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Abstract Purpose: Deep Brain Stimulation (DBS) is a common treatment
for a variety of neurological disorders which involves the precise placement
of electrodes at particular subcortical locations such as the subthalamic nu-
cleus. This placement is often guided by auditory analysis of micro-electrode
recordings (MERs) which informs the clinical team as to the anatomic region
in which the electrode is currently positioned. Recent automation attempts
have lacked flexibility in terms of the amount of signal recorded, not allowing
them to collect more signal when higher certainty is needed or less when the
anatomy is unambiguous. Methods: We have addressed this problem by eval-
uating a simple algorithm that allows for MER signal collection to terminate
once the underlying model has sufficient confidence. We have parameterized
this approach and explored its performance using three underlying models
composed of one neural network and two Bayesian extensions of said network.
Results: We have shown that one particular configuration, a Bayesian model
of the underlying network’s certainty, outperforms the others and is relatively
insensitive to parameterization. Further investigation shows that this model
also allows for signals to be classified earlier without increasing the error rate.
Conclusions: We have presented a simple algorithm that records the confi-
dence of an underlying neural network, thus allowing for MER data collection
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to be terminated early when sufficient confidence is reached. This has the po-
tential to improve the efficiency of DBS electrode implantation by reducing
the time required to identify anatomical structures using MERs.

Keywords Deep brain stimulation, Micro-Electrode Recordings, Deep
learning, Bayesian models

1 Introduction

Deep Brain Stimulation (DBS) is a common treatment for a variety of neu-
rological disorders such as Parkinson’s disease in which the abnormal activa-
tion of a particular region leads to undesirable characteristic symptomatology.
For example, in PD, the degeneration of dopamine producing regions of the
substantia nigra leads to the abnormal activation of other regions of the basal
ganglia which in turn leads to the disorder’s characteristic motor symptoms
such as the diminished ability to initiative and control voluntary motor ac-
tions. DBS is currently the dominant surgical procedure for this pathology,
and can address the patient’s symptoms directly by correcting these neural
abnormalities, stimulating particular neural populations in order to suppress
their pathological activity [7,13]. This is highly beneficial if other non-surgical
techniques, such as pharmaceutical treatment, fails to adequately control the
patient’s symptoms.

The DBS intervention itself consists of the highly accurate placement of
the stimulation electrodes using a stereotaxic frame into a pre-defined region
of the patient’s subcortical anatomy such as the subthalamic nucleus (STN)
or globus pallidus internus (GPi) in the case of Parkinson’s disease. Often,
the clinical workflow for DBS will consist of multiple steps, including a pre-
operative planning phase, an intra-operative electrode positioning phase, and
a post-operative stimulation parameter tuning phase.

The pre-operative planning phase uses T1- and T2-weighted clinical MR
images in which the anatomy of interest is segmented and the potential elec-
trode trajectories can be investigated. Recent approaches in image-guided in-
terventions encourage the use of these pre-operative images to assist with the
navigation of the DBS electrodes, albeit at a coarser resolution level due to
the presence of several contributing sources of error including (1) brain-shift
resulting from the craniotomy site, (2) small shifts in the stereotaxic frame’s
position, and (3) angular error in the insertion angle of the electrode [12]. Ex-
clusive use of MRI would lead to a sub-optimal STN localization in 20% of
cases, according to Lozano et al. [13].

Because of these sources of error, an additional data modality must be
incorporated to ensure correct positioning during the intra-operative phase.
Intra-operative imaging modalities such as intra-operative CT or X-ray have
the ability to readily identify the electrodes but, due to a lack of soft-tissue
contrast, cannot readily distinguish between the target region and surrounding
structures [18]. More advanced intra-operative imaging modalities that have
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this capability, such as intra-operative MRI, are prohibitively expensive and
require specialized operating suites.

An alternative to these predominantly structural imaging modalities, func-
tional electrophysiological modalities are often used instead, demonstrating
robust results [19]. The most common of these is the trial-and-error method
in which the patient remains conscious during the surgery, allowing the clini-
cal team to stimulate regions along the electrode trajectory and determine the
optimal electrode positioning from the patient’s observable behaviour. This
also allows for the clinical team to determine the presence of side-effects, al-
though recent studies have found there to be a disconnect between this intra-
operative and later post-operative assessments [3]. In addition, awake surgery
is uncomfortable for the patient and potentially infeasible for patients with
very advanced PD, whose motor symptoms may prevent them from being ad-
equately still during the procedure. Thus, Micro-Electrode Recording (MER)
is often used as the preferred intra-operative data modality for DBS electrode
implantation. Instead of stimulating the patient and observing their behaviour,
MER electrodes measure the activity of the proximal neural region surrounding
them, allowing the clinical team to infer the electrode’s position through the
characteristic signature of the region of interest [2,16]. In the current standard-
of-care, this signature is determined by an expert neurologist by listening to
the signal. By integrating different parameters specific to the surgical environ-
ment, such as the depth of the electrode, the distance to the target coordinate
determined by imaging, and by deciphering the functional neurophysiological
characteristics contained in the signal [9], the neurophysiologist establishes the
approximate position of the electrode by classifying whether or not the MER
arose from inside the STN. This is repeated at regular depth intervals for each
trajectory used during the intervention. This requires extensive expertise and
is a highly subjective process that could benefit from automation.

Previous work in automatically analyzing MER for identifying subcortical
DBS target regions have been traditionally feature-based in which the MER
signal is represented as a vector of pre-defined, engineered features that repre-
sent certain statistical features of the underlying neural population (i.e. firing
rate, presence of different frequency bands, etc...) [5,17,20,21,22]. Although
these feature-based approaches are highly automatic, transparent, and can be
based on an arbitrary amount of signal, recent data-driven methods operat-
ing on the raw signal have proven to have higher accuracy [15]. Among these
methods, SepaConvNet, a Convolutional Neural Network, has been able to
predict the presence of the STN from one-second MER signals [15]. This fixed
time can be made dynamic through the use of recurrent neural networks or
Bayesian inference. [14] However, it has yet to be shown how such a dynamic
time could be algorithmically integrated and thus validated.
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Contributions

In this paper, we propose an approach for optimizing the automatic classifi-
cation of the STN from intra-operative MER which can accelerate the analysis
by reducing the amount of MER signal acquired. The reduction of surgical time
is intuitively beneficial for the hospital, as it can reduce the cost of the inter-
vention, the risk of infection and the subsequent patient recovery time. We
propose and validate a simple ‘listening algorithm’ for adapting the amount of
MER signal provided to an underlying classification model. This model relies
on receiving signal in small chunks which are then provided to the underly-
ing classifier, receiving an updated classification. If the classification results
maintain a particular level of confidence for a particular length of time, the
only parameters of the proposed method, the listening algorithm produces a
final binary classification, thus terminating the listening time early. By vary-
ing these two parameters, we have shown how accuracy and efficiency can be
effectively traded-off in this framework and show how it can largely improve
the efficiency of DBS electrode positioning by reducing the amount of time
needed to collect the intra-operative MER signals. Analysis of the dynamics
of the listening algorithm over time also give insight into how the underly-
ing machine learning methods could be improved in a way that could directly
impact their use.

2 Methods

2.1 Micro-Electrode Recording Database

The data used in this study were collected at the London Health Sci-
ences Centre at Western University Hospital (London, Canada), including 57
Parkinson’s Disease patients undergoing a single or bilateral Deep Brain Stim-
ulation intervention. Micro-electrode Recording signals were recorded through
5 channels (anterior, posterior, medial, lateral and central), using a Leadpoint
5 recording station (Medtronic). A pre-operative target was defined by Mag-
netic Resonance Imaging before surgery, and Micro-electrode Recording were
captured from 10.0mm to 4.0/5.0mm after target estimation. For each record,
sampling was made at 24kHz (8-bits), amplified (gain: 10,000) and digitally
filtered (bandpass: 500-5000Hz, notch: 60Hz). The use of these data was led
by the collaborative agreement covered by ethical clearance DSA 109045, and
was supported by the Research Ethics Board at the University of Western
Ontario (REB # 109045).

The MER database contains 11,162 signals, each containing 9 seconds of
recording and have been annotated by an expert neurosurgeon as being either
within the STN (2,574 signals) or outside of the STN (8,588 signals). Due to the
class imbalance, an oversampling method was designed to increase the amount
of the under-represented class. Therefore, a single random second of recording
was use per ‘OUT’ annotated signal, compared to 3 non overlapping random
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Algorithm 1: MER Listening Algorithm.

Data: P [t] = P(t)(X = ‘IN’) , α ∈ (0, 1), patience > 0
Result: Final prediction: prediction ∈ {‘None’,‘OUT’,‘IN’},

Termination time: t where patience ≤ t ≤ length(P )
begin

prediction← ‘None’;
C‘OUT’ ← 0;
C‘IN’ ← 0;
for t = 1→ length(P ) do

/* If we are ‘certain’, add to the number of seconds above/below

threshold */

if P [t] < α then
C‘OUT’ ← C‘OUT’ + 1;
C‘IN’ ← 0;

else if P [t] > 1− α then
C‘IN’ ← C‘IN’ + 1;
C‘OUT’ ← 0;

else
C‘OUT’ ← 0; C‘IN’ ← 0;

/* Determine if we can terminate early */

if C‘OUT’ = patience then
prediction← ‘OUT’;
break;

else if C‘IN’ = patience then
prediction← ‘IN’;
break;

end
return prediction, t

end

seconds of recordings for ‘IN’ annotated signals, leading to 8,588 ‘OUT’ against
7,722 ‘IN’ samples.

During training, MER samples were grouped by patient (i.e. patients,
rather than signals, are divided into training and testing sets) in order to
avoid any data leakage and to ensure that evaluation is performed only on
unseen patients data. 10-fold Cross-Validation was performed over the 57 pa-
tients, consisting in 10 distinct training initializations. For each repetition,
1 fold is used only for model evaluation with the remaining 9 folds used for
model training. The evaluation metrics are then averaged over the repetitions.
For the training folds, oversampling of the ‘IN’ class was used to address class
imbalance. For evaluation, metrics were specifically chosen that account for
this lack of class balance.

2.2 Adaptive Listening Time

The MER listening algorithm, shown in Algorithm 1, is used to determine
the final prediction for a given signal. This algorithm listens to the output of
the neural network (P ), counting the number of consecutive times that it is
under a particular threshold α (which indicates a confident conclusion that
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the signal comes from outside the STN) or above the threshold 1− α (which
indicates a confident conclusion that the signal comes from inside the STN).
After a pre-determined number of this conclusions is made, the algorithm is
permitted to terminate early with a prediction. Else, the algorithm returns
‘None′ which means a longer listening time would still be required. Given the
retrospective nature of this study, ‘None′ is a valid result of this algorithm, as
we do not have the capability to acquire more signal if Algorithm 1 does not
return a positive or negative prediction in the 9 seconds. However, in clinical
use, the algorithm could always be given more signal, which is often the case
in regions along the boundary of the STN where it is difficult, even for trained
neurophysiologists, to confidently determine the electrode location.

2.3 Underlying Bayesian and Neural Network Architectures

The first network used is a reproduction of SepaConvNet (SCN), the Con-
volutional Neural Network proposed by Peralta et al. [15]. The signals undergo
some pre-processing in order to remove any artefacts related to the acquisition,
clipping its amplitude to be within [-249:250]. A Short Term Fourier Transform
algorithm was used with a Hann window of 512 samples and a hop length of 10
samples resulting in a spectrogram with 21,600 time points by 257 frequency
bands. Each frequency band is then normalized to further remove artefacts
using approximate min-max scaling with the 95th and 5th percentiles as the
maximum and minimum values. The signals are then fed into a convolutional
neural network as shown in Figure 1 which classifies them into either ‘IN’ (the
network output being close to 1) or ‘OUT’ (the network output being close to
0). The benefit of this network is that the amount of signal used is relatively
short and can be processed almost in real-time, meaning that the predictions
given by SepaConvNet for each time point can be used.

In order to extend SepaConvNet which process independently one second
spectrograms, the Bayesian framework presented by Martin et al. [14] was
also reproduced. This method is based on Bayes’ Theorem, and update the
probability the signal arising from the STN given consecutive predictions from
SepaConvNet. The general formula is presented by the authors in the following
form:

P(t)(X = p) ∝ P(t−1)(X = p)× P (f(t)|X = p) (1)

X the electrodes location as either ‘in’ or ‘out’ of the STN.
p the classes to be distinguished, specifically {in, out}.
t the length of MER used, i.e. an integer in the range [1..9].
P(t)(X = p) is the probability distribution of X, given past predictions up to and

including time t.
P (f(t)|X = p) is the probability of SepaConvNet generating some feature at time t

(represented by f(t)) conditioned on the anatomy the MER arose from.
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Fig. 1: SepaConvNet architecture.

Equation 1 thus allows to obtain for each successive listening second a
prediction dependent on the behavior of the underlying: P (f(t)|X = p), as-
sociated with the prior probability calculated at time t − 1, P(t−1)(X = p).
At the initialization, the prior term is calculated according to the ratio of the
classes within the validation data. Two definitions of the term f(t) proposed
by Martin et al. have been re-implemented in the framework of this study:

1. A simple Bayesian extension of SCN, which uses the Non-Thresholded
SepaConvNet output as an indication of the certainty of the network. In
this case, f(t) ∈ [0, 1], and P (f(t)|X = p) density is computed over a Gaus-
sian Mixture Model which models SepaConvNet output according to each
class. With two Gaussian components per class, this approach adds 12
parameters to SepaConvNet.

2. An advanced Bayesian extension of SCN, which also computes P (f(t)|X =
p) using a Gaussian Mixture Model to represent the probability distri-
bution of the non-negative activation vector from the second to last layer
SepaConvNet, with 4 components per class. This architecture increases the
number of parameters by 8,456 beyond SepaConvNet.

2.4 Evaluation system

For each network, α and patience terms were set by using a GridSearch
algorithm over validation data. This learning method is used to refine the pa-
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rameters of a predictive model, by trying all combinations of its parameters
passed in arguments, and by associating a prediction score to each combina-
tion. GridSearch was used for incremental values of 0.025 for α ∈ (0, 0.5), and
patience domain was described as follow: 0 < patience ≤ 9.

2.5 Evaluation Metrics

At any given time-point, the current prediction of Algorithm 1 is one of
‘None’ (indicating no certain result), ‘Out’ (indicating that the signal arose
from outside the STN) and ’In‘ (indicating that the signal arose from inside the
STN). Because of the ternary, rather than binary, nature of the classification
problem, there are four metrics that should be evaluated:

SENS = True Positive
Positive SPEC = True Negative

Negative

MISS = False Negative
Positive FALLOUT = False Positive

Negative

(2)

Sensitivity (SENS) and Specificity (SPEC) are measures of positive quality -
how well the network correctly classifies signals, whereas the Miss rate (MISS)
and Fall-out rate (FALLOUT) are measures of negative quality - how fre-
quently the network mis-classifies signals. It should be noted that classifying
a signal as ‘None’ lowers all of these rates, neither correctly classifying nor
incorrectly classifying a signal. Thus, to take into account both positive and
negative quality, we use a balanced ternary quality (BTQ) with the formula:

BTQ =
1

2
(SENS + SPEC −MISS − FALLOUT ) (3)

This formula has several advantages including being inherently class balanced
with a random classifier, or a classifier not producing any predictions, hav-
ing an expected BTQ of 0. Additionally, if there are no ‘None’ predictions,
there is a relationship between the BTQ and the Balanced Accuracy (BACC),
specifically BTQ = 2×BACC − 1.

3 Results

The parameter space for each of the three comparative methods has been
explored using a grid search and the resultant BTQ metric is shown in Figure
2. Note that the colour scale is the same for each subfigure and has been
scaled to reflect the maximal performance of the methods investigated. The
performance of the Advanced Bayesian SepaConvNet is consistently higher
than the alternatives.

In order to investigate the behaviour of these methods over the course of
the signal, the optimal patience and α parameters were defined independently
for each method, and the behaviour of each approach was visualized in Figure
3.
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Fig. 2: Final BTQ of the three comparative methods at the end of the 9
second MER signal averaged across all k folds of cross-validation. Adaptive
Listening time with SepaConvNet (a), the Simple Bayesian Extension (b),
and the Advanced Bayesian Extension (c).

To further illustrate the performance of the Algorithm 1 using different un-
derlying methods, Figure 3 presents the evolution of validation metrics across
the database of 5,584 signals. It should be noted that the bars in Figure 3
are calculated over the signals predicted at the given time-point, and thus
SENS+MISS = SPEC+FALLOUT = 1. Similarly, the number of signals
classified at each time step is shown using a logarithmic scale as approximately
90% of signals are classified as soon as possible for all of the proposed methods
and a linear scale would render subsequent time points difficult to distinguish.

As shown in Figure 2, the advanced Bayesian method shows the best perfor-
mance among the 3 methodologies studied. In order to determine if early termi-
nation has a negative effect on classification accuracy, the advanced Bayesian
extension was evaluated both with and without early termination. The hy-
pothesis was that the same method but with access to the full signal would
perform better than the same method without said full access. However, this
effect was very slight, that early termination decreased the BACC score from
83.5% without early termination to 83.0% with early termination. This is de-
spite having unclassified signals, which BACC, a binary classification metric,
considers to all be incorrectly classified. Although this improvement is not sta-
tistically significant (under a paired Student’s t-test across all 57 patients in
the cross-evaluation), it still indicates that early termination very likely does
not have a negative effect on classification performance.

4 Discussion

The evaluation of the SepaConvNet neural network architecture has al-
ready highlighted the relevance of this data-driven methodology for the recog-
nition of patterns within a MER signal [15]. In order to further optimize pre-
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Fig. 3: Distribution of signals and classification metrics with respect to the lis-
tening time determined by the Early Stopping algorithm. Each column pools
the set of MERs across the database associated with the same listening du-
ration by the early stopping algorithm. The red line represents the evolution
of the average BTQ score for each possible stopping time observed. The three
comparative methods were evaluated using k-fold cross-validation to deter-
mine the optimal alpha and patience parameters. (a) Adaptive listening time
with SepaConvNet (patience = 4;α = 0.5), (b) Adaptive listening time with
Simple Bayesian Extension (patience = 2;α = 0.225)), (c) Adaptive listening
time with Advanced Bayesian Extension (patience = 4;α = 0.18).
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diction performance, the SepaConvNet extension then focused on the iterative
integration of an arbitrary number of seconds of MER to increase the cer-
tainty of the underlying neural network [14]. The algorithm presented in this
study aims at dynamically establishing the listening time required to optimize
the trade-off between listening shortening and prediction quality. This work
shows that the use of the presented early stopping algorithm does not alter
the overall quality of prediction, indicating that it is possible to stop listening
prematurely for some signals, without penalty, and thus accelerate the task
of MER identification. Furthermore, the Early Stopping listening algorithm
could also be extended to any classification approach based on the use of
intra-operatives features. [6,10]

In terms of interpreting the algorithm parameterization, particularly via
Figure 2, there are two dynamics to take into account: the misclassification
rate and the non-prediction rate. For example, as the patience increases, it
should have strongly increase the non-prediction rate (i.e. more signals are
missed due to insufficient MER length) with a weaker negative effect on the
misclassification rate (i.e. fewer signals near the boundaries are misclassified
as they need to stay on the same side of the boundary for longer). Similarly,
as α increases, Algorithm 1 becomes more forgiving, thus increasing the mis-
classification rate and lowering the non-prediction rate.

For the patience parameter, one consistent result can be seen across all
methods: at extremely high patience values, such as 7, 8 or 9, the BTQ swiftly
decreases at low values of alpha. This is likely because the signal is simply not
long enough for such confidence levels to have been maintained for such an
amount of time.

For SepaConvNet with early stopping, the effect of the alpha parameter
seems to dominate the algorithm’s behaviour, being sensitive to it at all values
of patience. This is likely because the output of SepaConvNet, as noted by
Martin et al. [14] is not a true likelihood reflecting the model’s underlying
certainty and thus the range of values is reduced rather than full ranging
between 0 and 1.

For the Bayesian methods, the dynamics of early termination are somewhat
different due to the convergence behaviour of said methods, i.e. that they
converge towards either 0 or 1 relatively quickly for the majority of signals
[14]. At low values of alpha, lower values of patience tend to be optimal,
as both methods take time to reach said confidence levels. As the value of
alpha increases and this minimal convergence time therefore lessens, we see
that middling patience values become preferable, indicating that there is, in
fact, a population of signals that originally start to converge in one direction
and then ’change their mind’ and ultimately converge to the opposite. This
interesting behaviour raises a number of hypothesis regarding how frequently
characteristic signal patterns occur which could inform surgical practice in
terms of minimum listening times for each of the ‘IN’ and ‘OUT’ classes.

Particular attention has been given to the advanced Bayesian extension,
as it was the best performing in both this study and a previous study [14].
As shown in Figure 3 (c) also shows that it is possible to reduce the average
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listening time for MER signals by more than half, which is a strong argument
for improving the quality of clinical support when using a real-time prediction
tool. In addition, the prediction quality of MER signals within the first stop
timestep demonstrates that the early stopping algorithm is capable of high-
lighting signals with ”simple” discriminative features, for which it provides a
higher prediction score than that of the underlying Advanced Bayesian Exten-
sion given the entire signal, increasing the balanced accuracy from 83.5% to
85.45% for those signals. Therefore, this approach would separate the simple
cases for identification from the complex ones. The complexity of identification
may be explained by the nature of the physiological boundaries which are not
clear-cut, and therefore potentially difficult to interpret. Lastly, this approach
is designed to work with signals that are not denoised. Numerous sources of
mechanical and physiological noise have been characterised for electrophysio-
logical signals [1,8,11], which can render the signal more complex and difficult
to classify. In order to integrate this work in a surgical context, this algorithm
could be used to identify simple signals in a much shorter time, and propose
longer signal acquisitions and flag more complex signals.

Limitations and Future Work

Despite the improvement in predictions for all signals that follow a rapid
convergence towards certainty (i.e. an output of 0 or 1), which can be seen in
the first column of each sub-figure in Figure 3, signals that are classified after
the minimum amount of time show a noticeable decrease in accuracy. This is
likely because all signals that are completely unambiguous are classified at the
very first opportunity, with only the more difficult signals remaining.

Therefore, improving the predictive model’s accuracy specifically for this
family of signals remains a priority for future work in terms of the underlying
neural network, its Bayesian extensions, and the early termination algorithm.
One potential avenue for this is to integrate more information related from
the DBS planning stage (i.e. the rough location of the STN and the desired
electrode trajectories determined from pre-operative MRI) which would likely
allow for more unambiguous signals occurring further away from the bound-
aries of the STN to be quickly classified based primarily on depth information,
leaving the neural network to learn distinctive patterns for the more difficult
boundary cases rather than the more frequent easier cases. Depth information
has been used in many automatic MER signal analysis approaches [4,?,?],
and the significant improvement of predictions resulting from its inclusion has
recently been validated [4].

5 Conclusion

Through this study, we proposed a listening algorithm for MER signal clas-
sification, capable of adapting to the level of certainty of the predictions made
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by a predictive model. The purpose of this algorithm is to determine if listening
to additional MER signal would improve the classification of a particular MER
signal based on an underlying model. Due to the simplicity of this algorithm
(with only two parameters, both of which are bounded) we could evaluate and
explore a variety of configurations both in terms of the algorithm’s parameter
space and the underlying machine learning model performing the predictions.
The evaluation of this system has highlighted the performance of the advanced
Bayesian extension of SepaConvNet, which seems to be well adapted to the
logic of the listening algorithm, outperforming comparative methods, while
being fairly insensitive to parameterization. In terms of performance, the com-
bination of the advanced Bayesian method with the early stopping algorithm
does not reduce the prediction quality compared to using the entire acquired
signal, indicating that such efficiencies can be found without worrying as to
incurring speed-vs.-performance tradeoff. Thus, the simple early termination
algorithm proposed in this paper would be, as a adjunct to Deep Learning, a
relevant implementable and low-risk addition, allowing for an improvement in
surgical workflow efficiency.
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