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Surgical Tool Segmentation using Generative
Adversarial Networks with Unpaired Training Data

Zhongkai Zhang, Benoît Rosa, Florent Nageotte

Abstract—Surgical tool segmentation is a challenging and cru-
cial task for computer and robot-assisted surgery. Supervised
learning approaches have shown great success for this task.
However, they need a large number of paired training data. Based
on Generative Adversarial Networks (GAN), unpaired image-to-
image translation (I2I) techniques (like CycleGAN and dualGAN)
have been proposed to avoid the requirement of paired data and
have been employed for surgical tool segmentation. The unpaired
I2I methods avoid annotating images for domain changes. Instead
of using them directly for the segmentation task, we propose new
GAN-based methods for unpaired I2I by embedding a specific
constraint for segmentation, namely each pixel of input image be-
longs to either background or surgical tool. Our methods simplify
the architectures of existing unpaired I2I with a reduced number
of generators and discriminators. Compared with dualGAN, the
proposed strategies have a faster training process without reducing
the accuracy of the segmentation. Besides, we show that, using
textured tool images as annotated samples to train discriminators,
unpaired I2I (including our methods) can achieve simultaneous
tool image segmentation and repair (such as reflection removal
and tool inpainting). The proposed strategies are validated for
image segmentation of a flexible tool and for in vivo images from
the EndoVis dataset.

Index Terms—Surgical tool segmentation, deep learning, gener-
ative adversarial networks, unpaired data

I. INTRODUCTION

Surgical tool segmentation aims to separate surgical tools
apart from the organs background. It plays a fundamental role
in robotic-assisted surgery and has many potential applications.
The segmentation can provide surgeons with enhanced context-
awareness in the operating room. It can also be employed to
identify and locate surgical instruments, which is the prerequi-
site for visual servoing control of surgical robots. In addition,
the segmentation is an indispensable procedure for automatic
and quantitative evaluation of surgical skills during robotic
surgery [1]. Therefore, there is a compelling requirement to
develop efficient algorithms for surgical tool segmentation from
endoscopic images. However, accurate surgical tool segmenta-
tion from tissue backgrounds is a very challenging task due
to the complex environment. The quality of the segmentation
may be affected by many factors, such as specular reflections,
occlusion by blood or smoke, and blur from tool motion.

Recently, deep learning-based approaches have demonstrated
cutting-edge performances on surgical tool segmentation [2].
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Image segmentation can also be treated as a problem of image-
to-image translation (I2I), which has been achieved using Gen-
erative Adversarial Networks (GANs). I2I employs either paired
training data (pix2pix[3]) or unpaired training data (CycleGAN
[4] and dualGAN [5]). Supervised learning approaches (such
as paired I2I) need paired training data, i.e. every image has
its corresponding annotated image. When using paired I2I
for domain variations, manually annotated images need to be
collected again because the deep learning model needs to be
re-trained to adapt to the new domain. On the contrary, the
employment of unpaired I2I for surgical tool segmentation
would allow to re-use the annotated images in one domain
to train the model for other domains. We can obtain the
labeled data by manual segmentation of images in a random
domain or from a CAD model with realistic rendering. For the
training on another domain with a different background, manual
segmentation will not be necessary. This task can be achieved
using existing unpaired I2I frameworks, like CycleGAN and
dualGAN.

Image segmentation tasks involve classifying pixels to be
either the object or the background. This constraint for each
pixel (we term it as 0-1 constraint), however, has not been taken
into consideration for surgical tool segmentation using existing
I2I methods. Besides, traditional unpaired I2I consists of two
generators and two discriminators, which needs a substantial
training time. In this paper, we focus on the methodological
research of new GAN frameworks which are specifically de-
signed for the image segmentation tasks with unpaired data.
The first objective is to explore strategies to embed the 0-
1 constraint for unpaired I2I, and show to what extent our
methods can simplify the traditional unpaired I2I and improve
the segmentation performances.

During the surgical procedure, the recorded tool images usu-
ally have low quality because of light reflection and occultation
by tissues. Therefore, it could be useful to develop methods to
obtain tool images with a higher quality by image repair. GAN
has been successfully employed to achieve reflection removal
[6] and image inpainting [7]. However, as far as we know, the
image repair function has not been investigated for surgical tool
segmentation. As our second interest, in this paper, we propose
to use unpaired I2I for simultaneous tool image segmentation
and repair. This is achieved by using the discriminator trained
by tool images with detailed textures.

Two main contributions are introduced in this paper: (1) To
the best of our knowledge, this is the first work for image seg-
mentation using unpaired I2I with embedded 0-1 constraint. We
propose three methodologies to implement this idea. Compared



Figure 1. Two training procedures of I2I using GAN. x is input images and y is the training dataset. (a) is the paired I2I framework (pix2pix) [3] which requires
paired training data. (b) is the unpaired I2I framework (CycleGAN [4] and dualGAN [5]) using unpaired training data. They consist of two generators G : x→ y
and F : y→ x, and their corresponding two discriminators Dy and Dx. Lcyc is a cyclic consistency loss which encourages F (G(x))≈ x and G(F (y))≈ y.

with the general unpaired I2I methods (like dualGAN), our
methods have simpler architectures, a faster training process,
and a competitive accuracy. (2) We achieve a simultaneous
tool image segmentation and repair using unpaired I2I where
textured tool images are treated as annotated samples.

This paper is organized as follows. Section II introduces
the theoretical background of the loss function and unpaired
I2I. Three new strategies are proposed in Section III for the
segmentation with unpaired training data. The experiments
and results are presented in Section IV. Finally, Section V
summarizes the work with discussions and conclusions.

II. RELATED WORK

A. Related work of surgical tool segmentation using GAN

Generative Adversarial Networks (GANs) [8] were initially
invented for data generation without explicit density models.
GAN and its variations have shown great success in the field
of medical imaging where it is usually difficult to obtain a large
number of labeled samples [9]. For surgical tool segmentation,
GAN-based methods have shown their advantages to improve
the segmentation quality and reduce the manual annotation
efforts. A GAN-based re-colorization method [10] is proposed
to retrain segmentation models, which radically reduces the
number of labeled images. Adversarial loss is employed to re-
fine the higher-order inconsistency of the feature maps for pixel-
wise segmentation of surgical tools [11]. The framework of
pix2pix is trained to generate paired annotated images in [12].
Unpaired I2I has been proposed using GAN [4], [5] where a
cycle consistency loss ensures an invertible translation. In [13],
a CycleGAN network is trained to generate realistic-looking
tools from synthetic data. Then, a semantic segmentation neural
network is trained using the generated images with their labels.
CycleGAN can also be employed for domain adaptation, e.g.
learning the mapping from cadaveric to in vivo images [14]. The
in vivo images are unlabeled, while the cadaveric images are
from a labeled dataset and can be obtained by rendering CAD
models of each tool [15]. The implementation of CycleGAN
works for surgical tool segmentation with unlabeled data for live
images. In a recent work [16], a synthetic dataset is employed
to train a deep learning model for surgical tool segmentation.
The synthetic dataset is obtained by transforming images from
simulation into a real domain using I2I and then blending with
a surgical background. The limitations of the above-mentioned
approaches are the requirement of either paired training data
(paired I2I) or training four networks (unpaired I2I).

B. An introduction to I2I translation using GAN

The goal of I2I is to learn the mapping between an input im-
age and an output image. GAN has been employed as a general-
purpose solution for this translation problem. A comprehensive
survey on GAN-based I2I can be found in [17].

The pix2pix framework [3] is a typical solution for I2I using
paired training data. The training procedure is shown in Fig.
1 (a) where a conditional GAN, with input image x being the
condition, is employed to learn a mapping from x and random
noise z to output image y. The final objective of pix2pix is [3]

min
D

max
G

LcGAN (G,D)+λL1LL1 (G) (1)

where LcGAN (G,D) is the objective function of a conditional
GAN. LL1 (G) is a L1 distance between the generated output
and the ground truth output. λL1 is a constant parameter.

CycleGAN [4] and dualGAN [5] can be employed for the
tasks where paired datasets are not available. As shown in
Fig. 1 (b), unpaired I2I framework has a symmetric structure
which consists of two generators G,F and two discriminators
Dy,Dx. It is trained in an unsupervised manner with the follow-
ing objective function:

min
G,F

max
Dx,Dy

LGAN (G,Dy,x,y)+LGAN (F,Dx,y,x)+λLcyc (G,F)

(2)
where Lcyc = LL1 (F (G(x)) ,x)+LL1 (G(F (y)) ,y) is the cyclic
consistency loss which consists of a forward and a backward
cycle-consistency losses.

To avoid the vanishing gradient problem for the Jensen-
Shannon divergence, the GAN loss can be formulated based
on the Wasserstein distance [18], which requires a Lipschitz
condition. The Lipschitz constraint on the discriminator can be
enforced by including a gradient penalty directly in the loss
function [19]. Then, the minimax objective of Wasserstein GAN
with gradient penalty (WGAN-GP) can be written as:

min
D

max
G

Ez∼pz(z) [D(G(z))]−Ex∼px(x) [D(x)]+λLgp (D) (3)

where z is a random input with distribution pz (z). λ is a
constant parameter. Lgp is employed to penalize D if its gradient
norm deviates from 1. We can write it as

Lgp (D) = Ex̂∼px̂(x̂)

[
(‖ ∇x̂D(x̂) ‖2 −1)2

]
(4)

where x̂ ∼ px̂ (x̂) represents random samples with x̂ = εx +
(1− ε)G(z), and 0≤ ε ≤ 1.
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III. PROPOSED METHOD

In this section, we first give a brief overview of the three
proposed unpaired I2I methods for image segmentation, and
then explain them in detail. The details of the network archi-
tecture are also provided. Finally, we provide a unified training
procedure for our proposed methods.

A. Overview of proposed methods

Compared with the existing methods for surgical tool seg-
mentation, we make two modifications: (1) The employment
of surgical tools with detailed textures as annotation samples;
(2) The implementation of 0-1 constraint for the segmentation.
We propose three unpaired I2I methods for tool segmentation
based on three different ways to implement the 0-1 constraint.
I2IS-1D implicitly achieves this constraint, while I2IS-1cD
adds a masked image as a condition for an explicit constraint.
I2IS-2D allows us to adjust the weight of the 0-1 constraint.
All three methods have simpler training procedures with a
reduced number of networks, compared with existing unpaired
I2I methods. In order to help introducing the proposed methods,
Table I summarizes the symbols used in this section.

Table I
SYMBOLS EMPLOYED IN SECTION III.

x: input image G: Generator M: image with a mask
y: annotated sample D: Discriminator T : image with textures

L: loss function Lgp: gradient penalty
p: image distribution �: Hadamard matrix product

yM : labeled images with masks
yT : labeled images with textures

λ : constant parameter to address gradient penalty
κ: constant parameter to address 0-1 constraint

GM,T : map x to its segmented image with masks/textures

Remark 1. The 0-1 constraint cannot be achieved directly
by adding a specific activation function in GM (map x to its
segmented image with masks), because it will generate a non-
differentiable cost function which makes the backpropagation
impossible. Instead, we propose to guide the generation using
a discriminator which distinguishes images with 0-1 constraint
(labeled images with masks yM) and images without 0-1 con-
straint. The 0-1 constraint is gradually achieved during training.
As explained in the next subsection, we use the Hadamard
product to ensure that the generated tool image is a label of
the input image.

Remark 2. In the following, RGB values for images are
normalized1 in the [−1,1] range. In order to facilitate mask
multiplication, the background and the masked tool are respec-
tively coded as a gray color and a white color (in the normalized
RGB space, [0,0,0] stands for gray and [1,1,1] for white).

B. I2IS-1D

I2IS-1D achieves unpaired I2I for surgical tool segmenta-
tion by modifying the standard GAN architectures (see Fig.
2). The input of I2IS-1D is the image x which needs to
be segmented. GM learns to map x to GM (x) which has a

1https://pytorch.org/docs/stable/torchvision/transforms.html

Figure 2. The training procedure of I2IS-1D. I2IS-1D contains one generator
GM and one discriminator DT . The textured tool image GT (x) is generated by
multiplying x by GM (x) on each pixel. DT learns to classify yT with GT (x).

Figure 3. The training procedure of I2IS-1cD. I2IS-1cD consists of one
generator GM and one discriminator D. Similarly to I2IS-1D, GM learns to
generate tool images with masks GM (x). Then, these are converted as textured
tool images GT (x). Instead of classifying yT with GT (x) (see Fig.2), D learns to
classify the pair of annotation samples {yM ,yT } with that of generated images
{GM (x) ,GT (x)}.

gray background and a white tool mask. Then, we translate
GM (x) to its corresponding tool image with detailed textures
GT (x) where the RGB value for each pixel is computed by
multiplying the corresponding value on x by that on GM (x),
i.e. GT (x) = GM (x)� x where � is the Hadamard matrix
product. Instead of classifying GM (x) using a discriminator D
directly, we classify GT (x) with the textured annotation sample
yT . Normalizing the background RGB value for yT as [0,0,0]
implicitly assures that GM (x) is a tool image with white mask.

Figure 4. The training procedure of I2IS-2D. I2IS-2D consists of one generator
GM , and two discriminators DM and DT . GM learns a mapping from x to its
corresponding tool image GM (x) with a mask. DM classifies GM (x) and the
masked annotation sample yM . DT classifies the textured annotation image yT
and the textured tool image GT (x) which is obtained from GM (x). In this
framework, no paired annotation samples are needed.
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We employ the strategy of WGAN-GP[19] to train both
GM and DT at the same time. WGAN-GP reduces the mode
dropping phenomenon and relieves the requirements of a careful
training balance of GM and DT . The distributions of x and yT
are denoted respectively as x∼ p(x) and yT ∼ p(yT ). Then, the
loss function of I2IS-1D can be written as:

L(GM,DT ) =Ex∼px(x) [DT (GM (x)� x)]−
EyT∼pyT (yT ) [DT (yT )]+λLgp (DT ) (5)

where Lgp is the gradient penalty explained in (4). The final
objective is

G∗ = argmin
DT

max
GM

L(GM,DT ) (6)

For image segmentation tasks, each pixel on the input image
belongs to either the background or the object. This poses
a constraint, which we term as a 0-1 constraint, for each
pixel. The translation from GM (x) to GT (x) implicitly imposes
this 0-1 constraint during image generation, and does not
increase the architecture’s complexity. However, without using
this translation, the network generates random and textured tool
images which do not come from x. Although I2IS-1D has a
similar architecture with pix2pix shown in Fig. 1 (a), it does
not need paired training data, thanks to this implementation of
the 0-1 constraint.

Compared with existing unpaired I2I methods, like Cycle-
GAN or dualGAN shown in Fig. 1 (b), I2IS-1D consists of
only one generator and one discriminator, which dramatically
reduces the complexity of the training procedure. The em-
ployment of annotated tools with detailed textures for DT
training not only assures that the segmented tool GT (x) has
a correspondence with the input image x, but also provides a
possibility to repair the segmented images, such as to get rid
of reflections and predict hidden parts of the tool.

C. I2IS-1cD

Similarly to I2IS-1D, only one generator GM and one dis-
criminator D are needed for the implementation of I2IS-1cD.
However, I2IS-1cD explicitly imposes the 0-1 constraint to
generate tool images (see Fig. 3). The generated tool image
GM (x) with mask is employed as a condition for the textured
tool image GT (x). GM (x) and GT (x) are by definition paired
between each other, which is denoted as {GM (x) ,GT (x)}. As
for the annotation samples {yM,yT}, the masked tool images
yM and their textured images yT need also to be paired2.
Then, D is trained to discriminate the generated image pair
{GM (x) ,GT (x)} from the annotated image pair {yM,yT}.

We still use WGAN-GP[19] to train both GM and D. The
loss function for I2IS-1cD can be written as:

L(GM,D) =Ex∼px(x) [D({GM (x) ,GT (x)})]
−E(yT ,yM)∼p(yT ,yM )(yT ,yM) [D({yM,yT})]

+λLgp (D) (7)

2It does not make the method as a paired I2I (i.e. yM and yT are paired
together, but they are not paired with the input image x).

where GT (x) =GM (x)∗x and Lgp is the gradient penalty shown
in (4). The final objective is

G∗ = argmin
D

max
GM

L(GM,D) (8)

The sample yM can be easily converted from yT without
involving human annotation. During the training, we need the
annotation pair image {yM,yT} instead of the paired images
between x and y. As an extension of I2IS-1D, I2IS-1cD is
proposed to increase the segmentation accuracy by explicitly
imposing the 0-1 constraint.

D. I2IS-2D

Similarly to I2IS-1cD, I2IS-2D not only explicitly addresses
the 0-1 constraint but also learns roughly the object-background
pixel distribution. I2IS-2D adds one more discriminator DM
which allows to balance the weight between masked images
and textured images. yM (masked tool images) and yT (textured
tool images) are respectively the annotated samples for DM and
DT . The generated tool image GT (x) with textures is computed
by GT (x) = GM (x)� x (see Section III-B for details). DM
is trained to distinguish yM and the generated image GM (x),
while DT learns to classify yT and GT (x). By training GM and
DM competitively, GM finally generates realistic masked tool
images. The employment of DT ensures the correspondence
between the generated images GT (x) and the input images x.

We still employ the idea of WGAN-GP [19] for the training.
However, the original loss function is modified as:

L(GM,DM,DT ) =κEx∼px(x) [DM (GM (x))]

−κEyM∼pyM (yM) [DM (yM)]

+Ex∼px(x) [DT (GT (x))]

−EyT∼pyT (yT ) [DT (yT )]

+λLgp (DM,DT ) (9)

where κ ≥ 0 is a constant parameter to balance the weight to
generate binary image and textured tool image. I2IS-1D is a
special case of I2IS-2D at κ = 0. Lgp (DM,DT ) is the gradient
penalty for both DM and DT , and the same as (4).

The final objective can be written as:

G∗ = arg min
DM ,DT

max
GM

L(GM,DM,DT ) (10)

As both I2IS-1D and I2IS-1cD, I2IS-2D enables unpaired
I2I and generates masked tool images directly, which can be
converted to textured tool images using the Hadamard matrix
product. Although requiring two discriminators, I2IS-2D allows
balancing the loss of the 0-1 constraint and of the textured
images by setting the value of κ . A smaller κ enables image
repair, while a larger one allows for explicitly imposing the 0-
1 constraint. However, this adjustment is impossible by using
I2IS-1cD, which means that I2IS-1cD has no ability to repair
images during segmentation.

E. Network Architectures

We employ the “U-Net” architecture [20] for generators in
both I2IS-1D and I2IS-2D. “U-Net” is an encoder-decoder
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network with skip connections between mirrored downsampling
and upsampling layers. It has been shown to have great advan-
tages for image segmentation tasks with a higher accuracy and
a lower computation cost [20]. Similarly to pix2pix framework
[3], the random noise z is not provided explicitly as G’s input.
Instead, it is generated by randomly zeroing some of the ele-
ments (dropout) on several layers at both training and test time.
For discriminators in both frameworks, we use PatchGANs [3]
but with a larger reception field 382×382.

We employ the architecture from [3] with minor changes to
adapt to the WGAN-GP framework. The input images have a
resolution of 256×256 with 3 channels. For G in both I2IS-1D
and I2IS-2D, the encoder consists of

CR64−CBR128−CBR256−CBR512−CBRD512
−CBRD512−CBRD512−CRD512

and the U-Net decoder has the form of

CBRD512−CBRD1024−CBRD1024−CBRD1024
−CBR1024−CBR512−CBR256−CT 128

where C, R, B, D, and T denote respectively Convolution,
ReLU, Batch Normalization, Dropout, and Tanh layers. The
number k is the size of feature maps at the input (for the
encoder) and output (for the decoder) of each layer. The kernel
size for all convolutions is 4×4 with stride 2 and padding 1. In
the encoder, ReLU are leaky with a slope of 0.2, while ReLUs
are not leaky in the decoder. A convolution is applied to the last
layer in the decoder to map to the number of output channels
(3 for RGB images).

The three discriminators (one in I2IS-1D and two in I2IS-2D)
have the same architecture:

CR64−CIR128−CIR256−CIR521−CIR1024−CIR2048−C1

where I denote InstanceNorm. R is LeakyReLU with a slope
of 0.2. The kernel size is the same as the one in G.

F. Training Procedure

We introduce a unified training procedure for our three
methods: I2IS-1D, I2IS-1cD, and I2IS-2D (see Algorithm 1). It
has been noted that I2IS-1D is a special case of I2IS-2D when
κ = 0, and I2IS-1cD is an extension of I2IS-1D adding an image
condition. We denote the parameters of G, DT (D for I2IS-1cD)
and DM as θ , ωT and ωM, respectively. These parameters are
optimized by modifying the training procedure of WGAN-GP
[19]. DT and DM are trained ncritic steps for one step on G. In
our work, we set ncritic = 1. We perform the optimization for
all the networks with the Adam solver [21], with a learning rate
α = 0.0002. The gradient penalty coefficient is set as λ = 10.
The batch size for training is m = 16.

IV. EXPERIMENTS AND RESULTS

In this section, we first introduce the datasets we used for
testing the methods, and then three metrics to evaluate the seg-
mentation performances. Finally, we present the experimental
results qualitatively and quantitatively.

Algorithm 1 A unified training procedure for I2IS-1D, I2IS-
1cD, and I2IS-2D.
Requirement1: Dataset of input images X : x ∈ X , annotated

samples: YM : yM ∈ YM and YT : yT ∈ YT .
Requirement2: Parameters α,β1,β2,λ ,m,ncritic,ε and κ

Requirement3: Randomly initialize θ , ωT and ωM
1. While θ has not converged do
2. If I2IS-1D or I2IS-2D do
3. g← GT (x), gm← GM (x), y← yT
4. Else I2IS-1cD do
5. g←{GM (x) ,GT (x)}, y←{yM,yT}
6. End if
7. Lgp← DT ,g,y
8. Li← DT (g)−DT (y)+λLgp
9. ωT ← Adam( 1

m ∑
m
i=1 Li,ωT ,α,β1,β2)

10. If I2IS-1D or I2IS-1cD do
11. κ = 0
12. Else I2IS-2D do
13. Lgp,M ← DM,gm,yM
14. Li

M ← DM (gm)−DM (yM)+λLgp,M
15. ωM ← Adam( 1

m ∑
m
i=1 κLi

M,ωM,α,β1,β2)
16. End if
17. Li

G← κDM (gm)+DT (g)
18. θ ← Adam( 1

m ∑
m
i=1 Li

G,θ ,α,β1,β2)
19. End while

A. Dataset

We test our methods on four datasets (see Fig. 5) where
all images have been segmented manually and reshaped to be
256×256. Dataset 1 and 2 are recorded using the STRAS robot
[22], which is a flexible robotic system for endoscopic surgery.
A soft tool is telemanipulated to bend, translate and rotate inside
two phantoms [23]. Dataset 4 is built by adding disturbance
pixels on both the background and the tool, while the segmented
tool images are kept the same as in dataset 1. It is employed
to test the performance of image repair. There are 220 images
in each dataset 1, 2, and 4, which consist of 176 for training
and 44 for test. In order to test our methods on real in vivo
images, we employ the EndoVis dataset [24] which has eight
surgical scenes with different rigid surgical tools. We separate
this dataset into 1616 training images and 185 test images.

For the validation of I2IS-1cD and I2IS-2D, we need two
annotated data for the training of discriminators: one with
masks (see M in Fig. 5), the other with textures (see T in Fig.
5). For I2IS-1D, the labels with masks are not necessary for
the training. The tool images in test datasets are segmented
manually and used as ground truth for the evaluation.

B. Evaluation Metrics

To measure the accuracy of mask generation for surgical
tool segmentation, we use two commonly used metrics [25],
[26]: (1) Intersection over Union (IoU), (2) Dice index. The
two indices measure the overlap between the predicted (A)
and true (B) masks by IoU(A,B) =‖ A∩B ‖ / ‖ A∪B ‖ and
Dice(A,B) = 2 ‖ A∩ B ‖ /(‖ A ‖+ ‖ B ‖). Both IoU and the
Dice indices are bounded between 0 and 1. The lower the
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Figure 5. Samples from four datasets. Dataset 1 and dataset 4 have the same annotated samples to train discriminators.

Figure 6. Qualitative results for surgical tool segmentation. From left to right: input image, ground truth (GT), dualGAN [5], I2IS-1D, I2IS-1cD, and I2IS-2D.
Generated tool images with textures are visualized for three different datasets (see Fig. 5 where dataset 3 consists of eight surgical videos).

Table II
QUANTITATIVE COMPARISON BETWEEN OUR PROPOSED METHODS, AND THREE OTHER METHODS: SUPERVISED LEARNING(SL), PIX2PIX, AND DUALGAN.

THE RED AND BLUE NUMBERS CORRESPOND TO RESPECTIVELY THE BEST AND THE WORST INDEX AMONG THE UNPAIRED METHODS.

Dataset 1 Dataset 2
SL pix2pix dualGAN I2IS-1D I2IS-1cD I2IS-2D SL pix2pix dualGAN I2IS-1D I2IS-1cD I2IS-2D

time(h) ≈ 0.5 ≈ 1.9 ≈ 4.2 ≈ 1.9 ≈ 1.9 ≈ 3.1 ≈ 0.5 ≈ 1.9 ≈ 4.2 ≈ 1.9 ≈ 1.9 ≈ 3.1
IoU 0.936 0.932 0.920 0.928 0.925 0.932 0.943 0.937 0.884 0.884 0.918 0.897
Dice 0.966 0.964 0.957 0.962 0.960 0.964 0.971 0.967 0.936 0.934 0.955 0.942

10×L1 0.054 0.056 0.064 0.074 0.105 0.072 0.050 0.056 0.087 0.101 0.102 0.082

indices, the worse the prediction result. If the prediction is
completely correct, IoU = Dice = 1. We first convert the RGB
images of true and predicted masks into gray images, which
are further binarized to images with pixels value either 0
(background) or 1 (tool). Then, the average IoU and Dice
indices are computed for the whole test dataset.

We also employ L1 loss to measure the accuracy of the
image translation where the goal is to generate tool images with
textures. We compute L1 loss by L1 = 1

N ∑
N
i=1 | ypred − ytrue |

where ypred and ytrue are respectively the generated tool image
with textures, and its ground truth. N is the number of elements
in the image array, including 256×256 pixels with 3 channels.

C. Segmentation Accuracy on Datasets 1 and 2

The three proposed methods (I2IS-1D, I2IS-1cD, and I2IS-
2D (κ = 0.1)) are compared with three traditional strategies:
supervised learning (SL), pix2pix [3] and dualGAN [5]. It must
be noted that our methods and dualGAN belong to unpaired
I2I, while pix2pix is an I2I method using paired training
data. We provide a quantitative comparison (see Tab. IV-A) of
segmentation accuracy using all these methods. The indexes
IoU, Dice are employed to evaluate the generation of tool
images with masks, while L1 is a measurement of the textured
image generation including the background. All methods are
trained to generate masked tool images, which can then be
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converted to textured images. We assume that the annotated
samples are rich enough to capture the tool’s configurations.
To simplify data gathering, the samples are segmented manually
from the training dataset as ground truths. However, for training
discriminators, the segmented tool image and the input image
are not paired. In Fig. 6, we show the segmented surgical tool
with textures on randomly selected test images from datasets 1,
2, and 3 using unpaired methods (dualGAN, I2IS-1D, I2IS-1cD,
and I2IS-2D).

Figure 7. The performances of image repair using different methods. From
left to right: input image, ground truth (GT), dualGAN, I2IS-1D (including the
generated masked tool GM (x) and the converted textured tool GT (x)), and I2IS-
2D (κ = 0.1). Random disturbances are added to the test images to simulate
the reflections and the hidden section on the surgical tool. All the methods use
textured tool images as annotated samples to train the discriminators.

Table III
QUANTITATIVE COMPARISON OF SEGMENTATION ACCURACY USING

ENDOVIS DATASET BETWEEN OUR PROPOSED METHODS, AND DUALGAN.
THE RED AND BLUE NUMBERS CORRESPOND TO RESPECTIVELY THE BEST
AND THE WORST INDEX. THE INDEXES ARE THE AVERAGE INDEXES FOR

EIGHT SCENES IN ENDOVIS DATASET.

Dataset 3 dualGAN I2IS-1D I2IS-1cD I2IS-2D
time(h) ≈ 39 ≈ 17 ≈ 17 ≈ 27

Average IoU 0.857 0.841 0.867 0.855
Average Dice 0.917 0.908 0.924 0.916

Average 10×L1 0.118 0.129 0.114 0.128

Table IV
SUMMARY OF METHODS MENTIONED IN THIS PAPER. IR: IMAGE REPAIR;

UT: UNPAIRED TRAINING; MA: MASK ANNOTATION; CS: RANK OF
CONVERGENCE SPEED; AS: RANK OF ARCHITECTURE SIMPLICITY;

ACC.(M): RANK OF ACCURACY OF MASKED IMAGE GENERATION; ACC.(T):
RANK OF ACCURACY OF TEXTURED IMAGE GENERATION; Y: YES; N: NO.
THE RED AND BLUE NUMBERS CORRESPOND TO RESPECTIVELY THE BEST

AND THE WORST INDEX.

method IR UT MA CS AS Acc.(M) Acc.(T)
SL N N N 1 1 1 1

pix2pix N N N 2 2 2 2
dualGAN Y Y N 6 6 4 3
I2IS-1D Y Y N 2 2 6 4
I2IS-1cD N Y Y 2 2 3 4
I2IS-2D Y Y Y 5 5 4 4

We use the same generator’s architecture for the deep network
in SL, and generators in the other five methods. All the GAN-
based methods have the same network architecture for discrim-
inators. We also set the same training parameters (see Section

III-F) for all mentioned methods. Momentum parameters are
set to be β1,β2 = (0,0.9) for the Adam solver. The number
of epochs is set to 400, which allows all these methods to
converge. SL and pix2pix, which are both fully supervised,
have a faster convergence speed and a higher accuracy than
the other methods. For the unpaired I2I, our methods have a
competitive accuracy with dualGAN. The accuracy of masked
image generation for the three proposed methods is ranked
as: I2IS-1cD > I2IS-2D(κ = 0.1) > I2IS-1D. A reasonable
explanation is the explicit consideration of 0-1 constraint during
training. We also noted that our methods have a much faster
training speed than dualGAN (see Tab. IV-A, line 2) because
of the reduced number of generators and discriminators.

D. Segmentation Accuracy on Dataset 3

The same network structures and training parameters (except
momentum parameters β1,β2 = (0.9,0.99)) are employed to
test the performance of our three methods using the EndoVis
dataset. Results on eight randomly selected images from each
surgical video are shown in Fig. 6. We also provide a quantita-
tive comparison (see Tab. III) of the segmentation accuracy us-
ing unpaired I2I. Overall, our methods have a similar accuracy
for tool segmentation as the traditional dualGAN. However, the
training time using our methods is much lower (30-55% faster
depending on the method).

E. Image Repair Performances

A simultaneous tool image segmentation and repair can be
achieved using unpaired I2I if textured tool images are em-
ployed to train the discriminator. In this experiment, dualGAN,
I2IS-1D and I2IS-2D (κ = 0.1) are trained using dataset 4 (see
Fig. 5). We randomly select three input images for the test and
a qualitative visualization is shown in Fig. 7.

The 0-1 constraint helps to achieve an unpaired I2I for image
segmentation. However, it results in a direct copy of the tool
pixels from the input image, which does not help to repair tool
images. To solve this problem, we set a smaller weight (like
κ = 0.1 for I2IS-2D) on the 0-1 constraint. In this case, the
0-1 constraint feature of the generated image (GM (x) in Fig. 4)
will be sacrificed partially in order to make sure that the output
image GT (x) has a correct texture (see the difference between
the two columns for I2IS-1D in Fig. 7).

It is noted that I2IS-1cD set the same weight to 0-1 constraint
and texture loss, which results in the failure of image repair.
Similarly, I2IS-2D fails in this task if a larger κ (such as κ =
1) is chosen. However, I2IS-1D works for this task because it
addresses the constraint implicitly. From the comparison in Fig.
7, we found that dualGAN outperforms our methods in terms of
image repair. A possible reason is that, in this case, dualGAN
was trained to generate textured tool images directly without
being affected by the 0-1 constraint.

F. Summary of the Mentioned Methods

In this subsection, we present a summary (see Table IV) to
explicit the advantages and disadvantages of using the proposed
methods for surgical tool segmentation. Our methods have a
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simple training procedure which results in faster training. The
embedded 0-1 constraint increases the accuracy of generated
masked tool images. However, they reduce the accuracy of gen-
erated textured tool images, compared with other unpaired I2I
methods (like dualGAN). Among our proposed three methods,
we found that the accuracy to generate masked tool images
can be increased by increasing the weight of 0-1 constraint.
For example, I2IS-1cD has the highest accuracy to generate
masked tool images. The selection of I2IS-1D, I2IS-1cD, or
I2IS-2D for applications could be based on the availability of
masked labels, the necessity of image repair, and the type of
the target segmented tool images (with masks or with textures).

V. DISCUSSION AND CONCLUSION

This work contributes to developing new unpaired I2I meth-
ods for surgical tool segmentation by embedding 0-1 constraint
for each pixel. We propose three methods (I2IS-1D, I2IS-1cD,
and I2IS-2D) to generate segmented surgical tool images with
masks, as well as providing tool images with textures. I2IS-1D
implicitly embeds the 0-1 constraint, while I2IS-1cD and I2IS-
2D explicitly achieve this constraint guided by the discriminator.
Compared with traditional unpaired I2I methods which consist
of two generators and two discriminators, our proposed methods
reduce the number of networks (I2IS-1D and I2IS-1cD consist
of only one generator and one discriminator, and I2IS-2D with
one generator and two discriminators). The simpler architecture
decreases the training time. Besides, increasing the weight of
embedded 0-1 constraint slightly increases the accuracy of
masked tool image generation. Instead of using masked tool
images as annotated samples, we employ textured tool images
to train the discriminators. The benefit of this strategy, together
with unpaired I2I methods, allows to repair tool images, such
as reflection removal and hidden parts inpainting. We perform
some experiments to validate our methods for the segmentation
of a flexible surgical tool inside two phantoms, and rigid tools
in various surgical settings (EndoVis dataset).

As our future work, we plan to obtain annotated samples
from simulation and extend the methods to segment different
parts of the surgical tool [27].
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