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d CESBIO, Université de Toulouse, CNES/CNRS/INRAE/IRD/UPS, 31400 Toulouse, France 
e GlobEO, 31400 Toulouse, France 
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A B S T R A C T   

French Guiana forests cover 8 million hectares. With 98% of emerged land covered by forests, French Guiana is 
the area with the highest proportion of forest cover in the world. These forests are home to an exceptionally rich 
and diverse wealth of biodiversity that is both vulnerable and under threat due to high levels of pressure from 
human activity. As part of the French territory, French Guiana benefits from determined and continuous national 
efforts in the preservation of biodiversity and the environmental functionalities of ecosystems. The loss and 
fragmentation of forest cover caused by gold mining (legal and illegal), smallholder agriculture and forest 
exploitation, are considered as small-scale disturbances, although representing strong effects to vulnerable 
natural habitats, landscapes, and local populations. To monitor forest management programs and combat illegal 
deforestation and forest opening near-real time alerts system based on remote sensing data are required. For this 
large territory under frequent cloud cover, Synthetic-Aperture Radar (SAR) data appear to be the best adapted. In 
this paper, a method for forest alerts in a near-real time context based on Sentinel-1 data over the whole of 
French Guiana (83,534 km2) was developed and evaluated. The assessment was conducted for 2 years between 
2016 and 2018 and includes comparisons with reference data provided by French Guiana forest organizations 
and comparisons with the existing University of Maryland Global Land Analysis and Discovery Forest Alerts 
datasets based on Landsat data. The reference datasets include 1,867 plots covering 2,124.5 ha of gold mining, 
smallholder agriculture and forest exploitation. The validation results showed high user accuracies (96.2%) and 
producer accuracies (81.5%) for forest loss detection, with the latter much higher than for optical forest alerts 
(36.4%). The forest alerts maps were also compared in terms of detection timing, showing systematic temporal 
delays of up to one year in the optical method compared to the SAR method. These results highlight the benefits 
of SAR over optical imagery for forest alerts detection in French Guiana. Finally, the potential of the SAR method 
applied to tropical forests is discussed. The SAR-based map of this study is available on http://cesbiomass.net/.   

1. Introduction 

The Earth’s tropical forests represent important biodiversity reserves 
and large carbon sinks for climate regulation. However, deforestation 
and forest degradation contribute greatly to biodiversity loss through 
habitat destruction (Whittle et al., 2012), soil erosion, terrestrial water 
cycle disturbances and anthropogenic CO2 emissions. Regarding the 

latter, deforestation and forest degradation accounted for 77% and 13%, 
respectively, of the total net flux attributable to land use and land cover 
changes over the period from 1850 to 2015 (estimated to have been 
145 ± 16 PgC globally with 102 ± 5.8 PgC in the tropics, according to 
Houghton and Nassikas (2017)). 

The detection of annual forest disturbance surfaces is useful for many 
applications, such as estimating CO2 emissions (Friedlingstein et al., 
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2019). It is also used by international programs for forest conservation, 
such as Reducing Emissions from Deforestation and Forest Degradation 
(REDD+) and the Role of Conservation, Sustainable Management of 
Forests and Enhancement of Forest Carbon Stocks in Developing 
Countries. Forest loss at the annual scale has been monitored using Earth 
observation satellites, and some of the resulting maps are provided 
openly (Hansen et al., 2013; Valeriano et al., 2004). 

Forest Alert (FA) systems complement these annual observations 
with more frequent forest monitoring. While these systems play a 
valuable role in prioritizing resources allocation for law enforcement 
and conservation, most Early Warning Systems are not designed to 
quantify the amount of change for in-depth reporting or analyses. 

Several research and government organizations have developed 
systems that provide regular updates to the public, principally based on 
optical remote sensing data. With a coarse spatial resolution (MODIS 
data, 250 m), the FORMA (Wheeler et al., 2014), Terra-I (Reymondin 
et al., 2012) and IDEAM systems are developed at the pantropical scale 
(except IDEAM covering only Colombia) and are respectively available 
biweekly, monthly and quarterly. DETER-B (Diniz et al., 2015), a Bra
zilian operational system, provides results with a 60-m spatial resolution 
and a 5-day frequency. It is developed by the Instituto Nacional de 
Pesquisas Espaciais (INPE), based on AWiFS data and including a 
photointerpretation step. Finally, with the medium resolution of 30-m 
Landsat data, the MINAM (Peru) and the University of Maryland 
(UMD) produce FA datasets every week: PNCB Early Warning Alerts and 
Global Land Analysis and Discovery (GLAD) FA (Hansen et al., 2016). 

Such operational FA systems should allow states or forest managers 
to fight against drivers of deforestation, which are generally linked to 
illegal activities. They can also be used for protected areas management, 
community forest monitoring, management of agricultural and other 
productive concessions and raising awareness. A Near-Real Time (NRT) 
deforestation-monitoring protocol starts with forest losses detection as 
precisely and quickly as possible (Finer et al., 2018). Such methods 
require detection with high accuracy and high temporal and spatial 
resolution, especially for sites containing small-scale deforested patches. 
Globally, the detection of large areas (>3 ha) is now well controlled 
(Kalamandeen et al., 2018) and efforts should be concentrated on areas 
of smaller density and size as their number increases. 

French Guiana is located in South America, and it is mainly affected 
by small-scale deforestation (Alvarez-Berríos and Mitchell Aide, 2015) 
and has a low deforestation density. With primary Amazonian forest 
covering more than 95% of its territory (Keenan et al., 2015), French 
Guiana has unique natural resources but is not exempt of threats. Gold 
mining is the main cause of these deforestation: Rahm et al. (2017) re
ported more than 25,000 ha affected until 2015. The resulting pollution 
of the river has led to health issues due to the use of mercury and the 
increase in turbulence and turbidity, which have degraded biodiversity, 
thus highlighting the need of early detection system for forest 
disturbance. 

One would expect using the GLAD FA to monitor this large area 
because it is fully automated based on free data and therefore cost 
efficient; however, the persistent cloud cover limited its use, as does, in a 
lesser extent, the Landsat resolution. 

A specific alert system dedicated to illegal gold mining has been 
operational since 2006 (Linarès et al., 2008) and is based on the 
photointerpretation of optical imagery (Landsat at first, then SPOT-5 up 
to 2015, and Pleiades and Sentinel-2 currently) to detect patches of 
deforestation and water turbidity. This system performs better than the 
GLAD FA as it uses higher resolution imagery, specific knowledge of the 
analyst and each alert is verified by an airborne mission after its 
detection. However, such a system is equivalent to a high cost. 

Moreover, those products based on optical data are principally 
limited by the cloud cover that is persistent in the tropics. During wet 
seasons the cloud cover may cause important temporal detection delays, 
which contradicts the need for fast deforestation alerts. 

Cloud cover free Synthetic-Aperture Radar (SAR) images have great 

potential in tropical areas, allowing to build operational Forest Alerts 
system but have rarely been used for deforestation monitoring compared 
to optical imagery (despite multiple research works, see Lardeux et al. 
(2019); Mermoz and Le Toan (2016); Lohberger et al. (2018); Reiche 
et al. (2018)), partly because of the scarce data availability (Reiche 
et al., 2016) until the Sentinel-1 program. An exception is the JJ FAST 
system developed by the JAXA/JICA, based on ALOS-2 radar data that 
produce FA on 77 tropical countries every 1.5 months and with a spatial 
resolution of 5 ha (Watanabe et al., 2017). 

Since the launch of the Sentinel-1, SAR images are now easily 
accessible at the global scale, with systematic acquisitions at a 5 × 20-m 
spatial resolution and a 6- to 12-day revisit time (depending on the 
location) in all weather conditions. The continuity of the program is also 
ensured until at least 2030. However, the C-band frequency of the 
Sentinel-1 SAR system is less adapted for forest/deforested area detec
tion than the longer wavelengths because it may lead to confusion be
tween the forest canopy and deforested area. This is caused by the 
backscatter variability of deforested area having a diversity of surface 
conditions (surface roughness, soil moisture content, and the remnant 
vegetation and debris). Recently, it was demonstrated that deforestation 
can be detected using Sentinel-1 dense time series based on a reliable 
indicator that bypasses environmental effects on SAR signals (Bouvet 
et al., 2018). Despite the research results using SAR data for forest loss 
alerts in the tropics, no evaluation at a country scale has been done yet. 

In this study, we develop a forest loss alert system over a country- 
scale territory, namely, French Guiana, based on the method devel
oped by Bouvet et al. (2018) using Sentinel-1 SAR data (subsequently 
called FA1). French Guiana, concerned by gold mining, forest exploi
tation and agriculture offer a large panel of logging practices: small to 
large areas, legal and illegal activities, logging during the dry season or 
the whole year and various methods of logging (clearcutting, slashing 
and burning, etc.). The detection results are assessed using reference 
ground data, and are compared with the GLAD Forest Alerts (subse
quently called FA2). 

As a first step, FA1 is computed over the whole of French Guiana 
from 2016 to 2018 in a NRT context to raise awareness to new forest loss 
every 6 days with a minimum mapping unit (MMU) of 0.2 ha. The 
validation is processed using a high-quality reference dataset from 
French public organizations, used operationally as a reference for gold 
mining monitoring and forest exploitation management. We used a 
probability-based stratified random sampling protocol on the 3 types of 
deforestation. The results are first evaluated in terms of sensitivity of the 
approaches to the different spatial patterns encountered for the 3 
deforestation types. In the second step, we evaluated the potential of the 
methods for NRT monitoring. Then, we analyze the deforested parcel 
size and the annual forest loss from 2016 to 2018 calculated with FA1 
over the whole French Guiana, in comparison with FA2 and also with the 
GFW-measured annual tree cover loss. Finally, we discuss the opera
tional use of FA1. 

The study area, the data and methods of validation and comparison 
are described in Section 2 of this paper. Section 3 presents the results 
and highlights the difference between the SAR FA method and the op
tical FA method. Finally, a discussion is provided in Section 4, and 
conclusions are given in Section 5. 

2. Material and methods 

2.1. Study area 

French Guiana is a French territory located in northern South 
America near the equator and spans 83,534 km2, with approximately 
95% of its land mass covered by primary forest. In terms of climate, 
French Guiana has a tropical rainforest climate characterized by a long 
wet season from December to June (rainfall from 250 to 550 mm per 
month) and a dry season from July to November (100 to 180 mm of 
rainfall per month). Note that a short dry season (the short summer of 
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March) sometimes occurs for one and a half months, with less rainfall 
(170 to 370 mm per month) than during the wet season. The annual 
mean cloud cover in French Guiana is 67%. 

As stated in the previous section, the main drivers of deforestation 
and canopy opening in French Guiana are gold mining (legal and 
illegal), smallholder agriculture and forest exploitation. 

2.1.1. Smallholder agriculture 
Smallholder agriculture for subsistence farming (Fig. 1) is the prev

alent driver of deforestation related to agriculture. Smallholder agri
culture is based on slash-and-burn practices characterized by the cutting 
and burning of small areas (ranging from 0.2 to 1 ha in size) only be
tween July and November (during the dry season). Each parcel is 
exploited (and so slashed-and-burned before planting) for 2–3 years 
before a fallow period. The French policy of monitoring the land registry 
and allocating land for agriculture, is currently encouraging agricultural 
development for profit (Demaze and Manusset, 2008). With population 
growth, the demand for agricultural land increases along with forest 
loss. Nevertheless, slashing is still mainly a practice of subsistence 
agriculture and does not cause significant environmental effects. 

2.1.2. Forest exploitation 
Forest management for wood exploitation is well regulated by the 

French Office National des Forêts (ONF) (Fig. 2). Reduced-impact log
ging practices are implemented: removal of only 25 m3 of wood per ha 
(4 to 5 trees) is allowed, and parcels can be exploited only once every 
65 years (Office National des Forêts, 2019). Tree cutting and skid-trail 
creation occurs year round but represents small area changes that are 
not expected to be detected with precision. The largest extent of canopy 
opening due to forest exploitation is related to building roads and de
pends on the type of road, main road axes or secondary roads. Landings 
(of 0.1 to 0.5 ha) and log yards (up to 1 ha) are created on roadsides to 
store the wood. Roads, log yards and landings are generally created 
during the dry season (from July to December), although some steps in 
landing creation take place during the wet season (understory clearing 
and sometimes tree cutting). 

2.1.3. Gold mining 
The majority of gold mining (Fig. 3) in French Guiana occurs year 

round and is mainly alluvial. Legal mining operations are often operated 
by large companies and span over large creek areas. French law forces 
companies to restore the exploited area and forbids the use of mercury. 
Since illegal operations are usually smaller than large-company opera
tions, the exploited areas can be found in steep valleys. Illegal practices 
are investigated by the French Army, which makes gold miners often 
move away and exploit the same area several times. The line between 
legal and illegal is tenuous, and illegal practices are also found in legal 
projects. In illegal operations, mercury and cyanide are used to extract 

gold, which are then released in rivers. Gold mining produces a large 
environmental impact, leading to sanitary and health issues (Miller et al. 
(2003); De Kom et al. (1998); Eisler (2004)). The increase in sediments 
released in rivers leads to biodiversity loss. Gold miners working near 
the local population bring insecurity, loss of culture and social conflicts 
(WWF (2018); Forte (1999); Colchester (1997)). Moreover, poor living 
conditions in mining camps (e.g., prostitution) contribute to the spread 
of diseases (e.g., HIV, malaria) (Palmer, 2002). Detection of illegal gold 
mining is therefore of environment and social importance for French 
Guiana. 

2.2. Data 

2.2.1. Sentinel-1 data 
We used Sentinel-1 images with a 250 km width acquired over 

French Guiana in interferometric wide (IW) swath mode from 8 
November 2015 to 31 December 2018. Ground Range Detected (GRD) 
products, characterized by a resampling at a 5 × 20-m spatial resolution 
cell to obtain a 10 × 10-m pixel size, were used. French Guiana is 
covered by 7 Sentinel-1 images, and a total of 1639 images were ac
quired and used over the study period. 

Over the study area, Sentinel-1A provides consistent time series from 
8 November 2015 with a 12-day revisit time in the ascending and 
descending passes. Since 26 September 2016, the revisit time has been 
reduced in the ascending path from 12 to 6 days, with the data acqui
sition of 2 satellites, i.e., Sentinel-1A and 1B. Preprocessing was per
formed by S1 Tiling (Koleck et al., 2019), an automated chain that 
handles images downloading, calibration in γ0, orthorectification and 
spatial and temporal filtering (Quegan and Yu (2001) on a 3 × 3 window 
size and adapted to a NRT context, see Section 2.3.1). 

2.2.2. Reference data for validation 
We used various sources of reference data addressing different 

drivers of deforestation, all coming from French organizations and used 
as a reference for the French Guiana forest monitoring. All deforestation- 
related data available for 2017 and 2018 and over plots larger than 
0.2 ha were used (Table 1). 

Smallholder agriculture reference data are annually produced by the 
Parc Amazonien de Guyane (PAG). Polygons are detected by photoin
terpretation of SPOT, Pleiades, Landsat or Sentinel-2 data and most of 
them were checked in the field. Over a 423,585 ha zones (Fig. 4, in 
orange), 665 polygons were new forest loss: labelled “old forest” until 
2016 (included) and “slashed-and-burned” in 2017 or 2018. After 
applying the MMU of 0.2 ha, there are 602 polygons remaining, totaling 
285.7 ha of slashed-and-burned patches (0.067% of the 423,585 ha 
area). The reference date is the year when clearcutting of the parcel was 
implemented. 

Reference data of newly built roads, log yards and landings for forest 

Fig. 1. Photos of a smallholder agriculture parcel slashed: trees are still on the ground and vegetation is drying out (left) and photos of a smallholder agriculture 
parcel burned: only trunks are left on the ground (right). Copyright: Marie Ballère. 
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exploitation acquired in situ and then digitized have been made avail
able by the ONF. Roads were in a line shapefile, and we applied a 20-m 
buffer zone (actual size). Over a 26,630 ha zone (Fig. 4, in green), 82 
polygons were selected, totaling 107.8 ha of canopy opening due to 
forest exploitation (0.40%). The reference date of the log yards consists 
of a range of dates for the optical-based observations before and after the 
disturbance event, including 30% dated by the month. Over roads, the 
reference date is the year of disturbance 

Gold mining data are continuously collected by the Observatoire de 
l’Activité Minière (OAM, Mining Activity Observatory) and managed by 
the Etat-Major de l’Orpaillage et de la Pêche Illicite (EMOPI). In 
particular, the ONF provides spatialized information based on photo- 

interpretation of SPOT, Pleiades, Landsat or Sentinel-2 images and 
these data are systematically verified by aerial surveys. In 2017–2018, 
1183 polygons were digitized. These polygons are spread over a 5.8 Mha 
zone (Fig. 4, in yellow), totaling 1,731.0 ha of disturbances (0.03%). The 
reference date associated with each gold mining patch is the date of the 
first observation using optical images. 

The reference dataset presented above is accurate enough for oper
ational use because expert analysts use various images sources, 
including high-resolution imagery up to 2.8 m with Pleiades for photo
interpretation, and digitalized polygons are checked in the field 
afterward. 

However, these data have been used for the creation of strata for 
spatial validation only, in order to reduce geolocation and omission bias. 
Note that the reference datasets do not contain accurate deforestation 
dates because such information could not be obtained over this large 
territory. 

2.2.3. Dataset for comparisons (FA2) 
GLAD FA (Hansen et al., 2016) is a deforestation alert product 

generated weekly, which we consider NRT in this paper. This product 
provided by the GLAD laboratory at UMD, is free and available at a large 
scale (from 30 degrees north to 30 degrees south, in addition to Russia’s 
Far East). It is based on Landsat (optical) images with a 30-m resolution. 

Fig. 2. Photos of roads (left) and log yards (right) built for forest exploitation. In both cases, forest has been replaced by bare soil and there is nothing on the ground 
except log. The ground is smooth in most cases but can be rough with the activity of machines. Copyright: ONF. 

Fig. 3. Aerial photograph of legal gold mining operations: the area is large and composed by water basins and bare soil (left). Aerial photograph of illegal gold 
mining operations: only a small surface of forest has been removed (right). Copyright: ONF. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 1 
Number and sizes of the reference polygons for the various types of deforestation 
in French Guiana.   

Number of 
areas 

Mean size 
(ha) 

Std size 
(ha) 

Total surface 
(ha) 

Smallholder 
agriculture 

602 0.47 0.35 285.7 

Forest exploitation 82 1.31 3.61 107.8 
Gold mining 1183 1.46 2.1 1731  
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An alert is raised when a 50% of a pixel’s canopy cover is lost. The alert 
is then confirmed if at least 2 of 4 consecutive exploitable Landsat 
products for a period of 180 days show canopy loss. The persistent cloud 
cover over tropical areas is thus a significant limitation of the NRT 
deforestation detection method because few images are usable. This 
alerting system is meant to complement current annual global forest 
cover loss products. In other words, the alert system does not provide 
area estimates (Hansen et al., 2016) but provides the date of the first 
observation of deforestation. The deforestation is then confirmed after 
16 to 180 days. 

The GFW Tree Cover Loss Map is an annual map of forest cover loss 
(Hansen et al., 2013). It is also produced by the UMD at a 30-m reso
lution. The map shows the total deforestation area in a year. 

2.2.4. Forest/non-forest map 
Forest/non-forest maps are necessary to filter changes detected only 

on forests and to remove false alarms due to changes in other land use- 
land cover classes (agriculture, bare land, water, etc.). The forest/non- 
forest map used in this study was produced by (Rahm and Lardeux, 
2019) with 2015 data to form a mask for the beginning of the study in 
2016. Various data coming from land cover maps of the ONF and the 
PAG were aggregated and homogenized to create the non-forest class. It 
also integrates non-forest polygons from the photointerpretation of 
2015’s optical images in areas not covered by previous land cover maps. 

2.3. Methods 

2.3.1. Deforestation alert algorithm (FA1) 
Traditional methods of deforestation detection are established on the 

hypothesis that SAR backscattering decreases when disturbances occur. 
However, at C-band, the backscattering does not necessarily decrease 
because rainfall and/or trees remaining on the ground, for example, 
leading to high backscatter values. To solve this problem, FA1 based on 
Bouvet et al. (2018) use the detection of SAR shadowing in the SAR time 
series. Shadowing occurs in SAR images because of the particular side- 
looking viewing geometry of SAR systems. A shadow in a SAR image 
is an area that cannot be reached by any radar pulse. Shadows created by 

trees at the borders between forest and non-forest areas can be observed 
in high-resolution SAR images, depending on the viewing direction. The 
shadows that appear after deforestation are characterized by a sudden 
backscatter drop in the SAR time series. Due to the purely geometrical 
nature of the shadowing effects, this decrease in backscattering is ex
pected to persist over time and false alarms must be avoided. New 
shadows should consequently remain visible for a long time and are 
easily detectable when dense SAR time series data, such as Sentinel-1 
time series data, are available. Forest loss is detected using the radar 
change ratio (RCR; Tanase et al., 2018), which is the ratio of the post
disturbance- to predisturbance-averaged backscattering (Eq. 1). 

In a time series of N dates, the backscatter change in a given pixel at 
date di (i∈(1,N)), denoted by γ0

i, that occurs between date di and date 
di+1, is measured by the following RCR: 

RCRi = Ma/Mb (1) 

where Mb (Eq. 2) is the mean backscatter value in Xb available im
ages until date di (inclusive), and Ma (Eq. 3) is the mean backscatter 
value in the Xa images acquired after date di+1 (inclusive): 

Mb =
1
Xb

∑i

j=i− Xb+1
γ0

j (2)  

and 

Ma =
1
Xa

∑i+Xa

j=i+1
γ0

j (3) 

In this study, we use all the available images before date di for the 
calculation of Mb, and Xa is set to 3, which represents a tradeoff value 
between speckle filtering on one hand and timely provision of results on 
the other hand. The RCR is used for the first time to detect newly 
appeared shadows by applying a threshold of − 4.5 dB on the image 
formed by the temporal minimum RCR value calculated over a given 
period. The extent of the deforestation area is subsequently recon
structed by using a less drastic threshold (− 3 dB) to the same minimum 
RCR image on the pixels neighboring the detected shadows to detect 

Fig. 4. Left: French Guiana with the validation areas for each type of deforestation (orange: smallholder agriculture, green: forest exploitation, yellow: gold mining); 
Right: Annual mean cloud cover of French Guiana. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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potentially deforested pixels. An MMU is applied afterwards. 
SAR signal is affected by topography and 12% of French Guiana has a 

slope higher than 15◦. With this method, the slope has a low impact on 
the detection, because the approach is based on thresholds applied on 
the backscatter change and not directly on the absolute backscatter 
value. However, on steep slopes a pixel may be saturated and return an 
inconsistent signal. To avoid false alarms in the shadow detection step, 
the shadows detected in areas with slopes higher than 15◦ are removed. 
Once the deforestation is confirmed by the presence of a shadow, the 
threshold on slope is not applied for the second step (detection of the 
pixels neighboring the detected shadow to reconstruct the whole 
deforested surface), because it could remove the middle of a deforested 
area spanning over a slope. Finally, having the ascending and 
descending orbits allow two views of a pixel. A pixel located in a radar 
shadow (on the backscatter image, not in the change image) in an orbit 
direction, will be visible in the other orbit direction. 

In this study, the method was applied over the whole of French 
Guiana. The studied time period is 3 years. To use this method on such a 
long time series, choices for information retention time, i.e., the dura
tion of the period over which the temporal minimum RCR values are 
calculated, have to be made. This period must be long enough so that 
areas progressively cut over several weeks can reach a sufficient size 
with respect to the MMU. However, the period must not be too long: 
isolated pixels wrongly detected as shadows because of the remaining 
speckle noise could accumulate and reach a size sufficient to be 
considered a shadow. We chose here a 6 month sliding window and an 
MMU of 0.2 ha, which both empirically appear to be good tradeoffs 
between ground observations and avoidance of false alarms. 

2.3.2. Spatial validation method 
The objective is to evaluate the accuracy of the detection of forest 

loss and intact-forest produced by FA1. In order to assess the sensitivity 
of the method to different spatial patterns, we performed separately the 
evaluation for 3 deforestation types (smallholder agriculture, forest 
exploitation and gold mining). Note that for comparison purposes, FA2 
was assessed with the same method and we performed the validation on 
2017 and 2018 only, due to FA2’s availability. 

For the spatial evaluation, we used a probability-based stratified 
random sampling protocol (Olofsson et al., 2014) facilitating sufficient 
statistical representation of each class of the map in this low defores
tation context. 

The stratification is a partitioning of the Regions Of Interest (ROI) in 
which each assessment unit is assigned to a single stratum. One most 
common attribute used to construct strata is the classes determined from 
the map (deforested area and intact forest in our case). The purpose of 
this stratification is to improve the precision of class-specific accuracy. 
The strata “deforested area” was formed by the reference data collected 
from French organization (see section 2.2.2). The strata “intact-forest” 
were remaining areas of the ROI. Non-forest areas were masked a priori 
using the forest/non-forest map described in section 2.2.4. A random 
sample selection was performed within each stratum. The sample size 
formula of Cochran (1977) - eq. 5.25) suggests a sample size of 
approximately 900 assessment units, although assessing separately 3 
types of deforestation, we would have had 2,700 samples in total and 
that would have been too time-consuming. Moreover, the global eval
uation would have been based on 2,700 samples (instead of 900 sug
gested). As a trade-off and an acceptable time cost, we used 500 samples 
per type of deforestation (for a total of 1,500 samples). The sample units 
were allocated following the recommendations in Olofsson et al. (2014, 
2020) such that 50 were selected in the deforestation stratum and 450 
samples in the “intact-forest” stratum. This represents 500 samples per 
type of deforestation, and a total of 1,500 samples considering all 3. 

A point with a 10-m buffer is used as a spatial assessment unit. The 
labelling of the selected samples was generated by visual interpretation 
of optical imagery time-series (using the Sentinel Hub EO Browser and 
Google Earth). A sample is considered to be mapped by a class if its 

surface is in majority covered by pixels of this class. Out of the total 
1,500 interpreted samples randomly generated, 1,487 samples were 
retained: 5 intact forest points were removed and 5 were finally classed 
as deforested. Nine deforested points were already deforested at the 
beginning of the study or not deforested at the end of the study and were 
thus removed. Finally, 4 points were removed as it was impossible to 
interpret them due to the lack of cloud-free data. 

Following the good practices recommendations from Olofsson et al. 
(2014), the error matrix should be reported in terms of estimated area 
proportion rather than in terms of sample counts using the Eq. (4) of 
Olofsson et al. (2014). Using this unbiased estimator would allow for the 
computation of error-adjusted area estimates and their uncertainties. 
However, as mentioned in Olofsson et al. (2020), the effects of omission 
errors are exacerbated in a situation where the area of forest change is 
low relative to the area of intact forest. In French Guiana, the proportion 
of forest change is extremely low (about 0.07% relative to intact forest) 
and using estimated area proportion for accuracy assessment would 
therefore not be adapted. As the effects of the omission are reduced with 
the forest stratum weight, the recommendation from Olofsson et al. 
(2020) is to split the forest stratum into a small substratum that contains 
all the omission errors and a large substratum that is free of omission 
errors. To achieve this, an approach exemplified in the remote sensing 
literature is the use of a buffer strata to mitigate the effects of omission 
errors (Arévalo et al. (2020); Bullock et al. (2020); Potapov et al. (2017); 
Tyukavina et al. (2013)). This solution is based on the hypothesis that 
change mostly occurs in clusters and therefore omissions of change 
typically occur close to areas of mapped change while areas mapped as 
stable forest at larger distances from mapped change are unlikely to 
contain omissions. However, the buffer size shall remain relatively small 
in order to keep its efficiency in the reduction of the weight of omission 
errors. French Guiana has low-density deforestation. Deforestation due 
to gold mining can be more than 10 km away from any other defores
tation. Therefore, the inclusion of all omission errors in a buffer stratum 
would require a very large stratum, which would lead to poor efficiency. 
The buffer approach is therefore not indicated in the case of low-density 
deforestation. Because of the specific situation in French Guiana 
(extremely large area of intact forest relative to area of forest change and 
low-density deforestation), we decided to report the accuracies based on 
sample counts. 

2.3.3. Temporal comparison method 
The dates of forest loss associated with the reference data were not 

accurate enough for a reliable temporal validation of FA1 estimated 
detection dates (cf. section 2.2.2). Moreover, the difficulty in visually 
interpreting SAR images and the low recurrence of exploitable optical 
images did not permit to build a reliable temporal validation dataset and 
therefore compute a real temporal uncertainty. In order to evaluate the 
potential of the methods for NRT monitoring, we compared the esti
mated dates from FA1 and FA2 in 2017 and 2018 as the spatial vali
dation. To do so, we computed for both FAs the median values of the 
detection dates of all the pixels contained over each reference polygon. 
As long as a part of a FA dataset intersects a reference data polygon, the 
latter is considered detected by the FA. Note that for the temporal 
comparison, we kept only reference data polygons detected by both 
methods, which represents 41.6% of the total amount of reference data. 

In French Guiana, Sentinel-1 provides an exploitable image every 
6 days in the ascending pass, and 12 days in the descending pass. 
Therefore, a deforestation will occur at a maximum of ±3 days of a 
Sentinel-1 exploitable image and the whole territory is viewed 3 times 
every 12 days. With Sentinel-1’s revisit time, the FA1-confirmed alert 
delay is 12 days. 

Regarding the Landsat time resolution of 16 days, a deforestation 
will occur at a maximum of ±8 days from an acquisition, although in 
practice, observation availability is limited by the Landsat acquisition 
strategies and cloud cover. The maximum delay between a deforestation 
and its observation through Landsat is then variable as well as the alert 
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confirmation delay. 

3. Results 

On the whole (Table 2), FA1 validation results show high user’s 
accuracies (>91%) for all deforestation types and intact forest, and 
producer’s accuracies higher than 75.4%. FA1 overall accuracies are 
97.8% on average and generally 4% higher than FA2’s overall accu
racies. The noticeable difference concerns the producer’s accuracies of 
the deforested class: FA1 scores are 38.9% to 57.1% higher than FA2 
depending on the deforestation type, meaning that FA1 produces less 
omission errors (i.e., detects more effective deforestation). 

However, FA2 shows 100% of user’s accuracies for all the deforested 
class, expect for forest exploitation (95.2%). Those performances are on 
average 2.1% higher than FA1, which means that FA2 produces less 
commission errors on deforestation (more confidence in an effective 
detection). 

3.1. Spatial validation of the produced SAR dataset: FA1 

FA1 shows high performance (Table 2) with a global producer’s 
accuracy of 81.5% for the deforested class and 99.6% for the intact 
forest. Global user’s accuracies are 96% and 98% (respectively). The 
global overall accuracy of FA1 is 97.8%. 

The smallholder agriculture, i.e., small, slashed-and-burned parcels 
of 0.47 ± 0.35 ha (see Table 1) is the type of deforestation reaching the 
highest producer’s accuracy: 89.4%. Such single events lead to shadow 
detection in one piece, and the weather condition (dry season) is optimal 
to see a decrease in the whole parcel area, with few rainfalls that can 
affect the SAR signal. Moreover, burning often leads to a decrease of 
backscatter with less vegetation remaining on the ground. 

For forest exploitation, the producer’s accuracy is 75.9%. One-third 
of the omissions were on rectangular-shaped landings on an existing 
road side. The other two-thirds are on roads, i.e., long and thin (~20 m) 
objects. This type of shape is at the limit of what can be done with a 
sensor resolution of 20 m. Note that a larger shadow will appear on a 
road built parallel to the orbit trajectory. Therefore, new north-south 
roads are better detected than west-east road because of the orbit 
track. Of the total road surface area from the reference data, 43% was 
detected. 

Gold mining reaches an 80% producer’s accuracy. Gold mining sites 
can be small or large (1.46 ± 2.1 ha, see Table 1) and often have a 
meandering shape (and, more rarely, a circular shape) because they 
follow rivers. The few omission errors were found on meandering 
shapes, particularly when they are thin (~20 m), similar to the roads. 

The producer’s and user’s accuracies for intact forests are higher 
than 97% in all cases, meaning that the intact forests are not 
overestimated. 

Fig. 5 shows two maps of the forest disturbance detection results due 

to smallholder agriculture (left) and gold mining (right). It is interesting 
to observe the gradual temporal evolution of the gold mining areas 
compared to singles slash-and-burn events in smallholder agriculture. 

3.2. Spatial comparison to the optical dataset: FA2 

FA1 detected more deforestation than FA2 because we could explain 
by the resolution of each sensor and the low sensitivity of Sentinel-1 to 
cloud cover. 

The global overall accuracy of FA2 is 93.7%. The advantage of FA2 is 
that it makes very few commission errors, although it produces signifi
cantly fewer forest alerts than FA1: the global producer’s accuracy of 
deforested areas is 36.3%. 

For smallholder agriculture, FA2 found 31.9% of the deforested area 
(Table 2). The smallholder agriculture practice almost only occurs 
during the dry season, which allows for a comparison under cloud-free 
conditions. However, this deforestation type shows the maximum gap 
between FA1 and FA2 producer’s accuracy. Indeed, Sentinel-1’s higher 
resolution is better suited to detect small plots as smallholder agriculture 
(see Table 1). 

The validations for forest exploitation and gold mining show the 
same trends with 37.0% and 40.0% producer’s accuracy values, 
respectively, for deforestation. The FA2 omission errors for forest 
exploitation were equally distributed over roads and log yards/landings. 
For gold mining, two-thirds of the omissions were on samples with small 
surface areas or long, thin shapes. The other third was on a large 
meandering-shaped surface area, and the sample was missed because of 
poor detection of the area overlapping the real deforested surface area 
(Fig. 6). On large, legal gold mining sites, forest replacement by bare soil 
and water can remain visible for multiple years. Regarding those sites, 
half of the deforested samples correctly classified by FA1 and missed by 
FA2 occurred in the wet season, and half occurred in the dry season. This 
finding shows that beyond temporal delays, persistent cloud cover 
makes finding two exploitable images in a 180-day window very diffi
cult at some sites. 

Most of the time, the shape of the deforestation is less accurate in 
FA2, and some areas are missing, as shown in Fig. 6. 

To illustrate and evaluate this phenomenon, Fig. 7 shows the histo
gram of the percentage of the surface area of each reference polygon 
detected by each method. Among the reference polygons detected by 
each approach, FA1 tends to delineate more completely the disturbed 
areas with respect to FA2. 

In total, FA1 and FA2 detections intersected 1,339 and 867 reference 
polygons respectively. 783 reference polygons were detected by both 
FA1 and FA2. This means that 84 reference polygons were only inter
sected by FA2 detections and 556 only by FA1, which shows the 
complementarity between both detection methods. 

To conclude, FA2 misses more disturbed areas (PA < 40%) than FA1 
and therefore overestimates intact forest compared to FA1 (PA > 75%), 
regardless of the type of deforestation. This finding can be explained by 
the fact that alerts raised by FA2 might have been detected and then 
were not confirmed because of persistent cloud cover (>180 days). In 
addition, FA2 is based on 30-m resolution Landsat imagery, whereas 
FA1 is based on 10-m resolution Sentinel-1 imagery. Note that this 
analysis concerns relatively small plots of deforestation compared to 
those found in very dynamic landscapes with high deforestation rates. 
Therefore, FA2 spatial results may not be representative for large forest 
clearing and the spatial advantage of FA1 over FA2 could be reduced in 
this case. 

3.3. Temporal comparison between the SAR dataset (FA1) and the optical 
dataset (FA2) 

We performed a comparison of the detection dates estimated from 
FA1 and FA2 directly. The objective is to determine which approach 
detects closest to the true deforestation date. The rationale is that there 

Table 2 
Validation of the FA1 (SAR) and FA2 (optical). UA means User’s accuracy and 
PA means Producer’s accuracy.   

Smallholder 
agriculture 

Forest 
exploitation 

Gold mining Global (3 
types of 
deforestation 
combined) 

FA1 FA2 FA1 FA2 FA1 FA2 FA1 FA2 

UA deforested 
area 

97.7 100 91.1 95.2 100 100 96.0 98.1 

UA intact forest 98.9 93.3 97.1 92.9 98.0 94.3 98.0 93.5 
PA deforested 

area 
89.4 31.9 75.9 37.0 80.0 40.0 81.5 36.6 

PA intact forest 99.8 100 99.0 99.7 100 100 99.6 99.9 
Overall 

accuracy 
98.8 93.5 96.5 93.0 98.2 94.6 97.8 93.7  
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are well-known causes that can lead to delayed detections (e.g., cloud 
cover for optical data, remaining vegetation for SAR data) but no 
identified cause that can lead to anticipated detections (before the actual 
occurrence of deforestation). Therefore, when FA1 and FA2 provide 
different deforestation dates, the earlier detection is considered to be 
closer to the true forest loss date than the later detection. In the 
following, only the reference polygons detected by both methods are 
used for the temporal comparison. 

3.3.1. Smallholder agriculture 
Regarding smallholder agriculture, 410 polygons were detected by 

FA1, 243 polygons were detected by FA2 and 210 polygons were jointly 
detected by the two methods. 

In Fig. 8, the left panel represents the number of polygons detected 
monthly (green for FA1 and yellow for FA2). Both algorithms detect 
deforestation during the dry season (July to November), as expected, 
when slash-and-burn agriculture happens. During the dry season, the 
cloud cover is reduced, as is the temporal delay between FA1 and FA2. 

The right panel of Fig. 8 shows that the differences in the dates be
tween FA1 and FA2 are generally distributed around zero (mean of 
20 days earlier for FA1, standard deviation = 121 days). The positive 
part shows polygons first detected by FA2, and vice versa. 

In approximately 50% of the cases, the date difference between the 
two methods is smaller than the revisit period of Sentinel-1 (12 days) or 
Landsat (16 days) and may therefore be explained by the timing of the 
acquisitions (Fig. 8, in orange) of each sensor with respect to the 
considered forest loss event, rather than by intrinsic limitations of each 
sensor. 

Smallholder agriculture parcels found by FA1 approximately one 
year before (10%) are first logged in the 2017 dry season and are 
detected by FA2 only in the 2018 dry season during the second clear
cutting event of the parcel. Polygons detected approximately 200 days 
before by FA1 correspond to a detection delay due to cloud cover: logged 
at the end of 2017 and detected by FA2 during the short summer of 
2018. 

Surprisingly, some polygons were found much earlier by FA2 (more 
than 3 months) than by FA1. The analysis of these polygons shows that 
the delays correspond to errors when allocating the deforestation date 
with FA2. This phenomenon happens when a parcel logged in 2018 is 
not detected by FA2 but is intersected by a neighboring parcel correctly 
detected in 2017, as illustrated in Fig. 9. It creates a 1-year error in the 
delay analysis (Fig. 8, in red). 

In the end, FA1 detects more polygons in advance of FA2, although 
the temporal difference between the two algorithms is not significant for 
smallholder agriculture, which leads to confidence about the logging 

date estimation provided by both methods in this case. 

3.3.2. Forest exploitation 
On forest exploitation, 51 polygons were detected by FA1 and 32 by 

FA2. Twenty-eight polygons were jointly detected by the two methods, 
and most of them were linked to disturbances that occurred in 2017 
when more reference data were available. Most alerts are raised during 
the dry season and the short summer (Fig. 10), which is when most of the 
activities that create a large opening in the canopy happen. 

More than 90% of the disturbed areas are first detected by FA1 
(Fig. 10). 

The delay can be explained by the timing of acquisitions for only two 
samples. For all the other samples, the delay is attributable to the 
method and to the sensor. Regina/Saint-Georges forest (the location of 
this exploitation study site) is among the cloudiest areas in French 
Guiana (the mean cloud cover is >65%, see Fig. 4), explaining why the 
delay in optical detections is more important in this study site than in the 
smallholder agriculture site. 

3.3.3. Gold mining 
Regarding gold mining, 878 polygons were detected by FA1, and 592 

polygons were detected by FA2. 545 reference polygons were jointly 
detected by both methods. Gold mining activities remained sustained all 
year round, even if there were variations. Illegal gold mining is depen
dent on the water level for river freight, and it is impossible to run the 
pumps for alluvial mining without water. However, heavy rains from 
April to June can cause heavy leaching and drown the sites as the water 
level rises. 

For legal gold mining, the start of exploitation is easier in the dry 
season, although their equipment allows them to work during the wet 
season as well. However, they will have to manage the risks of pollution 
by overflow in the barges. 

As expected, FA1 detects deforestation linked to gold mining all year 
round (Fig. 11, left), while FA2 detects almost all the disturbance areas 
during the dry season and only a few during the wet season. This is 
consistent with the capacity of each sensor. 

Fig. 11 (right) shows a much better temporal adequacy/precision of 
the SAR imagery: 80% of the reference polygons are first detected by 
FA1, including 40% of more than 3 months of optical delay. The ma
jority of FA2 delays are due to the limitations of optical sensors because 
of cloud cover, with the delay increasing during the wet season. 

Fifty-eight out of the 433 polygons (13%) found first by FA1 and 25 
out of the 107 polygons (23%) found first by FA2 may be explained by 
the timing of the acquisitions of each sensor. 

Of the 17 polygons found more than 4 months earlier by FA2, two- 

Fig. 5. FA1 maps of the forest disturbances detection results due to slash-and-burn (left) and gold mining (right). Colors shows the alert date detected by the al
gorithm. Green lines are the borders of reference polygons. The left map is centered on 3◦40 N and 54◦3 W. Background: Sentinel-1 SAR image. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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thirds were FA2 commission errors due to close gold mining activities 
that started before the study period. The other one-third were due to the 
same phenomenon of overlap seen in smallholder agriculture (Fig. 9) 
because of the close proximity of multiple new gold mining sites. 

These examples show the benefits of SAR imagery over optical im
agery in the tropics, especially in a NRT context. 

3.4. Annual rate of forest change 

Fig. 12 shows the forest disturbance maps for FA1 applied at the 
country scale in French Guiana between 2016 and 2018. Eight subsets of 
8 × 12 km areas highlight the various sizes and distributions of the 
disturbed areas. 

Agriculture practices are seen in all subsets except in subset 3 and 5. 
Two spatial patterns are distinguishable: small circular-shaped parcels 
and a bit biggest square-shaped parcels. This corresponds to the 

agricultural practices of different communities. Gold mining 
meandering shape is visible in subsets 2 and 3. Subset 5 shows an area of 
forest exploitation. We can see the detection of the roads and small patch 
detected with high density. 

Fig. 13 compares the annual rates of forest cover change over French 
Guiana from FA1, FA2 and the GFW tree cover loss (annual) dataset. The 
annual rate of change is calculated using the Eq. (4) from Puyravaud 
(2003) as follows: 

r =

(
1

t2 − t1

)

× ln(A2 − A1) (4)  

where A1 and A2 are the surface areas of the forest in years t1 and t2, 
respectively. Note that r is negative when the forest lost is greater than 
the forest gained. FA1 and FA2 both produce FAs in a NRT context, 
whereas the GFW tree cover loss dataset is an annual product. 

FA1 (in green in Fig. 13) shows a decrease in the deforestation rate 

Fig. 6. Spatial comparison of forest loss maps from FA1 (SAR) (left – Background: Sentinel-1 SAR image) and from FA2 (optical) (right – Background: Bing aerial 
optical image). Reference data are drawn in green. The two upper maps are centered on 3◦12 N and 52◦25. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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between 2016 (5,619 ha deforested) and 2017 and a stabilization from 
2017 (3,169 ha deforested) to 2018 (3,430 ha deforested). The same 
trends are found in the GFW tree cover loss which aim to quantify the 
amount of change in one year. As seen in section 3.2, the SAR-based 
system raised more FAs than the optical-based system, which is attrib
utable to the cloud cover conditions and, to a lesser extent, the higher 
resolution of Sentinel-1. 

This graph shows the consistency of the methods as they are all 
following the same curve. 

Fig. 14 gives the forest loss for different size categories in French 
Guiana, highlighting the importance of small deforested areas, including 
those by illegal gold mining and smallholder agriculture. Small patches 
(<2 ha) contribute to half of the forest loss surface area. This result 
highlights the need of high resolution forest alerts maps. 

4. Discussion 

We discuss here the potential of the FA1 dataset for operational use 
with different use cases. 

4.1. Potential users 

The operationalization of the proposed methodology could be of 
interest to various actors such as national actors for the management of 
protected areas, and the management of agricultural and other pro
ductive concessions (land census); non-profit organizations for 
awareness-raising. For example, FA1 could complement the fight against 
illegal activities (illegal gold mining and illegal land clearing) in French 
Guiana because it is exploitable during the whole year, automated and 
cost-effective. However, to be useful in this case, the forest loss detection 
needs to be characterized as gold mining. 

In a more general framework, for an early detection system to be 
effective, the forest loss alerts must be complemented by alerts priori
tization (Weisse et al., 2017), driver’s identification, timely results 
communication and the use by stakeholder (Finer et al., 2018). 

Furthermore, in addition to being an alert product, FA1 can also be 
used to quantify the amount of change for in-depth reporting or analysis 
as it shows high accuracies. It can therefore be used by scientists, for 
example, for the quantification of deforestation and the study of climatic 
events on tree mortality, at least in ever-cloudy regions. 

Fig. 7. Histogram of percentage of reference polygons covering by both methods.  

Fig. 8. Regarding smallholder agriculture: number of detected reference samples per month for the FA1 (green) and for the FA2 (yellow) Forest Alerts systems (left), 
and histogram of the difference in detection date of the reference samples (right), where negative values indicate an earlier detection in the FA1. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. Reference data are drawn in green and the year of reference is written inside. The 2017 reference parcel is detected by both algorithms in 2017. The 2018 
reference parcel is well detected by FA1, although not detected by FA2 and therefore considered as detected in 2017 because of overlapping, creating a false delay of 
one year of FA1. The maps are centered on 3◦16 N and 54◦12 W. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 10. Regarding forest exploitation: number of detected reference samples per month for FA1 (green) and for FA2 (yellow) Forest Alerts systems (left), and 
histogram of the difference in detection date of the reference samples (right), where negative values indicate an earlier detection in FA1. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Regarding gold mining: number of detected reference samples per month for FA1 (green) and for FA2 (yellow) Forest Alerts systems (left), and histogram of 
the difference in detection date of the reference samples (right), where negative values indicate an earlier detection in FA1. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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4.2. Fast alert and detection timing 

For illegal or monitored activities, the delay between the disturbance 
and the detection must be as short as possible. Using a SAR system 
presents the advantage of guaranteeing the availability of exploitable 
acquisitions due to their weather-independent capacity. Moreover, the 
FA1 method is based on a reliable indicator that bypasses environmental 
effects on SAR signals. Three images are needed to raise an alert with 
confidence; a deforestation event is therefore confirmed 12 days after its 
first detection. If the deforestation event is detected in the first Sentinel- 
1 acquisition after its occurrence, the overall detection delay is between 
12 days (deforestation occurring shortly before a Sentinel-1 acquisition) 
and 18 days (deforestation occurring shortly after a Sentinel-1 

acquisition, and 6 days before the first detection in the next Sentinel-1 
acquisition). This fast alert timing is particularly useful for illegal for
est conversion monitoring (illegal urbanization, illegal gold mining, 
etc.). 

In less urgent cases, accurate deforestation date estimates are also 
needed, such as in studies related to seasonal deforestation rate. Highly 
detailed temporal data (as FA1) are currently available except for a few 
data points collected on the ground. 

4.3. Detection confidence 

An operational alert system needs low false alarm rates. The FA1 
system, with a minimum detected surface area of 0.2 ha, has a mean user 

Fig. 12. Forest disturbances over the whole French Guiana from FA1 between 2016 and 2018 at 10-m resolution, and over 8 × 12 km areas in French Guiana, 
highlighting the various sizes and distributions of disturbed areas. 

Fig. 13. Rate of change of forest cover on French Guiana, given by various methods. FA1 is in green, FA2 in yellow and Hansen forest cover loss year in orange. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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accuracy of 96% for deforested areas, giving high confidence in the re
sults. The producer’s accuracy increases with the MMU, as does the 
confidence. 

Moreover, this system has an 81.5% mean producer’s accuracy, 
giving high confidence to the area estimates, which can be used to ac
count for changes or for target field surveys. 

4.4. Production timing 

The maximum delay between the acquisitions of 2 Sentinel-1 images 
over the same orbit is 6 days. An acquired image is available in a 
maximum of 24 h in the French Product Exploitation Platform for 
Sentinel (PEPS) and requires less than 1 h to be downloaded, filtered and 
processed to obtain a deforestation map using the FA1 algorithms. It is 
therefore possible to provide weekly updates of the FA1 product. 

4.5. Scalability 

The FA1 method is well adapted to detect French Guiana’s types of 
forest loss. We discuss here its ability to operate on other lands. 

Various factors affect the SAR signal and thus forest disturbance 
detection, including acquisition parameters of the SAR system, envi
ronmental factors, type of disturbance and forest characteristics. 

Regarding the latter, FA1 was developed for the detection of defor
estation in primary tropical forests (high tree height, high canopy den
sity and a low seasonality). 

The first condition to see a shadow in the SAR image is to have trees 
with a sufficient height, as the shadow size is a function of the tree 
height and the incidence angle of the radar. For example, this particular 
method will not be efficient for forest heights under 15 m (for flat 
terrain). 

The SAR signal is relatively constant in time in a dense forest with 
low seasonality. Phenology introduces changes in the SAR signal that are 
not related to deforestation events. The impact of seasonality on the FA1 
method, such as in the dry tropics, has not been studied yet. 

Similarly, in a sparse woodland, the SAR signal will also include the 
soil contribution and its associated variations due to environmental ef
fects. Therefore, the FA1 method applied on a sparse woodland could 
lead to false alarms. 

The disturbance type is another factor affecting Sentinel-1 back
scatter. The detection of selective logging will probably not be as ac
curate as clear-cut and may be characterized by a high density of small 
detections within the disturbed area. The laws of some countries can also 
influence the detection of forest loss. For example, Brazilian legislation 
no longer allows the harvest of several big trees (Brazil nut tree for 
example). In a deforested area, those remaining trees bring volume 

scattering of the SAR signal and the decrease of backscatter is not 
obvious, making the detection more difficult. 

FA1 system is also influenced by the number of different SAR looking 
directions available. In French Guiana, both ascending and descending 
orbits are available. In regions with a single SAR looking direction, less 
shadows will appear following a deforestation than when two opposites 
looking directions are combined. 

The FA1 method has been successfully tested in Peru (Bouvet et al., 
2018) over a site impacted by smallholder agriculture and agro- 
industrial development on natural vegetation, comprising mostly ever
green rainforest; and in Gabon over a tropical rainforest impacted by 
mining activities, palm oil plantation and agricultural activities 
(Hirschmugl et al., 2020). 

Note that the alert product does not distinguish human-induced from 
natural forest disturbances nor deforestation from forestry and other 
land use dynamics. 

5. Summary and conclusions 

Tropical forests are an important carbon sink and high biodiversity 
locations. Monitoring forest disturbances is a major issue that requires 
efficient and accurate tools that are available in NRT. 

French Guiana’s forest is mostly affected by small-scale disturbances 
occurring year-round partly caused by illegal activities (such as gold 
mining) and leading to health and environmental issues. The early 
detection of small-scale disturbances is therefore of environmental and 
social importance for French Guiana. Existing operational Forest loss 
Alerts (FA) systems are mostly optical-based and the persistent cloud 
cover of the region leads to temporal delays, poor detection (with 
automated method), or high-cost production. 

With its dense time series of SAR data independent to cloud cover 
and its 10-m pixel resolution, Sentinel-1 provides a free efficient tool in 
this situation. 

A FA system in NRT based on the method developed by Bouvet et al. 
(2018) and using Sentinel-1 SAR data (FA1) was developed and evalu
ated over French Guiana between 2016 and 2018. Spatial accuracy as
sessments are based on 1,867 reference data polygons, totaling 
2,124.5 ha, collected by French organizations independently from this 
study, and they described several deforestation practices of the tropics 
(small/large surface areas, dry/wet season activities, etc.). The SAR FA 
was compared with an optical FA system (Hansen et al., 2016) (FA2) 
using free and open data and with a NRT goal in the tropics. 

FA1 achieves better results than FA2 in terms of spatial validation on 
all types of deforestation: the producer’s accuracy for FA1 is between 
75.9 and 89.4%, whereas that for FA2 is between 31.9 and 40%. The 
main reason for the poor performance of the optical FA is the very high 

Fig. 14. Number of forest loss patches of different size categories across French Guiana using FA1 (left); Deforested area (ha) of different size categories across 
French Guiana using FA1 (right). 
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cloud cover of the region. 
The temporal comparison regarding dry season activities (such as 

smallholder agriculture) shows no significant difference between the 
two methods, and half of the delays in each dataset could be explained 
by the sensor acquisition timing. In contrast, for year-round activities 
(such as gold mining), the optical-based system has a median temporal 
delay of 143 days (more than 4.5 months). However, the detection date 
of the SAR-based dataset shows the same trends as the activity on the 
ground. 

We demonstrate that the use of a SAR-based method is necessary to 
better identify the deforestation timing. The Sentinel-1 based method 
produces less omission errors (45.3% on average) than the Landsat 
method, although the last one produces less commission errors (2.1% on 
average) and even made no commission errors at all in most validation 
cases. 

It was expected that we could use a combination of SAR and optical 
data, such as a joint use of Sentinel-1 and Sentinel-2, to enhance the 
detection performance as shown by (Reiche et al., 2018). However, for 
the detection of wet season forest disturbance activities, the limited 
availability of exploitable optical data is not suited to an operational 
alert system. 

We show the annual rate of change from 2016 to 2018 with the two 
NRT methods FA1 and FA2 and from an annual deforestation product 
meant to give the annual disturbed surface area: the GFW Tree Cover 
Loss product. The 3 datasets indicate a decrease in deforestation from 
2016 to 2017 and a stabilization in 2018 compared to 2017. Regarding 
the two NRT datasets, the SAR-based system raised more FAs (+622 ha 
in 2017 and + 200 ha in 2018) than the optical-based FA system. 

Finally, we discuss the ability of FA1 dataset to be a useful opera
tional system. The FA1 map of this study is available in http://cesbio 
mass.net/. 
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