Supporting Informations for:

Stereospecific synthesis of chiral P-containing polyaromatics based on 7-membered P-rings

Réka Mokrai, ^{a,b,c} Anabella Mocanu,^a Matthew P. Duffy,^a Thomas Vives,^a Elsa Caytan,^a Vincent Dorcet,^a Thierry Roisnel,^a László Nyulászi, ^{b,c} Zoltán Benkő, * ^b Pierre-Antoine Bouit*^a and Muriel Hissler*^a

Table of Content

Experimental part and NMR spectra	page S2
Crystallographic data and structure refinement parameters	page S16
Optical and electrochemical properties	page S26
Spectroelectrochemistry	page S32
Chiroptical data	page S33
Supercritical Fluid Chromatography data	page S38
Theoretical calculations	page S46

Experimental part

General

All experiments were performed under an atmosphere of dry argon using standard Schlenk techniques. Commercially available reagents were used as received without further purification. Solvents were freshly purified using MBRAUN SPS-800 drying columns filled with Al₂O₃. Separations were performed on air by gravity column chromatography on basic alumina (Aldrich, Type 5016A, 150 mesh, 58 Å) or silica gel (Merck Geduran 60, 0.063–0.200 mmm). ¹H, ¹³C and ³¹P NMR spectra were recorded on a Bruker AV III 400 MHz NMR spectrometer equipped with BBFO probehead. Assignment of H and C atoms is based on COSY, NOESY, edited-HSQC and HMBC experiments. Special ³¹P decoupled experiments ({³¹P}¹H, {³¹P-¹H}¹³C, {³¹P}-HSQC, HMBC, COSY, NOESY) were performed on a Bruker Av III HD 500 MHz fitted with a triple inverse probehead (¹H-³¹P-X), part of the PRISM core facility (Biogenouest©, UMS Biosit, Université de Rennes 1- Campus de Villejean- 35043 RENNES Cedex, FRANCE). ¹H and ¹³C NMR chemical shifts were reported in parts per million (ppm) using the residual solvent signal as a reference. ³¹P NMR downfield chemical shift were expressed with a positive sign, in ppm, relative to external 85% H₃PO₄. SEC purification was performed on a LC-9160 II NEXT system from the Japan Analytical Industry Co., Ltd. (JAI) equipped with coupled UV-vis 4Ch NEXT through a set of two JAIGEL-2H columns at an elution rate of chloroforme of 10 mL.min⁻¹ (CHCl₃). High-resolution mass spectra were obtained on Bruker Maxis 4G instrument at Scanmat (UMS 2001). UV-Visible spectra were recorded at room temperature on a JASCO V-630 spectrophotometer. The UV-Vis emission and excitation spectra measurements were recorded on an FL 920 Edimburgh Instrument and corrected for the response of the photomultiplier. Quantum yields were calculated relative to quinine sulfate ($\Phi = 0.54$ in H₂SO₄ 0.1N, $\phi_{ref}=0.55$). The CD spectra measurements were recorded on Spectropolarimeter of circular dichroism J-815 (Jasco France) and the optical rotations measurements were carried out on Perkin Elmer 341 instrument with sodium light at 589 nm. The electrochemical studies were carried out under argon using an Eco Chemie Autolab PGSTAT 30 potentiostat for cyclic voltammetry with the three-electrode configuration: the working electrode was a platinum disk, the reference electrode was a saturated calomel electrode and the counter-electrode a platinum wire. All potentials were internally referenced to the ferrocene/ferrocenium couple. For the measurements,

concentrations of 10^{-3} M of the electroactive species were used in freshly distilled and degassed dichloromethane and 0.2 M tetrabutylammonium hexafluorophosphate. UV-vis-NIR spectroelectrochemical experiments were performed in DCM, under argon, with an Optically Transparent Thin-Layer Electrochemical (OTTLE) cell, path length = 0.2 mm, using a UV-Vis-NIR Jasco V770 spectrometer and an EG&G PAR model 362 potentiostat. A Pt mesh was used as the working electrode, a Pt wire as the counter electrode, and an Ag wire as a pseudo-reference electrode.

BINAP-O and rac-1 were synthesized according to published procedure¹.

Synthetic procedure for rac-1 (0.05 g, 70%), (R_P ,M)-1 (0.24 g, 54%) and (S_P ,P)-1 (0.22 g, 63%) (only the procedure for the rac-1 is described)

To a degassed solution of rac-BINAP-O (0.65 g, 0.99 mmol) in 40 mL of THF, 2.0 M LDA solution in THF (2.00 mL, 4.01 mmol) was added at -15 °C under Ar. The dark brown solution formed was stirred for 15 h. The reaction was quenched by the addition of 10% aqueous HCl solution and the mixture was extracted with DCM. The organic layer was washed with water, dried on MgSO4, filtered and then the solvent was evaporated. The crude mixture was purified by silica gel chromatography (DCM/Acetone, 90/10) to afford (R_P, M) -1 as a white powder (0.24 g, 54%). ¹H NMR (400.16 MHz, CD₂Cl₂): δ (ppm) = 6.65 (td, J(H-H) = 7.9Hz, J(P-H) = 3.0 Hz, 2H; 6.80-6.84 (m, 2H); 6.98-7.06 (m, 2H); 7.10 (d, J(H-H) = 8.9 Hz, 1H); 7.12 (ddd, JH)J(H-H) = 8.1 Hz, J(H-H) = 6.6 Hz, J(H-H) = 1.2 Hz, 1 H; 7.17 (dd, J(H-H) = 8.0 Hz, J(H-6.7 Hz, 1H; 7.33 (dd, J(H-H) = 8.0 Hz, J(H-H) = 6.9 Hz, 1H; 7.41 (d, J(H-H) = 8.6 Hz, 1H); 7.44-7.50 (m, 1H); 7.51-7.57 (m, 1H); 7.61-7.66 (m, 3H); 7.70-7.74 (m, 1H); 7.95 (d, J(H-H) = 8.3 Hz, 1H; 8.13 (dd, J(H-H) = 8.4 Hz, J(H-H) = 1.7 Hz, 1H); 8.27 (dd, J(P-H) = 12.2 Hz, 10.2 Hz) J(H-H) = 7.6 Hz, 1H; 8.41 (dd, J(P-H) = 10.6 Hz, J(H-H) = 8.5 Hz, 1H). ³¹P NMR (161.99 MHz, CD_2Cl_2): δ (ppm) = + 20.5 (s). ¹³C NMR (100.63 MHz, CD_2Cl_2): δ (ppm) = 126.2 (d, J(P-C) = 7.0 Hz, CH; 126.5 (CH); 126.8 (CH); 127.0 (CH); 127.6 (d, J(P-C) = 13.0 Hz, 2xCH); 127.9 (d, *J*(P-C) = 9.6 Hz, CH); 128.2 (CH); 128.4 (CH); 128.6 (CH); 128.9 (CH); 129.1 (d, J(P-C) = 10.9 Hz, CH; 129.4 (CH); 129.5 (d, J(P-C) = 11.8 Hz, 2xCH); 130.3 (d, J(P-C) = 9.7

¹ M. Widhalm, K. Mereiter Bull. Chem. Soc. Jpn. 76 (2003) 1233-1244

Hz, CH); 130.9 (d, J(P-C) = 2.8 Hz, CH); 131.4 (d, J(P-C) = 6.7 Hz, CH); 131.8 (d, J(P-C) = 108.3 Hz, C_q); 132.5 (C_q); 132.6 (C_q); 132.7 (d, J(P-C) = 2.3Hz, CH); 133.4 (d, J(P-C) = 3.6 Hz, C_q); 133.6 (d, J(P-C) = 11.7 Hz, C_q); 135.4 (d, J(P-C) = 2.2 Hz, C_q); 135.5 (d, J(P-C) = 102.7 Hz, C_q); 136.8 (d, J(P-C) = 101.5 Hz, C_q); 136.9 (d, J(P-C) = 10.6 Hz, C_q); 137.9 (d, J(P-C) = 1.7 Hz, C_q); 142.5 (d, J(P-C) = 9.5 Hz, C_q). HR-MS (m/z) [M]⁺ calcd for C₃₂H₂₁OP: 452.1325; found: 452.1326.

Figure S1: ¹H NMR (400 MHz, CD_2Cl_2) spectra of (R_P ,M)-1

S6

Figure S1c: ³¹P NMR (162 MHz, CD₂Cl₂) spectra of (R_P,*M*)-1

Synthetic procedure for rac-2 (0.06 g, 63%), (R_P ,M)-2 (0.09 g, 61%) and (S_P ,P)-2 (0.11 g, 50%) (only the procedure for the rac-2 is described)

In a Schlenk under Ar, AlCl₃ (0.35 g, 2.65 mmol) and NaCl (0.08 g, 1.33 mmol) are added to rac-1 (0.10 g, 0.22 mmol) was added. The mixture was then heated to 140°Cfor 2,5 hours to give a black melt. The mixture was cooled down to room temperature (rt) and was quenched at 0°C with 10% HCl aqueous solution for 30 min. The resulting solution was then extracted with DCM, dried over anhydrous MgSO₄, filtered, and the solvent was evaporated. Then, DDQ (0.10 g, 0.44 mmol) and toluene (25mL) were added under inert atmosphere and the mixture was heated at 60°C for 2,5 hours. The reaction was cooled down to rt and quenched with saturated NaHCO₃ solution, extracted with DCM, dried over anhydrous MgSO₄, filtered over anhydrous MgSO₄, filtered, and the solvent was evaporated. The residue was purified by column chromatography on silica gel (DCM/Acetone, 100/0→85/15) and the product was purified SEC HPLC to give a yellow solid (0.06 g, 63 %). ¹H NMR (500.15 MHz, CD₂Cl₂): δ (ppm) = 6.92 (td, *J*(H-H) = 7.9 Hz, *J*(P-H)

= 2.9 Hz, 2H); 7.03-7.09 (m, 2H); 7.11-7.16 (m, 1H); 7.28 (d, J(H-H) = 8.5 Hz, 2H); 7.33 (dd, J(H-H) = 7.6 Hz, J(P-H) = 4.8 Hz, 1H); 7.53-7.59 (m, 2H); 7.64 (t, J(H-H) =7.7 Hz, 1H); 7.70-7.78 (m, 3H); 7.94 (d, J(H-H) =8.0 Hz, 1H); 8.08-8.12 (m, 1H); 8.31-8.40 (m, 3H); 8.60 (dd, J(P-H) = 11.5 Hz, J(H-H) = 8.4 Hz, 1H). ³¹P NMR (202.46 MHz, CD₂Cl₂): δ (ppm) = +18.6 (s). ¹³C NMR (125.78 MHz, CD₂Cl₂): δ (ppm) = 121.9 (CH); 122.5 (CH); 127.2 (CH); 127.7 (CH); 127.9 (CH); 128.1 (CH); 128.2 (d, J(P-C) = 12.7 Hz, 2xCH); 128.3 (CH); 128.5 (d, J(P-C) = 10.6 Hz, CH); 128.6 (C_q); 128.7 (d, J(P-C) = 9.8 Hz, CH); 128.8 (d, J(P-C) = 6.9 Hz, CH); 129.0 (d, J(P-C) = 6.2 Hz, CH); 129.4-129.6 (m, 2xC_q); 129.9 (d, J(P-C) = 97.6 Hz, C_q); 130.6 (d, J(P-C) = 11.2 Hz, 2xCH); 130.8 (C_q); 131.4 (d, J(P-C) = 2.4 Hz, CH); 131.5 (C_q); 131.9 (CH); 132.9 (C_q); 133.7 (d, J(P-C) = 8.5 Hz, C_q); 135.6 (d, J(P-C) = 2.1 Hz, C_q); 136.6 (d, J(P-C) = 102.2 Hz, C_q); 139.9 (d, J(P-C) = 2.5 Hz, C_q); 141.3 (d, J(P-C) = 12.7 Hz, C_q). HR-MS (ESI, CH₂Cl₂/ CH₃OH: 80/20, m/z) [M+Na]⁺ calcd for C₃₂H₁₉ONaP: 473.1066; found: 473.1067.

Figure S2: ¹H NMR (500 MHz, CD₂Cl₂) spectra of rac-2

S10

Figure S2c: ³¹P NMR (202 MHz, CD₂Cl₂) spectra of rac-2

Synthetic procedure for rac-3(0.03 g, 41%), (R_P,*M*)-3(0.06 g, 43%) and (S_P,*P*)-3(0.08 g, 55%) (only the procedure for the rac-3 is described)

To a degassed solution of rac-1 (0.05 g, 0.11 mmol) in 5 mL of toluene was added HSiCl₃ (0.11 mL, 1.11 mmol) under inert atmosphere. The reaction mixture was refluxed for 90 minutes, then it was cooled down to rt. The solvent was evaporated and the residue was dissolved in DCM. The solution was filtered on basic alumina, then a part of the solvent was evaporated under vacuum. Me₂SAuCl (0.03 g, 0.11 mmol) was added to the solution and the mixture was stirred for 1h at rt. The solution was filtered on celite/MgSO₄ and the solvent was evaporated. The crude was precipitated in DCM - pentane mixtures to afford white crystals (0.03 g, 41 %). ¹H NMR (300.13 MHz, CD₂Cl₂): δ (ppm) = 6.54-6.64 (m, 2H); 6.66-6.89 (m, 4H); 7.09-7.25 (m, 3H); 7.35 (t, *J*(H-H) =7.5 Hz, 1H); 7.42 (d, *J*(H-H) =8.6 Hz, 1H); 7.47-7.58 (m, 2H); 7.64

(d, J(H-H) =8.5 Hz, 2H); 7.61-7.74 (m, 1H); 7.78-7.85 (m, 1H); 7.96 (d, J(H-H) =8.2 Hz, 1H); 8.12 (dd, J(H-H) =8.1 Hz, J(H-H) =1.9 Hz, 1H); 8.47 (dd, J(H-H) =7.6 Hz, 1H); 8.56 (dd, J(H-H) =8.4 Hz, 1H). ³¹P NMR (121.50 MHz, CD₂Cl₂): δ (ppm) = +35.5 (s). ¹³C NMR (75.48 MHz, CD₂Cl₂): δ (ppm) = 126.8 (CH);127.0 (CH);127.5 (CH); 127.9 (CH); 128.0 (CH) 128.0 (CH); 128.2 (d, J(P-C) = 1.2 Hz, CH); 128.4 (CH); 128.7 (CH); 128.8 (CH); 128.9 (CH); 129.2 (d, J(P-C) = 15.6 Hz, CH); 129.6 (CH); 129.7 (CH); 131.5 (d, J(P-C) = 6.9 Hz, CH); 131.7 (C_q); 132.0 (C_q); 132.4 (C_q); 132.6 (CH); 132.9 (C_q); 133.0 (CH); 133.4 (C_q); 133.4 (d, J(P-C) = 2.9 Hz, C_q); 137.9 (d, J(P-C) = 1.2 Hz, C_q); 138.5 (d, J(P-C) = 9.2 Hz, C_q); 139.1 (d, J(P-C) = 2.3 Hz, C_q); 143.8 (d, J(P-C) = 2.3 Hz, C_q). HR-MS (ESI, CH₂Cl₂/ CH₃OH: 80/20, m/z) [M+Na]⁺ calcd for C₃₂H₂₁³⁵CINaPAu: 691.0627; found: 691.0636.

Figure S3a: ¹H NMR (300 MHz, CD₂Cl₂) spectra of rac-3

Figure S3b: ¹³C NMR (75 MHz, CD₂Cl₂) spectra of rac-3

Figure S3c: ³¹P NMR (121 MHz, CD₂Cl₂) spectra of rac-3

X-ray Crystallographic Study:

Crystal structure determination: Single crystals suitable for X-Ray crystal analysis were obtained by slow diffusion of vapors of pentane into a dichloromethane solution of the derivatives at room temperature. Single crystal data collection were performed at 150 K with an D8 Venture Bruker-AXS diffractometer with Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved by dual-space algorithm using the *SHELXT* program², and then refined with full-matrix least-squares methods based on $F^2(SHELXL)^3$. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions and treated as riding on their parent atom with constrained thermal parameters.

Table S1: Crystal data and structure refinement

² G. M. Sheldrick, Acta Cryst. A71 (2015) 3-8

³ Sheldrick G.M., Acta Cryst. C71 (2015) 3-8

Compound	$(R_P, M)-1$	(S _P , P)-1	rac-2	(R _P , <i>M</i>)-2	(S _P , <i>P</i>)-2
CCDC	1921440	1921441	1921442	1921443	1921466
Formula	$C_{32}H_{21}OP$	$C_{32}H_{21}OP$	$C_{32}H_{19}OP$	$C_{33}H_{21}Cl_2OP$	$C_{33}H_{21}Cl_2OP$
MW	452.46	452.46	450.44	535.37	535.37
a (Å)	8.3929(7)	8.4045(5)	8.6807(7)	11.636(3)	11.5367(12)
b (Å)	15.4894(12)	15.4654(8)	9.5045(7)	14.154(3)	14.1314(16)
c (Å)	17.3100(16)	17.2962(11)	13.79552(10)	15.569(3)	15.3922(19)
α (°)	90	90	98.101(3)	90	90
β (°)	90	90	97.742(2)	90	90
γ (°)	90	90	103.706(3)	90	90
V (Å ³)	2250.3(3)	2248.1(2)	1077.91(14)	2564.0(9)	2509.4(5)
Ζ	4	4	2	4	4
Dc (g.cm ⁻³)	1.335	1.337	1.388	1.387	1.417
Crystal system	orthorhombic	orthorhombic	triclinic	orthorhombic	orthorhombic
Space group	P 2 ₁ 2 ₁ 2 ₁	P 2 ₁ 2 ₁ 2 ₁	P -1	P 2 ₁ 2 ₁ 2 ₁	$P 2_1 2_1 2_1$
T (K)	150 K	150 K	150 K	293 K	150
Wavelength Mo- Kα (Å)	0.71073 Å	0.71073 Å	0.71073	0.71073	0.71073 Å
μ (mm ⁻¹)	0.146	0.147	0.153	0.342	0.349
F (000)	944	944	468	1104	1104
θ limit (°)	3.001 to 27.484	3.380 to 27.472	3.030 to 27.478	2.986 to 27.479	2.206 to 27.466
Index ranges hkl	$\text{-10} \le h \le 10$	$\text{-10} \le h \le 10$	$-11 \le h \le 11$	$-15 \le h \le 13$	$-14 \le h \le 14$
	$\text{-}20 \leq k \leq 20$	$-19 \le k \le 20$	$-12 \le k \le 12$	$-18 \le k \le 17$	$-14 \le k \le 18$
	$-22 \le l \le 22$	$-20 \le l \le 22$	$-17 \le l \le 17$	$-18 \le l \le 20$	$-19 \le l \le 19$
Reflections collected	42334	11309	25530	17033	13640
Independant reflections	5135	5042	4942	5854	5698
Reflections $[l \ge 2\sigma(l)]$	4709	4434	4447	3824	5179
Data / restraints / parameters	5135 / 0 / 307	5042 / 0 / 307	4942 / 0 / 307	5854 / 0 / 322	5698 / 0 / 334
Goodness-of-fit on <i>F</i> ²	1.040	1.035	1.025	1.043	1.062
Final <i>R</i> indices $[l \ge 2\sigma(l)]$	R1 = 0.0366	R1 = 0.0410	R1 = 0.0365	R1 = 0.0794	R1 = 0.0499
	wR2 =0.0847	wR2 =0.1021	wR2 = 0.0938	wR2 = 0.2281	wR2 =0.1316
R indices (all data)	R1 = 0.0428	R1 = 0.0513	R1 = 0.0414	R1 = 0.1225	R1 = 0.0570
	wR2 = 0.0881	wR2 = 0.1083	wR2 = 0.0971	wR2 = 0.2668	wR2 = 0.1393
Largest diff peak and hole (e Å ⁻³)	0.230, and -0.308	0.347, and -0.249	0.359, and -0.436	1.448, and -0.575	0.334, and -0.579

Compound	Rac-3	(R _P , <i>M</i>)-3
CCDC	1921447	1921449
Formula	$C_{32}H_{21}AuClP$	C ₃₂ H ₂₁ AuClP
MW	668.87	668.87
a (Å)	9.0391(11)	14.699(3)
b (Å)	20.028(3)	15.681(3)
c (Å)	14.2025(19)	24.869(4)
α (°)	90	90
β (°)	108.406(4)	90
γ (°)	90	90
V (Å ³)	2439.6(6)	5732.2(19)
Ζ	4	8
<i>D</i> c (g.cm ⁻³)	1.821	1.550
Crystal system	monoclinic	orthorhombic
Space group	$P 2_1/c$	$P 2_1 2_1 2_1$
T (K)	150 K	150 K
Wavelength Mo- Kα (Å)	0.71073 Å	0.71073
μ (mm ⁻¹)	6.225	5.299
F(000)	1296	2592
θ limit (°)	2.034 to 27.485	2.068 to 27.503
Index ranges hkl	$\text{-10} \le h \le 11$	$\text{-18} \le h \le 19$
	$-22 \le k \le 25$	$-18 \le k \le 20$
	$-18 \le l \le 18$	$-31 \le 1 \le 32$
Reflections collected	18925	33629
Independant reflections	5536	13079
Reflections $[l \ge 2\sigma(l)]$	5079	12599
Data / restraints / parameters	5536 / 0 / 316	13079 / 0 / 517
Goodness-of-fit on F ²	1.093	1.065
Final <i>R</i> indices $[l \ge 2\sigma(l)]$	R1 = 0.0266	R1 = 0.0438
	wR2 =0.0635	wR2 = 0.1123
R indices (all data)	R1 = 0.0297	R1 = 0.0454
	wR2 = 0.0651	wR2 = 0.1135
Largest diff peak and hole (e Å ⁻³)	1.215, and -1.917	1.929, and -3.555

Figure S4: ORTEP representation of (R_P, M) -1 with 50% probability ellipsoids

Figure S5: ORTEP representation of (S_P, P) -2 with 50% probability ellipsoids

Figure S6: ORTEP representation of rac-2 with 50% probability ellipsoids

Figure S7: ORTEP representation of (R_P, M) -2 with 50% probability ellipsoids

Figure S8: ORTEP representation of (S_P, P) -2 with 50% probability ellipsoids

Figure S9: ORTEP representation of rac-3 with 50% probability ellipsoids

Figure S10: ORTEP representation of (R_P, M) -3 with 50% probability ellipsoids

Figure S11: X-ray crystallographic structure of (R_P, M) -1 (left) and (R_P, M) -2 (right).

Optical and electrochemical properties

	$\lambda_{abs}^{[a]}$	log	$\lambda_{em}^{[a]}$	$\Phi^{[b]}$	$\lambda_{em}^{[c]}$	$\Phi^{[d]}$	$E_{ox}^{[e]}$	E _{red} [e]	HOMO	LUMO
	[nm]	3	[nm]	[%]	[nm]	[%]			[eV]	[eV]
rac-1	333 (331) ^[e]	3.7	370 (397) ^[e]	18	390	х	-	-	-5.78 ^[f]	-1.49 ^[f]
(R _P , <i>M</i>)- 1	333 (331) ^[e]	3.7	369 (397) ^[e]	18	384	х	-	-	-5.78 ^[f]	-1.49 ^[f]
$(S_{P}, P)-1$	334 (331) ^[e]	3.7	369 (397) ^[e]	18	388	х	-	-	-5.78 ^[f]	-1.49 ^[f]
rac-2	444 (442) ^[e]	4.3	462 (500) ^[e]	79	540	10	+0.84	-1.98	-5.23 ^[f]	-2.18 ^[f]
(R _P , <i>M</i>)- 2	443 (442) ^[e]	4.3	461 (500) ^[e]	80	538	10	+0.80	-1.96	-5.23 ^[f]	-2.18 ^[f]
(S_P, P) -2	444 (442) ^[e]	4.2	462 (500) ^[e]	76	537	10	+0.83	-1.97	-5.23 ^[f]	-2.18 ^[f]
rac-3	340 (344) ^[e]	3.4	379 (398) ^[e]	< 0.01	389	x	-	-	-6.27 ^[g]	-2.10 ^[g]

Table S2: Optical and electrochemical properties

[a] In CH_2Cl_2 (10⁻⁵M) [b] Measured relative to quinine sulfate (H_2SO_4 , 0.1 M), $\Phi=55\%$ [c] in powder [d]measured in powder in calibrated integration sphere [e]In CH_2Cl_2 with $Bu_4N^+PF_6^-$ (0.2M) at a scan rate of 100 mVs⁻¹. $E_{ox}(E_{red})=E_{pc}$ (E_{pa}). Potentials vs ferrocene/ferrocenium. [f] at the B3LYP/6-31G*//B3LYP/6-31+G* level [g] at the B3LYP/Def2-SVP level

Note that the integration sphere is not calibrated in the spectral range allowing the measurements of quantum yields for 1 and 3.

Redox properties

Figure S12: Cyclic voltammograms of rac-2 recorded in DCM with $Bu_4N^+PF_6^-$ (0.2 M) at a scan rate of 100 mVs⁻¹. Potentials vs. Ferrocene/Ferrocenium

Figure S13: Cyclic voltammograms of perylene recorded in DCM with $Bu_4N^+PF_6^-$ (0.2 M) at a scan rate of 100 mVs⁻¹. Potentials vs. Ferrocene/Ferrocenium

Spectroscopic properties (UV-vis, fluorescence)

Figure S14: Absorption, emission and excitation spectra of rac-1 in DCM at 6.10⁻⁵M

Figure S15: Absorption, emission and excitation spectra of rac-2 in DCM at 4.10⁻⁶ M

Figure S16: Absorption, emission and excitation spectra of rac-3 in DCM at 1.10⁻⁴ M

Figure S17: Absorption and emission spectra of perylene in DCM at 2.10⁻⁵ M

Solid-state fluorescence

Figure S18: Emission of rac-1 (blue), (R_P,M)-1 (brown) and (S_P,P)-1 (grey) in powder

Figure S19: Emission of rac-2 (blue), (R_P,M)-2 (brown) and (S_P,P)-2 (grey) in powder

Low temperature fluorescence

Figure S20: Emission of rac-1 at 77K in 2-methyltetrahydrofuran

Spectroelectrochemistry

Figure S21: UV-Vis absorption upon electrochemical oxidation of rac-2 in CH₂Cl₂

Chiroptical properties (CD, optical rotation)

Figure 23: Absorption and ECD spectra of 1 in DCM at 5.10^{-5} M

Figure S24: Absorption and ECD spectra of **2** in DCM at 4.10⁻⁵ M

Figure S25: Absorption and ECD spectra of 3 in DCM at 4.10^{-5} M

Figure S26: ECD spectra upon electrochemical reduction of (S_P, P) -2 and (R_P, M) -2 in CH_2Cl_2

Figure S27: CPL spectra of (R_P , M)-1 (red), (S_P , P)-1 (red, dotted) (down) in diluted DCM at 10⁻⁵ M
Optical rotation

 Table S3: Optical rotation data

	$[\alpha]^{T}{}_{D}$
R-BINAP-O	225° (T=25.0 °C, c=7.03·10 ⁻³ M)
S-BINAP-O	-199° (T=20.0 °C, c=4.12·10 ⁻³ M)
(R _P , <i>M</i>)-1	-100° (T=20.0 °C, c=5.30·10 ⁻³ M)
(S _P , <i>P</i>)-1	113° (T=20.0 °C, c=6.52·10 ⁻³ M)
(R _P , <i>M</i>)-2	-375° (T=20.0 °C, c=4.88·10 ⁻³ M)
(S_{P}, P) -2	396° (T=20.0 °C, c=4.22·10 ⁻³ M)
(R _P , <i>M</i>)- 3	-36° (T=20.0 °C, c=3.73·10 ⁻³ M)
(S _P , <i>P</i>)- 3	35° (T=20.0 °C, c=3.59·10 ⁻³ M)

SFC analysis (Supercritical Fluid Chromatography)

Samples were analysed using a Shimadzu Nexera UC SFC/UHPLC system (Shimadzu Corporation, Japan) consisting of two LC-30AD quaternary modifier pumps and LC-30ADSF CO_2 pump. The Sil-30AC autosampler was composed of a sample loop of 5 µL and three needle-rinsing ports. The modifier pumps and needle rinsing were degassed with three degassing units (DGU-5AR and DGU-3AR). Two CTO-20AC column ovens were used. Eight chiral columns (Daicel Corporation, Japan) were installed for both ovens. Three valves were directly installed into these both ovens: one six port valve (FCV-32AH) to switch from SFC to UHPLC mode (or from UHPLC to SFC) and two seven port valves (FCV-34AH) to select one of these chiral columns for analysis. An adapted SPD-M20A diode array detector (DAD) with high-pressure cell and a Sedex LT-ELSD 85 detector (Sedere, France) were employed for detection. Internal pressure into the chromatographic system was regulated by a SFC-30A backpressure regulator (BPR). The entire system was driven by CBM-20A as system controller. The monitoring interface was the LabSolutions software. Analyses were automatically performed with the Nexera Method Scouting software to generate a large number of SFC/UHPLC methods by combining columns and modifiers.

Enantiomeric excess determination

After screening of chromatographic conditions, enantiomeric purity was determined by SFC analysis in comparison with authentic racemic material (Chiralpack IG: 150 mm x 3 mm x 3 μ m). Mobile phase (flow rate: 2 mL/min): solvent (A): CO₂ and solvent (B): EtOH with the following elution gradient program.

Time % solvent % solvent

(min)	Α	В
0.00	55	45
7.00	55	45

Column oven temperature: 40°C, back-pressure regulator (BPR): 150 bar, full loop injection (5 μ L). DAD detector (200 nm - 450 nm, 3 Hz, cste : 0.32 sec). t_{R1}= 3.6 min, t_{R2}= 4.6 min.

rac-2:

Retention time	Area	Height	%Area	Resolution (USP)
3.603	1074795	115214	47.870	
4.585	1170463	93962	52.130	3.489

 $(R_P, M)-2:$

 $(S_P, P)-2:$

Retention time	Area	Height	%Area	Resolution (USP)
4.529	6022142	424709	100.000	
	6022142	424709	100.000	

After screening of chromatographic conditions, enantiomeric purity was determined by SFC analysis in comparison with authentic racemic material (Chiralpack ID: 150 mm x 3 mm x 3 μ m). Mobile phase (flow rate: 2 mL/min): solvent (A): CO₂ and solvent (B): EtOH with the following elution gradient program.

Time	% solvent	%solvent
(min)	Α	В
0.00	70	30
10.00	70	30
10.01	50	50
13.00	50	50
13.01	70	30
15.00	70	30

Column oven temperature: 40°C, back-pressure regulator (BPR): 150 bar, full loop injection (5 μ L). DAD detector (200 nm - 450 nm, 3 Hz, cste : 0.32 sec). t_{R1}= 3.1 min, t_{R2}= 4.3 min.

rac-1:

Retention time	Area	Height	%Area	Resolution (USP)
3.133	742809	69814	50.292	
4.404	734196	53273	49.708	4.239

(R_P,*M*)-1:

Datafile Name: TVS321_	_RM95_	ID	_EtOH_	SFC	30	3.lcd
Sample Name:RM95						-

Retention time	Area	Height	%Area	Resolution (USP)
3.058	2422598	230815	100.000	

 $(S_P, P)-1:$

Chemical Formula: C₃₂H₂₁AuCIP Molecular Weight: 668.91

After screening of chromatographic conditions, enantiomeric purity was determined by SFC analysis in comparison with authentic racemic material (Chiralpack IBN: 150 mm x 3 mm x 3 μ m). Mobile phase (flow rate: 2 mL/min): solvent (A): CO₂ and solvent (B): CH₃OH with the following elution gradient program.

Time	% solvent	%solvent
(min)	Α	В
0.00	70	30
7.00	70	30
7.5	50	50
10.50	50	50
11.00	70	30
13.00	70	30

Column oven temperature: 40°C, back-pressure regulator (BPR): 150 bar, full loop injection (5 μ L). DAD detector (200 nm - 450 nm, 3 Hz, cste : 0.32 sec). t_{R1}= 4.2 min, t_{R2}= 5.2 min.

rac-3: Datafile Name:TVS366-RM132_M3_IBN_MeOH_SFC_001.lcd Sample Name:RM132 m<u>au</u> -**1240<u>nm,4nm</u>** 300-.218 20 200-100-0--100-3.0 4.0 5.0 6.0 7.0 2.0 8.0 1.0 min

Peak#	Ret. Time	Area	Height	Area%	Resolution(USP)
1	4.218	2477877	200038	50.288	
2	5.224	2449530	178813	49.712	3.236

 (R_P, M) -3:

Datafile Name:TVS366-RM135_M3_IBN_MeOH_SFC_001.lcd Sample Name:RM135

 (S_P, P) -3:

Peak#	Ret. Time	Area	Height	Area%	Resolution(USP)
1	4.224	5192364	423957	100.000	
2					

Theoretical calculations

The computational results were obtained with the Gaussian 09⁴ or with the MRRC⁵ suite of programs. All structures were optimized using the B3LYP, B3LYP-D3, ωB97XD, M06-2X and cam-B3LYP functionals combined with the 6-31+G*, 6-31G*, cc-pVDZ and def2-SVP basis sets, and the ADC(2) method with def2-SVP basis set was also used In the case of all the optimized structures vibrational analysis was carried out to check whether the stationary point located is a minimum of the potential energy hypersurface (no imaginary frequencies were obtained) or a transition state (one imaginary frequency). For the TD-DFT calculations the first 20 excitations were considered. The geometries were plotted with the Molden program⁶⁷ and the molecular orbitals were visualized with the Avogadro program⁸. The CD spectra were plotted with the Gaussum program⁹. The spin densities were plotted with IQmol code¹⁰.

⁴ Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.
Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F.
Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E.
Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.
Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox,
Gaussian, Inc., Wallingford CT, 2013.

⁵ Mrcc, a quantum chemical program suite written by M. Kállay, P. R. Nagy, Z. Rolik, D. Mester, G. Samu, J. Csontos, J. Csóka, B. P. Szab'o, L. Gyevi-Nagy, I. Ladjánszki, L. Szegedy, B. Ladóczki, K. Petrov, M. Farkas, P. D. Mezei, and B. Hégely. See also Z. Rolik, L. Szegedy, I. Ladjánszki, B. Ladóczki, and M. Kállay, J. Chem. Phys. 139, 094105 (2013), as well as: www.mrcc.hu

⁶ G. Schaftenaar, J. H. Noordik. J. Comput. Aided Mol. Des. 2000, 14. 123-134.

⁷ G. Schaftenaar, E. Vlieg, G. Vriend. J. Comput. Aided. Mol. Des. 2017. 31, 789-800. ⁸ https://avogadro.cc/

o https://avogadro.cc/

⁹ N.M. O'Boyle, A.L. Tenderholt and K.M. Langner. J. Comp. Chem. 2008, 29, 839-845.

¹⁰ iqmol.org

Figure S28: LUMO+1, LUMO, HOMO and HOMO-1 orbitals and their energies of **1** at the B3LYP/6-31G* level (Hydrogen atoms were omitted for clarity.)

Figure S29: Side (up) and front (down) view of (S_P, P) -1 and (S_P, M) -1 and the transition state at the B3LYP-D3/cc-pVDZ level (Hydrogen atoms were omitted for clarity.)

Figure S30: Side (up) and front (down) view of (R_P, M) -2 and (R_P, P) -2 and the transition state at the B3LYP-D3/cc-pVDZ level (Hydrogen atoms were omitted for clarity.)

Figure S31: Inversion products and the corresponding activation barriers at the B3LYP-D3/ccpVDZ level (Red and green curves denote compounds 1 and 2, respectively.)

Theory	ΔE (ΔG) between [kcal/mol]				
laval	(S_P, P) -1 and the	(S_P, P) -1 and	$(\mathbf{R}_{\mathbf{P}}, M)$ -2 and the	$(\mathbf{R}_{\mathbf{P}}, M)$ -2 and	
	transition state	$(S_{P},M)-1$	transition state	(R_{P}, P) -2	
B3LYP/	167(168)	33 2 (32 7)	29.5 (30.8)	19(58)	
6-31+G*	+0.7 (+0.0)	55.2 (52.7)	29.5 (50.6)	4.9 (5.6)	
B3LYP-D3/	46.2 (46.6)	34 6 (33 8)	32 5 (33 3)	7 5 (8 0)	
cc-pVDZ	10.2 (10.0)	51.0 (55.0)	52.5 (55.5)	1.5 (0.0)	
ωB97XD/	47 3 (47 5)	37 1 (35 8)	34.6 (35.8)	8 2 (9 3)	
cc-pVDZ	(17.5)	57.1 (55.0)	51.0 (55.0)	0.2 (9.3)	

Table S4: Racemization barriers of 1 and 2 and the energy difference of the two isomers at the different level of theory

Figure S32: HOMO and LUMO of **1** (up) and **2** (middle) and perylene (down) calculated at the B3LYP/6-31G*//B3LYP/6-31+G* level

Table S5: NICS(-1), NICS(0) and NICS(1) values of **perylene**, **1** and **2** at the B3LYP/6- $311+G^{**}/B3LYP/6-31+G^{*}$ level The NICS(-1) and NICS(1) values correspond to the direction depicted on stick representation, the NICS(1) value is calculated above the ring planes.

	perylene			1			2		
					NICS(n)				
n	-1	0	1	-1	0	1	-1	0	1
Α	-8.44	-5.83	-8.32	-11.51	-6.80	-10.36	-9.23	-7.16	-9.74
В	-8.33	-5.78	-8.27	-11.21	-7.88	-8.86	-9.02	-6.33	-8.58
С	2.75	7.86	2.74	-	-	-	0.77	5.50	0.75
D	-8.30	-5.87	-8.34	-10.04	-8.31	-10.90	-9.63	-6.99	-9.30
E	-8.31	-5.82	-8.43	-9.15	-7.61	-10.18	-8.77	-6.07	-8.75
F	-	-	-	-1.11	3.34	-1.36	-2.11	1.20	-2.40
G	-	-	-	-9.64	-7.68	-10.00	-9.50	-7.92	-10.27

Figure S33. NICS(0) values of compound **1** and **2** at the B3LYP/6-311+G*//B3LYP/6-31+G* level

The aromaticity of compounds 1 and 2 has been investigated by nucleus independent chemical shift (NICS) calculations at the B3LYP/6-311+G*//B3LYP/6-31+G* level. Here we only discuss the NICS(0) values (see Fig. S27), which shows similar tendencies as NICS(1) and NICS(-1) (Table S5). The 7-membered rings in both compounds are slightly anti-aromatic, similarly to previously described phosphepines. In helicenoid 1, all of the 6-membered rings are, as expected, aromatic, while in 2 the central ring in the middle of the perylene part is anti-aromatic, similarly to perylene itself (Table S5).

Figure S34: Spin density of the radical cation corresponding to the oxidation of **2** (left) and the radical anion corresponding to reduction of **2** (right) at the TD-B3LYP/6- $31+G^*(PCM)/B3LYP/6-31+G^*$ level (PCM=dichloromethane)

Figure S35: Experimental and simulated absorption spectra of the radical anion of 2 (PCM=dichloromethane)

Table S6: Verof perylene at	tical excitation e the TD-B3LYP/	nergies (in eV), wavelengths (in nm) and oscillator strengths (f) $6-31G^*//B3LYP/6-31+G^*$ level
Excited State	1: Singlet-A	2.8959 eV 428.13 nm f=0.3615 <s**2>=0.000</s**2>
66 -> 67	0.70451	
Excited State	2: Singlet-A	3.7078 eV 334.38 nm f=0.0000 <s**2>=0.000</s**2>
65 -> 67	-0.39631	
66 -> 68	0.57116	
66 -> 69	0.10672	
Excited State	3: Singlet-A	4.0307 eV 307.60 nm f=0.0000 <s**2>=0.000</s**2>
62 -> 67	-0.10668	
65 -> 67	0.41655	
66 -> 68	0.19678	
66 -> 69	0.52208	
Excited State	4: Singlet-A	4.0328 eV 307.44 nm f=0.0053 <s**2>=0.000</s**2>
64 -> 67	0.54504	
66 -> 71	0.43934	
Excited State	5: Singlet-A	4.1128 eV 301.46 nm f=0.0000 <s**2>=0.000</s**2>
62 -> 67	0.54306	
65 -> 67	-0.19220	
66 -> 68	-0.21480	
66 -> 69	0.34704	
Excited State	6: Singlet-A	4.2488 eV 291.81 nm f=0.0000 <s**2>=0.000</s**2>
63 -> 67	0.52607	
66 -> 70	0.47015	
Excited State	7: Singlet-A	4.5971 eV 269.70 nm f=0.0000 <s**2>=0.000</s**2>
63 -> 67	-0.44820	
64 -> 68	-0.15056	
65 -> 71	0.10955	
66 -> 70	0.50634	
Excited State	8: Singlet-A	4.6372 eV 267.37 nm f=0.0000 <s**2>=0.000</s**2>
62 -> 67	0.42900	
63 -> 71	0.11210	
64 -> 70	0.11530	
65 -> 67	0.35120	

66 -> 68	0.28335	
66 -> 69	-0.29495	
Excited State	9: Singlet-A	4.8869 eV 253.71 nm f=0.2998 <s**2>=0.000</s**2>
63 -> 68	0.19655	
64 -> 67	-0.40172	
65 -> 70	-0.17595	
66 -> 71	0.51509	
Excited State	10: Singlet-A	5.4716 eV 226.60 nm f=0.0006 <s**2>=0.000</s**2>
60 -> 67	-0.10230	
62 -> 68	0.51608	
65 -> 69	0.46032	
Excited State	11: Singlet-A	5.6504 eV 219.43 nm f=0.0235 <s**2>=0.000</s**2>
63 -> 68	0.53590	
64 -> 67	0.10129	
65 -> 70	0.44385	
Excited State	12: Singlet-A	5.6507 eV 219.41 nm f=0.0727 <s**2>=0.000</s**2>
62 -> 69	-0.19200	
64 -> 71	0.13806	
65 -> 68	0.66014	
Excited State	13: Singlet-A	5.7455 eV 215.79 nm f=0.0000 <s**2>=0.000</s**2>
62 -> 71	-0.30943	
64 -> 68	0.25480	
64 -> 69	0.54528	
65 -> 71	0.17440	
Excited State	14: Singlet-A	5.7855 eV 214.30 nm f=0.0000 <s**2>=0.000</s**2>
59 -> 67	0.70381	
Excited State	15: Singlet-A	5.8151 eV 213.21 nm f=0.0000 <s**2>=0.000</s**2>
62 -> 71	0.15388	
64 -> 68	0.55491	
64 -> 69	-0.26511	
65 -> 71	0.29857	
Excited State	16: Singlet-A	5.8253 eV 212.84 nm f=0.0000 <s**2>=0.000</s**2>
58 -> 67	0.70222	
Excited State	17: Singlet-A	5.8278 eV 212.75 nm f=0.0003 <s**2>=0.000</s**2>

61 -> 67	0.34505	
62 -> 70	-0.28976	
63 -> 69	0.52848	
66 -> 72	-0.11903	
Excited State	18: Singlet-A	5.9519 eV 208.31 nm f=0.0286 <s**2>=0.000</s**2>
60 -> 67	0.29957	
62 -> 68	-0.35411	
62 -> 69	0.20678	
64 -> 71	0.13461	
65 -> 69	0.46490	
Excited State	19: Singlet-A	5.9645 eV 207.87 nm f=0.0000 <s**2>=0.000</s**2>
63 -> 71	-0.44655	
64 -> 70	0.54024	
Excited State	20: Singlet-A	5.9863 eV 207.11 nm f=0.0000 <s**2>=0.000</s**2>
61 -> 67	0.53654	
62 -> 70	0.34253	
63 -> 69	-0.21146	
66 -> 72	-0.21307	

Table S7: Vertical excitation energies (in eV), wavelengths (in nm) and oscillator strengths (f) of **1** at the TD-B3LYP/6-31G*//B3LYP/6-31+G* level Excited State 1: Singlet-A 3.7511 eV 330.53 nm f=0.0864 <S**2>=0.000

Excited State	1:	Singlet-A	1	3./511 eV	330.53 nm	1=0.0864	<\$**2>=0.000
117 ->120		0.15685					
118 ->119		0.65336					
118 ->120		0.17773					
Excited State	2:	Singlet-A	1	3.7786 eV	328.12 nm	f=0.0042	<s**2>=0.000</s**2>
117 ->119		0.42168					
118 ->119		-0.18565					
118 ->120		0.52511					
Excited State	3:	Singlet-A	1	4.0559 eV	305.69 nm	f=0.0388	<s**2>=0.000</s**2>
117 ->119		-0.29572					
117 ->120		0.58247					
118 ->119		-0.14462					
118 ->120		0.17908					

Excited State	4:	Singlet-A	4.1003 eV	302.37 nm	f=0.0150	<s**2>=0.000</s**2>
116 ->119		0.12837				
117 ->119		0.45248				
117 ->120		0.33286				
118 ->120		-0.33473				
118 ->121		-0.11271				
Excited State	5:	Singlet-A	4.1483 eV	298.88 nm	f=0.0065	<s**2>=0.000</s**2>
116 ->119		0.44088				
116 ->120		-0.16901				
117 ->121		-0.18300				
118 ->120		0.14660				
118 ->121		-0.41522				
Excited State	6:	Singlet-A	4.3067 eV	287.89 nm	f=0.0017	<s**2>=0.000</s**2>
114 ->119		-0.26735				
114 ->120		-0.19813				
115 ->119		-0.18298				
116 ->120		0.30391				
117 ->121		0.25386				
117 ->124		0.10099				
118 ->120		0.10530				
118 ->121		-0.19011				
118 ->122		0.22916				
118 ->123		-0.16039				
118 ->124		-0.11475				
Excited State	7:	Singlet-A	4.4668 eV	277.57 nm	f=0.0403	<s**2>=0.000</s**2>
114 ->119		0.10191				
114 ->120		0.14351				
115 ->120		0.10068				
116 ->119		0.41831				
116 ->120		0.41327				
118 ->121		0.29459				
Excited State	8:	Singlet-A	4.5188 eV	274.38 nm	f=0.0155	<s**2>=0.000</s**2>
115 ->119		0.60578				
116 ->120		0.22061				

117 ->121	0.11862	
118 ->121	-0.16425	
Excited State	9: Singlet-A	4.5658 eV 271.55 nm f=0.0419 <s**2>=0.000</s**2>
114 ->119	-0.28678	
115 ->119	0.24344	
116 ->120	-0.18647	
117 ->121	-0.26018	
117 ->122	-0.16495	
117 ->123	0.10825	
118 ->121	0.28523	
118 ->122	0.30300	
118 ->124	-0.10846	
Excited State	10: Singlet-A	4.6016 eV 269.44 nm f=0.0186 <s**2>=0.000</s**2>
114 ->120	0.21003	
115 ->120	0.11424	
117 ->121	-0.15852	
117 ->122	0.28725	
117 ->123	-0.12162	
118 ->121	-0.16106	
118 ->122	0.48106	
118 ->124	0.13113	
Excited State	11: Singlet-A	4.6410 eV 267.15 nm f=0.0134 <s**2>=0.000</s**2>
114 ->119	-0.32300	
115 ->120	0.54938	
116 ->120	-0.13214	
117 ->121	0.17730	
118 ->122	-0.11393	
Excited State	12: Singlet-A	4.6889 eV 264.42 nm f=0.0171 <s**2>=0.000</s**2>
112 ->119	-0.12381	
114 ->119	-0.36020	
114 ->120	0.39221	
115 ->120	-0.24042	
117 ->121	-0.12158	
118 ->122	-0.21255	

118 ->123	-0.16557				
Excited State	13: Singlet-A	4.7105 eV	263.21 nm	f=0.0056	<s**2>=0.000</s**2>
112 ->119	0.25888				
112 ->120	0.19882				
113 ->119	0.58451				
113 ->120	0.10011				
114 ->120	0.11096				
115 ->120	-0.10970				
Excited State	14: Singlet-A	4.7162 eV	262.89 nm	f=0.1371	<s**2>=0.000</s**2>
113 ->119	-0.16475				
113 ->120	0.10418				
114 ->120	0.18698				
115 ->120	-0.22613				
116 ->119	0.15793				
116 ->120	-0.21328				
117 ->121	0.42155				
118 ->122	0.12386				
118 ->123	0.25217				
Excited State	15: Singlet-A	4.8050 eV	258.03 nm	f=0.0050	<s**2>=0.000</s**2>
112 ->119	0.35059				
112 ->120	0.23345				
113 ->119	-0.29528				
113 ->120	0.35737				
118 ->123	-0.26138				
Excited State	16: Singlet-A	4.8474 eV	255.78 nm	f=0.1108	<s**2>=0.000</s**2>
110 ->119	-0.18597				
112 ->119	0.34438				
113 ->119	-0.13215				
114 ->119	-0.11798				
116 ->119	-0.11568				
116 ->120	0.16666				
117 ->122	-0.11197				
118 ->123	0.43971				
Excited State	17: Singlet-A	4.8888 eV	253.61 nm	f=0.0460	<s**2>=0.000</s**2>

111 ->119	-0.14564	
112 ->119	0.11002	
113 ->120	-0.17736	
117 ->122	0.47808	
117 ->123	0.15464	
118 ->124	-0.37407	
Excited State	18: Singlet-A	4.8970 eV 253.18 nm f=0.0234 <s**2>=0.000</s**2>
111 ->119	0.22631	
112 ->119	-0.30270	
112 ->120	0.13301	
113 ->120	0.36678	
114 ->120	-0.20154	
117 ->122	0.17160	
117 ->124	0.10513	
118 ->123	0.19470	
118 ->124	-0.16315	
Excited State	19: Singlet-A	4.9375 eV 251.11 nm f=0.0322 <s**2>=0.000</s**2>
110 ->119	0.13300	
111 ->119	0.49016	
111 ->120	-0.17380	
112 ->119	0.18614	
113 ->120	-0.18455	
117 ->122	0.10008	
117 ->123	0.13298	
117 ->124	0.12890	
118 ->124	0.16708	
Excited State	20: Singlet-A	4.9812 eV 248.90 nm f=0.0018 <s**2>=0.000</s**2>
110 ->119	0.37517	
111 ->119	0.13247	
112 ->120	-0.31027	
113 ->120	0.15536	
117 ->123	-0.22803	
117 ->124	-0.13588	
118 ->124	-0.27676	

118 ->125 0.10711

Table S8: Vertical excitation energies (in eV), wavelengths (in nm) and oscillator strengths (f) of 2 at the TD-B3LYP/6-31G*//B3LYP/6-31+G* level Excited State 1: Singlet-A 2.8078 eV 441.57 nm f=0.2384 <S**2>=0.000 117 ->118 0.70165 Excited State 2: 3.5638 eV 347.90 nm f=0.0033 <S**2>=0.000 Singlet-A 116 ->118 0.51662 117 ->119 -0.45708Excited State 3: Singlet-A 3.7207 eV 333.22 nm f=0.0014 <S**2>=0.000 111 ->118 -0.10993 114 ->118 0.45282 115 ->118 0.28659 117 ->120 -0.38394 0.16073 117 ->122 Excited State 4: Singlet-A 3.8809 eV 319.47 nm f=0.0092 <S**2>=0.000 114 ->118 -0.22825115 ->118 0.58919 116 ->118 0.17549 117 ->119 0.11362 117 ->120 0.20879 Excited State 5: Singlet-A 3.9347 eV 315.10 nm f=0.0523 <S**2>=0.000 111 ->118 -0.18349 112 ->118 0.23177 114 ->118 0.24057 116 ->118 -0.26009 117 ->119 -0.31715 117 ->120 0.34336 117 ->121 -0.14985 117 ->122 -0.118233.9879 eV 310.90 nm f=0.1189 <S**2>=0.000 Excited State 6: Singlet-A 113 ->118 -0.26604114 ->118 0.22167 115 ->118 -0.14095

116 ->118	0.21023	
117 ->119	0.31462	
117 ->120	0.28285	
117 ->121	-0.30312	
117 ->124	-0.10589	
Excited State	7: Singlet-A	4.0167 eV 308.67 nm f=0.0511 <s**2>=0.000</s**2>
111 ->118	0.32075	
112 ->118	-0.22150	
113 ->118	-0.29162	
115 ->118	0.15855	
116 ->118	-0.18000	
117 ->119	-0.13843	
117 ->120	-0.13774	
117 ->121	-0.29618	
117 ->122	-0.21882	
Excited State	8: Singlet-A	4.0662 eV 304.91 nm f=0.0071 <s**2>=0.000</s**2>
112 ->118	-0.27771	
113 ->118	0.44411	
117 ->121	-0.22693	
117 ->123	0.35496	
Excited State	9: Singlet-A	4.1285 eV 300.32 nm f=0.0066 <s**2>=0.000</s**2>
110 ->118	0.18102	
111 ->118	0.40424	
112 ->118	0.43514	
113 ->118	0.26098	
117 ->121	-0.11415	
Excited State	10: Singlet-A	4.1580 eV 298.18 nm f=0.0254 <s**2>=0.000</s**2>
110 ->118	0.19952	
111 ->118	0.12671	
112 ->118	-0.19877	
116 ->118	-0.10404	
117 ->120	0.17087	
117 ->122	0.55764	
117 ->123	-0.10983	

Excited State	11: Singlet-A	4.2171 eV	294.00 nm	f=0.0048	<s**2>=0.000</s**2>
108 ->118	0.23055				
110 ->118	0.37817				
111 ->118	-0.37169				
114 ->118	-0.22000				
117 ->120	-0.10960				
117 ->121	-0.24430				
Excited State	12: Singlet-A	4.2933 eV	288.79 nm	f=0.0256	<s**2>=0.000</s**2>
109 ->118	0.44897				
110 ->118	0.21387				
113 ->118	-0.19634				
117 ->121	0.17729				
117 ->122	0.10676				
117 ->123	0.36665				
Excited State	13: Singlet-A	4.3140 eV	287.40 nm	f=0.0681	<s**2>=0.000</s**2>
108 ->118	0.13425				
109 ->118	0.39029				
110 ->118	-0.32774				
114 ->118	-0.12839				
117 ->119	-0.11690				
117 ->121	-0.25980				
117 ->122	0.14095				
117 ->124	0.21484				
117 ->126	0.11734				
Excited State	14: Singlet-A	4.3767 eV	283.28 nm	f=0.0032	<s**2>=0.000</s**2>
108 ->118	0.41076				
109 ->118	-0.21879				
110 ->118	-0.25788				
112 ->118	0.14140				
117 ->121	0.10408				
117 ->122	0.14565				
117 ->123	0.30124				
117 ->124	-0.20701				
Excited State	15: Singlet-A	4.4938 eV	275.90 nm	f=0.0058	<s**2>=0.000</s**2>

108 ->118	0.36233	
109 ->118	0.24458	
112 ->118	-0.18593	
113 ->118	0.10932	
117 ->120	0.11241	
117 ->121	0.13040	
117 ->122	-0.14316	
117 ->123	-0.27754	
117 ->124	-0.27100	
Excited State	16: Singlet-A	4.6233 eV 268.17 nm f=0.0036 <s**2>=0.000</s**2>
107 ->118	0.11201	
108 ->118	-0.12157	
117 ->124	-0.34002	
117 ->125	0.57654	
Excited State	17: Singlet-A	4.6314 eV 267.70 nm f=0.0522 <s**2>=0.000</s**2>
107 ->118	0.50603	
108 ->118	0.15501	
117 ->124	0.22943	
117 ->126	0.28173	
Excited State	18: Singlet-A	4.7072 eV 263.39 nm f=0.0622 <s**2>=0.000</s**2>
107 ->118	-0.22663	
108 ->118	0.22552	
114 ->118	0.12517	
117 ->121	0.10515	
117 ->124	0.34198	
117 ->125	0.35577	
117 ->126	-0.28448	
Excited State	19: Singlet-A	4.9157 eV 252.22 nm f=0.0838 <s**2>=0.000</s**2>
107 ->118	-0.35648	
116 ->119	0.17459	
116 ->123	0.10710	
117 ->126	0.50207	
Excited State	20: Singlet-A	4.9884 eV 248.54 nm f=0.0377 <s**2>=0.000</s**2>
107 ->118	0.13437	

115 ->119	0.17342
116 ->119	0.48499
116 ->120	0.37080

Table S9: Vertical excitation energies (in eV), wavelengths (in nm) and oscillator strengths (f) of the radical anion corresponding to reduction of **2** at the TD-B3LYP/6-31+G*(PCM)//B3LYP/6-31+G* level (PCM=dichloromethane) Excited State 1: 2.030-A 1.4201 eV 873.10 nm f=0.0257 <S**2>=0.780

118A ->119A	0.38714				
118A ->120A	0.90623				
Excited State 2:	2.024-A	1.4717 eV	842.47 nm	f=0.0047	<s**2>=0.774</s**2>
118A ->119A	0.89395				
118A ->120A	-0.38225				
118A ->121A	-0.15469				
118A ->122A	-0.11866				
Excited State 3:	2.033-A	1.6301 eV	760.58 nm	f=0.0613	<s**2>=0.783</s**2>
118A ->119A	0.14909				
118A ->120A	-0.11167				
118A ->121A	0.92925				
118A ->122A	0.20670				
118A ->123A	0.12133				
118A ->125A	-0.11410				
117B ->118B	-0.10354				
Excited State 4:	2.031-A	1.7489 eV	708.94 nm	f=0.0015	<s**2>=0.781</s**2>
118A ->122A	0.25612				
118A ->123A	0.52190				
118A ->124A	0.28312				
118A ->125A	0.22276				
117B ->118B	0.71410				
Excited State 5:	2.032-A	1.8327 eV	676.51 nm	f=0.0141	<s**2>=0.782</s**2>
118A ->119A	0.12954				
118A ->121A	-0.12225				
118A ->122A	0.64156				
118A ->123A	-0.45063				
118A ->124A	0.52730				

118A ->125A	-0.24754				
Excited State 6:	2.037-A	1.9947 eV	621.57 nm	f=0.0376	<s**2>=0.788</s**2>
118A ->121A	-0.28121				
118A ->122A	0.52453				
118A ->123A	0.54698				
118A ->124A	-0.37716				
118A ->125A	-0.23323				
117B ->118B	-0.36455				
Excited State 7:	2.037-A	2.1178 eV	585.45 nm	f=0.0496	<s**2>=0.787</s**2>
118A ->122A	-0.41322				
118A ->123A	0.42592				
118A ->124A	0.61855				
118A ->125A	-0.41967				
117B ->118B	-0.27021				
Excited State 8:	2.060-A	2.2501 eV	551.01 nm	f=0.1898	<s**2>=0.810</s**2>
118A ->122A	0.10812				
118A ->123A	0.11255				
118A ->124A	0.26448				
118A ->125A	0.68355				
118A ->127A	-0.45408				
117B ->118B	-0.42009				
Excited State 9:	2.082-A	2.4222 eV	511.86 nm	f=0.0852	<s**2>=0.834</s**2>
118A ->124A	0.15152				
118A ->125A	0.38993				
118A ->126A	-0.17940				
118A ->127A	0.81902				
117B ->118B	-0.22196				
Excited State 10:	2.023-A	2.5409 eV	487.95 nm	f=0.0047	<s**2>=0.773</s**2>
118A ->126A	0.94052				
118A ->127A	0.19051				
118A ->128A	0.20580				
118A ->129A	-0.10775				
Excited State 11:	2.023-A	2.8255 eV	438.81 nm	f=0.0020	<s**2>=0.774</s**2>
118A ->126A	-0.22856				

118A ->128A	0.91634				
118A ->129A	-0.26869				
118A ->130A	0.11146				
Excited State 12:	2.026-A	2.8682 eV	432.28 nm	f=0.0012	<s**2>=0.776</s**2>
118A ->128A	-0.19771				
118A ->129A	-0.29484				
118A ->130A	0.91911				
Excited State 13:	2.025-A	2.9354 eV	422.37 nm	f=0.0038	<s**2>=0.775</s**2>
118A ->127A	0.11380				
118A ->128A	0.21888				
118A ->129A	0.88852				
118A ->130A	0.32978				
Excited State 14:	3.196-A	2.9906 eV	414.59 nm	f=0.0127	<s**2>=2.304</s**2>
117A ->119A	-0.14983				
117A ->120A	-0.28023				
117A ->121A	0.27257				
117A ->123A	0.11762				
118A ->127A	-0.16696				
115B ->118B	0.17259				
116B ->118B	0.10514				
117B ->119B	0.44143				
117B ->120B	0.51811				
117B ->121B	0.36361				
117B ->123B	-0.14724				
117B ->124B	-0.12862				
Excited State 15:	3.029-A	3.0609 eV	405.05 nm	f=0.0249	<s**2>=2.044</s**2>
117A ->120A	0.17113				
117B ->119B	0.77190				
117B ->120B	-0.56247				
Excited State 16:	3.070-A	3.0851 eV	401.88 nm	f=0.0220	<s**2>=2.106</s**2>
117A ->121A	-0.32619				
117A ->123A	-0.20211				
117A ->124A	0.11697				
114B ->118B	0.13517				

115B ->118B	-0.18976		
116B ->118B	-0.18586		
117B ->119B	0.38061		
117B ->120B	0.52386		
117B ->121B	-0.33487		
117B ->123B	0.18560		
117B ->124B	0.32819		
Excited State 17:	2.052-A	3.1461 eV 394.08 nm f=0.0008 <s**2>=0.802</s**2>	
118A ->126A	0.11420		
118A ->131A	0.70093		
118A ->132A	-0.58455		
118A ->133A	-0.26850		
118A ->134A	0.10224		
118A ->135A	-0.14158		
Excited State 18:	2.032-A	3.1768 eV 390.28 nm f=0.0007 <s**2>=0.782</s**2>	
118A ->129A	-0.10244		
118A ->131A	0.55110		
118A ->132A	0.24213		
118A ->133A	0.73402		
118A ->134A	-0.20126		
118A ->135A	0.12992		
Excited State 19:	2.027-A	3.1806 eV 389.82 nm f=0.0009 <s**2>=0.778</s**2>	
118A ->131A	0.39223		
118A ->132A	0.74090		
118A ->133A	-0.49780		
118A ->134A	0.15010		
Excited State 20:	3.031-A	3.2183 eV 385.25 nm f=0.0031 <s**2>=2.046</s**2>	
117A ->120A	-0.12203		
117A ->122A	-0.12812		
117A ->123A	-0.36152		
117A ->124A	-0.21767		
117A ->125A	-0.26841		
118A ->147A	-0.10463		
113B ->118B	0.16697		

114B ->118B	0.40658
116B ->118B	0.23666
117B ->120B	-0.16120
117B ->121B	0.16119
117B ->123B	0.33189
117B ->125B	-0.16154
117B ->126B	0.36580

Table S10: Vertical excitation energies (in eV), wavelengths (in nm) and oscillator strengths(f) of 1 at the ω B97xd/cc-pVDZ// ω B97xd/cc-pVDZ level

Excited State	1: Singlet-A	4.3322 eV 286.19 nm f=0.1499 <s**2>=0.000</s**2>
116 ->121	0.10874	
117 ->119	0.11941	
117 ->120	0.29158	
118 ->119	0.55786	
118 ->120	-0.18646	
Excited State	2: Singlet-A	4.4390 eV 279.31 nm f=0.0089 <s**2>=0.000</s**2>
109 ->119	0.10920	
116 ->119	0.39070	
116 ->120	0.12070	
117 ->119	0.16017	
117 ->121	-0.15756	
117 ->122	0.13062	
118 ->119	-0.16680	
118 ->120	-0.18342	
118 ->121	-0.29774	
Excited State	3: Singlet-A	4.4878 eV 276.27 nm f=0.0151 <s**2>=0.000</s**2>
114 ->119	0.10693	
114 ->120	-0.13576	
115 ->119	-0.15689	
115 ->120	0.12858	
116 ->120	0.16171	
117 ->119	0.29325	
117 ->121	-0.15964	

117 ->124	-0.10007	
118 ->119	0.14285	
118 ->120	0.39918	
118 ->122	0.13782	
118 ->123	0.10569	
Excited State	4: Singlet-A	4.5937 eV 269.90 nm f=0.0084 <s**2>=0.000</s**2>
114 ->119	-0.10343	
114 ->120	0.16386	
115 ->119	0.13610	
115 ->120	-0.19676	
116 ->120	-0.11016	
117 ->119	0.32320	
117 ->120	-0.21942	
117 ->121	0.19007	
117 ->122	0.11702	
118 ->120	0.24128	
118 ->121	-0.14047	
118 ->122	-0.19307	
Excited State	5: Singlet-A	4.8601 eV 255.10 nm f=0.0549 <s**2>=0.000</s**2>
116 ->119	0.11618	
117 ->119	-0.13892	
117 ->120	0.48075	
118 ->119	-0.16312	
118 ->120	0.33252	
Excited State	6: Singlet-A	4.9413 eV 250.91 nm f=0.0232 <s**2>=0.000</s**2>
114 ->120	-0.10363	
116 ->119	-0.10883	
117 ->119	0.43685	
117 ->120	0.27008	
118 ->119	-0.26887	
118 ->120	-0.21830	
118 ->121	0.12170	
Excited State	7: Singlet-A	5.1991 eV 238.47 nm f=0.1293 <s**2>=0.000</s**2>
109 ->124	0.10371	

110 ->120	0.13353	
110 ->121	0.11139	
110 ->124	-0.10727	
111 ->119	-0.10210	
111 ->120	-0.10843	
112 ->119	-0.10555	
114 ->119	0.14019	
114 ->120	0.10096	
116 ->120	0.22989	
116 ->122	0.10163	
116 ->124	-0.14624	
117 ->119	0.10348	
117 ->121	0.16907	
117 ->124	-0.11288	
118 ->120	-0.10061	
118 ->121	0.24181	
Excited State	8: Singlet-A	5.2714 eV 235.20 nm f=0.0247 <s**2>=0.000</s**2>
113 ->119	0.11641	
113 ->120	0.10460	
113 ->121	-0.16551	
113 ->122	0.23957	
113 ->123	-0.21636	
114 ->119	-0.12181	
114 ->125	0.15358	
115 ->119	-0.20232	
115 ->120	-0.10818	
115 ->122	-0.11768	
115 ->123	0.12802	
115 ->124	-0.12489	
115 ->125	0.12714	
Excited State	9: Singlet-A	5.2966 eV 234.08 nm f=0.2728 <s**2>=0.000</s**2>
112 ->120	0.11310	
113 ->123	0.10979	
114 ->120	-0.10971	

116 ->119	0.34080	
116 ->120	0.15672	
117 ->121	0.23869	
118 ->121	0.16810	
118 ->122	-0.16559	
Excited State	10: Singlet-A	5.5068 eV 225.15 nm f=0.3623 <s**2>=0.000</s**2>
112 ->119	-0.16934	
112 ->120	0.30975	
113 ->119	-0.11041	
114 ->120	-0.12496	
116 ->119	-0.25748	
116 ->120	0.28800	
118 ->121	-0.28572	
Excited State	11: Singlet-A	5.5988 eV 221.45 nm f=0.0584 <s**2>=0.000</s**2>
109 ->119	-0.15306	
113 ->123	-0.10886	
114 ->119	0.26982	
114 ->121	-0.12089	
114 ->122	0.11551	
115 ->119	0.32020	
115 ->120	0.17595	
116 ->119	0.11115	
116 ->121	-0.15959	
116 ->122	0.11317	
117 ->122	0.10290	
117 ->123	-0.11769	
118 ->123	-0.13990	
Excited State	12: Singlet-A	5.6520 eV 219.36 nm f=0.3069 <s**2>=0.000</s**2>
112 ->119	-0.21967	
112 ->120	0.29314	
114 ->119	-0.13235	
114 ->120	0.15686	
115 ->119	0.11162	
115 ->120	-0.12347	

117 ->121	-0.24446	
118 ->121	0.31033	
118 ->122	0.15582	
Excited State	13: Singlet-A	5.7365 eV 216.13 nm f=0.0124 <s**2>=0.000</s**2>
112 ->119	0.13489	
113 ->119	-0.10627	
113 ->120	-0.12263	
114 ->119	-0.13602	
115 ->120	-0.11145	
117 ->121	0.11318	
117 ->122	0.21901	
117 ->123	-0.18401	
118 ->122	0.41069	
118 ->123	-0.23749	
Excited State	14: Singlet-A	5.7466 eV 215.75 nm f=0.0682 <s**2>=0.000</s**2>
112 ->120	-0.10056	
113 ->119	-0.33488	
113 ->120	-0.19264	
114 ->122	-0.11251	
115 ->119	0.34364	
115 ->122	-0.14186	
115 ->123	0.11325	
117 ->121	-0.11667	
117 ->124	-0.10616	
Excited State	15: Singlet-A	5.7897 eV 214.14 nm f=0.0346 <s**2>=0.000</s**2>
111 ->120	0.30726	
111 ->121	0.11101	
112 ->120	-0.13282	
114 ->120	0.20257	
115 ->120	0.13741	
116 ->119	-0.17727	
116 ->120	0.34137	
Excited State	16: Singlet-A	5.7975 eV 213.86 nm f=0.0388 <s**2>=0.000</s**2>
110 ->120	-0.19212	
111 ->120	-0.12543	
---------------	---------------	--
112 ->120	-0.16936	
113 ->119	0.25411	
114 ->119	0.12300	
114 ->120	-0.23007	
115 ->120	-0.20340	
116 ->119	-0.10437	
116 ->120	0.13252	
116 ->121	-0.15218	
117 ->121	-0.11210	
117 ->122	0.16133	
118 ->121	0.12710	
118 ->122	-0.15167	
Excited State	17: Singlet-A	5.8563 eV 211.71 nm f=0.2513 <s**2>=0.000</s**2>
113 ->119	0.30329	
115 ->119	0.21453	
115 ->120	-0.20421	
116 ->120	0.18567	
116 ->121	0.22211	
116 ->122	-0.11987	
117 ->121	0.14500	
117 ->122	-0.24344	
118 ->122	0.21989	
118 ->123	0.12269	
Excited State	18: Singlet-A	5.8997 eV 210.15 nm f=0.0140 <s**2>=0.000</s**2>
111 ->119	0.13113	
111 ->120	0.10716	
114 ->119	0.45040	
115 ->119	-0.20586	
115 ->120	-0.27351	
116 ->120	-0.12261	
Excited State	19: Singlet-A	5.9176 eV 209.52 nm f=0.0602 <s**2>=0.000</s**2>
110 ->119	-0.24710	
110 ->120	-0.11441	

112 ->119	-0.19935	
112 ->120	-0.10134	
114 ->119	0.15368	
114 ->123	0.10917	
115 ->120	0.15877	
115 ->121	0.15857	
116 ->120	-0.10302	
117 ->121	0.29658	
118 ->122	0.12423	
118 ->123	0.12513	
Excited State	20: Singlet-A	5.9696 eV 207.69 nm f=0.0457 <s**2>=0.000</s**2>
109 ->119	0.15531	
111 ->121	-0.13939	
112 ->119	0.31332	
112 ->122	0.11828	
112 ->123	-0.11863	
113 ->119	-0.10370	
114 ->121	-0.12487	
114 ->123	-0.10927	
115 ->122	0.10446	
117 ->123	0.21231	
118 ->121	0.13688	
118 ->123	0.15290	

Table S11: Vertical excitation energies (in eV), wavelengths (in nm) and oscillator strengths (f) of **1** at the M06-2X/def2-SVP//B3LYP/6-31+G* level

Excited State	1:	Singlet-A	4.2470 eV	291.93 nm	f=0.1719	<s**2>=0.000</s**2>
117 ->120		0.17092				
118 ->119		0.63940				
118 ->120		-0.15065				
Excited State	2:	Singlet-A	4.3657 eV	283.99 nm	f=0.0063	<s**2>=0.000</s**2>
115 ->120		0.10698				
116 ->119		0.30570				
117 ->119		-0.15994				
117 ->122		0.11196				
117 ->123		-0.10033				
118 ->119		0.15618				
118 ->120		0.41948				

118 ->121 Excited State 115 ->119	-0.25670 3: Singlet-A -0.19685	4.4804 eV 276.72 nm f=0.0212 <s**2>=0.000</s**2>
115 ->120	0.10055	
116 ->119	-0.14184	
116 ->120	-0.21855	
117 ->119	0.31064	
117 ->121	0.20268	
118 ->119	0.10352	
118 ->120	0.33208	
118 ->121	0.15941	
118 ->122	-0.14/24	
118 ->123	0.128/6	4 5975 - VI 270 27 6-0 0000 C**2> - 0 000
Exciled State	4. Singlet-A	4.38/3 eV 2/0.2/ nm 1–0.0090 <s++2>=0.000</s++2>
115 ->119	0.19348	
113 - 2120 116 > 110	-0.17909	
116 ->120	0.11720	
117 ->119	0.13773	
117 ->120	-0 14827	
117 ->121	-0 19183	
118 ->120	0 18091	
118 ->122	0 17640	
118 ->123	-0.10579	
Excited State	5: Singlet-A	4.6591 eV 266.11 nm f=0.0281 <s**2>=0.000</s**2>
115 ->119	0.10844	
115 ->120	-0.15580	
116 ->119	-0.16548	
117 ->119	-0.17463	
117 ->120	0.45791	
117 ->122	-0.10464	
118 ->119	-0.12264	
118 ->120	0.28095	
118 ->121	0.14411	
Excited State	6: Singlet-A	4.7357 eV 261.81 nm f=0.0125 <s**2>=0.000</s**2>
115 ->120	0.14188	
116 ->119	0.14512	
117 > 120	0.33257	
11/ -> 120	0.44812	
118 ->119	-0.14100	
118 >120	-0.21000	
Evoited State	-0.10130 7. Singlet-A	51352eV24144nmf=02828 <s**2>=0000</s**2>
111 ->120	-0 10896	5.1552 CV 2T1.TT IIII 1-0.2620 \\$ 2/-0.000
112 ->110	0 13734	
112 ->120	0 10014	
112 ->126	0.10361	
115 ->120	0.11347	
116 ->119	0.12543	
116 ->120	0.28257	

116 ->122	-0.10057	
116 ->124	-0.13775	
117 ->121	0.16360	
117 ->122	0.13338	
118 ->121	0.34044	
118 ->124	0.10077	
Excited State	8: Singlet-A	5.2313 eV 237.00 nm f=0.3445 <s**2>=0.000</s**2>
112 ->119	-0.11372	
112 ->120	-0.14469	
112 ->121	0.11121	
114 ->120	0.14233	
115 ->120	-0.10713	
116 ->119	0.40382	
117 ->121	0.16335	
118 ->121	0.21965	
118 ->122	-0.19439	
Excited State	9: Singlet-A	5.3493 eV 231.78 nm f=0.1830 <s**2>=0.000</s**2>
110 ->119	0.10684	
110 ->120	-0.14152	
112 ->120	-0.16199	
114 ->120	0.11429	
116 ->119	-0.24525	
116 ->120	0.40374	
117 ->121	0.21214	
118 ->121	-0.23527	
118 ->122	-0.13493	
Excited State	10: Singlet-A	5.4000 eV 229.60 nm f=0.0051 <s**2>=0.000</s**2>
113 ->120	-0.12127	
113 ->121	-0.16870	
113 ->122	0.30316	
113 ->123	0.28713	
114 - >119	0.16192	
114 ->124	0.17801	
114 ->125	-0.26164	
115 ->125	-0.10296	
Excited State	11: Singlet-A	5.4834 eV 226.11 nm f=0.1023 <s**2>=0.000</s**2>
111 ->119	-0.11384	
112 ->120	0.13849	
115 ->119	0.21648	
115 ->120	-0.10498	
116 ->119	0.15455	
116 ->120	-0.18521	
117 ->121	0.39083	
118 ->121	-0.28381	
Excited State	12: Singlet-A	5.5569 eV 223.12 nm f=0.0481 <s**2>=0.000</s**2>
110 ->120	-0.12220	
112 ->120	-0.15749	
115 ->119	-0.14871	
117 ->121	0.17781	
118 ->122	0.53556	

Excited State	13: Singlet-A	5.6036 eV	221.26 nm	f=0.0258	<s**2>=0.000</s**2>
109 ->119	-0.11351				
109 ->120	0.10718				
110 ->119	-0.19379				
110 ->120	0.20162				
111 ->119	-0.18369				
111 ->120	0.21342				
112 ->119	-0.24257				
112 ->120	0.12237				
114 ->119	0.10178				
115 ->119	-0.12645				
116 ->119	-0.13439				
116 ->120	0.26787				
117 ->121	0.14729				
118 ->122	0.18403				
Excited State	14: Singlet-A	5.6357 eV	220.00 nm	f=0.0012	<s**2>=0.000</s**2>
112 ->120	-0.11195				
114 ->119	0.10593				
115 ->119	0.49375				
115 ->120	0.33465				
Excited State	15: Singlet-A	5.7075 eV	217.23 nm	f=0.1063	<s**2>=0.000</s**2>
109 ->120	-0.12000				
114 ->119	0.51487				
114 ->120	-0.13595				
114 ->121	0.10855				
116 ->121	-0.11836				
117 ->121	0.10092				
117 ->122	-0.16920				
118 ->123	-0.25196				
Excited State	16: Singlet-A	5.7263 eV	216.52 nm	f=0.0416	<s**2>=0.000</s**2>
109 ->119	-0.10166				
109 ->120	0.10083				
110 ->120	-0.23167				
111 ->119	0.13554				
111 ->120	0.13109				
112 ->120	0.11867				
113 ->119	-0.11844				
114 ->120	0.31822				
114 ->122	-0.12970				
117 ->122	0.12100				
118 ->123	-0.28342				
Excited State	17: Singlet-A	5.7441 eV	215.85 nm	f=0.5846	<s**2>=0.000</s**2>
111 ->119	-0.12033				
113 ->119	0.21211				
114 ->119	-0.14942				
114 ->120	0.13483				
114 ->122	-0.11205				
115 ->119	-0.14569				
115 ->120	0.35363				
116 ->121	-0.12556				

117 ->122	-0.32125				
118 ->123	-0.14899				
Excited State	18: Singlet-A	5.7842 eV	214.35 nm	f=0.0582	<s**2>=0.000</s**2>
110 ->120	-0.11053				
111 ->119	-0.17106				
113 ->119	0.27422				
113 ->120	0.11067				
114 ->119	0.29646				
114 ->120	0.22605				
117 ->121	-0.15332				
117 ->122	0.17653				
117 ->123	0.10509				
118 ->123	0.21736				
Excited State	19: Singlet-A	5.8341 eV	212.52 nm	f=0.0591	<s**2>=0.000</s**2>
111 ->119	0.14503				
113 ->119	-0.30453				
116 ->121	-0.10917				
117 ->122	-0.28699				
117 ->123	0.16884				
118 ->123	0.38324				
Excited State	20: Singlet-A	5.8949 eV	210.33 nm	f=0.1434	<s**2>=0.000</s**2>
110 ->120	0.13695				
111 ->119	0.16137				
111 ->120	0.10821				
113 ->119	0.21671				
114 ->120	0.10743				
115 ->120	-0.20669				
116 ->121	-0.21765				
117 ->123	-0.14346				
118 ->123	0.11356				
118 ->124	0.37699				

Table S12: Vertical excitation energies (in eV), wavelengths (in nm) and oscillator strengths (f) of **1** at the cam-B3LYP/def2-SVP//B3LYP/6-31+G* level

Excited State	1: Singlet-A	4.2274 eV 293.29 nm f=0.1730 <s**2>=0.000</s**2>
116 ->121	0.10395	
117 ->120	0.22783	
118 ->119	0.61843	
118 ->120	-0.13647	
Excited State	2: Singlet-A	4.3584 eV 284.47 nm f=0.0041 <s**2>=0.000</s**2>
115 ->120	0.11346	
116 ->119	0.33980	
116 ->120	0.10825	
117 ->119	-0.11814	
117 ->121	-0.11033	
117 ->122	0.12298	
117 ->123	-0.11437	
118 ->119	0.13784	
118 ->120	0.36406	
118 ->121	-0.27246	

	3: Singlet-A	4.4461 eV 278.86 nm f=0.0175 <s**2>=0.000</s**2>
115 ->119	-0.19308	
116 ->119	-0.11167	
116 ->120	-0.21473	
117 ->119	0.30665	
117 ->121	0.19968	
118 ->119	0.10244	
118 ->120	0.32282	
118 ->121	0.14310	
118 ->122	-0.14249	
118 ->123	0.14396	
Excited State	4: Singlet-A	4.5496 eV 272.52 nm f=0.0100 <s**2>=0.000</s**2>
114 ->119	-0.11182	
114 ->120	0.11798	
115 ->119	0.18484	
115 ->120	-0.18431	
116 ->120	0.12432	
117 ->119	0.39282	
117 ->120	-0.12899	
117 ->121	-0.18267	
117 ->122	-0.10029	
118 ->120	0.23379	
118 ->121	0.13030	
118 ->122	0.18370	
118 ->123	-0.10875	
Excited State	5: Singlet-A	4.7167 eV 262.86 nm f=0.0322 <s**2>=0.000</s**2>
115 ->120	-0.11822	
116 ->119	-0.16303	
117 ->119	-0 25479	
	0.25175	
117 ->120	0.42872	
117 ->120 118 ->119	0.42872 -0.13402	
117 ->120 118 ->119 118 ->120	0.42872 -0.13402 0.32359	
117 ->120 118 ->119 118 ->120 118 ->121	0.42872 -0.13402 0.32359 0.10297	
117 ->120 118 ->119 118 ->120 118 ->121 Excited State	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000</s**2>
117 ->120 118 ->119 118 ->120 118 ->121 Excited State 116 ->119	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A 0.11260	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000</s**2>
117 ->120 118 ->119 118 ->120 118 ->121 Excited State 116 ->119 117 ->119	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A 0.11260 0.35541	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000</s**2>
117 ->120 118 ->119 118 ->120 118 ->121 Excited State 116 ->119 117 ->119 117 ->120	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A 0.11260 0.35541 0.44680	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000</s**2>
117 ->120 118 ->119 118 ->120 118 ->121 Excited State 116 ->119 117 ->119 117 ->120 118 ->119	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A 0.11260 0.35541 0.44680 -0.20466	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000</s**2>
117 ->120 118 ->119 118 ->120 118 ->121 Excited State 116 ->119 117 ->119 117 ->120 118 ->119 118 ->120	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A 0.11260 0.35541 0.44680 -0.20466 -0.20445	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000</s**2>
117 ->120 118 ->119 118 ->120 118 ->121 Excited State 116 ->119 117 ->119 117 ->120 118 ->119 118 ->120 118 ->121	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A 0.11260 0.35541 0.44680 -0.20466 -0.20445 -0.13727	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000</s**2>
117 ->120 118 ->119 118 ->120 118 ->121 Excited State 116 ->119 117 ->119 117 ->120 118 ->119 118 ->120 118 ->121 Excited State	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A 0.11260 0.35541 0.44680 -0.20466 -0.20445 -0.13727 7: Singlet-A	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000 5.1255 eV 241.90 nm f=0.1595 <s**2>=0.000</s**2></s**2>
117 ->120 118 ->119 118 ->120 118 ->121 Excited State 116 ->119 117 ->119 117 ->120 118 ->120 118 ->121 Excited State 111 ->120	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A 0.11260 0.35541 0.44680 -0.20466 -0.20445 -0.13727 7: Singlet-A 0.16450	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000 5.1255 eV 241.90 nm f=0.1595 <s**2>=0.000</s**2></s**2>
117 ->120 118 ->119 118 ->120 118 ->121 Excited State 116 ->119 117 ->119 117 ->120 118 ->120 118 ->121 Excited State 111 ->120 111 ->121	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A 0.11260 0.35541 0.44680 -0.20466 -0.20445 -0.13727 7: Singlet-A 0.16450 -0.12322	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000 5.1255 eV 241.90 nm f=0.1595 <s**2>=0.000</s**2></s**2>
117 ->120 118 ->119 118 ->120 118 ->121 Excited State 116 ->119 117 ->119 117 ->120 118 ->120 118 ->120 118 ->121 Excited State 111 ->120 111 ->121 112 ->119	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A 0.11260 0.35541 0.44680 -0.20466 -0.20445 -0.13727 7: Singlet-A 0.16450 -0.12322 0.12505 0.11161	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000 5.1255 eV 241.90 nm f=0.1595 <s**2>=0.000</s**2></s**2>
117 ->120 118 ->119 118 ->120 118 ->121 Excited State 116 ->119 117 ->119 117 ->120 118 ->120 118 ->121 Excited State 111 ->120 111 ->121 112 ->119 114 ->119 114 ->119	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A 0.11260 0.35541 0.44680 -0.20466 -0.20445 -0.13727 7: Singlet-A 0.16450 -0.12322 0.12505 -0.11161 0.1420	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000 5.1255 eV 241.90 nm f=0.1595 <s**2>=0.000</s**2></s**2>
$117 \rightarrow 120$ $118 \rightarrow 119$ $118 \rightarrow 120$ $118 \rightarrow 121$ Excited State $116 \rightarrow 119$ $117 \rightarrow 119$ $117 \rightarrow 120$ $118 \rightarrow 120$ $118 \rightarrow 121$ Excited State $111 \rightarrow 120$ $111 \rightarrow 121$ $112 \rightarrow 119$ $114 \rightarrow 119$ $114 \rightarrow 120$	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A 0.11260 0.35541 0.44680 -0.20466 -0.20445 -0.13727 7: Singlet-A 0.16450 -0.12322 0.12505 -0.11161 -0.14429 0.22565	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000 5.1255 eV 241.90 nm f=0.1595 <s**2>=0.000</s**2></s**2>
$117 \rightarrow 120$ $118 \rightarrow 119$ $118 \rightarrow 120$ $118 \rightarrow 121$ Excited State $116 \rightarrow 119$ $117 \rightarrow 119$ $117 \rightarrow 120$ $118 \rightarrow 120$ $118 \rightarrow 120$ $118 \rightarrow 121$ Excited State $111 \rightarrow 120$ $111 \rightarrow 121$ $112 \rightarrow 119$ $114 \rightarrow 119$ $114 \rightarrow 120$ $116 \rightarrow 120$	0.42872 -0.13402 0.32359 0.10297 6: Singlet-A 0.11260 0.35541 0.44680 -0.20466 -0.20445 -0.13727 7: Singlet-A 0.16450 -0.12322 0.12505 -0.11161 -0.14429 0.23568 0.11460	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000 5.1255 eV 241.90 nm f=0.1595 <s**2>=0.000</s**2></s**2>
$117 \rightarrow 120$ $118 \rightarrow 119$ $118 \rightarrow 120$ $118 \rightarrow 121$ Excited State $116 \rightarrow 119$ $117 \rightarrow 119$ $117 \rightarrow 120$ $118 \rightarrow 120$ $118 \rightarrow 121$ Excited State $111 \rightarrow 120$ $111 \rightarrow 121$ $112 \rightarrow 119$ $114 \rightarrow 119$ $114 \rightarrow 120$ $116 \rightarrow 122$ $116 \rightarrow 122$	$\begin{array}{c} 0.42872 \\ -0.13402 \\ 0.32359 \\ 0.10297 \\ 6: \text{Singlet-A} \\ 0.11260 \\ 0.35541 \\ 0.44680 \\ -0.20466 \\ -0.20445 \\ -0.12327 \\ 7: \text{Singlet-A} \\ 0.16450 \\ -0.12322 \\ 0.12505 \\ -0.11161 \\ -0.14429 \\ 0.23568 \\ -0.11460 \\ 0.1565 \\ \end{array}$	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000 5.1255 eV 241.90 nm f=0.1595 <s**2>=0.000</s**2></s**2>
$\begin{array}{c} 117 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} 0.42872 \\ -0.13402 \\ 0.32359 \\ 0.10297 \\ 6: \text{Singlet-A} \\ 0.11260 \\ 0.35541 \\ 0.44680 \\ -0.20466 \\ -0.20445 \\ -0.20445 \\ -0.13727 \\ 7: \text{Singlet-A} \\ 0.16450 \\ -0.12322 \\ 0.12505 \\ -0.11161 \\ -0.14429 \\ 0.23568 \\ -0.11460 \\ -0.15635 \\ 0.1255 \\ \end{array}$	4.8009 eV 258.25 nm f=0.0199 <s**2>=0.000 5.1255 eV 241.90 nm f=0.1595 <s**2>=0.000</s**2></s**2>

117 ->122	0.12992	
117 ->124	0.10084	
118 ->121	0.27457	
Excited State	8: Singlet-A	5.2404 eV 236.59 nm f=0.4098 <s**2>=0.000</s**2>
112 ->120	-0.13751	
114 ->120	0.14668	
116 ->119	0.36572	
116 ->120	0.17435	
116 ->126	0.10395	
117 ->121	0.22222	
118 ->121	0.23406	
118 ->122	-0.17554	
118 ->123	0.10889	
Excited State	9: Singlet-A	5.3356 eV 232.37 nm f=0.0045 <s**2>=0.000</s**2>
109 ->125	0.11823	
110 ->125	-0.11124	
113 ->120	-0.12413	
113 ->121	-0.16333	
113 ->122	0.30983	
113 ->123	0.28292	
114 ->124	0.13321	
114 ->125	-0.21920	
115 ->119	0.10203	
115 ->124	0.12483	
115 ->125	-0.17938	
Evolted State	10 0 1 4	
Exclied State	10: Singlet-A	5.4163 eV 228.91 nm f=0.2801 < S^{**2} >=0.000
112 ->119	10: Singlet-A 0.15796	5.4163 eV 228.91 nm f=0.2801 < S**2 >= 0.000
112 ->119 112 ->120	10: Singlet-A 0.15796 -0.21508	5.4163 eV 228.91 nm f=0.2801 < S**2 >= 0.000
112 ->119 112 ->120 116 ->119	10: Singlet-A 0.15796 -0.21508 -0.29467	5.4163 eV 228.91 nm t=0.2801 <s**2>=0.000</s**2>
112 ->119 112 ->120 116 ->119 116 ->120	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515	5.4163 eV 228.91 nm f=0.2801 <s**2>=0.000</s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902	5.4163 eV 228.91 nm f=0.2801 <s**2>=0.000</s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->121	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646	5.4163 eV 228.91 nm t=0.2801 <s**2>=0.000</s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->121 118 ->122	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302	5.4163 eV 228.91 nm f=0.2801 < S**2 = 0.000
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->121 118 ->122 Excited State	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A	5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000</s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->121 118 ->122 Excited State 111 ->119	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888	5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000</s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->121 118 ->122 Excited State 111 ->119 112 ->119	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888 0.18789	5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000</s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->121 118 ->122 Excited State 111 ->119 112 ->119 112 ->120	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888 -0.18788 0.20260	5.4163 eV 228.91 nm f=0.2801 <s**2>=0.000 5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000</s**2></s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->121 118 ->122 Excited State 111 ->119 112 ->119 112 ->119 112 ->120 114 ->119	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888 -0.18788 0.20369 0.10614	5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000</s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->121 118 ->122 Excited State 111 ->119 112 ->119 112 ->120 114 ->119 115 ->119	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888 -0.18788 0.20369 -0.10614 0.12817	5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000</s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->121 118 ->122 Excited State 111 ->119 112 ->119 112 ->120 114 ->119 115 ->119 116 ->119	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888 -0.18788 0.20369 -0.10614 -0.12817 0.12495	5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000</s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->121 118 ->122 Excited State 111 ->119 112 ->120 114 ->119 115 ->119 115 ->119 116 ->120 117 ->121	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888 -0.18788 0.20369 -0.10614 -0.12817 0.12495 0.30754	5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000</s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->122 Excited State 111 ->119 112 ->120 114 ->119 115 ->119 115 ->119 116 ->119 116 ->119 116 ->119 116 ->119 116 ->120 117 ->121 118 ->121	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888 -0.18788 0.20369 -0.10614 -0.12817 0.12495 -0.30754 0.31227	5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000</s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->121 118 ->122 Excited State 111 ->119 112 ->120 114 ->119 115 ->119 116 ->120 117 ->121 118 ->121 Excited State	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888 -0.18788 0.20369 -0.10614 -0.12817 0.12495 -0.30754 0.31227 12: Singlet-A	5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000 5.6027 eV 221.29 nm f=0.0027 <s**2>=0.000</s**2></s**2>
Excited State 112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->122 Excited State 111 ->119 112 ->119 112 ->120 114 ->119 115 ->119 116 ->119 116 ->120 117 ->121 118 ->121 Excited State 109 ->119	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888 -0.18788 0.20369 -0.10614 -0.12817 0.12495 -0.30754 0.31227 12: Singlet-A 0.11060	5.4163 eV 228.91 nm f=0.2801 <s**2>=0.000 5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000 5.6027 eV 221.29 nm f=0.0027 <s**2>=0.000</s**2></s**2></s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->122 Excited State 111 ->119 112 ->120 114 ->119 115 ->119 116 ->120 117 ->121 118 ->121 Excited State 109 ->119 111 ->120	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888 -0.18788 0.20369 -0.10614 -0.12817 0.12495 -0.30754 0.31227 12: Singlet-A 0.11060 0.12699	5.4163 eV 228.91 nm f=0.2801 <s**2>=0.000 5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000 5.6027 eV 221.29 nm f=0.0027 <s**2>=0.000</s**2></s**2></s**2>
112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->122 Excited State 111 ->119 112 ->120 114 ->119 115 ->119 116 ->120 117 ->121 118 ->121 Excited State 109 ->119 111 ->120 112 ->119	 10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888 -0.12641 0.17888 -0.12641 0.17888 -0.12641 0.17888 -0.12641 0.17888 -0.12641 0.12817 0.12495 -0.30754 0.31227 12: Singlet-A 0.11060 0.12699 0.20366 	5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000 5.6027 eV 221.29 nm f=0.0027 <s**2>=0.000</s**2></s**2>
Excited State 112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->122 Excited State 111 ->119 112 ->120 114 ->119 115 ->119 116 ->119 116 ->120 117 ->121 118 ->121 Excited State 109 ->119 111 ->120 111 ->120 112 ->119 111 ->120 112 ->119 112 ->120	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888 -0.18788 0.20369 -0.10614 -0.12817 0.12495 -0.30754 0.31227 12: Singlet-A 0.11060 0.12699 0.20366 -0.23648	5.4163 eV 228.91 nm f=0.2801 <s**2>=0.000 5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000 5.6027 eV 221.29 nm f=0.0027 <s**2>=0.000</s**2></s**2></s**2>
Excited state 112 ->119 112 ->120 116 ->119 116 ->120 117 ->121 118 ->122 Excited State 111 ->119 112 ->120 114 ->119 115 ->119 116 ->120 117 ->121 118 ->121 Excited State 109 ->119 111 ->120 112 ->120 112 ->121 118 ->121 Excited State 109 ->119 111 ->120 112 ->119 111 ->120 112 ->119 111 ->120 112 ->119 113 ->120 113 ->120	10: Singlet-A 0.15796 -0.21508 -0.29467 0.35515 0.17902 -0.27646 -0.11302 11: Singlet-A -0.12641 0.17888 -0.18788 0.20369 -0.10614 -0.12817 0.12495 -0.30754 0.31227 12: Singlet-A 0.11060 0.12699 0.20366 -0.23648 -0.10388	5.4163 eV 228.91 nm f=0.2801 <s**2>=0.000 5.5389 eV 223.84 nm f=0.1438 <s**2>=0.000 5.6027 eV 221.29 nm f=0.0027 <s**2>=0.000</s**2></s**2></s**2>

114 ->120	-0.16234	
115 ->120	-0.23291	
116 ->119	0.15509	
116 ->120	-0.22325	
117 ->121	0.13991	
118 ->122	0.27254	
Excited State	13: Singlet-A	5.6320 eV 220.14 nm f=0.0377 <s**2>=0.000</s**2>
112 ->119	-0.11820	
114 ->120	0.14687	
115 ->119	-0.22198	
115 ->120	0.15264	
117 ->121	0.17772	
117 ->122	0.12508	
118 ->122	0.48304	
Excited State	14: Singlet-A	5.6644 eV 218.88 nm f=0.0257 <s**2>=0.000</s**2>
114 ->119	0.10544	
114 ->122	-0.12548	
114 ->123	-0.11500	
115 ->119	0.44893	
115 ->120	0.32237	
116 ->120	-0.18475	
117 ->121	0.12115	
Excited State	15: Singlet-A	5.6760 eV 218.44 nm f=0.0367 <s**2>=0.000</s**2>
110 ->120	0.15808	
111 ->120	-0.23426	
112 ->119	-0.15913	
112 ->120	0.10500	
113 ->119	-0.10981	
113 ->120	0.12878	
114 ->119	0.27467	
114 ->120	-0.25710	
114 ->122	0.10346	
115 ->119	0.19641	
115 ->120	-0.11781	
116 ->119	-0.10490	
116 ->120	0.18356	
117 ->121	0.11391	
Excited State	16: Singlet-A	5.7279 eV 216.46 nm f=0.2683 <s**2>=0.000</s**2>
111 ->120	0.10084	
114 ->119	0.39007	
114 ->121	0.10622	
115 ->119	-0.23077	
115 ->122	-0.10245	
116 ->121	-0.12824	
117 ->121	0.10074	
117 ->122	-0.21226	
118 ->123	-0.26389	
Excited State	17: Singlet-A	5.7818 eV 214.44 nm f=0.3069 <s**2>=0.000</s**2>
110 ->119	-0.13483	
110 ->120	-0.15907	

113 ->119	-0.21611	
113 ->120	-0.10451	
114 ->119	0.20755	
114 ->120	0.22425	
115 ->120	-0.22526	
116 ->121	0.13794	
117 ->122	0.28329	
Excited State	18: Singlet-A	5.8187 eV 213.08 nm f=0.0402 <s**2>=0.000</s**2>
109 ->119	0.11169	
110 ->119	0.11481	
111 ->119	0.15818	
113 ->119	0.19128	
113 ->120	0.13603	
114 ->119	0.23480	
114 ->120	0.10711	
117 ->121	-0.23853	
117 ->123	0.17972	
118 ->121	-0 13082	
118 ->123	0 31768	
Excited State	19 [.] Singlet-A	5 8873 eV 210 60 nm f=0 1652 <s**2>=0 000</s**2>
110 ->120	0 10738	
111 ->120	-0 15792	
112 ->119	0.10918	
113 ->119	0.26800	
113 ->120	0.17777	
113 ->125	-0 11098	
114 ->122	-0.11715	
114 > 122 115 =>120	-0.20212	
115 ->120	0.15391	
116 ->121	0.13565	
117 ->121	0.13303	
117 -> 122	-0.12006	
117 -> 123 118 -> 123	-0.12000	
Excited State	20° Singlet-A	5.9297 eV 209.09 nm f=0.0161 < $$*2>=0.000$
100 ->110	_0 12000	5.52) / CV 205.07 IIII 1 0.0101 <5 22 0.000
110 ->119	-0.12777	
111_>119	-0.14734	
111 -> 11)	-0.10004	
112 -> 110	0.24762	
$112 \rightarrow 110$ $112 \rightarrow 120$	0.11670	
112 -> 120	-0.13030	
11 <i>3</i> -> 119	0.13030	
114 -~ 120	-0.10/61	
115 -~120	-0.10401	
110 -~ 121	-0.15062	
117 -~ 122	0.10125	
110 - 123 118 > 124	0.30103	
110 -/124	0.140/0	

Table S13: Vertical excitation energies, wavelengths and oscillator strengths of 1 at theADC(2)/def2-SVP//B3LYP/6-31+G* level

Excited	Excitation energy	Absorption wavelength	Oscillator
state	[eV]	[nm]	strength
1	4.2690	290.43	0.0020695
2	4.3233	286.78	0.0193908
3	4.5328	273.53	0.0654905
4	4.6897	264.38	0.0054483
5	4.7111	263.18	0.0256373
6	4.7111	263.18	0.0257625
7	4.7111	263.17	0.0261809
8	4.7837	259.18	0.0100450
9	5.0076	247.59	0.0126053
10	5.3380	232.27	0.2318871
11	5.4145	228.99	0.0221695
12	5.4686	226.72	0.0846498
13	5.5590	223.04	0.0010145
14	5.6440	219.67	0.0244885
15	5.6969	217.64	0.0007262
16	5.8002	213.76	0.3046052
17	5.8172	213.13	0.0394195
18	5.9973	206.73	0.0370365
19	6.7352	184.08	0.0138611

Total energies and Cartesian coordinates at the B3LYP/6-31+G* level **perylene**

E(hartree): -769.428663

С	0.030196	-0.087081	-0.042494
С	0.043297	-0.497862	1.288261
С	1.235387	-0.574690	2.033544
С	2.439071	-0.239460	1.454255
С	2.487943	0.186198	0.101192
С	1.274015	0.265927	-0.662655
С	3.722995	0.533934	-0.505478
С	3.759520	0.945783	-1.819207
С	2.571912	1.025240	-2.571323
С	1.331748	0.696803	-2.029138
С	0.082925	0.778723	-2.814986
С	-1.160894	0.425781	-2.194824
С	-2.374815	0.505470	-2.958684
С	-2.325914	0.930925	-4.311796
С	-1.122193	1.265990	-4.891133

С	0.069877	1.189252	-4.145829
С	-1.218654	-0.005008	-0.828298
С	-2.458849	-0.333201	-0.286060
С	-3.646467	-0.253729	-1.038177
С	-3.609902	0.157893	-2.351963
Η	-4.591195	-0.520383	-0.571420
Η	-4.521636	0.222521	-2.941125
Η	-3.251951	0.986936	-4.879126
Η	-1.082336	1.592091	-5.927255
Η	0.993986	1.462589	-4.642636
Η	2.648239	1.354380	-3.601541
Η	4.704231	1.212592	-2.285910
Η	4.634758	0.469290	0.083635
Η	3.365139	-0.295510	2.021532
Η	1.195547	-0.900980	3.069606
Η	-0.880781	-0.771371	1.785033
Η	-2.535216	-0.662140	0.744220

1

E(hartree): -1648.728635

С	-0.376530	-1.197565	-1.248815
С	-1.097923	-0.515984	-0.271524
С	-2.517957	-0.742157	-0.176220
С	-3.165107	-1.573840	-1.151572
С	-2.390583	-2.183003	-2.174060
С	-1.026106	-2.025530	-2.203013
С	-4.567975	-1.793599	-1.060946
С	-5.308243	-1.243844	-0.038503
С	-4.668977	-0.450474	0.945786
С	-3.314577	-0.204578	0.876204
С	-0.429379	0.444334	0.664974
С	0.542790	0.035812	1.583102
С	1.051942	0.976821	2.528526
С	0.644127	2.285303	2.540022

С	-0.278555	2.759178	1.571573
С	-0.813087	1.836007	0.614559
С	-1.684698	2.356135	-0.385653
С	-2.023974	3.692703	-0.419281
С	-1.516505	4.591013	0.549658
С	-0.657918	4.128081	1.522033
С	1.139132	-1.330678	1.632855
С	1.683633	-1.958966	0.488771
С	2.332897	-3.195903	0.601174
С	2.454065	-3.825539	1.840954
С	1.908359	-3.220496	2.975360
С	1.265339	-1.986272	2.870061
Р	1.450187	-1.318515	-1.212051
С	2.192319	0.345125	-1.336865
С	1.679875	1.266961	-2.261967
С	2.322308	2.488849	-2.468699
С	3.484616	2.797946	-1.756199
С	4.003443	1.881649	-0.836930
С	3.361199	0.659423	-0.628382
0	1.973634	-2.272544	-2.255945
Η	0.778013	1.031717	-2.821730
Η	1.915146	3.198674	-3.184147
Η	3.984608	3.749718	-1.917308
Η	4.907867	2.117836	-0.281912
Η	3.770886	-0.049495	0.086633
Η	2.728482	-3.656631	-0.300011
Η	2.960946	-4.783838	1.917870
Η	1.979174	-3.708536	3.944268
Η	0.838862	-1.526696	3.758048
Η	1.803785	0.641573	3.237032
Η	1.051566	2.981765	3.269534
Η	-0.245229	4.807894	2.264359
Η	-1.796599	5.640711	0.517646
Н	-2.685688	4.059091	-1.200042

Η	-2.082519	1.690476	-1.143165
Н	-2.841526	0.400817	1.641423
Η	-5.250914	-0.034366	1.764145
Η	-6.378221	-1.425195	0.022750
Η	-5.044304	-2.418822	-1.812936
Η	-2.889557	-2.803825	-2.914921
Η	-0.414359	-2.536264	-2.941115

2

E(hartree): -1647.540285

С	1.644331	1.365867	-0.648824
С	1.436377	2.737454	-1.003137
С	0.161138	3.130275	-1.481760
С	-0.815912	2.190430	-1.670989
С	-0.655392	0.825981	-1.282822
С	0.542984	0.431201	-0.646587
С	2.977051	0.940771	-0.345020
С	3.992305	1.892171	-0.256136
С	3.755514	3.253298	-0.514999
С	2.499661	3.668445	-0.906012
С	0.779186	-0.880701	-0.001189
С	2.134333	-1.360298	0.087861
С	3.241543	-0.492721	-0.166352
С	2.396399	-2.711859	0.487054
С	3.726182	-3.204332	0.466822
С	4.771013	-2.377736	0.110435
С	4.529782	-1.022992	-0.183219
С	-0.225205	-1.678092	0.573610
С	0.056866	-2.993297	1.029117
С	1.320117	-3.521383	0.932525
С	-1.776592	-0.058786	-1.723236
С	-2.501805	-0.922520	-0.882400
С	-3.581177	-1.672813	-1.369098
С	-3.963683	-1.569623	-2.705450

С	-3.251102	-0.720639	-3.557956
С	-2.178720	0.026470	-3.071905
Р	-1.967232	-1.191824	0.825162
С	-1.994063	0.414581	1.699354
С	-1.017857	0.730205	2.655526
С	-1.121207	1.902500	3.407411
С	-2.202787	2.766300	3.214242
С	-3.183973	2.453740	2.268579
С	-3.080995	1.282953	1.515241
0	-2.767922	-2.260404	1.524955
Η	-0.174333	0.063696	2.814160
Η	-0.357000	2.140394	4.142935
Η	-2.282262	3.678645	3.800039
Η	-4.029121	3.120580	2.117409
Η	-3.848848	1.045927	0.782695
Η	-4.102922	-2.335641	-0.684043
Η	-4.802616	-2.149616	-3.080856
Η	-3.525332	-0.643291	-4.607139
Η	-1.625053	0.670570	-3.749662
Η	-1.769792	2.488224	-2.095569
Η	-0.016314	4.172966	-1.734259
Η	2.308518	4.709717	-1.154316
Η	4.570320	3.966977	-0.426538
Η	4.994736	1.585718	0.023307
Η	5.375033	-0.386892	-0.424404
Η	5.788258	-2.759242	0.079971
Η	3.905606	-4.239768	0.746011
Η	1.518231	-4.545016	1.241588
Η	-0.761128	-3.572447	1.447477

$(S_P, P)-1$

E(h	artree): -16	48.728635	
С	1.265496	1.986266	2.870023
С	1.139219	1.330713	1.632811

С	1.683648	1.959039	0.488701
С	2.332899	3.195974	0.601098
С	2.454133	3.825578	1.840892
С	1.908511	3.220502	2.975310
С	0.542902	-0.035801	1.583071
С	-0.429334	-0.444301	0.665032
С	-0.813010	-1.835993	0.614590
С	-0.278376	-2.759180	1.571536
С	0.644404	-2.285319	2.539904
С	1.052201	-0.976835	2.528400
С	-1.684681	-2.356111	-0.385561
С	-2.023952	-3.692684	-0.419188
С	-1.516422	-4.590999	0.549707
С	-0.657747	-4.128076	1.522017
С	-1.097974	0.515985	-0.271433
С	-0.376603	1.197518	-1.248785
С	-1.026233	2.025395	-2.203023
С	-2.390718	2.182814	-2.174053
С	-3.165202	1.573709	-1.151503
С	-2.518006	0.742109	-0.176112
С	-4.568069	1.793464	-1.060828
С	-5.308283	1.243781	-0.038310
С	-4.668982	0.450458	0.945996
С	-3.314586	0.204564	0.876371
Р	1.450106	1.318573	-1.212087
С	2.192315	-0.345039	-1.336903
0	1.973400	2.272638	-2.256034
Η	2.728407	3.656746	-0.300096
Η	2.961020	4.783874	1.917809
Η	1.979381	3.708527	3.944220
Η	0.839069	1.526665	3.758021
Η	1.804131	-0.641588	3.236811
Η	1.051927	-2.981804	3.269349
Η	-0.245008	-4.807905	2.264300

Η	-1.796539	-5.640692	0.517736
Η	-2.685697	-4.059062	-1.199925
Η	-2.082557	-1.690442	-1.143036
Η	-2.841489	-0.400782	1.641599
Η	-5.250902	0.034394	1.764385
Η	-6.378252	1.425159	0.023004
Η	-5.044443	2.418644	-1.812826
Η	-2.889741	2.803528	-2.914972
Η	-0.414520	2.536096	-2.941173
С	3.360960	-0.659570	-0.628195
С	4.003144	-1.881845	-0.836763
С	3.484452	-2.797938	-1.756283
С	2.322336	-2.488604	-2.469033
С	1.679981	-1.266703	-2.262281
Η	3.770548	0.049195	0.087035
Η	4.907409	-2.118176	-0.281553
Η	3.984364	-3.749747	-1.917416
Η	1.915293	-3.198297	-3.184678
Η	0.778303	-1.031259	-2.822251

$(S_{P}, M)-1$

E(h	artree): -16	48.675768	
С	2.311982	2.965961	-0.845832
С	1.830698	1.667896	-0.551202
С	2.571467	0.591603	-1.070961
С	3.728456	0.795867	-1.835931
С	4.185348	2.084905	-2.101196
С	3.465615	3.171949	-1.600358
С	0.540290	1.623390	0.208839
С	-0.645227	0.897378	-0.110146
С	-1.879068	1.670648	0.071117
С	-1.946437	2.729038	1.032738
С	-0.753367	3.098807	1.705777
С	0.439538	2.632857	1.221211

С	-3.012094	1.500469	-0.775954
С	-4.158757	2.251601	-0.612856
С	-4.258110	3.199499	0.431258
С	-3.162615	3.435443	1.233269
С	-0.749695	-0.490945	-0.623934
С	0.301132	-1.226785	-1.216097
С	0.028873	-2.364566	-2.020126
С	-1.245074	-2.862488	-2.151854
С	-2.261493	-2.382428	-1.288715
С	-1.994991	-1.244680	-0.453154
С	-3.498104	-3.078150	-1.170387
С	-4.399490	-2.759592	-0.180878
С	-4.077016	-1.739171	0.744516
С	-2.921315	-0.999706	0.603412
Р	2.072326	-1.113475	-0.793526
С	2.133046	-1.391179	1.019952
0	2.905817	-2.099818	-1.571622
Η	4.255429	-0.076013	-2.213461
Η	5.083006	2.238733	-2.693928
Η	3.789402	4.188492	-1.809615
Η	1.746302	3.829615	-0.511858
Η	1.368900	3.030616	1.617887
Η	-0.784053	3.825325	2.514038
Η	-3.193254	4.205496	2.001007
Η	-5.176328	3.763706	0.571876
Η	-4.990559	2.111741	-1.298297
Η	-2.964612	0.787177	-1.590060
Η	-2.699948	-0.237186	1.338952
Η	-4.741187	-1.536773	1.580713
Η	-5.329238	-3.313737	-0.081813
Η	-3.689461	-3.906340	-1.849038
Η	-1.452285	-3.698791	-2.815142
Η	0.870332	-2.841776	-2.514206
С	3.066705	-0.707221	1.812883

С	3.191766	-1.003272	3.172328
С	2.385874	-1.986601	3.751808
С	1.456943	-2.676922	2.967225
С	1.331923	-2.382896	1.608285
Η	3.697440	0.059836	1.371512
Η	3.917456	-0.465280	3.777140
Η	2.481956	-2.215869	4.810154
Η	0.829505	-3.444781	3.412560
Η	0.608947	-2.927754	1.007207

E(h	artree): -16	648.654157	
С	3.554413	1.196181	-0.396738
С	2.775226	0.005266	-0.375068
С	3.533821	-1.188889	-0.653767
С	4.954877	-1.181222	-0.586988
С	5.659782	-0.011394	-0.421572
С	4.936904	1.198579	-0.408640
С	1.308054	-0.099778	-0.233002
С	0.746858	-1.199325	-0.916578
С	1.538548	-2.279589	-1.410642
С	2.876777	-2.341784	-1.148207
С	0.365601	0.721714	0.660492
С	-0.631660	0.013298	1.368235
С	-1.776461	0.672259	1.916376
С	-2.007851	1.999497	1.709873
С	-0.969630	2.798064	1.174001
С	0.283976	2.188962	0.807798
С	-1.137549	4.209265	1.137162
С	-0.077616	5.052966	0.896095
С	1.203598	4.480961	0.768264
С	1.366427	3.108104	0.735867
С	-0.739753	-1.465317	1.616633
С	-1.195070	-2.324674	0.604940

С	-1.496824	-3.663170	0.872079
С	-1.360339	-4.154608	2.173053
С	-0.901129	-3.309820	3.188212
С	-0.604614	-1.969993	2.916564
Р	-1.024836	-1.707659	-1.093600
0	-1.216784	-2.793547	-2.122188
С	-2.118119	-0.286291	-1.423801
С	-1.671044	0.816972	-2.163826
С	-2.571703	1.808067	-2.561010
С	-3.924601	1.700949	-2.228126
С	-4.377235	0.599116	-1.495662
С	-3.478823	-0.391454	-1.096857
Η	-1.810771	-4.307655	0.055243
Η	-1.595856	-5.193110	2.390792
Η	-0.774606	-3.692416	4.197971
Η	-0.267653	-1.313076	3.714772
Η	-2.519486	0.062205	2.420281
Η	-2.941638	2.464274	2.016367
Η	-2.124024	4.609024	1.361466
Η	-0.211228	6.131250	0.883995
Η	2.083547	5.118618	0.730768
Η	2.369932	2.734543	0.778365
Η	3.062998	2.140211	-0.536088
Η	5.464403	2.148551	-0.447599
Η	6.745877	-0.012159	-0.388717
Η	5.474955	-2.124790	-0.736295
Η	3.459962	-3.223593	-1.402722
Η	1.032539	-3.090135	-1.925139
Η	-3.838709	-1.250797	-0.535984
Η	-5.429756	0.508517	-1.239004
Η	-4.624958	2.470994	-2.541915
Η	-2.215632	2.661571	-3.132150
Η	-0.622144	0.903769	-2.433866

 $(R_P, M)-2$

E(hartree): -1647.540285

С	-4.529829	-1.022929	0.183057
С	-3.241577	-0.492683	0.166245
С	-2.134368	-1.360266	-0.087943
С	-2.396448	-2.711822	-0.487146
С	-3.726239	-3.204275	-0.466962
С	-4.771076	-2.377664	-0.110616
С	-0.779211	-0.880683	0.001128
С	-0.543016	0.431211	0.646549
С	-1.644357	1.365882	0.648774
С	-2.977080	0.940808	0.344942
С	-1.436406	2.737468	1.003096
С	-0.161176	3.130287	1.481742
С	0.815859	2.190426	1.671005
С	0.655346	0.825980	1.282829
С	-3.992334	1.892211	0.256076
С	-3.755544	3.253331	0.514970
С	-2.499686	3.668464	0.905984
С	-1.320179	-3.521369	-0.932600
С	-0.056921	-2.993290	-1.029188
С	0.225168	-1.678092	-0.573684
С	1.776521	-0.058789	1.723263
С	2.501684	-0.922589	0.882450
С	3.580969	-1.672979	1.369187
С	3.963460	-1.569802	2.705548
С	3.250949	-0.720725	3.558020
С	2.178639	0.026463	3.071935
Р	1.967196	-1.191864	-0.825154
0	2.767932	-2.260440	-1.524892
С	1.994119	0.414575	-1.699284
С	1.017858	0.730544	-2.655274
С	1.121418	1.902871	-3.407086
С	2.203267	2.766357	-3.214024

С	3.184527	2.453447	-2.268549
С	3.081342	1.282628	-1.515292
Η	0.174109	0.064297	-2.813805
Η	0.357161	2.141044	-4.142464
Η	2.282897	3.678721	-3.799769
Η	4.029880	3.120044	-2.117462
Η	3.849253	1.045332	-0.782901
Η	4.102675	-2.335860	0.684155
Η	4.802323	-2.149875	3.080980
Η	3.525168	-0.643370	4.607204
Η	1.625007	0.670609	3.749675
Η	1.769718	2.488217	2.095623
Η	0.016310	4.172981	1.734198
Η	-2.308543	4.709729	1.154310
Η	-4.570347	3.967015	0.426535
Η	-4.994764	1.585761	-0.023374
Η	-5.375073	-0.386809	0.424210
Η	-5.788325	-2.759159	-0.080209
Η	-3.905676	-4.239702	-0.746169
Η	-1.518284	-4.545011	-1.241630
Н	0.761057	-3.572449	-1.447564

$(R_P, P)-2$

E(h	artree): -164	7.532405	
С	-3.962389	-2.607257	-0.771279
С	-3.124273	-1.585787	-0.329341
С	-1.709905	-1.725361	-0.490254
С	-1.194659	-2.987341	-0.930597
С	-2.085074	-4.005379	-1.356430
С	-3.448110	-3.803608	-1.303890
С	-0.813586	-0.643412	-0.172380
С	-1.400693	0.697996	0.043151
С	-2.780091	0.752199	0.465016
С	-3.633869	-0.389330	0.350375

С	-3.343594	1.970234	0.962774
С	-2.563754	3.152321	0.907193
С	-1.333462	3.129082	0.307650
С	-0.729586	1.922130	-0.155361
С	-4.930175	-0.327745	0.859399
С	-5.442271	0.848045	1.434572
С	-4.667514	1.988853	1.466273
С	0.203768	-3.206667	-0.883022
С	1.037200	-2.235199	-0.387631
С	0.557458	-0.944436	-0.037442
С	0.544112	2.144651	-0.901882
С	1.777498	1.533021	-0.593611
С	2.946115	1.930199	-1.261715
С	2.903731	2.896797	-2.265144
С	1.680123	3.476207	-2.610038
С	0.522340	3.113495	-1.925276
Р	1.724361	0.261487	0.706337
0	1.308702	0.763508	2.063620
С	3.386559	-0.517871	0.777405
С	4.106395	-1.004360	-0.328011
С	5.376231	-1.558691	-0.156059
С	5.941791	-1.633305	1.121597
С	5.234134	-1.150561	2.224510
С	3.963012	-0.593834	2.054209
Η	3.680007	-0.954605	-1.326630
Η	5.923170	-1.931479	-1.018506
Η	6.930745	-2.065179	1.253405
Η	5.669678	-1.204729	3.218953
Η	3.405033	-0.209383	2.903273
Η	3.899167	1.490148	-0.988599
Η	3.817819	3.194337	-2.772281
Η	1.627166	4.216240	-3.404537
Η	-0.424260	3.575884	-2.190859
Н	-0.763654	4.048656	0.218102

Η	-2.967837	4.078949	1.307687
Н	-5.061515	2.919213	1.868389
Η	-6.453549	0.856048	1.832453
Η	-5.566517	-1.205597	0.821875
Н	-5.039024	-2.490948	-0.704043
Н	-4.132465	-4.576079	-1.644921
Η	-1.673829	-4.946638	-1.713168
Η	0.601653	-4.171594	-1.188435
Н	2.088410	-2.464159	-0.264745

E(hartree): -1647.493352

С	0.862915	3.833471	-0.320583
С	0.659680	2.420858	-0.277014
С	1.822461	1.672138	0.044144
С	3.082456	2.298773	0.142530
С	3.248716	3.665414	-0.022166
С	2.106114	4.440415	-0.216841
С	-0.750676	1.940328	-0.482825
С	-1.424370	0.710636	-0.163046
С	-2.871097	0.799714	0.017107
С	-3.584163	2.031269	-0.143190
С	-2.923781	3.066148	-0.844378
С	-1.581313	2.975490	-1.044103
С	-0.842721	-0.666558	-0.129750
С	-1.753505	-1.796690	-0.202283
С	-3.142219	-1.661076	0.094625
С	-3.665149	-0.331226	0.383542
С	-1.280169	-3.112801	-0.531112
С	0.099638	-3.317654	-0.748954
С	0.973077	-2.294869	-0.501938
С	0.533100	-0.989305	-0.151598
С	-3.988054	-2.768165	0.020184
С	-3.512922	-4.040604	-0.331417

С	-2.174819	-4.209234	-0.608368
С	-4.919976	2.175540	0.293642
С	-5.577026	1.110435	0.875543
С	-4.954652	-0.145590	0.886057
Р	1.790939	-0.005147	0.703737
0	1.583311	-0.032888	2.197073
С	3.421569	-0.727101	0.250024
С	4.175130	-1.299391	1.282962
С	5.427670	-1.861457	1.012600
С	5.932176	-1.853045	-0.289728
С	5.184354	-1.279898	-1.325717
С	3.935412	-0.718423	-1.056958
Η	3.361729	-0.271739	-1.866152
Η	5.575511	-1.269216	-2.340021
Η	6.905855	-2.288528	-0.500322
Η	6.007163	-2.302512	1.819683
Η	3.771374	-1.293037	2.291817
Η	3.949881	1.695687	0.386262
Η	4.233345	4.117279	0.059271
Η	2.171076	5.524617	-0.261825
Η	0.016094	4.499746	-0.386086
Η	-1.107995	3.747626	-1.633571
Η	-3.488497	3.916239	-1.219362
Η	-5.407650	3.139863	0.173676
Η	-6.583225	1.222682	1.270170
Η	-5.507254	-0.997078	1.268106
Η	-5.049641	-2.647035	0.202730
Η	-4.202729	-4.878326	-0.389988
Η	-1.777685	-5.184580	-0.878378
Η	0.459660	-4.301930	-1.037616
Η	2.035294	-2.494671	-0.556985

Total energies and Cartesian coordinates at the B3LYP-D3/cc-pVDZ level (S_P, P) -1

E(hartree): -1648.837998

С	1.203543	2.278307	2.708831
С	1.080707	1.562097	1.506105
С	1.466016	2.204015	0.305714
С	1.957949	3.515109	0.324227
С	2.077981	4.207076	1.531597
С	1.690623	3.587405	2.723166
С	0.672513	0.128878	1.525620
С	-0.293364	-0.424822	0.680804
С	-0.447027	-1.857144	0.624533
С	0.320162	-2.691546	1.501425
С	1.220776	-2.082218	2.414943
С	1.399075	-0.722267	2.411996
С	-1.295837	-2.494810	-0.326195
С	-1.389558	-3.869438	-0.393508
С	-0.646678	-4.687334	0.492595
С	0.190400	-4.105032	1.419656
С	-1.159056	0.416653	-0.205732
С	-0.610786	1.161165	-1.246028
С	-1.425858	1.888431	-2.151721
С	-2.794106	1.872160	-2.014284
С	-3.404564	1.173036	-0.936797
С	-2.583412	0.444711	-0.009709
С	-4.815217	1.193392	-0.746297
С	-5.397335	0.542717	0.319410
С	-4.587302	-0.155453	1.250177
С	-3.219193	-0.204447	1.088849
Р	1.193938	1.465745	-1.355230
С	2.027377	-0.164281	-1.400151
0	1.561217	2.418310	-2.483507
Η	2.231316	3.977778	-0.626798
Н	2.464152	5.228681	1.541194
Н	1.764819	4.125266	3.671154
Н	0.899623	1.801576	3.643489

Η	2.142942	-0.270148	3.070239
Η	1.800932	-2.714636	3.091384
Η	0.780216	-4.723435	2.101103
Η	-0.733100	-5.774507	0.433305
Η	-2.039994	-4.330559	-1.140067
Η	-1.867944	-1.883927	-1.023031
Η	-2.607033	-0.741401	1.813155
Η	-5.051135	-0.656071	2.102944
Η	-6.480833	0.569799	0.455001
Η	-5.429789	1.745754	-1.461689
Η	-3.428710	2.417697	-2.717368
Η	-0.932255	2.459752	-2.940503
С	3.235607	-0.370743	-0.718652
С	3.878599	-1.608225	-0.793431
С	3.319135	-2.644906	-1.547534
С	2.118072	-2.440744	-2.233943
С	1.475662	-1.203473	-2.164223
Η	3.664720	0.431911	-0.114430
Η	4.814972	-1.766704	-0.253636
Η	3.817667	-3.615709	-1.596176
Η	1.672554	-3.251276	-2.814440
Н	0.528646	-1.052106	-2.686980

 $(S_P,M)-1$

	·		
E(h	artree): -16	48.782878	
С	2.593555	2.676502	-1.050269
С	2.013103	1.448787	-0.653044
С	2.693987	0.280890	-1.036581
С	3.888883	0.321103	-1.765963
С	4.445947	1.545092	-2.133331
С	3.786466	2.723744	-1.772313
С	0.708843	1.552348	0.075479
С	-0.520163	0.893922	-0.226904
С	-1.700137	1.755043	-0.106065

С	-1.710342	2.858652	0.806367
С	-0.499828	3.191135	1.469516
С	0.666280	2.624938	1.024367
С	-2.835478	1.609835	-0.955775
С	-3.943407	2.422996	-0.827266
С	-3.994924	3.419179	0.175923
С	-2.888707	3.636769	0.969143
С	-0.715253	-0.510727	-0.658789
С	0.296584	-1.360563	-1.158605
С	-0.021483	-2.533733	-1.888363
С	-1.324819	-2.946677	-2.040566
С	-2.333827	-2.333311	-1.253755
С	-2.012113	-1.165284	-0.479963
С	-3.624563	-2.925271	-1.138767
С	-4.530510	-2.476823	-0.204471
С	-4.158908	-1.430642	0.674120
С	-2.945094	-0.791290	0.533224
Р	2.041601	-1.344083	-0.614744
С	1.893935	-1.362406	1.220147
0	2.850120	-2.489423	-1.206525
Η	4.361090	-0.628002	-2.028246
Η	5.379083	1.580602	-2.699372
Η	4.193912	3.693842	-2.066437
Η	2.079030	3.610284	-0.819623
Η	1.621173	2.985089	1.410718
Η	-0.491741	3.963936	2.241300
Η	-2.880188	4.444960	1.704847
Η	-4.888588	4.036341	0.290792
Η	-4.784749	2.295450	-1.511653
Η	-2.820886	0.854646	-1.739602
Η	-2.682630	-0.002419	1.234321
Η	-4.833947	-1.128655	1.477680
Η	-5.508704	-2.952985	-0.108219
Н	-3.859195	-3.781598	-1.775937

Η	-1.571743	-3.815783	-2.654745
Η	0.811206	-3.111593	-2.294406
С	2.795062	-0.636854	2.013763
С	2.718955	-0.706527	3.407222
С	1.743385	-1.501346	4.016593
С	0.845747	-2.231067	3.229879
С	0.919972	-2.164147	1.837231
Η	3.551806	-0.006081	1.542067
Η	3.420654	-0.134282	4.018481
Η	1.680924	-1.551178	5.106196
Η	0.081656	-2.852484	3.702376
Η	0.209976	-2.729065	1.229712

E(h	E(hartree): -1648.764346				
С	-1.633977	0.869264	-1.930421		
С	-2.068524	-0.355820	-1.408956		
С	-3.435953	-0.567044	-1.172063		
С	-4.357293	0.446881	-1.437982		
С	-3.918729	1.675434	-1.944358		
С	-2.558552	1.883916	-2.191119		
Р	-0.929733	-1.759750	-1.137350		
С	-1.097151	-2.393428	0.559424		
С	-0.730684	-1.508407	1.584237		
С	-0.612790	-2.001636	2.889387		
С	-0.838546	-3.359183	3.148658		
С	-1.203275	-4.231265	2.116987		
С	-1.323661	-3.748780	0.810070		
С	-0.684136	-0.032452	1.313950		
С	0.331443	0.701014	0.664354		
С	0.183079	2.163237	0.786434		
С	-1.129835	2.721373	0.983476		
С	-2.187318	1.884517	1.422722		
С	-1.909767	0.582840	1.722794		

С	1.235439	3.116765	0.857569
С	1.019416	4.483303	0.839073
С	-0.289575	5.003420	0.769346
С	-1.343470	4.123836	0.886563
С	1.327461	-0.076477	-0.200864
С	0.822273	-1.177543	-0.928838
С	1.662691	-2.198344	-1.462242
С	3.005786	-2.199296	-1.210570
С	3.603811	-1.038779	-0.659867
С	2.784915	0.097949	-0.313403
С	5.023192	-0.960282	-0.582542
С	5.664530	0.230143	-0.325873
С	4.880445	1.398507	-0.220954
С	3.500352	1.324615	-0.225551
0	-1.082071	-2.855983	-2.182478
Η	-1.567351	-4.406133	-0.027553
Η	-1.380731	-5.287788	2.330003
Η	-0.728348	-3.737305	4.167749
Η	-0.344624	-1.321171	3.700675
Η	-2.671770	-0.055900	2.170424
Η	-3.180158	2.306490	1.590025
Η	-2.369386	4.491380	0.969146
Η	-0.460951	6.080185	0.711068
Η	1.874116	5.159181	0.917111
Η	2.238768	2.770236	1.054164
Η	2.951808	2.251093	-0.276898
Η	5.361540	2.378109	-0.170688
Η	6.754333	0.282532	-0.282986
Η	5.596659	-1.867075	-0.790725
Η	3.635219	-3.041801	-1.506837
Η	1.184873	-3.015283	-2.004916
Η	-3.778032	-1.525346	-0.773718
Η	-5.420022	0.279265	-1.248517
Η	-4.639017	2.471316	-2.147821

Η	-2.211789	2.843606	-2.580126
Н	-0.572164	1.038864	-2.116135

 $(R_P, M)-2$

E(h	artree): -16	647.645101	
С	-4.493677	-1.054163	0.312172
С	-3.204729	-0.525702	0.256517
С	-2.109408	-1.395502	-0.042481
С	-2.385324	-2.743672	-0.447328
С	-3.715424	-3.234189	-0.382239
С	-4.745639	-2.407915	0.018515
С	-0.752773	-0.917320	0.000351
С	-0.487861	0.388708	0.643908
С	-1.582243	1.329132	0.680226
С	-2.928167	0.907646	0.427652
С	-1.350380	2.702928	1.013538
С	-0.052612	3.090993	1.436332
С	0.924301	2.144724	1.600109
С	0.736691	0.778395	1.231985
С	-3.942104	1.864662	0.376489
С	-3.686288	3.226855	0.615651
С	-2.412538	3.639460	0.950294
С	-1.326025	-3.547084	-0.947890
С	-0.068660	-3.013388	-1.095076
С	0.224733	-1.705131	-0.630241
С	1.867864	-0.116048	1.622253
С	2.554190	-0.967562	0.737413
С	3.647022	-1.735755	1.157613
С	4.084900	-1.660279	2.479778
С	3.414782	-0.821524	3.377529
С	2.326483	-0.057060	2.953988
Р	1.948118	-1.185878	-0.958010
0	2.740040	-2.215909	-1.749532
С	1.872209	0.487872	-1.704614

С	0.792888	0.877944	-2.510340
С	0.784564	2.140775	-3.107206
С	1.855243	3.017946	-2.908099
С	2.938871	2.628936	-2.113741
С	2.948454	1.368029	-1.514166
Η	-0.051107	0.201465	-2.659250
Η	-0.063895	2.442294	-3.725520
Η	1.844787	4.007060	-3.371868
Η	3.776865	3.311900	-1.956550
Η	3.790589	1.070900	-0.884447
Η	4.132529	-2.386663	0.427095
Η	4.939420	-2.253971	2.811671
Η	3.737564	-0.765066	4.419724
Η	1.805338	0.583165	3.668837
Η	1.902191	2.438598	1.984102
Η	0.143714	4.140141	1.668708
Η	-2.204961	4.686853	1.181402
Η	-4.504184	3.947798	0.555399
Η	-4.961491	1.559624	0.139599
Η	-5.333042	-0.413825	0.584433
Η	-5.766598	-2.790297	0.081655
Η	-3.908040	-4.271492	-0.665570
Η	-1.537902	-4.571635	-1.262897
Η	0.740090	-3.577677	-1.563472

$(R_P, P)-2$

E(h	artree): -16	647.633082	
С	-3.963569	-2.606001	-0.755361
С	-3.121612	-1.582709	-0.321667
С	-1.707775	-1.723120	-0.496334
С	-1.194569	-2.983593	-0.946464
С	-2.089661	-4.001306	-1.366346
С	-3.452851	-3.800568	-1.297393
С	-0.809018	-0.643426	-0.179519

С	-1.391576	0.697597	0.046585
С	-2.766633	0.754046	0.479614
С	-3.624861	-0.385917	0.364656
С	-3.321486	1.973479	0.986713
С	-2.535792	3.153253	0.932304
С	-1.309125	3.128220	0.322767
С	-0.716113	1.920300	-0.151112
С	-4.920203	-0.319520	0.878242
С	-5.423720	0.856712	1.462150
С	-4.643732	1.994611	1.497381
С	0.205985	-3.201404	-0.913686
С	1.044108	-2.232003	-0.418839
С	0.563520	-0.944393	-0.057943
С	0.542224	2.132052	-0.926344
С	1.778484	1.519847	-0.630146
С	2.936693	1.890690	-1.330695
С	2.877389	2.835304	-2.355432
С	1.650456	3.418169	-2.685449
С	0.503312	3.079675	-1.968947
Р	1.721698	0.271907	0.700988
0	1.277525	0.799059	2.054774
С	3.385141	-0.504952	0.797967
С	4.116791	-1.005792	-0.293787
С	5.384489	-1.557195	-0.094741
С	5.930699	-1.612181	1.193025
С	5.207928	-1.113826	2.280422
С	3.939170	-0.560065	2.085078
Η	3.698420	-0.968181	-1.301933
Η	5.947907	-1.944581	-0.946736
Η	6.922569	-2.044024	1.346099
Η	5.632972	-1.154648	3.285911
Η	3.358099	-0.159364	2.918284
Η	3.897043	1.448882	-1.064886
Η	3.786029	3.115987	-2.892461

Η	1.586399	4.145037	-3.498301
Η	-0.450571	3.545674	-2.223923
Η	-0.733929	4.050089	0.226983
Η	-2.935834	4.083756	1.341404
Н	-5.033658	2.928935	1.907970
Η	-6.438410	0.867576	1.865363
Н	-5.564145	-1.198115	0.836971
Н	-5.044542	-2.490389	-0.674030
Н	-4.143365	-4.576723	-1.634152
Н	-1.679621	-4.945319	-1.732600
Н	0.603196	-4.168628	-1.230608
Η	2.101201	-2.462961	-0.302563

E(hartree): -1647.593246						
С	3.913187	-0.689293	-1.086144			
С	3.419101	-0.730106	0.227692			
С	4.180496	-1.321884	1.242613			
С	5.429896	-1.877290	0.945023			
С	5.918068	-1.840258	-0.363976			
С	5.159170	-1.245053	-1.380412			
Р	1.792522	-0.020845	0.722610			
0	1.605971	-0.086541	2.231602			
С	1.824334	1.668797	0.082085			
С	0.668330	2.417995	-0.258357			
С	0.875496	3.830578	-0.306026			
С	2.117570	4.435788	-0.175350			
С	3.254859	3.659562	0.052149			
С	3.083568	2.292617	0.213505			
С	-0.739233	1.939164	-0.484657			
С	-1.420705	0.712220	-0.168076			
С	-2.868845	0.808090	0.000864			
С	-3.577126	2.042024	-0.173653			
С	-2.905225	3.074611	-0.869236			

С	-1.560373	2.977980	-1.054465
С	-3.670745	-0.318716	0.368092
С	-3.148610	-1.654261	0.099677
С	-1.758049	-1.796278	-0.190717
С	-0.844888	-0.667203	-0.125639
С	-4.966205	-0.124645	0.855149
С	-5.584854	1.133619	0.829568
С	-4.917800	2.193466	0.248321
С	-1.286176	-3.117463	-0.506724
С	0.094305	-3.327177	-0.725108
С	0.970210	-2.302996	-0.489048
С	0.530325	-0.993420	-0.150559
С	-2.183111	-4.214093	-0.571008
С	-3.521299	-4.040426	-0.294386
С	-3.995477	-2.762905	0.041935
Η	3.322857	-0.221114	-1.877979
Η	5.542647	-1.213210	-2.402935
Η	6.893990	-2.273267	-0.596182
Η	6.023374	-2.337988	1.738177
Η	3.777134	-1.331857	2.257618
Η	3.946925	1.681408	0.476676
Η	4.242338	4.113104	0.156025
Η	2.186745	5.524652	-0.227221
Η	0.025980	4.498921	-0.400493
Η	-1.073533	3.755543	-1.635538
Η	-3.464837	3.931794	-1.250007
Η	-5.402519	3.163251	0.115509
Η	-6.599858	1.251707	1.213963
Η	-5.527467	-0.976538	1.238297
Η	-5.061705	-2.637564	0.225777
Η	-4.215122	-4.882192	-0.341751
Η	-1.785890	-5.197419	-0.832341
Η	0.453893	-4.319122	-1.006919
Η	2.038301	-2.503370	-0.541442

Total energies and Cartesian coordinates at the $\omega B97XD/cc\text{-}pVDZ$ level (S_P,P)-1

E(hartree): -1648.337612					
С	0.698882	2.597926	2.611961		
С	0.727958	1.827428	1.444588		
С	0.966059	2.478529	0.217481		
С	1.168414	3.859145	0.175924		
С	1.141116	4.609701	1.349080		
С	0.896936	3.976417	2.565641		
С	0.646134	0.341760	1.517585		
С	-0.173283	-0.429569	0.706259		
С	0.021398	-1.853714	0.653248		
С	0.999552	-2.463801	1.486062		
С	1.742641	-1.652803	2.382877		
С	1.575396	-0.297321	2.387907		
С	-0.681063	-2.679482	-0.268960		
С	-0.424301	-4.025771	-0.353639		
С	0.542589	-4.628372	0.484362		
С	1.236313	-3.860441	1.385290		
С	-1.218793	0.174037	-0.176545		
С	-0.867524	0.984714	-1.240954		
С	-1.837894	1.492435	-2.139524		
С	-3.160580	1.182760	-1.966048		
С	-3.577697	0.393911	-0.860437		
С	-2.605740	-0.108238	0.053820		
С	-4.952447	0.106226	-0.636849		
С	-5.350896	-0.630039	0.449571		
С	-4.388892	-1.110645	1.370955		
С	-3.053945	-0.858173	1.178306		
Р	0.828888	1.638989	-1.403783		
С	1.942865	0.195514	-1.414936		
0	0.981126	2.593616	-2.569278		
Н	1.333231	4.328739	-0.796114		
Η	1.301700	5.688353	1.311416		
---	-----------	-----------	-----------		
Η	0.859099	4.557566	3.488914		
Η	0.509839	2.107689	3.569310		
Η	2.198011	0.326640	3.031469		
Η	2.479606	-2.121679	3.038286		
Η	1.990999	-4.310262	2.034301		
Η	0.736339	-5.699629	0.408059		
Η	-0.968942	-4.635149	-1.076850		
Η	-1.420264	-2.232209	-0.932648		
Η	-2.321270	-1.226934	1.896465		
Η	-4.712890	-1.682578	2.242097		
Η	-6.409507	-0.839899	0.612047		
Η	-5.688412	0.490190	-1.346839		
Η	-3.913950	1.557174	-2.662638		
Η	-1.498249	2.134470	-2.954393		
С	3.109544	0.163084	-0.647124		
С	3.923235	-0.967122	-0.662533		
С	3.578603	-2.065929	-1.448195		
С	2.426881	-2.029462	-2.232892		
С	1.612911	-0.900597	-2.219040		
Η	3.369697	1.013169	-0.012230		
Η	4.825632	-0.993528	-0.049114		
Η	4.209897	-2.956465	-1.447770		
Η	2.152703	-2.889357	-2.846068		
Η	0.698166	-0.882688	-2.816177		

$(S_{P}, M)-1$

E(hartree): -1648.278512					
С	2.619365	2.711951	-0.886077		
С	2.029566	1.475095	-0.558066		
С	2.707035	0.326128	-0.982157		
С	3.914802	0.394059	-1.679883		
С	4.486442	1.626517	-1.972959		
С	3.826095	2.786750	-1.574434		

С	0.705406	1.561610	0.138630
С	-0.503676	0.917423	-0.204490
С	-1.688235	1.764584	-0.093180
С	-1.722762	2.852939	0.820312
С	-0.531858	3.178429	1.519799
С	0.639436	2.618102	1.103304
С	-2.803164	1.617347	-0.967749
С	-3.910640	2.422603	-0.859993
С	-3.986920	3.412221	0.145451
С	-2.904689	3.626944	0.961522
С	-0.695166	-0.480290	-0.681171
С	0.306232	-1.303177	-1.212169
С	-0.016969	-2.465843	-1.955923
С	-1.313659	-2.884333	-2.086153
С	-2.309161	-2.288157	-1.271922
С	-1.983746	-1.134873	-0.497298
С	-3.591818	-2.891229	-1.141190
С	-4.480919	-2.459253	-0.192468
С	-4.103180	-1.418148	0.687340
С	-2.902245	-0.772937	0.533527
Р	2.042139	-1.309416	-0.666391
С	1.863943	-1.429004	1.152402
0	2.846082	-2.420690	-1.308200
Η	4.387251	-0.543196	-1.979947
Η	5.432550	1.682586	-2.513238
Η	4.245214	3.766351	-1.811315
Η	2.103204	3.636605	-0.625841
Η	1.583371	2.965131	1.526292
Η	-0.544502	3.940956	2.300429
Η	-2.916821	4.426657	1.705217
Η	-4.884528	4.024842	0.243798
Η	-4.735182	2.296954	-1.563454
Η	-2.769947	0.867137	-1.755879
Η	-2.634214	0.009615	1.239706

Η	-4.767472	-1.127572	1.502701
Η	-5.453181	-2.942722	-0.083745
Η	-3.832600	-3.740184	-1.784772
Η	-1.567571	-3.746352	-2.706270
Η	0.812399	-3.025110	-2.392666
С	2.697290	-0.700534	2.006127
С	2.578360	-0.839345	3.387900
С	1.629220	-1.708331	3.922495
С	0.800304	-2.443594	3.074921
С	0.916597	-2.305739	1.694872
Η	3.437500	-0.012284	1.592310
Η	3.227475	-0.261892	4.048497
Н	1.532776	-1.813740	5.004716
Η	0.056567	-3.125882	3.490062
Н	0.259232	-2.878634	1.036958

transition state of 1

E(hartree): -1648.262302				
С	3.469737	1.368220	-0.234853	
С	2.775111	0.129498	-0.305994	
С	3.602564	-0.991010	-0.635515	
С	5.018403	-0.895668	-0.552355	
С	5.640380	0.300784	-0.307032	
С	4.842470	1.459397	-0.224845	
С	1.323012	-0.062199	-0.203180	
С	0.836084	-1.159521	-0.928342	
С	1.690222	-2.174029	-1.451184	
С	3.023474	-2.162026	-1.183721	
С	0.314379	0.702014	0.660337	
С	-0.682094	-0.040439	1.304584	
С	-1.916952	0.556403	1.713492	
С	-2.211239	1.846267	1.409017	
С	-1.163227	2.695917	0.970101	
С	0.146144	2.158746	0.776385	

С	-1.394807	4.092831	0.875144
С	-0.355574	4.981506	0.759772
С	0.957462	4.478261	0.833670
С	1.188596	3.120587	0.852627
С	-0.711567	-1.515967	1.567825
С	-1.065190	-2.399142	0.543894
С	-1.272203	-3.753536	0.790534
С	-1.144498	-4.236603	2.092304
С	-0.789938	-3.365288	3.121989
С	-0.583288	-2.008294	2.867284
Р	-0.897498	-1.760308	-1.142891
0	-1.026754	-2.844592	-2.192560
С	-2.051846	-0.378915	-1.404668
С	-1.641615	0.846145	-1.933438
С	-2.579448	1.847893	-2.175341
С	-3.927824	1.624207	-1.903296
С	-4.342907	0.394208	-1.392156
С	-3.407588	-0.605911	-1.144834
Η	-1.508021	-4.413521	-0.046771
Η	-1.307151	-5.295124	2.301881
Η	-0.671686	-3.745418	4.138504
Η	-0.320770	-1.327243	3.679215
Η	-2.670587	-0.093694	2.158689
Η	-3.207571	2.257961	1.577743
Η	-2.424709	4.447808	0.955358
Η	-0.539317	6.055195	0.700802
Η	1.801865	5.164987	0.916473
Η	2.194501	2.784083	1.056157
Η	2.910199	2.287118	-0.312161
Η	5.311508	2.444395	-0.190956
Η	6.728171	0.368319	-0.258429
Η	5.602674	-1.798072	-0.745244
Η	3.665452	-2.997554	-1.469577
Η	1.223173	-2.998327	-1.991762

Η	-3.731617	-1.567773	-0.740620
Η	-5.399443	0.214244	-1.185960
Η	-4.660547	2.410819	-2.093606
Η	-2.251477	2.809448	-2.573603
Η	-0.585543	1.027672	-2.141516

(R_P, M) -2

E(h	E(hartree): -1647.143505				
С	-4.471687	-1.043172	0.349609		
С	-3.190319	-0.524278	0.271625		
С	-2.107240	-1.395234	-0.051571		
С	-2.390943	-2.726911	-0.467146		
С	-3.719131	-3.215227	-0.378926		
С	-4.732599	-2.394656	0.052028		
С	-0.752217	-0.924090	-0.022671		
С	-0.474941	0.371728	0.637996		
С	-1.555411	1.321842	0.674964		
С	-2.902700	0.911204	0.435248		
С	-1.306115	2.683752	0.997529		
С	-0.002708	3.057223	1.413792		
С	0.955919	2.101882	1.583334		
С	0.744705	0.739940	1.217988		
С	-3.903198	1.868851	0.386416		
С	-3.631553	3.229929	0.614756		
С	-2.357423	3.630139	0.935650		
С	-1.344580	-3.521741	-1.004394		
С	-0.096081	-2.987893	-1.168320		
С	0.208146	-1.691234	-0.680482		
С	1.866952	-0.172418	1.589583		
С	2.539548	-1.007383	0.688109		
С	3.618860	-1.795650	1.090449		
С	4.054216	-1.754464	2.411006		
С	3.396117	-0.930000	3.323706		
С	2.320043	-0.145630	2.917748		

Р	1.925121	-1.173792	-1.003432
0	2.701311	-2.177695	-1.829071
С	1.856549	0.520481	-1.679942
С	0.752190	0.978035	-2.403656
С	0.737013	2.276132	-2.907887
С	1.828375	3.118648	-2.701816
С	2.940032	2.660574	-1.995633
С	2.954186	1.365316	-1.485213
Η	-0.110301	0.326554	-2.557213
Η	-0.134591	2.632621	-3.459167
Η	1.812551	4.137118	-3.094380
Η	3.796817	3.317419	-1.835626
Η	3.819325	1.013566	-0.918147
Η	4.097761	-2.437416	0.348168
Η	4.899456	-2.366265	2.730504
Η	3.719591	-0.899472	4.365848
Η	1.806082	0.486762	3.644333
Η	1.938828	2.380747	1.965448
Η	0.207830	4.104506	1.638523
Η	-2.138763	4.676685	1.157319
Η	-4.441904	3.958159	0.557792
Η	-4.928251	1.572654	0.163481
Η	-5.304249	-0.401506	0.638835
Η	-5.751777	-2.775409	0.135040
Η	-3.920439	-4.248815	-0.667077
Η	-1.563368	-4.539833	-1.332559
Η	0.704064	-3.543821	-1.660344

$(R_P, P)-2$

E(hartree): -1647.130494				
С	-3.939404	-2.596353	-0.774090	
С	-3.105277	-1.582851	-0.332761	
С	-1.693469	-1.721817	-0.493625	
С	-1.177800	-2.973790	-0.930442	

С	-2.065860	-3.990765	-1.362607
С	-3.422835	-3.789918	-1.313088
С	-0.801548	-0.642639	-0.169939
С	-1.392373	0.700135	0.039278
С	-2.765479	0.753552	0.469209
С	-3.615513	-0.387647	0.357054
С	-3.322515	1.964957	0.963227
С	-2.544779	3.148286	0.899204
С	-1.323205	3.123120	0.293856
С	-0.726594	1.912415	-0.165327
С	-4.902207	-0.330760	0.868282
С	-5.412069	0.844766	1.447687
С	-4.643423	1.982457	1.473313
С	0.219981	-3.193651	-0.870183
С	1.045071	-2.226825	-0.366606
С	0.559131	-0.935729	-0.026865
С	0.542684	2.122985	-0.921543
С	1.771845	1.528493	-0.594720
С	2.938168	1.909300	-1.267468
С	2.890729	2.843267	-2.296601
С	1.667639	3.403563	-2.660296
С	0.512030	3.056204	-1.970010
Р	1.708985	0.280869	0.725430
0	1.282793	0.792146	2.082568
С	3.363312	-0.495921	0.792852
С	4.070501	-0.986400	-0.314239
С	5.333267	-1.546884	-0.144964
С	5.898752	-1.621050	1.129529
С	5.201250	-1.132499	2.231788
С	3.936249	-0.569254	2.064832
Η	3.632920	-0.934531	-1.313914
Η	5.878151	-1.928531	-1.010165
Η	6.888392	-2.062982	1.260671
Η	5.643316	-1.189277	3.227990

Η	3.372002	-0.174837	2.912206
Η	3.896555	1.479201	-0.976157
Η	3.807334	3.132945	-2.812811
Η	1.613725	4.124449	-3.477910
Η	-0.441148	3.509895	-2.247699
Η	-0.750665	4.045585	0.190896
Η	-2.950513	4.079420	1.299226
Η	-5.038699	2.916075	1.878743
Η	-6.424945	0.850907	1.852945
Η	-5.541828	-1.212596	0.829474
Η	-5.020799	-2.481888	-0.700313
Η	-4.109652	-4.564122	-1.658652
Η	-1.650866	-4.933703	-1.724124
Η	0.622216	-4.162554	-1.172529
Η	2.099839	-2.456146	-0.228294

transition state of **2**

E(hartree): -1647.088330					
С	3.867830	-0.698870	-1.097236		
С	3.401193	-0.726239	0.222575		
С	4.178914	-1.305598	1.225451		
С	5.418620	-1.864116	0.910877		
С	5.879103	-1.840768	-0.403562		
С	5.103591	-1.256845	-1.408678		
Р	1.791823	-0.016380	0.735935		
0	1.627802	-0.064191	2.239860		
С	1.822916	1.659920	0.080068		
С	0.676167	2.406278	-0.262591		
С	0.880711	3.811859	-0.313395		
С	2.120412	4.414510	-0.182032		
С	3.252656	3.640774	0.049454		
С	3.079543	2.278857	0.214300		
С	-0.737200	1.925558	-0.484014		
С	-1.413729	0.714469	-0.164670		

С	-2.861522	0.811332	-0.006315
С	-3.561822	2.037953	-0.178078
С	-2.889246	3.069543	-0.871536
С	-1.550725	2.966683	-1.054966
С	-3.662639	-0.309985	0.361865
С	-3.142484	-1.647633	0.086633
С	-1.751711	-1.793982	-0.181776
С	-0.837087	-0.670658	-0.103395
С	-4.947932	-0.119406	0.849487
С	-5.564035	1.140176	0.828127
С	-4.900322	2.192518	0.246406
С	-1.284218	-3.109105	-0.481809
С	0.097781	-3.330019	-0.663752
С	0.968322	-2.312758	-0.418705
С	0.526393	-0.997070	-0.107926
С	-2.183642	-4.200500	-0.565767
С	-3.520350	-4.020102	-0.324320
С	-3.992542	-2.739791	0.004177
Η	3.262231	-0.239745	-1.882690
Η	5.467622	-1.235667	-2.437535
Η	6.848582	-2.278075	-0.649775
Η	6.026297	-2.317131	1.696264
Η	3.794026	-1.305769	2.247503
Η	3.941553	1.667918	0.483169
Η	4.239014	4.093685	0.155950
Η	2.191126	5.502110	-0.238248
Η	0.034115	4.483142	-0.410577
Η	-1.059209	3.737017	-1.640951
Η	-3.445500	3.926467	-1.255239
Η	-5.381447	3.163908	0.117764
Η	-6.576224	1.260120	1.216712
Η	-5.510266	-0.971689	1.229620
Η	-5.061171	-2.606006	0.165288
Η	-4.218684	-4.855719	-0.388557

- Н -1.784021 -5.185360 -0.814421
- Н 0.458070 -4.325635 -0.927975
- Н 2.036444 -2.516235 -0.453594