall Total Map Area
[ha] Weights

F 516 7 29 552 42,399.24 0.896
Dlarge 4 99 0 103 2169.83 0.046
Dsmall 17 0 19 36 2763.15 0.058
Total 537 106 48 691 47,332.23 1.000

Class F Dlarge Dsmall Total User Producer Overall

F 0.837 0.011 0.047 0.896 0.935 0.966 0.912
Dlarge 0.002 0.044 0.000 0.046 0.961 0.795
Dsmall 0.028 0.000 0.031 0.058 0.528 0.396
Total 0.867 0.055 0.078 1.000
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Table A14. “Union” disturbance method validation Gabon (only forest area).

Class F Dlarge Dsmall Total Map Area
[ha] Weights

F 509 2 10 521 42,399.24 0.896
Dlarge 4 104 0 108 2169.83 0.046
Dsmall 24 0 38 62 2763.15 0.058
Total 537 106 48 691 47,332.23 1.000

Class F Dlarge Dsmall Total User Producer Overall

F 0.875 0.003 0.017 0.896 0.977 0.973 0.955
Dlarge 0.002 0.044 0.000 0.046 0.963 0.928
Dsmall 0.023 0.000 0.036 0.058 0.613 0.675
Total 0.899 0.048 0.053 1.000
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