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Frédéric Berthoz4, Gilles Genévrier4, François Cerisier5

1Univ. Grenoble Alpes, CNRS, Grenoble INP*, LCIS, 26000 Valence, France, firstname.name@univ-grenoble-alpes.fr
2Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, 38000 Grenoble, France, firstname.name@univ-grenoble-alpes.fr

3Laboratoire Hubert Curien, Université de Lyon, 42000 Saint Etienne, France
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Abstract—Embedded systems in critical applications are con-
strained by very strict standards, but safety analysis (e.g., Failure
Mode and Effects Analysis, or FMEA) of these systems is often
empirical and mainly relies on the experience of engineers. Per-
forming empirical analyses on complex designs is a major chal-
lenge that leads engineers to make very pessimistic assumptions
and consequently to over-design multiple countermeasures. Many
fault injection techniques have been developed to evaluate the
robustness of Register Transfer Level (RTL) hardware designs.
With these techniques, robustness is evaluated by comparing
the faulty circuit outputs with the circuit specifications or
golden RTL fault-free simulations. However, these techniques
are too circuit centered, and therefore do not account for the
overall system specifications. In addition, with complex hardware
designs, fault simulations become very time-consuming. In this
paper, we present a new high-level fault injection approach
taking into account the overall critical system specifications to
extract acceptable circuit parameter ranges while speeding up the
evaluation process. We describe a case study of a real airborne
system. The critical parameter ranges are determined for the
circuit. Then, these ranges are used to rapidly evaluate the
robustness of each RTL block in the circuit.

Index Terms—safety, fault simulation, SystemC, TLM, embed-
ded system, FMEA

I. INTRODUCTION

For critical system development, Original Equipment Man-
ufacturers (OEMs) must perform Failure Mode and Effects
Analysis (FMEA) to demonstrate the robustness (ability to
successfully complete a mission despite the occurrence of
faults) of each component. Standards recognized by certifica-
tion authorities have been produced to guide the development
of these critical systems. For example for airborne systems,
ARP5580 [1] describes the basic procedure by which to
perform an FMEA. Standard DO254 [2] specifically relates
to the safety requirements for electronic embedded systems
in aircraft hardware, including programmable devices (e.g.,
FPGAs). These standards often recommend that robustness
analysis be started early in the design flow (with functional
descriptions) and that robustness requirements be verified
throughout the whole top-down design flow. Due to the de-
creasing size of transistors, systems have become increasingly
vulnerable to perturbations. Thus, designers must perform

detailed FMEA considering Single Event Upsets (SEUs, cor-
responding to single bit-flips), Multiple Bit Upsets (MBUs),
and Multiple Cell Upsets (MCUs). This FMEA, called SEU
FMEA (even if it also relates to MBU and MCU), is often
performed empirically without executable models and based
solely on engineer experience. Thus, the number of scenarios
analyzed is limited, and accurate fault propagation analysis in
complex systems is difficult to perform.

FMEA can be used to analyze the failure effects of a single
component on the whole system. It consists of 3 steps:

• definition of possible failures and their probability of
occurrence,

• determination of the effects of failure on the correspond-
ing functional block,

• determination of the effect on the whole system and
computation of the probability of occurrence.

These steps are generally performed at different levels of
abstraction. In this paper, we focus on the SEU FMEA of a
circuit used in an embedded system for a critical application.
The three steps involved must be applied at the transistor level
or gate level, the RT-level, and the system level, respectively.
A failure is the result of fault propagation within the system.

Since the late 1990s, an efficient means to evaluate the
robustness of electronic circuits is by fault injection. Three
main categories of fault injection techniques exist:

• Physical: The circuit is exposed to an external source
of perturbation like particle flux or laser. Since the
’60s, numerous studies have attempted to reproduce SEU
effects ([3], [4]). Physical fault injection can be used to
inject realistic faults and to access some locations that
are not accessible with other techniques. However, this
approach does not allow early analysis because the target
devices must be available. Circuit redesign at this stage
is expensive and time-consuming, as are the experiments
themselves.

• Emulation: The design is emulated on a hardware plat-
form where faults can be injected. Thus, robustness can
be evaluated earlier in the design flow, but the hardware
platform must be available and efforts deployed to im-
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plement the system to be evaluated on it.
• Simulation: The system and the physical defects are

simulated. This approach allows circuit robustness to be
evaluated at different levels of abstraction, but is much
slower than emulation. In addition, low-level simulations
can become intractable within an affordable time frame.

The main goal of the study presented in this paper was to
propose an approach to perform an early evaluation of the
robustness of hardware devices included in complex critical
systems. This approach complies with the top-down flow and
cross-layer analysis recommended in safety standards, and
takes advantage of both low- and high-level fault simulations.
The first steps in the evaluation can be performed before the
whole system is described at the RT-Level. Then, the final step
is completed when RTL descriptions are available to verify
the quality of this early evaluation. This paper is an extension
of the approach presented in [5]. Here, we take into account
interactions with external components of the system (e.g.,
microcontroller) and complete critical system specifications.
In the first step, the method proposes to extract the critical
ranges for circuit parameters using high-level fault models.
These ranges give the limit values for the parameters leading
to the observation of system-critical behavior. Early results
and implementation of the high-level fault injection (HLFI)
step are presented in [6]. These ranges also make it possible
to establish assertions for RTL fault simulation. The second
step in the methodology reuses these assertions to evaluate
the robustness of each RTL block. The third step is used to
validate the accuracy of the high-level fault models applied in
the first step.

This paper is organized as follows. The current state of
knowledge closely related to our work is further detailed in
Section II. In Section III, we describe the three steps involved
in our methodology. Section IV presents the case study. In
Section V, we present and discuss the results of the proposed
method in the current case study. Section VI concludes the
paper.

II. STATE OF THE ART

a) Simulated fault injection: Simulation tools can be
used to evaluate circuit robustness when the simulations in-
clude some kind of signal perturbation. Different fault model
levels exist, from functional to gate or transistor level. High-
level modeling at the transaction level (Transaction Level
Modeling or TLM) is compatible with simulations of complex
systems. Lower levels (gate level, RT-level) can be used to
check parameters such as timing, accurate error propagation,
or even power consumption. They provide more accurate re-
sults, that are closer to reality, but require increased simulation
efforts.

Fault simulation methods can be divided into two categories:
without code modification (simulation commands modify val-
ues of signals or variables) or with code modification (mutants
or saboteurs). The MEFISTO tool [7] was one of the first to
apply fault injection with or without code modification at the
RT-Level. Fault injection using simulation commands is the

least intrusive and easiest way to inject faults. Nevertheless,
fault injection possibilities are restricted and depend on the
tool. Fault injection with code modification allows many
possible mutants and saboteurs but some studies [8] have
defined fault models corresponding to a subset of realistic
faults. Some VHDL language extensions were later proposed
to avail of the advantages of simulation commands, mutants,
and saboteurs [9].

Safety analysis at the gate or even RT-level is expensive
because it is applied late in the design flow. RTL fault
simulations are often very time consuming because of the
growing complexity of the RTL descriptions. Furthermore, as
Champon et al. [10] showed, some errors observed using RTL
fault simulations have no real effect on the overall critical
system. Indeed, these errors are filtered out or detected by
the system. Thus, interactions with other parts of the system
and system specifications must be taken into account. Fault
injection can also be performed at system level with TLM
to accelerate fault simulation and to take the whole system
into account. However, result accuracy will be reduced since
fewer details of the final implementation are available, and
more abstract fault models must be used.

b) Efficiency of High-Level Fault Simulation: High-level
simulation with adequate fault modeling accelerates fault sim-
ulations and makes it possible to account for the whole system.
Nevertheless, high-level modeling requires details (such as a
clock or data types) to be removed, which causes some realism
issues. Many groups have studied the problem of high-level
fault realism:

• The methodology proposed by Miele [11] injects faults
into a SoC modeled in SystemC at transaction level. The
realism of the injected faults is verified by comparing the
high-level fault injection with the RTL fault simulation.
The case study shows that some of the RTL faults injected
have no high-level equivalent and conversely, some high-
level faults have no RTL equivalent.

• Tabacaru et al. [12] used prototypes to perform fault
effect analysis on a circuit. The methodology consists
of performing gate-level fault injection into the circuit
without activating its safety mechanisms to obtain a real-
istic high-level fault library. These faults are then injected
into the high-level model with the safety mechanisms
activated to perform safety analysis. This approach does
not take system specifications into account, and it requires
access to the RTL code.

• Herdt [13] studied the correspondence between RTL
and TLM faults through a formal approach. The formal
approach can be used to extract the TLM equivalent set
of faults for each RTL fault. The authors concluded that
some RTL faults have no equivalent at transaction level
because they propagate and create several TLM faults.

Based on these studies, the two main problems with high-level
fault injection are the following:

• Some RTL faults propagate multiple high-level faults
throughout the system.



• Many high-level faults are not realistic.

c) Cross-Layer Approaches: Cross-layer methods aim to
take advantage of both RTL and TLM fault injection. Some
studies proposed ways to follow these approaches:

• The CLERECO project [14] proposed a cross-layer re-
liability evaluation. The evaluation performs system re-
liability analysis by isolating the individual layers, thus
simplifying the analysis. This approach focuses on mi-
croprocessor reliability analysis but is incompatible with
study of complex systems composed of hardware blocks
connected to the microprocessor.

• Perez et al. [15] performed fault simulations at different
levels of abstraction in a critical embedded system to
guide architecture and RTL hardware designers. This
approach allows early decision making and avoids time-
consuming design iterations. However, the realism of the
high-level faults injected was not verified. Indeed, as
computation models are different in a block modeled at
high- or RT-level, it is often hard to find correspondences
between high-level faults and RTL (or lower level) faults.
Furthermore, although the approach takes into account
interactions with other parts of the system, it does not
consider overall system specifications.

• Mueller et al. [16] injected faults into a processor at RT
and behavioral levels, simulating short scenarios at the
RT-level and longer scenarios at the transaction level.
This cross-layer study did not establish correspondences
between different fault injections.

The cross-layer approach allows design to be explored and
fault injection performed at different levels, but no study has
yet proven the relevance of the high-level faults injected. High-
level fault injection guides architecture choices, whereas low-
level fault injection provides information for implementation
choices.

d) Safety analysis tools: Some solutions to assist FMEA
already exist. Bernard [17] describes how the AltaRica project
can assist safety analysis for airborne systems. AltaRica is a
language that provides system description capabilities thanks
to states and transitions. A formal approach identifies critical
scenarios. This tool requires failure modes to be defined for
each state of the system. It is a very high-level approach,
mainly useful for validating the architecture during early
design phases. Mariani [18] proposed a tool that complies with
certification standards. From the RTL description, it extracts
sensitive zones and performs exhaustive fault injection in these
zones. The tool extracts probabilities and data that are useful
for the FMEA. Only the hardware part of the system is studied,
and no system specifications are considered. Those tools are
useful for safety analysis but do not allow early estimations
of the robustness of full embedded systems.

e) Summary: Simulated fault injection makes it possible
to evaluate circuit robustness at various levels. High-Level
fault simulation allows early robustness analysis to be per-
formed, accelerating fault simulation and taking the whole
system into account. However, high-Level faults and high-level

models have some realism issues. Cross-layer approaches aim
to deal with low-level accuracy and avail of high-level advan-
tages, but no study has yet proposed an approach allowing
a statistical estimation of the probability of critical faults. In
the aeronautics industry, some safety analysis tools exist at
a higher level. Fault modeling still requires experienced de-
signers to model accurate high-level faults. The methodology
proposed aims to perform a robustness analysis in compliance
with the safety recommendations.

III. METHODOLOGY

Our methodology [5] relies on a 3-step cross-layer evalua-
tion, which is illustrated in Figure 1:
• Step 1 involves high-level fault injection on all the block

interface signals of the design. This fault injection allows
the critical parameter ranges of each block interface
signal to be extracted. System specifications are taken
into account to identify critical system behaviors.

• In Step 2, RTL fault injection is performed on the blocks
leading to critical behaviors. This RTL fault injection
aims to identify RTL faults inducing the critical parameter
ranges identified for each block’s interface signal in
Step 1. It can then be used to compute critical SEU
probabilities.

• Step 3 is a multi-abstraction simulation (both high-level
and low-level simulation) which involves replacing (one
at time) each critical block in the high-level description
with its RTL description. This step allows the accuracy
of Steps 1 and 2 to be verified by mixing two abstraction
levels.

This methodology performs both the functional analysis and
the fault simulation for the hardware architecture, as rec-
ommended by the two aeronautics standards ARP5580 and
DO254, respectively. The HLFI method used to extract the
parameter ranges leading to critical behaviors differs from
classical HLFI methods in several ways:
• High-level faults are injected only in the component

interfaces that exist in the RTL description. It provides a
more realistic high-level analysis.

• By taking into account system specifications, it is possible
to select erroneous behaviors leading to critical behaviors
and to remove others.

A. Step 1: High-Level fault simulation

a) System modeling: Transaction-Level Modeling is a
high-level approach to model systems. Communication inter-
faces and functional units are separated. At the transaction
level, we focus on functionality and data transfer. TLM can
be used to experiment with different system architectures.
After exploring the architecture, each functionality can be
designed using hardware or software components, and the
information obtained on the communication interfaces remain
unchanged through the whole design flow. Thus, TLM coupled
with fault injection on communication interfaces provides an
early evaluation of the robustness of critical functionalities in



Fig. 1. Three steps in the methodology.

Fig. 2. Top module of the system Fig. 3. Modified top module

embedded systems. In this study, as we were interested in
analyzing only the robustness of the hardware devices, faults
were only injected into the communication interfaces among
the blocks belonging to these hardware devices.

To model the critical systems, it is essential to take compu-
tation times into consideration. Indeed, system specifications
often include some time-related properties (e.g., throughput
or data flow rate), and a Time-To-Alarm (TTA) may be
added to define the acceptable time before an error should
be reported to the user. TLM Approximately Timed (TLM
AT) is a level of abstraction that allows embedded systems to
be modelled taking into account each transaction or internal
function computation time. The SystemC library is based on
C++ classes and macros that allow TLM AT modeling. It is
de facto the standard for SoC virtual prototyping.

b) Fault injection: In our case, fault injection into the
high-level model uses simulator commands [19]. This is the
least intrusive solution since no code modification is required.
In our HLFI method, a fault F is represented by a 4-tuple
(L, T, I,D) where:
• L is the location and represents an interface signal (faults

are injected into all the communication interfaces).
• T is the fault type. The fault type is a function that

corrupts the original value of the signal. The signal can
be modified by a proportion (signal +/- X%) or a fixed
value (signal +/- X), where X is the amplitude of the
fault injected.

• I is the instant at which the fault is injected.
• D is the injection duration. As transient faults are in-

jected, the value is corrupted either for a duration (cor-
responding to a perturbation burst) or until the signal is
written once again (corresponding to a SEU or a MBU).

The SystemC top module of the original system description

was modified to provide fault injection capabilities. A fault
was then injected by inserting the 4-tuple(L, T, I,D) into the
fault injection command. Figures 2 and 3 illustrate one code
modification that provided fault injection capabilities. This
implementation allows faults to be injected until the signal
is written once again.

c) Evaluation of Critical System Parameter Ranges:
Critical behaviors are erroneous behaviors (i.e. that do not
respect the system specifications) which are not detected by
the internal detection mechanisms (detected behaviors are not
considered critical). An additional module (the specification
checker) is used to filter the erroneous behaviors to extract
those leading to critical behavior. This module uses assertions
written using Property Specification Language (PSL). All
system specifications are translated into PSL assertions. PSL is
a formal language through which temporal properties for hard-
ware designs can be specified. PSL properties are interpreted
by a simulation tool or a formal verification tool. They can
be used in particular with RTL description languages such as
VHDL or Verilog, and with high-level description languages
such as SystemC or SystemVerilog. System specifications
allowed us to define PSL assertions from tolerance intervals
on output signals (e.g., min/max signal amplitude or delay).
For example, TTA allows erroneous behaviors to be filitered
to extract only those that must be notified in order to avoid
false alarms. Our goal was to extract parameter ranges (for
each interface signal L) leading to one of the following system
behaviors: silent fault (S), quasi silent fault (Q), detected error
(D), and critical error (C). These system behaviors are defined
below.

Figure 4 shows how fault simulations were generated and
results processed. The SystemC design is the TLM AT model
of the system. It includes both the hardware components
analyzed and all the remaining components of the embedded
system (including the specification checker). The Fault
injection campaign file corresponds to a set of faults
to be injected into the TLM AT model. The Scenarios
files contains scenarios to simulate. Fault injection into the
TLM AT design is simulated in a SystemC environment.
Algorithm 1 illustrates how HLFI results were sorted. The
Golden_output file contains the fault-free simulation re-
sults (Line 2). The simulation results for each fault are written



in a temporary output file (Line 6). A script was used
to implement this algorithm and to automatically process
simulation results, sorting them into the following categories:
• Silent fault (S): HLFI output output is equal to
Golden_output (Lines 7, 8).

• Quasi silent fault (Q): simulation output output is
not equal to Golden_output but remains within the
specification requirements (Lines 10, 11).

• Detected Error (D): simulation output output is outside
the specification requirements and at least one of the
detection mechanisms triggered an error (Lines 13, 14).

• Critical error (C): simulation output output is outside
the specification requirements and is not detected by the
[implemented] mechanisms implemented (Line 15).

Once the results of HLFI have been sorted into these cate-
gories, faulty ranges can be extracted (respectively detected
or critical error ranges determined) according to ranges of X
or I that lead to a critical error.

Fig. 4. Overview of HLFI analysis.

Algorithm 1: High-Level Fault Injection Analysis

1 Golden output ← simulate(Golden model, input,
No Fault)

2 for F ∈ Fault injection location do
3 Faulty output ← simulate(Faulty model, input, F)
4 if Faulty output = Golden output then
5 S ← F

6 else
7 if Faulty output ∈ specification requirements

then
8 Q ← F

9 else
10 if Faulty output ∈ Detected Error then
11 D ← F

12 else
13 C ← F

d) Illustration: Figure 5 illustrates Step 1. Let S be
a system, A and B two blocks of S. We denote ATLM

and BTLM the TLM description of A and B. System S is
simulated with fault injection at the transaction level. Let
F = (L, T, I,D) be a fault injected on signal sig. The value
of sig is corrupted to X at time I . If the output signals out
do not satisfy the specifications and remain undetected, F

is considered to lead to critical behavior. Table VII presents
an example of results obtained from the high-level fault
simulation. Results are sorted in a Table to identify ranges.
For example, the critical parameter range is:

[+1%;+5%]× [50ms; 250ms]

Fig. 5. Step 1: High-level fault injection.

TABLE I
EXAMPLE OF HIGH-LEVEL FAULT INJECTION RESULTS

HH
HHT
I 0ms 50ms 100ms 150ms 200ms 250ms 300ms

Injection on sig
-50% D D D D D D D
. . . % . . . . . . . . . . . . . . . . . . . . .
-20% D D D D D D D
-10% Q Q Q Q Q Q Q
. . . % . . . . . . . . . . . . . . . . . . . . .
-1% Q Q Q Q Q Q Q
+1% Q Q C C C Q Q
. . . % . . . . . . . . . . . . . . . . . . . . .
+5% Q Q C C C Q Q
+10% D D D D D D D
. . . % . . . . . . . . . . . . . . . . . . . . .
+50% D D D D D D D

B. Step 2: RTL fault simulation

The blocks leading to critical system behaviors are identi-
fied, and, when their RTL description is available, are simu-
lated with RTL fault injections. Simulation at this level allows
more accurate fault simulation, and make it possible to identify
the RTL faults (e.g., Flip-Flop single bit flips, or register
multiple bit flips) propagating and creating signal interfaces in
the critical ranges identified in Step 1. We defined assertions
on interface signals corresponding to those parameter ranges.

When an RTL fault violates the assertion, the RTL fault is
considered critical for the system. The ratio of RTL faults sat-
isfying or violating assertions can be used to extract statistics.

a) Fault injection: The fault model at the RT-level is
very similar to the fault model at the system level: a fault f
is defined by a 4-tuple (l, t, i, d) where:
• l is the location: faults are injected into all the Flip-Flops

and registers.
• t is the type: It defines the type of faults injected. Single

bit flips were injected in the experiments described here
(multiple bit flips in each block may also be considered
in future studies).



• i is the instant of injection: Faults are injected at different
simulation times.

• d is the fault duration: the value is corrupted until the
register or the Flip-Flop is written once again.

Fault injection at the RT-level is performed using simulator
commands.

b) Fault equivalence checking: To determine whether a
RTL fault propagates and creates a high-level fault, each range
is first translated into a PSL property.

Let [x1;x2]× [t1; t2] be a critical range. Let window be a
signal that defines the validity time window of the property;
window is given by the characteristic function of the set
[t1; t2] (1 if current time is in the range, 0 otherwise). We
define a PSL property that checks whether the faulty behavior
of the RTL block in presence of RTL faults is equivalent to
the critical range [x1;x2]× [t1; t2] identified in step 1:

Assert always window -> Q5 s

where s is the value of signal l without corruption, s′ its
corrupted value, and 5 can be any relational operator (e.g.,
=, ≥ and ≤, . . . ).

Block verification in the RTL model is performed based
on these formal properties (equivalent to the high-level ranges
leading to critical behaviors). If a property holds despite fault
injection and an incorrect output, it means that the fault is not
relevant and that the block robust to this fault.

c) Illustration: Step 2 (see Fig. 6) is illustrated based
on the example given in Step 1. The temporal property ϕ
corresponds to the critical range identified in Step 1:

Assert always window ->
((sig′ ≥ sig ∗ 1.05)|(sig′ ≤ sig ∗ 1.01))

where window is equal to one between 50 ms and 250 ms,
and 0 otherwise.

Faults are now injected into the RTL description of A
(ARTL), and we verify the correctness status of ϕ. The fault
simulation is only performed on ARTL: faults are randomly
injected in single bits belonging to the same registers of ARTL.
If ϕ never holds despite the fault injections, it means that
high-level faults associated with the critical range are not
relevant and the RTL block is robust. If ϕ holds for some fault
injections, then some RTL bits or registers of the block are
identified as the most sensitive bits or registers of the block.
Furthermore, based on the ratio of RTL faults for which ϕ
holds, statistics can be extracted.

Fig. 6. Step 2: RTL fault injection.

C. Step 3: System fault co-simulation

In Step 3, each RTL block is successively co-simulated in
the high-level system description developed in Step 1 with

RTL fault injection. Hereafter, we call this a system fault co-
simulation. Step 3 aims to validate the critical ranges extracted
in Step 1. The same RTL faults used in Step 2 are used once
again (when RTL fault injection was done in Step 2; i.e., when
critical parameter ranges for at least one output parameter
of the block were identified in Step 1). When no RTL fault
injection was done in Step 2, then a first RTL fault injection
campaign is performed on a block during Step 3. If the system
specification holds despite RTL fault injection, it means that
the fault is silent or quasi-silent and the overall system is
robust to it. These multi-abstraction simulations allow the
high-level fault models used in step 1 and the results obtained
in step 2 to be evaluated based on the ranges extracted with
these models. Using multi-abstraction decreases the duration
of the whole system simulation as it uses the most accurate
faulty models (e.g., RTL fault model) for the critical blocks.
However, simulating even a single RTL block in a complex
system remains much more time consuming than performing a
high-level system simulation. Thus, system fault co-simulation
can only be used to validate the previous fault simulation
results based on less time-consuming fault simulations.

Table II is a confusion matrix [20]. It allows us to define
metrics to evaluate the results obtained in the previous steps.
The “Predicted” column in this matrix corresponds to the
results from Steps 1 and 2. The “Co-simulation” line corre-
sponds to the results of Step 3 and is considered the refer-
ence behavior. The accuracy is the proportion of true results
compared to the number of injected faults. It is calculated as
follows:

Accuracy =
TC + TO

TC + TO + FC + FO

The precision is defined by the proportion of true critical
behaviors identified in the two first steps:

Precision =
TC

TC + FC

TABLE II
CONFUSION MATRIX

hhhhhhhhhhhPredicted
Co-simulation Critical Others

Critical True Critical (TC) False Critical (FC)
Others False Others (FO) True Others (TO)

Illustration: As illustrated in Figure 7 system S is now
simulated with ARTL and BTLM . Faults extracted from Step
2 are injected in ARTL and we verify the correctness of the
output signals of the system using the verification checker.

IV. CASE STUDY

A. System description

Hereafter, for confidentiality reasons, all names have been
concealed and all values normalized. We studied an embedded



Fig. 7. Step 3: System fault co-simulation.

system SYS X that measures a physical value X , which
is sent to the main airplane ECU (Electronic Control Unit).
Based on other information, the ECU deduces the flight
information from this value.

The embedded system SYS X is based on two sensors SX
and ST. Sensor ST measures the temperature T and vibrates
at a frequency F (T). Sensor SX measures the value X; it
vibrates at a frequency F (X) determined by both the value X
and the temperature T. The system is composed of an FPGA,
a microcontroller and a memory containing the sensor table.
The FPGA part contains a frequency meter to measure the
frequencies emitted by sensors and a communication block
that transmits data to the ECU.

Figure 8 illustrates the detailed architecture of the sys-
tem. The system operates with two counters, CounterX and
CounterT, which count the number of cycles performed by
the sensors SX and ST, with respect to a reference frequency
Fref . Two lower frequencies F (D) and F (SYNC), for SX and
ST respectively, give the measurement windows of CounterX
and CounterT. The microcontroller periodically reads the
number of cycles counted during the measurement window
(an interrupt occurs when new values are written in the
output registers for CounterX and CounterT). Based on
these values, the microcontroller computes the corresponding
periods TT and TX . The value of X is then computed from
data in a sensor table (series of points containing the values
X corresponding to a given pair of periods TT and TX )
characterizing each sensor SX (see Fig. 8). The microcontroller
uses an interpolation method to calculate an accurate value of
X. The microcontroller then transmits the calculated value and
some maintenance information (error detection mechanism
outputs) to the FPGA block in charge of communication.
The communication FPGA block then formats the data for
transmission to the ECU.

The system constraints are described in the airplane specifi-
cations (see Table III). “Data Flow Rate” is the time between
two value transmissions. The “Time to Alarm” corresponds
to the minimum time before an error is notified during
data measurement. The “Transmission Period” is the time
required for the communication block to transmit the data.
The “Computation Period” is the time spent by the micro-
controller computing the final value and transmitting it to the
communication block when an interrupt occurs. “Transport
Delay” is the time between the beginning of a measurement
window and transmission of the data by the communication
block to the ECU. Several error detection mechanisms are
also implemented in the system: counter overflow, detectors

of periods out of the sensor table, detection of X values
outside the relevant range, etc. Some of these mechanisms
are described in Table IV. The first column corresponds to the
block in which the error detection mechanism is implemented.

TABLE III
SYSTEM SPECIFICATION

Property Specification
Data Flow Rate 100 ms +/- 3.3 ms
Time to Alarm 300 ms +/-3.3 ms

Accuracy +/- 0.8 U (confidential unit)
Transmission Period ≤ 100 ms
Computation Period ≤ 100 ms

Transport Delay 300 ms +/- 3.3 ms

TABLE IV
ERROR DETECTION MECHANISMS

Error Detection Mechanism Execution Every
FPGA output is looped back 100 ms

µC Hardware reset at the start of
each calculation cycle 100 ms

µC check if X (or T ) period is out of range 100 ms

B. FMEAs on the case study

Two safety analyses were performed on the whole system.
The first analysis at the functional level is based on one

FMEA (in compliance with the ARP5580 standard). It allows
early identification of the critical system paths and evaluation
of block criticality. It is not exhaustive (takes only a few
faults into account), and the critical faults found are often not
realistic.

The second, more detailed, analysis determines the proba-
bility of critical events. It contains two FMEAs:
• One which studies the effect of component failures on

the system. These component failures are permanent. As
they are rare, an overall analysis of their effect on the
system is sufficient.

• One which examines the effect of Single Event Upsets
(SEUs) and Multiple Bit Upsets (MBUs). It needs to
be more accurate because of the high probability of
particle impacts on the system. Figure 9 illustrates the
principles of this analysis. The particle flow and the area
of each block allow the particle flow on each block of
the system to be deduced. The critical fault ratio (i.e.,
SEU/MBU rate leading to a critical fault according to
each block of the system) can be used to calculate the
probability that a critical event will occur. This ratio is
empirically determined based on engineer experience. To
be conservative, ratios are pessimistic: in case of doubt
SEU/MBU are considered critical for the system.

As for this case study, safety analyses are often not based
on executable models. In addition, the certification standards
highlight the need for functional FMEA. High-level system
models could be used to perform some more accurate func-
tional FMEA.



Fig. 8. Detailed system architecture.

Fig. 9. Principles of the Upset effects analysis.

V. SIMULATION RESULTS

Here, we will now apply the first two steps of the method-
ology to the case study. Our methodology based on fault
simulation techniques aims to obtain more realistic results than
those provided by empirical functional FMEA and empirical
SEU/MBU FMEA.

A. Step 1

A HLFI campaign was performed on the TLM AT test
case model: 1,176 high-level faults were injected. Each fault
corresponds to a 4-tuple (L, T, I,D):
• 8 interface signals (L): targeting all the TLM block

interface signals in the hardware part of the system (e.g,
diva to divb, divb to divc, freq out). The goal was to
analyze the impact of the faults on the FPGA behavior.

• 21 faulty values (T): Each signal was modified to cover a
deviation range from -50% to +50% in 10% increments.
The step size may be reduced to refine the analysis in
future experiments.

• 7 injection times (I): 10 ms jection intervals were chosen.
Injection times were 0 ms, 10 ms, 20 ms, . . . , 60 ms.
No faults were injected after 60 ms because the overall
computation process takes 60 ms. Nevertheless, to refine
the analysis, the interval between injections may be
reduced.

• Injection duration (D): faults on each signal were injected
until the signal is written once again.

The high-level simulation time for injecting and simulating all
faults lasted only 3 minutes. Table V presents the results of
the fault simulations for some of the signals of the high-level
test case model. Overall simulation results were as follows:
• 509 quasi-silent faults (Q: different from the reference

file but still within the specifications),
• 343 detected errors (D),
• 227 critical errors (C).

As the probability of occurrence of each high-level fault is
unknown, it is impossible to deduce the probability of critical
events from these results. This deduction will be possible

using the RTL descriptions. Nevertheless, we can observe the
considerable interest of taking system specifications into ac-
count to identify the fault simulations that should be analyzed.
In subsequent steps, this allows the tolerable faults T to be
considered no different from the reference file as they do not
produce erroneous system behaviors.

TABLE V
FAULT INJECTION IN DIVIDER AND COUNTER A

HH
HHT
I 0ms 10ms 20ms 30ms 40ms 50ms 60ms

Injection on diva to divb
-50% D D D D D D D
. . . % . . . . . . . . . . . . . . . . . . . . .
-20% D D D D D D D
-10% Q Q Q Q Q Q Q
. . . % . . . . . . . . . . . . . . . . . . . . .
-1% Q Q Q Q Q Q Q
+1% S S S S S S S
. . . % . . . . . . . . . . . . . . . . . . . . .
+5% S S S S S S S

+10% D D D D D D D
. . . % . . . . . . . . . . . . . . . . . . . . .
+50% D D D D D D D

Injection on divb to divc
-50% D D D D D D D
. . . % . . . . . . . . . . . . . . . . . . . . .
+50% D D D D D D D

Injection on freq out
-50% D D D D D D D
. . . % . . . . . . . . . . . . . . . . . . . . .
-1% D D D D D D D
+1% Q Q Q Q Q Q Q
. . . % . . . . . . . . . . . . . . . . . . . . .
+5% Q Q Q Q Q Q Q

+10% C C C C C C C
. . . % . . . . . . . . . . . . . . . . . . . . .
+50% C C C C C C C

Injection on sync out
-50% S S S S S S S
. . . % . . . . . . . . . . . . . . . . . . . . .

+10% S S S S S S S
+20% D D D D S S S
. . . % . . . . . . . . . . . . . . . . . . . . .
+50% D D D D S S S

a) Divider fault analysis: The upper part of Table V
illustrates the results of applying HLFI to the diva to divb
interface signal. For each injected fault, the results of the simu-
lation are reported in the table to identify some ranges. Results
are sorted in three categories as defined in Section III. The



TABLE VI
FAULT INJECTION IN NX, NT, N1 AND N2

HH
HHT
I 0ms 10ms 20ms 30ms 40ms 50ms 60ms

Injection on Nx
-50% S S S D S S D
. . . % . . . . . . . . . . . . . . . . . . . . .
-3% S S S D S S D
-2% S S S C S S C
. . . % . . . . . . . . . . . . . . . . . . . . .
+10% S S S C S S C
+20% S S S D S S D
. . . % . . . . . . . . . . . . . . . . . . . . .
+50% S S S D S S D

Injection on Nt
-50% D D D D D D D
-40% C C C C C C C
. . . % . . . . . . . . . . . . . . . . . . . . .
+5% C C C C C C C
+10% D D D D D D D
. . . % . . . . . . . . . . . . . . . . . . . . .

+50% D D D D D D D

Injection on N1
-50% S S S D S S D
. . . % . . . . . . . . . . . . . . . . . . . . .
-3% S S S D S S D
-2% S S S C S S D
-1% S S S C S S C
+1% S S S C S S C
+2% S S S C S S D
+3% S S S D S S D
. . . % . . . . . . . . . . . . . . . . . . . . .

+50% S S S D S S D

Injection on N2
-50% D D D D D D D
. . . % . . . . . . . . . . . . . . . . . . . . .
-10% D D D D D D D
-5% C C C C C C C
. . . % . . . . . . . . . . . . . . . . . . . . .
+5% C C C C C C C
+10% D D D D C C C
+20% D D D D D D D
. . . % . . . . . . . . . . . . . . . . . . . . .

+50% D D D D D D D

table shows that fault injections create detected errors (D) for
faulty values between [−50%;−20%] and [in] [+10%;+50%].
These ranges are independent of the fault injection instant.
Faulty values between [−10%;+5%] produce silent faults (S).
For faulty values between [−50%;−20%], the mechanism
detecting the fault is M1 (the microcontroller missed a value
on the Nx and N1 registers). Furthermore, the microcontroller
also detects a period computed outside the sensor table (M3).
Finally, two mechanisms always detect these errors. For the
faulty values between [+10%;+50%], the watchdog of the
microcontroller (M4) indicates that the timing is not respected.

The parameters diva to divb, divb to divc, and sync out
only produce faults leading to detected errors. Consequently,
there is no critical range for these parameters. However, the
parameter freq out corresponding to the divider DIVC has
a critical range. This first analysis shows which dividers are
more sensitive to critical faults.

b) Counter fault analysis: The upper part of Table VI
presents the results of HLFI on the Nx signal for CounterX.
Fault injections create critical errors for faults injected at
30 ms and 60 ms. At these injection instants, faults were
critical for all the values in the [−2%;+10%] range. At the
same instants, errors outside this range were detected by
the detection mechanisms implemented in the microcontroller
because they create some periods outside the sensor table.
Fault injection on Nx and N1 produced similar results. Thus,
injecting a fault only had an impact at 30 ms and 60 ms
because it corresponds to the time slot between writing a new
value on the register and it being read by the microcontroller.
Nt and N2 are more sensitive because they correspond to
continuous counters

c) Discussion of results: These results show the follow-
ing advantages of our approach:
• The HLFI method achieves fast fault simulations early in

the design flow.
• Specification checking can be used to filter out the high-

level behaviors leading to critical behaviors. It allows
79% of erroneous behaviors to be eliminated.

• The HLFI method allows easy extraction of some critical
ranges. These ranges are defined either as simulation
time intervals or as absolute or relative parameter value
intervals. Critical ranges allow RTL faults to be filtered.
Indeed, only RTL faults involving parameter values in
these ranges will be considered critical faults.

• Redundant error detection mechanisms can be identified.
For example, in the divider, two error detection mech-
anisms detected the error created by the fault injection
between -50% and -20%. Further investigations would
allow us to validate the most efficient mechanism.

B. Step 2

Step 2 of the methodology looks for RTL faults producing
the parameter ranges identified in Step 1. These ranges were
first translated into PSL properties as explained in III.B.b.
Then, an RTL fault simulation campaign was performed.
Table VII presents the results of the RTL fault simulations
for DIVC, CounterX, and CounterT RTL blocks. Exhaustive
or statistical fault simulations were performed depending on
the complexity of each block. Fault simulation results are
sorted into 3 categories: critical faults (i.e., assertion viola-
tions), tolerable faults (i.e., outputs differing from the golden
model outputs but that are not critical), and silent faults. The
simulation times for each block and the number of flip-flops
occurring in each block is also reported with the proportion
relative to the whole system.

a) DIVC RTL analysis: An exhaustive RTL fault simu-
lation [has been] was performed on the RTL description of
DIVC. Single bit-flips were injected into all the FF elements
in this RTL block, at each clock cycle. Only 9.8% of these
faults lead to the freq out critical parameter range identified
for in Step 1.

b) CounterX and CounterT RTL analysis: CounterX out-
puts are Nx and N1. For each output, a PSL assertion was



defined from the critical ranges obtained in Step 1. As the
CounterX counting cycle lasts 30 ms, each fault simulation
must last longer. The simulation of only one counting cycle is
too long to perform an exhaustive fault simulation campaign
in an affordable time frame. We therefore choose to perform a
statistical fault simulation campaign. This campaign lasts 2.5
hours for 10,098 simulated faults among which 6,362 (63%)
violate one assertion. The same statistical fault simulation was
applied to CounterT. The CounterT counting cycle lasts 1.5 s.
Consequently, the simulation lasted 10 hours, with 2,018 faults
injected, of which 54.4% violated one assertion.

c) Computation of the circuit critical fault probability:
Previous results allowed the SEU Failure Rate (FR SEU) to
be estimated. This metric corresponds to the circuit critical
fault probability. Since the DIVA, DIVB and SYNC blocks
have no critical range, they do not affect the FR SEU
computation. Algorithm 2 illustrates computation of FR SEU.
We note α the SEU rate (i.e., the number of SEUs per bit
per time unit). This rate is a parameter of the FMEA. This
algorithm first computes the number of bit-flips leading to
critical behaviors for the entire circuit (line 3). Then, the
FR SEU is obtained by multiplying the proportion of critical
bit-flips for the circuit by α.

Algorithm 2: SEU Failure Rate computation

1 Nb critical faults = 0
2 for Blocks ∈ System do
3 Nb critical faults = Nb critical faults +

(Probability critical fault(Block) *
Nb bits(Block))

4 FR SEU = Nb critical faults
Total number of bits ∗ α

The FR SEU failure rate computed for this case study
using Algorithm 2 is more accurate than the empirical FMEA
originally estimated by the designers. We obtained a 3-fold
lower FR SEU than the FR SEU from the empirical FMEA.

C. Step 3

For DIVA, DIVB, and SYNC, which had no critical ranges
identified in Step 1, results were consistent with the analysis
performed in Step 1: no RTL fault led to critical behaviors
within the system fault co-simulation. For DIVC, the system
fault co-simulation takes 5 hours; and 37 hours for CounterX.
These times are around 10 times longer than individual RTL
fault simulation times.

Since the faults simulated in Step 3 are the same as those in
Step 2, we can compute a confusion matrix for each block. For
example, Table VIII shows the confusion matrix for DIVC.
This table highlights the lack of false silent or quasi-silent
faults (FO), and reveals numerous false critical faults (FC).
However, compared to the empirical FMEA which assumed
all faults to be critical, our approach can rapidly estimate a
small subset of critical faults from among the entire list of
faults (3,794 critical faults over 39,053 faults). In addition, this

subset contains all the real critical faults. From this confusion
matrix, we obtained an accuracy of 0.92 and a precision of
0.25 (as defined in III.C). These values show that Steps 1 and
2, which are much faster than Step 3 give accurate but not
precise results. The confusion matrix allows us to evaluate
the quality of our high-level fault modeling approach, but this
evaluation is very time-consuming. Indeed, to compute the
accuracy and the precision with a confusion matrix we had to
inject the same faults as those injected in Step 2. Of course,
this complete evaluation is not required for each new FMEA,
but only when an FMEA involves new high-level blocks. For
casual systems, a system fault co-simulation using a subset
of the faults would allow faster verification of the critical
parameter ranges.

In Step 1, only high-level single fault injections are per-
formed on high-level parameters. However, SEU also affect
blocks with multiple outputs (such as CounterX and CounterT)
which are related to multiple parameters (such as Nx, N1, SR
for CounterX). RTL faults can propagate through these blocks
and simultaneously create multiple errors in their outputs.
For blocks produced with multiple outputs, it is particularly
important to evaluate the accuracy. In Step 3, we verify
whether these multiple errors (quasi-silent faults) produce
additional critical faults. In our test case, the percentage of
multiple errors corresponding to quasi-silent faults (generated
by RTL fault injections) on CounterX and CounterT outputs
is less than 8%. It follows that we will observe less than 8%
additional critical faults. For other applications, if too many
additional critical faults occur, the high-level fault model must
be improved to improve the evaluation performed in Step 1.

TABLE VII
RTL FAULT SIMULATION RESULTS

DIVC CounterX CounterT
Number of 51 102 102
Flip-Flops (16.2%) (32.4%) (32.4%)

Number of injected faults 39,052 10,098 2,018
(exhaustive/statistic) (exhaustive) (statistical) (statistical)

Number of 3,794 6,362 1,098
critical faults (9.8%) (63%) (54.4%)
Number of 8,346 979 293

quasi-silent faults (21.3%) (9.7%) (14.5%)
Number of 26,912 2,757 627
silent faults (68.9%) (27.3%) (31.1%)

Simulation time 45 min 2.5 h 10 h

TABLE VIII
CONFUSION MATRIX FOR DIVC

hhhhhhhhhhhPredicted
Co-simulation Critical Others

Critical TC: 960 FC: 2,900
Others FO: 0 TO: 33,171

VI. CONCLUSION

This paper presents a cross-layer fault simulation approach
which speeds up SEU FMEA on circuits used in critical
applications. This approach involves three steps:



• Step 1 extracts critical parameter ranges by injecting
high-level faults and filtering results with respect to the
overall system specifications.

• Step 2 reuses the critical ranges identified in Step 1 to
filter the results of an RTL fault injection simulation. This
step provides statistical information.

• Step 3 highlights some modeling defects.
The results show the following advantages of the methodol-
ogy:
• Faster fault simulation
• Filtering of erroneous behaviors taking system specifica-

tionsinto account
• Statistics on critical fault occurrence
• Verification of the realism of the high-level model.

The approach was applied to a programmable circuit used
in a critical airborne system. It proposes a safety analysis
considering real-time aspects.

Our evaluation is closer to real effects than the empirical
FMEA originally performed by the designers. The simulation
allowed us to identify and suppress from the critical fault list
the errors for which consequences are naturally pruned by the
complete system behavior. All faults identified as having no
criticality at the system level implicate the implementation of
less costly protections in the system, and reduced development
time.

Additional studies on high-level model realism issues will
need to be performed on real-time systems. Future works
aim to develop more realistic high-level models and high-
level faults. To validate the realism of these models, a whole-
system quantitative analysis at Step 3 will be performed.
In addition, the methodology will allow us to identify the
robustness mechanisms that are truly useful, and those that
may be redundant.
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G. Genévrier, and F. Cézilly, “Comparison of rtl fault
models for the robustness evaluation of aerospace fpga
devices,” in 2016 IEEE 22nd International Symposium
on On-Line Testing and Robust System Design (IOLTS),
2016, pp. 23–24.

[11] A. Miele, “A methodology for the design and the anal-
ysis of reliable embedded systems,” Ph.D. dissertation,
Politecnico di Milano, 2010.

[12] B. Tabacaru, M. Chaari, W. Ecker, T. Kruse, and C.
Novello, “Fault-effect analysis on system-level hard-
ware modeling using virtual prototypes,” in 2016 Forum
on Specification and Design Languages (FDL), 2016,
pp. 1–7.

[13] V. Herdt, H. M. Le, D. Grobe, and R. Drechsler, “On
the application of formal fault localization to automated
rtl-to-tlm fault correspondence analysis for fast and
accurate vp-based error effect simulation - a case study,”
in 2016 Forum on Specification and Design Languages
(FDL), 2016, pp. 1–8.

[14] A. Vallero, S. Tselonis, N. Foutris, M. Kaliorakis,
M. Kooli, A. Savino, G. Politano, A. Bosio, G. Di
Natale, D. Gizopoulos, and S. Di Carlo, “Cross-layer
reliability evaluation, moving from the hardware ar-
chitecture to the system level: A clereco eu project
overview,” Microprocessors and Microsystems, vol. 39,
no. 8, pp. 1204–1214, 2015, ISSN: 0141-9331. DOI:
https://doi.org/10.1016/j.micpro.2015.06.003. [Online].



Available: http://www.sciencedirect.com/science/article/
pii/S0141933115000824.

[15] J. Perez, M. Azkarate-askasua, and A. Perez, “Codesign
and simulated fault injection of safety-critical embedded
systems using systemc,” in 2010 European Dependable
Computing Conference, 2010, pp. 221–229.

[16] D. Mueller-Gritschneder, P. R. Maier, M. Greim, and
U. Schlichtmann, “System c-based multi-level error
injection for the evaluation of fault-tolerant systems,”
in 2014 International Symposium on Integrated Circuits
(ISIC), 2014, pp. 460–463.

[17] R. Bernard, J.-J. Aubert, P. Bieber, C. Merlini, and
S. Metge, “Experiments in model based safety analysis:
Flight controls,” IFAC Proceedings Volumes, vol. 40,
no. 6, pp. 43–48, 2007, 1st IFAC Workshop on Depend-
able Control of Discrete Systems, ISSN: 1474-6670.
DOI: https:/ /doi.org/10.3182/20070613- 3- FR- 4909.
00010. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1474667015310934.

[18] R. Mariani, G. Boschi, and F. Colucci, “Using an inno-
vative soc-level fmea methodology to design in compli-
ance with iec61508,” in 2007 Design, Automation Test
in Europe Conference Exhibition, 2007, pp. 1–6.

[19] S. Misera, H. T. Vierhaus, and A. Sieber, “Fault in-
jection techniques and their accelerated simulation in
systemc,” in 10th Euromicro Conference on Digital
System Design Architectures, Methods and Tools (DSD
2007), 2007, pp. 587–595.

[20] T. Fawcett, “An introduction to roc analysis,” Pattern
Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006,
ROC Analysis in Pattern Recognition, ISSN: 0167-8655.
DOI: https : / /doi .org /10 .1016 / j .patrec .2005 .10 .010.
[Online]. Available: http : / / www. sciencedirect . com /
science/article/pii/S016786550500303X.




