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Abstract

Structural changes occur in dynamic networks quite frequently and its detection
is an important question in many situations such as fraud detection or cybersecurity.
Real-life networks are often incompletely observed due to individual non-response or
network size. In the present paper we consider the problem of change-point detection at
a temporal sequence of partially observed networks. The goal is to test whether there
is a change in the network parameters. Our approach is based on the Matrix CUSUM
test statistic and allows growing size of networks. We show that the proposed test is
minimax optimal and robust to missing links. We also demonstrate the good behavior
of our approach in practice through simulation study and a real-data application.

1 Introduction

Most of the real-life networks, such as social networks or biological networks of neurons
connected by their synapses, evolve over the time. Detecting possible changes in a temporal
sequence of networks is an important task with applications in such areas as intrusion
detection or health care monitoring. In this problem we observe a sequence of graphs each
of which is usually sparse with large dimension and heterogeneous degrees. The underlying
distribution of this sequence of graphs may change at some unknown time moment called
change-point. The goal of this paper is to design a procedure that allows the detection and
localization of this change-point.

Many of the real-life networks are only partially observed (Handcock and Gile 2010,
Guimerà and Sales-Pardo 2009). The exhaustive exploration of all interactions in a network
requires significant efforts and can be expensive and time consuming. For example, graphs
constructed from survey data are likely to be incomplete, due to non-response or drop-out
of participants. Another example is online social network data. The gigantic size of these
networks requires working with a sub-sample of the network (Catanese et al. 2011). In
all these situations, being able to infer the properties of the networks from their partial
observations is of particular interest. To the best of our knowledge, change-point detection
for networks with missing links has not been considered in the literature. In the present
paper we focus on the case when we only have access to partial observations of the network
and we propose an efficient procedure for detection and estimation of a change-point that
is adaptive to the missing data.
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In real-life networks both the entities and relationships in a network can vary over time.
In the literature we can often find approaches that detect vertex-based changes in a time
series of graphs assuming a fixed set of nodes. Nevertheless, changes in the set of nodes
are also quite frequent in applications. For example, the vertices of a citation network are
scientific papers and an edge connects two papers if one of them cites the other one. New
vertices are constantly added to such networks. Likewise, the set of nodes of the Web,
social networks or, more generally, communication networks are constantly evolving and
changing. To account for this possibility we generalize our approach to the case when nodes
of the network may come and go. Considering graphs with varying number of nodes calls
for a more general non-parametric model. In the present paper we build on a popular
graphon model and show that our detection procedure can be adapted to this more general
setting.

1.1 Contributions and comparison with previous results

Our first motivation is to answer the following fundamental question: What is the detection
boundary in the problem of the change-point detection in dynamic networks? That is, we are
interested in the smallest amount of change in the underlying distribution of the network
such that successful detection of the change-point is still possible.

The change-point detection in dynamic networks and the related problem of the change-
point localization have attracted considerable attention in the past few years. Among
others, the problem of change-point detection has been considered in (Peel and Clauset
2015) where the authors introduce a generalized hierarchical random graph model with a
Bayesian hypothesis test. Wang et al. (2017) consider hierarchical aspects of the prob-
lem. A model based on non-homogeneous Poisson point processes with cluster dependent
piecewise constant intensity functions and common discontinuity points is considered by
Corneli et al. (2018). The authors of (Corneli et al. 2018) propose a variational expectation
maximization algorithm for this model. More recently, in (Hewapathirana et al. 2020) the
spectral embedding approach is applied to the problem of change-point detection in dy-
namic networks. In (Zhang et al. 2020) the focus is on the detection of the emergence of a
community using a subspace projection procedure based on a Gaussian model setting. An
eigenspace based statistics is applied in (Cribben and Yu 2017) to the problem of testing
the community structure changes in stochastic block model. These works focus mainly on
the computational aspects of the problem without theoretical justifications.

In (Wang et al. 2014) the authors introduce two types of scan statistics for change-point
detection for time-varying stochastic block model. In (Liu et al. 2018) subspace tracking is
applied to detect changes in community structure. The problem of multiple change-point
detection is studied by Zhao et al. (2019). The change-point algorithm proposed in this
paper is built upon a refined network estimation procedure. The authors of (Zhao et al.
2019) show consistency of this procedure. A different line of work describes a general
nonparametric approach to change-point detection for a general data sequence (Chu and
Chen 2019, Chen and Zhang 2015, Wang and Samworth 2018, Pilliat et al. 2020). For
example, a graph-based non-parametric testing procedure is proposed in (Chen and Zhang
2015) and is shown to attain a pre-specified level of type I error. Another related problem
is anomaly detection in dynamic networks. Here the task is to detect abrupt deviation
of the network from its normal behavior. A comprehensive survey on this topic is given
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in (Akoglu et al. 2015).
To the best of our knowledge, none of the existing works provides the minimax sepa-

ration rate for the change-point detection problem in dynamic network. We can only find
some partial answers. In particular, the results of (Ghoshdastidar et al. 2020) can be ap-
plied to the case of a known location of the change-point. Ghoshdastidar et al. obtain the
minimax separation rate for the two sample test and consider separation in spectral and
Frobenius norms. In the present paper we are interested in a more general setting where
no prior information about the existence or location of change-point is given, which is more
realistic and applicable to real data. The problem of two sample test is also considered in
(Chen et al. 2020) where the authors propose a test statistic based on the singular value of
a generalized Wigner matrix. They apply this estimator to the change-point localization
problem and derive consistency results.

We provide the minimax separation rate for the spectral norm separation (in Section 3.2
we explain why we think that the spectral norm is an appropriate choice for this problem) in
the case of an unknown change-point location with missing links. Beside the lower detection
boundary we also provide a test procedure based on the spectral norm of the matrix CUSUM
statistics that is nearly minimax optimal (up to a logarithmic factor). Our focus is on the
challenging case when the networks are only partially observed. Missing values are a very
common problem in the real life data. Usual imputation methods require observations
from a homogeneous distribution. In the presence of unknown change-points such methods
are not expected to perform well. This, in turn, will impact the performances of the
change-point detection and estimation methods. These methods, in their large majority,
are designed for the case of complete observations and we fall into a vicious circle. The
only works considering missing values in the context of change-point detection that we are
aware of are (Londschien et al. 2021) and (Xie et al. 2013). In (Londschien et al. 2021) the
authors consider the problem of multiple change-point detection for graphical models. Xie
et al. propose a fast method for online tracking of a dynamic submanifold underlying very
high-dimensional noisy data.

We also propose a new procedure for change-point estimation. The problem of a single
change-point estimation in a network generated by a dynamic stochastic block model has
been considered, among others, in (Bhattacharjee et al. 2020, Wang et al. 2021, Yu et al.
2021). Bhattacharjee et al. establish the rate of convergence for the least squares estimate
of the change-point and of the parameters of the model. They also derive the asymptotic
distribution of the change-point estimator. The problem of multiple change-points local-
ization has been studied by Wang et al. (2021). The authors of (Wang et al. 2021) provide
optimal localization rate in the case when the magnitudes of the changes in the data gener-
ating distribution is measured using Frobenius norm. More recently the methods of (Wang
et al. 2021) have been extended in (Yu et al. 2021) to the problem of online change-point
localization. The algorithms proposed in (Yu et al. 2021) and (Wang et al. 2021) require
two independent samplings. Unlike these methods, the algorithm that we introduce only
requires one independent sample which is a more realistic scenario in many applications.

Usually in works on change-point detection and localization in dynamic networks the
set of nodes is assumed to be fixed, e.g. (Ghoshdastidar et al. 2020, Wang et al. 2021) or, in
asymptotic setting, the number of nodes is assumed to go to infinity, e.g. (Chen et al. 2020).
Both settings may be limiting in some practical situations where the set of network’s nodes
may change but not forced to go to infinity. Using a popular graphon model, we propose
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a different paradigm when the underlying distribution of the network is independent of
the number of nodes. We provide an upper bound condition on the detection rate in this
setting.

The rest of the paper is organized as follows. We start by summarizing the main notation
used throughout the paper in Section 1.2. We introduce our model in the case of a fixed
set of nodes in Section 2 and, in Section 3, we provide our main results for this case. We
consider a more general setting which allows changes in the set of nodes in Section 4. The
numerical performance of our method is illustrated in Section 5.

1.2 Notation

We start with some basic notation used in this paper. For any matrix M , we denote by
Mij its entry in the ith row and jth column. The notation diag(M) stands for the diagonal
of a square matrix M . The column vector of dimension n with unit entries is denoted by
1n = (1, . . . , 1)T and the column vector of dimension n with zero entries is denoted by
0n = (0, . . . , 0)T. The identity matrix of dimension n is denoted by idn. For a set A, we
denote by 1A its indicator function.

For two matrices M and N of the same size, their Hadamard (elementwise) product
is denoted by M � N . For any matrix M ∈ Rn×n, ‖M‖F is its Frobenius norm, ‖M‖2→2

is its operator norm (its largest singular value), and ‖M‖∞ = maxij | Mij | is the largest
absolute value of its entries. The column-wise 1,∞-norm of M is denoted by ‖M‖1,∞ =
maxj

∑
i |Mij |.

We define the function q(t) =
√
t(1− t) for t ∈ [0, 1] that will control the impact of the

change-point location on the rate.
We denote by Cn the set of all symmetric connection probability matrices:

Cn =
{

Θ ∈ [0, 1]n×n : Θ = ΘT

}
and by C0

n the set of all symmetric connection probability matrices with zero diagonal:

C0
n =

{
Θ ∈ Cn : diag(Θ) = 0

}
.

2 Modeling dynamic networks with missing links

We start by introducing our model in the case of a fixed set of nodes. We will consider
a more general setting which allows changes in the set of nodes in Section 4. Assume
that we have T consecutive observations of a network modeled by the adjacency matrix
At ∈ {0, 1}n×n (1 ≤ t ≤ T ) of a simple undirected graph Gt with n vertices. At time t
the network follows the inhomogeneous random graph model: for i < j, the elements Atij
of the matrix At are independent Bernoulli random variables with the success probability
Θt
ij ∈ [0, 1]. It means that the edge (i, j) is present in the graph Gt with the probability

Θt
ij . We consider undirected graphs with no loops. Then, the matrix At is symmetric

and has zero diagonal. The corresponding matrix of connection probabilities is denoted by
Θt ∈ [0, 1]n×n; it is also symmetric with zero diagonal.

Often in practice the dynamic network is only partially observed. In this case, instead
of observing A =

{
At, 1 ≤ t ≤ T

}
, we observe a sequence of matrices Y =

{
Y t, 1 ≤ t ≤ T

}
4



where each matrix Y t contains the entries of the adjacency matrix At that are available
at time t. We say that we sample the pair (i, j) at the time moment t, if we observe the
presence or absence of the corresponding edge. We denote by Ωt the sampling matrix such
that Ωt

ij = 1 if the pair (i, j) is sampled at the time t, Ωt
ij = 0 otherwise. As the graph is

undirected, the sampling matrix is symmetric. Importantly, our methods for change-point
detection and estimation do not require the knowledge of the sample matrices Ωt.

We assume that for each t, the entries Ωt
ij (1 ≤ i < j ≤ n) are independent random

variables and that Ωt and At are independent. We denote the expectation of Ωt by Π ∈
Rn×n. Then, for any pair (i, j) and any t, Ωt

ij ∼ Bernoulli(Πij) and, for any i = 1, . . . , n, we
set Πii = 1. Note that we can attribute any value to the diagonal diag(Ωt), since observing
or not the diagonal elements does not carry any information about the diagonal of At that
vanishes by definition. We assume that, for any pair (i, j), we have non-zero probability to
observe Aij , that is, Πij > 0. For simplicity, we also assume that Π does not depend on t.
This means that the probability of observation for each vertex is not changing over the time.
This assumption is realistic in many situations, for example, when analysts sub-sample a
very large network. Our proofs may be extended to the situation of t-dependent Π at the
price of additional technicalities in the proofs and we choose to avoid it.

Finally, we can write the following “signal-plus-noise” model:

Y t = Π�Θt +W t, 1 ≤ t ≤ T, (1)

where W t ∈ [−1, 1]n×n is the matrix of centered independent Bernoulli random variables
W t
ij with the success probability ΠijΘ

t
ij and Y t ∈ {0, 1}n×n is the matrix with the elements

Y t
ij = Ωt

ijA
t
ij .

2.1 Sparse networks

Real-life networks are sparse with a number of connections that is much smaller than the
maximum possible one, which is proportional to n2. This implies that Θt

ij may change with
n and, in particular, Θt

ij → 0 as n→∞ for some (or all) (i, j). Let ρn = max
t
|Θt|∞. In the

literature on the sparse network estimation ρn is usually called sparsity parameter and it
is assumed that ρn → 0 as n→∞. In the present paper we consider a more general notion
of sparsity based on the column-wise 1,∞-norm of the connection probability matrix.

Let κn = max
t
‖Θt‖1,∞. We will say that the network is sparse if, on average, the

degree of each node is much smaller than the maximal possible number of connections in
the network, that is, we assume that κn/n→ 0 as n→∞. In particular, we have κn ≤ ρnn.
We will work with the set of all symmetric, zero diagonal connection probability matrices
of sparsity at most κn:

Mn(κn) =
{

Θ ∈ C0
n : ‖Θ‖1,∞ ≤ κn

}
. (2)

This new notion of sparsity is more general than the one based on the sup norm and has
multiple advantages. First of all, this notion of sparsity allows each Θt

ij to decay at its
own rate (or to be constant for some of them) which is a much more realistic scenario.
Moreover, the methods for sparse network estimation often require the knowledge of the
sparsity parameter ρn (see, e.g., (Klopp et al. 2017, Gao et al. 2016)) whose estimation is
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a tricky problem. In contrast to ρn, the parameter κn can be estimated using the observed
degrees of the nodes in the network.

In the case of missing links, we will need an additional parameter ωn, an upper bound
on the mean of the observed degree of each node, max1≤t≤T ‖Π � Θt‖1,∞ ≤ ωn. In the
particular case of uniform sampling with probability p, we have ωn = pκn and ωn ≤ npρn.

3 Optimal Change-Point Detection and Localization

We suppose that the connection probability matrix Θt might change at some location
1 ≤ τ ≤ T − 1:

Θt = Θ01{1≤t≤τ} + (Θ0 + ∆Θτ )1{τ+1≤t≤T}, t = 1, . . . , T. (3)

Here Θ0 is the connection probability matrix before the change and ∆Θτ ∈ [−1, 1]n×n is
a symmetric jump matrix of a change that occurs at time τ . If Θt does not change, then
∆Θτ = 0 for all 1 ≤ τ ≤ T − 1.

We consider the problem of testing whether there is a change in Θt at some (possibly
unknown) point τ ∈ {1, . . . T − 1}. Depending on the set of possible change-point positions
DT , we can formulate two different testing problems: problem (P1) of testing the presence
of a change at a given point τ with DT = {τ} and problem (P2) of testing the change at an
unknown location within the set of all possible change-point locations DT = {1, . . . , T −1}.

3.1 The case of full observations

Let us start by introducing our testing problem in the case of full observations. The difficulty
of assessing the existence of a change-point can be quantified by what is called energy of the
change point. It is defined as the product of the operator norm of the jump in parameter
matrix and the function q(t) =

√
t(1− t) for t ∈ [0, 1]. The function q(t) quantifies the

impact of change-point location to the difficulty of detecting the change. Thus, we write
the detection problem as the problem of testing whether the jump energy q(τ/T )‖∆Θτ‖2→2

is zero or not. To formulate the hypothesis testing problem, we define the set of all pairs of
κn-sparse matrices before (Θb) and after the change (Θa) at the location τ with the jump
energy at least r > 0:

Vτn,T (κn, r) =
{(

Θa,Θb
)
∈M⊗2

n (κn) : q(τ/T )‖Θa −Θb‖2→2 ≥ r
}
. (4)

On the other hand, let Vn(κn, 0) denote the set without a jump:

Vn(κn, 0) =
{(

Θa,Θb
)
∈M⊗2

n (κn) : Θa = Θb
}

We will test the null hypothesis of no-change in Θt:

H0 : (Θ0 + ∆Θτ ,Θ0) ∈ Vn(κn, 0) for all τ ∈ DT (5)

against the alternative hypothesis of a change in Θt at location τ ∈ DT :

H1 : (Θ0 + ∆Θτ ,Θ0) ∈ Vτn,T (κn,Rn,DT ) for some τ ∈ DT , (6)
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where Rn,DT > 0 is the minimal amount of energy that guarantees the change-point de-
tection. It is well known (see, e.g., (Ingster and Suslina 2003)) that the performance of a
test depends on how close the sets of measures under the null and under the alternative
hypotheses are. As a consequence, to determine the order of the smallest possible distance
between the null hypothesis and the alternative is a crucial question in minimax hypoth-
esis testing. This question is formulated in terms of the radius Rn,DT := Cϕn,DT . More
precisely, we are interested in conditions on the minimal energy that separate a detectable
change from an undetectable one.

Let α, β ∈ (0, 1) be two given significance levels. Informally, we say that the radius
Rn,DT = Cϕn,DT satisfies the upper bound condition with C ≥ C∗ > 0 and the rate
ϕn,DT , if for any couple of connection probability matrices before and after the change with
‖∆Θτ‖2→2 ≥ Rn,DT , there exists a test with the type I and II errors smaller than α and
β, respectively. We say that Rn,DT = Cϕn,DT satisfies the lower bound condition with
0 < C ≤ C∗ and the rate ϕn,DT , if there is no test that can have type I and II errors smaller
than α and β, respectively. Then ϕn,DT is called minimax separation rate (more precise
definitions are given in the Appendix). Our goal is to find the minimax separation rate for
change-point detection problems (P1) and (P2) and to provide a computationally tractable
minimax-rate optimal test for these problems.

3.2 Matrix CUSUM statistic

Let Y = (Y 1, . . . , Y T ) be the observed data following model (1). Recall that Y t ∈ {0, 1}n×n
with the elements Y t

ij = Ωt
ijA

t
ij , where Ωt is the sampling matrix with mean Π. If there is

no missing data, then Π = 1n1
T
n is the matrix of unit entries. Define the following matrix

process

ZT (t) =

√
t(T − t)

T

(
1

t

t∑
s=1

Y s − 1

T − t

T∑
s=t+1

Y s

)
, t = 1, . . . , T − 1. (7)

This process measures the difference between the average number of connections before and
after the point t. Intuitively, if there is a change in some entries of the parameter matrix
Θt at time τ , then, with high probability, the value of the process ZT at these entries will
be maximal in the neighborhood of τ . We call the process (7) Matrix CUSUM (Matrix
Cumulative Sum) process because it is related to the cumulative sums of Y as

ZT (t) =

√
T

t(T − t)

[
t∑

s=1

Y s − t

T

T∑
s=1

Y s

]
.

We can write our model (1) in the equivalent form

ZT (t) = −µτT (t)Π�∆Θτ + ξ(t), t = 1, . . . , T − 1, (8)

where

µτT (t) =

√
t(T − t)

T

(
τ

t
1{τ+1≤t≤T} +

T − τ
T − t

1{1≤t≤τ}

)
(9)

and the random matrices

ξ(t) =

√
t(T − t)

T

(
1

t

t∑
s=1

W s − 1

T − t

T∑
s=t+1

W s

)
(10)
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are centered. The function µτT (t) attains its maximum equal to
√
Tq(τ/T ) at the true

change-point t = τ . Thus, for any matrix norm, we have

max
1≤t≤T−1

‖E(ZT (t))‖ =
√
Tq(τ/T )‖Π�∆Θτ‖.

We will use the test statistics based on the operator norm of (7) as we need to ensure
that the norm of the jump in the parameter matrix is larger than the norm of the noise
term ξ(t). We can control the operator norm of the noise term using the matrix Bernstein
inequality. On the other hand, we can easily see that the Frobenius norm is not a suitable
choice here. Indeed, assuming that for any t, Θt

ij ≈ ρn → 0, we get

E‖ξ(t)‖2F
n2

≈ ρn �
‖∆Θτ‖2F

n2
≈ ρ2

n.

Thus our detection procedure is the following one: if the operator norm of the Matrix
CUSUM statistic is sufficiently large at some point t ∈ DT , we conclude that there is a
change in the connection matrix Θt of the network.

3.3 Testing for change-point at a given location without missing links

In order to illustrate the main ideas of our method, we first consider problem (P1) of testing
the presence of a change at some given point τ from complete observations. In the case
of the fully observed network A = (A1, . . . , AT ), we have the following “signal-plus-noise”
model:

Y t = At = Θt +W t, 1 ≤ t ≤ T, (11)

where W t ∈ [−1, 1]n×n is the matrix of independent centered Bernoulli random variables
W t
ij taking values in

{
−Θt

ij , 1−Θt
ij

}
with the success probability Θt

ij .
We call test (or decision rule) any measurable binary function ψn,T : A→ {0, 1} of the

data A = (A1 . . . , AT ). If its value is equal to 1, we reject the null hypothesis and say that
there is a change in Θt. Otherwise we say that the dynamic network has no change in the
connection probability matrix. The decision rule for problem (P1) is given by

ψτn,T (A) = 1{‖ZT (τ)‖2→2 > Hα,n

}, (12)

where
Hα,n = c∗

√
κn log(n/α). (13)

Here c∗ is an absolute constant provided in Lemma 10.
We start by providing the upper bound condition for our test:

Theorem 1. Let α, β ∈ (0, 1) be given significance levels. Assume that 9τ(T−τ)
T κn ≥

log
(

n
α∧β

)
and

Rn,τ ≥ c∗
(κn
T

)1/2 {√
log (n/α) +

√
log (n/β)

}
. (14)

Then, for the test defined in (12) with threshold (13), we have α(ψτn,T ) ≤ α and β(ψτn,T , Rn,τ ) ≤
β.
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Note that for T ≥ 2 we have that τ(T − τ)/T ≥ 1/2, then, assuming n is large enough

with n ≥ max(1/α, 1/β) we have that condition 9τ(T−τ)
T κn ≥ log

(
n

α∧β

)
is satisfied if

2κn ≥ log (n). Putting together Theorems 1 and 3 we can conclude that our test is minimax
optimal (up to a multiplicative log factor).

3.4 Testing for change-point at an unknown location with missing links

In this section we consider the general model with missing links defined in (1) and study
problem (P2) of testing the presence of a change at an unknown location. In the case of
model with missing links we work with the pairs of matrices (Θt,Π) with the sparsity level
bounded by ωn and consider the following set:

Sn(ωn) =
{

(Θ,Π) ∈ C0
n × Cn : ‖Π�Θ‖1,∞ ≤ ωn

}
. (15)

We will define the jump energy at the location τ as the product of the function q(τ/T ) and
the operator norm of the Hadamard product of the sampling matrix Π and the jump matrix
∆Θτ . To formulate the hypothesis testing problem in the case of missing links we define
the set of pairs of matrices before (Θb,Π) and after the change (Θa,Π) at some location τ
with the jump energy at least r > 0:

Wτ
n,T (ωn, r) =

{(
(Θa,Π), (Θb,Π)

)
∈ S⊗2

n (ωn) : q(τ/T )
∥∥Π� (Θa −Θb)

∥∥
2→2
≥ r
}
. (16)

Let Wn(ωn, 0) denotes the set without the jump:

Wn(ωn, 0) =
{{

(Θa,Π) ,
(

Θb,Π
)}
∈ S⊗2

n (ωn) : Θa = Θb
}
.

As in the case of full observations, the detection problem can be written as testing whether
the jump ∆Θτ is zero or not:

H0 :
{

(Θ0 + ∆Θτ ,Π), (Θ0,Π)
}
∈ Wn(ωn, 0), for all τ ∈ DT (17)

against the alternative hypothesis of a change in Θt

H1 :
{

(Θ0 + ∆Θτ ,Π), (Θ0,Π)
}
∈ Wτ

n,T (ωn,Rn,DT ) for some τ ∈ DT . (18)

To built a test in the case of unknown change-point location a natural idea is to use a
decision rule based on the maximum of the matrix CUSUM statistic over a subset T of DT :
Ln,T (Y ) = maxt∈T ‖ZT (t)‖2→2. For example, we can take the whole set T = DT . However,
the choice of the set T may be optimized by taking a dyadic grid of {1, . . . , T − 1} (see,
for example, (Liu et al. 2021)). Define the dyadic grid on the set DT = {1, . . . , T − 1} as
T = T L ∪ T R, where

T L =
{

2k, k = 0, . . . , blog2(T/2)c}, T R =
{
T − 2k, k = 0, . . . , blog2(T/2)c

}
. (19)

Our decision rule is based on the maximum of the operator norm of the matrix CUSUM
statistic over the dyadic grid:

ψn,T (Y ) = 1{
max
t∈T
‖ZT (t)‖2→2 > Hα,n,T

}, (20)
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where

Hα,n,T = c∗
√
ωn log

(2n

α
log2(T )

)
(21)

and c∗ is an absolute constant provided in Lemma 10. The parameter ωn in (21) is an
upper bound on the mean of the observed degree of each node. Note that, using Kol-
mogorov’s law of large numbers, it can be estimated by the maximum observed degree
ω̂n = max1≤t≤T ‖Y t‖1,∞. The following theorem provides an upper detection condition for
our test:

Theorem 2. Let α, β ∈ (0, 1) be given significance levels. Assume that, for all τ ∈ DT , we

have 9 τ(T−τ)
T ωn ≥ log

(
2n log2(T )

α∧β

)
and

Rn,DT ≥
√

3c∗

(ωn
T

)1/2 {√
log (2n/α) + log log2(T ) +

√
log (n/β)

}
. (22)

Then, for the test defined in (20) with threshold (21), we have α(ψn,T ) ≤ α and β(ψn,T , Rn,DT ) ≤
β.

Next, we prove that, if the condition (22) on the detection threshold is not satisfied
(up to a log factor), then the hypotheses H0 and H1 are indistinguishable for our testing
problem:

Theorem 3. Let α ∈ (0, 1) be given significance level, β ∈ (0, 1 − α] and η = 1 − α − β.
Assume that ωn > 0.3 and that, for all n ≥ 2 and T ≥ 2

Rn,DT ≤
(ωn
T

)1/2 log1/4
(

1 + η2
)

4
√

2
. (23)

Then, the hypotheses H0 and H1 are indistinguishable: inf
ψn,T∈Ψα

β(ψn,T , Rn,DT ) ≥ β.

Theorems 2 and 3 provide the minimax separation rate in terms of the operator norm of
the Hadamar product of ∆Θτ and Π. Let us first consider the case of the uniform sampling
with Πij = pn for i 6= j. In this case we have ‖Π�∆Θτ‖2→2 = pn‖∆Θτ‖2→2 and we get the
following result that provides the minimax separation rate for the problem of testing for a
change at an unknown location in a dynamic sparse network with links missing uniformly
at random.

Theorem 4 (Minimax separation rate for spectral norm separation). Consider
problem (17)–(18) and assume that links are missing uniformly at random with probability
pn. Assume that conditions of Theorems 2 and 3 are satisfied. Then, there exist absolute
constants c1, c2 such that the minimax separation rate ϕn,DT for spectral norm separation
satisfies:

c1

(
κn
pnT

)1/2

≤ ϕn,DT ≤ c2

(
κn
pnT

)1/2 {√
log(2n log2(T )/α) +

√
log (n/β)

}
.

10



For more general sampling scheme, we can quantify how the missing observations effect
our detection problem by the following ”distortion” parameter:

δn(Π,Θ) =
minij Πij√

r ∨ 1
where r = rank(Π�Θ). (24)

In the case of general sampling scheme, using Lemma 11, we obtain that

‖Π�∆Θ‖2→2 ≥ δn(Π,Θ)‖∆Θ‖2→2.

Then, Theorem 2 implies that for any α, β ∈ (0, 1), the risk of our test is bounded by α+β,
if the spectral norm of ∆Θτ , the jump of the parameter matrix, is larger than

c∗
δn

(
ωn

Tq(τ/T )

)1/2 {√
log(2n log2(T )/α) +

√
log (n/β)

}
.

Remark 1. Note that using Lemma 11 we can improve (24) and replace r = rank(Π�Θ)
by

r∗ = min
M=(Mij):Mij=(Π�Θ)ij for i 6=j

rank(M).

That is, we can modify the diagonal of Π � Θ to get a matrix of a smaller rank as, for
example, in the case when both Π and Θ have a community structure.

As an example, let us consider a network with two communities and missing communi-
cation. We have two communities with k and n− k nodes such that the links between the
members of each community are fully observed. However, the links between the members
of two different communities can be missing and are observed with the rate pn. Then,
after a suitable permutation, Π has the following block structure: Πij = 1 if 1 ≤ i, j ≤ k
and k + 1 ≤ i, j ≤ n; otherwise Πij = pn. Assuming that at most s nodes change their
connection patterns and using rank(Π�∆Θ) ≤ rank(Π)rank(∆Θ), we get that r ≤ 2s and

δn(Π,Θ) ≥ minij Πij√
2s

.

On the other hand, if the whole community changes its connection pattern, we may assume
that ∆Θ follows the Stochastic Block Model. In this model nodes are classified into K com-
munities. For any node i, denote by c(i) its community assignment. Then, the probability
that an edge connects two nodes only depends on their community assignments:

P((i, j) ∈ E) = Qc(i)c(j). (25)

In (25), Q denotes a K×K symmetric matrix of connection probabilities between communi-
ties and let ni be the size of the ith community. Denote by ∆Q = (∆Qij) matrix containing
the differences between the probabilities of connection before and after the change. Then,
∆Θ can be written as the sum of a matrix of rank at most K and a diagonal matrix D
with the elements −∆Qii on the diagonal. If Π and Θ have different community structure,
then using Lemma 11, we get that

‖Π�∆Θ‖2→2 ≥
pn

2
√

2K
‖∆Θ‖2→2.

On the other hand, if Π and Θ have the same community structure with two communities,
we have

‖Π�∆Θ‖2→2 ≥
pn

2
√

2
‖∆Θ‖2→2.

11



3.5 Change-point localization

In this section we turn to the twin problem of change-point localization which amounts to
estimating the position of the change-point τ . That is, we seek for an estimator of τ , τ̂n,
such that |τ̂n − τ | ≤ ε with high probability. The ratio ε/T is usually called localization
rate of an estimator and the estimator is deemed consistent if, as T → ∞, its localization
rate vanishes. As in the case of testing, our estimator is based on the operator norm of the
Matrix CUSUM statistic and is defined as follows:

τ̂n ∈ arg max
1≤t≤T−1

‖ZT (t)‖2→2. (26)

Let ∆ = ‖Π � ∆Θ‖2→2 denote the magnitude of the change in the matrix of connection
probabilities. For presenting the results, we scale all the time points to the [0, 1] interval,
by dividing them by T . Let x∗ = τ/T and x̂ = τ̂n/T . The next proposition shows that our
estimator is consistent:

Proposition 1. Let γ ∈ (0, 1). Assume that 4.5ωn ≥ log
(
nT
γ

)
. Then the estimated

change-point x̂ = τ̂ /T returned by (26) satisfies

|x̂− x∗| ≤
3 c∗
√
ωn log (nT/γ)

∆
√
Tq(x∗)

with probability larger than 1− γ.

Note that the minimax lower bound on the localisation error obtained in (Wang et al.

2021) (without missing links, that is, when ωn = κn) implies that if ∆ ≤
√
κn√

33Tq(x∗)
, then

no consistent change-point estimator can exist.

4 Accounting for changes in the set of vertices

In this section we generalize our model to the case when nodes may come and go. This
is the case for many real-life networks, such that, for example, the social networks that
are constantly growing with time. Considering graphs with varying number of nodes call
for a more general non-parametric model. The idea is to introduce a well-defined ”limiting
object” independent of the networks size n and such that stochastic networks can be viewed
as partial observations of this limiting object. Such objects, called graphons, play a central
role in the theory of graph limits introduced by Lovász and Szegedy (2006) (see, for example,
Lovász (2012)). Graphons are symmetric measurable functions W : [0, 1]2 → [0, 1]. In the
sequel, the space of graphons is denoted by W.

4.1 Testing the change in sparse graphon model

Assume that we observe a dynamic network At (1 ≤ t ≤ T ) where each adjacency matrix
At = (Atij) is of size nt that may change with time. We allow nodes to appear and disappear
from our networks and denote by V be the set of all nodes of all networks, that is ϑ ∈ V
is there exists a time moment 1 ≤ t ≤ T such that ϑ is a node of At. Let N = |V| be the
cardinality of V.

12



We consider the sparse graphon model and assume that each vertex ϑ ∈ V is assigned
to an independent random variable εϑ uniformly distributed over [0, 1]. Now, for each
time instant t, the edge (i, j) is independently included in the network with probability
Θt
ij = ρnW

t(εi, εj) where W t is the graphon which defines the probability distribution
of the network at the time instant t and ρn is the sparsity parameter. Conditionally
on ε = (εϑ)ϑ∈V , we assume that Atij are independent Bernoulli random variables with
parameter Θt

ij , A
t
ij ∼ Bernoulli(Θt

ij).
We suppose that the function W t might change at some unknown time moment τ , that

is, we assume that

W t(x, y) = W1(x, y)1{1≤t≤τ} +W2(x, y)1{τ+1≤t≤T}. (27)

Given the observations At (1 ≤ t ≤ T ) of networks following the graphon model, we would
like to test whether there is a change in the function W t at some unknown time moment
τ . Set ∆W τ (x, y) = W τ (x, y)−W τ+1(x, y).

Let W (x, y) : [0, 1]2 → [0, 1] be an integrable function. We can define the following
operator W : L2[0, 1]→ L2[0, 1]:

Wf =

∫ 1

0
W (x, y)f(y) dy

and denote by ‖W‖2→2 the corresponding operator norm. We test the following hypotheses:

H0 : ∆W τ = 0 for all τ ∈ DT against H1 : ‖∆W τ‖2→2 ≥ rn for some τ ∈ DT .

As in the case of the inhomogeneous random graph model that we considered in Section 3,
our test is based on the matrix CUSUM statistics:

ZT (t) =
1

t

t∑
s=1

Ãs − 1

T − t

T∑
s=t+1

Ãs,

where Ãs is the restriction of As on the set of nodes that is common to all the networks.
Denote by n the size of this set. Then, the test is defined as follows:

ψ∗n,T (A) = 1{
max
t∈T
‖ZT (t)‖2→2 > Hα,n,T

} (28)

where T is the dyadic grid (19) and the threshold Hα,n,T is defined in (21). We provide
the upper detection condition for our test for two particular classes of graphons that have
been considered in the literature on sparse graphon estimation: the class of step functions
and the class of smooth graphons. First we consider the classe of step functions:

Definition 1. Define WK , the collection of K-step graphons that is the subset of graphons
W ∈ W such that for some symmetric matrix Q ∈ RK×K and some φ : [0, 1]→ {1, . . . ,K}

W (x, y) = Qφ(x),φ(y) for all x, y ∈ [0, 1].

We have the following upper detection bound in the case of step graphons:

13



Theorem 5. For i = 1, 2 let Wi ∈ WKi with Ki ≤ n
log(n) and let α, β ∈ (0, 1) be given

significance levels. Assume that, for all τ ∈ DT , 9τ(T−τ)
T ρnn ≥ log

(
nT
α∧β

)
and

q(τ/T )‖∆W‖2→2 ≥ c∗

(√
log(2n log2(T )/α) +

√
log (n/β)

Tρnn

)1/2

+ 4
(K log (n)

n

)1/4
. (29)

Then, for the test defined in (28) with threshold (21), we have that α(ψ∗n,DT ) ≤ α and
β(ψ∗n,DT , Rn,DT ) ≤ β.

Next, we obtain the upper detection bound for smooth graphons:

Definition 2. For any γ > 0, L > 0, the class of γ-Hölder continuous functions Σ(γ, L)
is the set of all functions W : [0, 1]2 → [0, 1] such that for all (x′, y′), (x, y) ∈ [0, 1]2,

|W (x′, y′)− Pbγc((x, y), (x′ − x, y′ − y))| ≤ L
(
|x′ − x|γ−bγc + |y′ − y|γ−bγc

)
.

where bγc is the maximal integer less than γ and the function (x′, y′) 7→ Pbγc((x, y), (x′ −
x, y′ − y)) is the Taylor polynomial of degree bγc at point (x, y).

The following theorem provides the upper detection condition for Hölder continuous
graphons:

Theorem 6. For i = 1, 2 let Wi be γi-Hölder continuous functions and let α, β ∈ (0, 1) be

given significance levels. Assume that, for all τ ∈ DT , 9τ(T−τ)
T ρnn ≥ log

(
nT
α∧β

)
and

q(τ/T )‖∆W‖2→2 ≥ c∗

(√
log(2n log2(T )/α) +

√
log (n/β)

ρnnT

)1/2

+ C

(
log n

n

)− γ∧1
2

(30)

where γ = min(γ1, γ2). Then, for the test defined in (28) with threshold (21), we have that
α(ψ∗n,DT ) ≤ α and β(ψ∗n,DT , Rn,DT ) ≤ β.

5 Numerical experiments

In this section, we provide the study of numerical performance of our method. We consider
five different scenarios.
Scenario 1: Erdős–Rényi model. For our first experiment we assume that, before and after
the change, the network follows the Erdős–Rényi model. We set Θ0 = 1

2ρn(1n1
T
n − idn)

and Θ1 = 1
2δρn(1n1

T
n − idn), where δ ∈ [−2, 2]. In this scenario, after the change point,

all pairs of nodes simultaneously increase or decrease theirs connection probabilities by the
same constant proportional to δ.
Scenario 2: Stochastic Block Model with two communities and change in connection prob-
ability between communities. We suppose that the network follows the Stochastic Block
Model with two balanced communities (block sizes are bn/2c and n− bn/2c.) The proba-
bilities of connection between the communities change at some point and are given by the
following matrices Q1 (before the change) and Q2 (after the change point):

Q1 = ρn

(
0.6 1
1 0.6

)
, Q2 = ρn

(
0.6 δ
δ 0.6

)
, δ ∈ [0, 1].
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Scenario 3: Stochastic Block Model with two communities with change in connection prob-
ability within one community. As in the previous scenario, we assume that the network
follow the stochastic block model with two balanced communities. In this scenario, the
matrices Q1 (before the change) and Q2 (after the change point) are defined by

Q1 = ρn

(
1 0.5

0.5 0.6

)
, Q2 = ρn

(
δ 0.5

0.5 0.6

)
, δ ∈ [0, 1]

Scenario 4: Stochastic Block Model with two communities with change in connection prob-
ability within two communities. Same setting as before, but now connection probabilities
inside of both communities change:

Q1 = ρn

(
1 0.2

0.2 1

)
, Q2 = ρn

(
δ 0.2

0.2 δ

)
, δ ∈ [0, 1].

Scenario 5: Stochastic Block Model with three communities and change in connection prob-
ability between communities.
We suppose that the network follow the stochastic block model with three balanced com-
munities (the block sizes are k1 = k2 = bn/3c and k3 = n − k1 − k2). The probabilities of
connection between the communities change at some point and are given by the following
matrices Q1 (before the change) and Q2 (after the change point)

Q1 = ρn

0.6 1 0.6
1 0.6 0.5

0.6 0.5 0.6

 , Q2 = ρn

 0.6 1− δ 0.6
1− δ 0.6 0.5 + δ
0.6 0.5 + δ 0.6

 , δ ∈ [0, 0.5].

This scenario was considered in (Yu et al. 2021) with a constant parameter δ = 0.5. In our
study we vary δ and report the test power in terms of the changing energy.

In our simulation study, each test is calibrated at the significance level α = 0.05. The
sparsity ρn is set to n−1/2. The sparsity parameter κn is set to κn = nρn for Scenario 1
and to κn = 1

2nρn max(‖Q1‖1,∞, ‖Q2‖1,∞)‖ for Scenarios 2–4. For Scenario 5 we set κn =
1
3nρn max(‖Q1‖1,∞, ‖Q2‖1,∞)‖. In all the scenarios we have κn ≤

√
n.

For each model we applied three tests: the test ψτn,T at the given change-point τ defined

in (12), the test ψn,T over the dyadic grid T d defined in (20) (we add the point bT/2c to

the grid in our simulations) and the test ψfulln,T (Y ) based on the maximum over the whole
set DT = {1, . . . , T − 1}.

Our theoretical threshold Hα,n,T depends on the constant c∗ defined in Lemma 10. In
practice we can calculate a more accurate threshold using the concentration inequality from
Lemma 10 with x = log(1/α) for testing the hypothesis at a given change-point τ and with
x = log(|T |/α) for testing in problem (P2) over the grid T . In our simulations we use
following thresholds:

for ψτn,T : qτα,n,T =
1

3

log(n/α)√
Tq(τ/T )

+
(1

9

log2(n/α)

Tq2(τ/T )
+ 2κn log(n/α)

)1/2
.

For test over the dyadic grid ψn,T (Y ) and the test ψfulln,T (Y ) we use the same threshold

qα,n,T (t) =
1

3

log(n|T |/α)√
Tq(t/T )

+
(1

9

log2(n|T |/α)

Tq2(t/T )
+ 2κn log(n/α)

)1/2
, t ∈ T .
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In order to compare the performance of the tests under different regimes (n, T, τ), we
introduce “energy-to-noise ratio” defined by

ENR := ENRn,T (τ/T,∆Θτ ) =
q(τ/T )‖∆Θτ‖2→2√

κn/T
.

This ratio provides a numerical upper bound on the minimax testing constant (see Theo-
rem 4). We denote by ENRτ , ENRd, ENRf the minimal detectable ENR for the tests ψτn,T ,

ψn,T , and ψfulln,T , respectively. Here “detectable” means that the average power of the cor-
responding test is equal to 1 over 100 simulations. Note that the lower bound constant for
any test of level α with β = 0 is equal to c∗ = log1/4(1 + (1−α)2)/(4

√
2) (see Theorem 3).

5.1 Varying n and T

In this part we study the dependency of the energy-to-noise ratio ENR on n and T . We
report the results of simulations for five scenarios in Table 1. We see that globally the ENR
decreases when the number of observations T increases. Some changes cannot be detected
by our tests. For example, for Scenarios 2, 3 and 5 the change-point is undetectable for
T = 20 and n = 100 by any test. It can be explained by the small number of observations
T implying the threshold that is systematically greater than the value of the test statistic.
Scenario 5 seems to be more difficult than the other ones, it might be, in particular, due
to the fact that the allowed changes are within the interval [0, 0.5] that is smaller than in
Scenarios 2–4.

The ENR of the test ψτn,T is always smaller than the ENR of two other tests. Con-
cerning the tests over the dyadic grid and over the whole set of observations, the test ψn,T
outperforms the test ψfulln,T in the majority of parameter settings and scenarios. The ENR of
the test ψn,T is greater than the one of the whole grid test only in Scenario 1 with τ/T = 0.1
and relatively small number of observations T = 50 and 100 (see the values in bold in the
table). This might be explained by the location of the change-point and by the small size
of the dyadic grid.

5.2 Estimating the sparsity

In this section we study the performance of our tests with the thresholds based on the
estimated sparsity parameter κ̂n. To estimate κn, for each t = 1, . . . , T , we first calculate
At·j =

∑n
i=1A

t
ij . Next, to obtain a robust estimator of sparsity for each t, we take the 0.9-

level empirical quantile of At·j . The final estimator of κn maximizes the obtained estimated
sparsities κ̂tn over t:

κ̂n = max
t
Q
({ n∑

i=1

Atij , j = 1, . . . , n
}
, 0.9

)
.

Here Q(Z,α) denotes the α-level empirical quantile of the sample Z.
In Fig. 1 we compare the performance of the test adaptive to the unknown sparsity

level with the test where we use the true value κn. We consider Scenario 2 with n = 100,
T = 100 and Scenario 5 with n = 100, T = 250. For Scenario 2, κn ≈ 0.8nρn and, for
Scenario 5, κn ≈ 0.77nρn. In our simulations the change-point is located in the middle. For
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n T ENRτ ENRd ENRf n T ENRτ ENRd ENRf

Scenario 1 100 20 2.2274 2.5456 2.7047 Scenario 1 100 20 1.4128 1.6419 1.7374
τ/T = 0.5 100 50 2.1802 2.5156 2.6800 τ/T = 0.1 100 50 1.3282 1.7810 1.7207

100 100 2.1345 2.4903 2.7275 100 100 1.3234 1.7930 1.7076
100 250 2.2500 2.6250 2.8125 100 250 1.2825 1.6875 1.7550
150 20 2.2378 2.5322 2.6500 150 20 1.4204 1.6324 1.6960
150 50 2.2347 2.5140 2.7002 150 50 1.3743 1.7765 1.7095
150 100 2.2385 2.5019 2.7652 150 100 1.3273 1.7540 1.7065
150 250 2.2902 2.4984 2.9148 150 250 1.3491 1.7239 1.7239

Scenario 2 100 20 NA NA NA Scenario 3 100 20 NA NA NA
τ/T = 0.5 100 50 2.1546 2.4397 2.6298 τ/T = 0.5 100 50 2.1550 2.4766 2.7018

100 100 2.0612 2.4197 2.6885 100 100 2.1834 2.5018 2.7292
100 250 2.0546 2.4089 2.6923 100 250 2.0857 2.5172 2.8049
150 20 2.1928 NA NA 150 20 2.2389 NA NA
150 50 2.1363 2.4515 2.6266 150 50 2.1812 2.5387 2.7175
150 100 2.0801 2.4763 2.6745 50 100 2.1239 2.5284 2.7812
150 250 2.0360 2.4276 2.7408 150 250 2.1588 2.5586 2.7984

Scenario 4 100 20 2.2098 NA NA Scenario 5 100 50 NA NA NA
τ/T = 0.5 100 50 2.1253 2.4495 2.6296 τ/T = 0.5 100 100 NA NA NA

100 100 2.0377 2.4452 2.6999 100 150 2.0235 NA NA
100 250 2.0137 2.4146 2.7386 100 250 2.0483 2.3748 2.7013
150 20 2.2528 NA NA 150 50 NA NA NA
150 50 2.1212 2.4814 2.6815 150 100 NA NA NA
150 100 2.1508 2.4904 2.7168 150 150 2.0664 2.4236 NA
150 250 2.0583 2.4163 2.7743 150 250 2.0420 2.3713 2.2007

Table 1: The results of simulations for five proposed scenarios for n = 100 and 150.

Scenario 2 with T = 100, our estimator κ̂n slightly overestimates the true value κn = 7.94
with the average value κ̂n = 12.9129 calculated over 100 simulations and over all values of
the parameter δ. For Scenario 5 and T = 250 we obtain a better estimation that is equal
to κ̂n = 11.6858 while the true value κn = 7.26. For Scenario 2, the tests adaptive to the
unknown sparsity level behave quite well with a reasonable power and with the ENR that
is about 1.25 times greater than the ENR of the corresponding test with known κn. For
Scenario 5 the proportion between the ENRs is about 1.07 times. Better performances of
the adaptive test for Scenario 5 is expected as in this case the change in the sparsity level
of the network is less important than in the Scenario 2. Our test construction is based on
the upper bound for the sparsity level for all t and naturally gives better results in the case
of the change which is more homogeneous in therms of sparsity.

5.3 Coping with missing links

We have simulated networks from the Erdős–Rényi model (see the Appendix, Section G)
and the Stochastic Block Model with two communities. For any time point t, we sample
the links at the uniform rate pn and estimate the change-point τ . We compute the average
absolute error of our estimator τ̂ defined in (26) over N = 100 simulations normalized by the
number of observations T : RN (τ̂ , τ) = (NT )−1

∑N
i=1 |τ̂i − τ |. We present the dependence

of this risk on the sampling rate pn and on the norm of the jump ∆Θτ .
We have simulated the networks of size n = 100 from Scenario 2 with T = 100 and one

change-point τ ∈ {5, 25, 50}. In Fig. 2 we observe the dependence of the risk on the location

17



00.1583 0.5 1 1.5 2 2.5 3 3.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

00.1583 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: The test powers with known and estimated sparsity parameters for n = 100
τ/T = 0.5 and T = 100 for Scenario 2 (on the left) and T = 250 for Scenario 5 (on the
right).

τ : the closer τ is to the middle of the interval, the easier the estimation is. Comparing
to Scenario 1 (see the Appendix), we see that the change-point estimation under Scenario
2 with missing links is a more difficult problem, as expected. We see the dependence
of the rate of convergence of τ̂ on the norm ‖Π � ∆Θτ‖2→2 from the form of the level
curve pn‖∆Θt‖2→2 ≈ const separating the black area corresponding to a low change-point
localization error from the light one with the higher error.
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Figure 2: The risk of the change-point estimator under Scenario 2 for T = 100, n = 100
and τ = 5, 25, 50 (left to right). The links are observed at the rate p ∈ (0, 1].

We have also simulated the networks from the model with missing communication be-
tween communities described in Section 3.4. Here the inter-community links are observed
at the constant rate pn and the links between the two communities are fully observed. In
Fig. 3 we present the results of these simulations. We see that the risk of estimating τ
is slightly higher here than in the previous case. This illustrates well the impact of the
missing values on the problem of change-point localization. The reason is that we have the
missing values for the inter-community connections that change and the intra-community
connections that remain unchanged are fully observed, so we observe a ”smaller” quantity
of the change in this case. This is coherent with our theoretical results.
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Figure 3: The risk of the change-point estimator under Scenario 2 for T = 100, n = 100
and τ = 5, 25, 50 (left to right). The inter-community links are sampled at the constant
rate p ∈ (0, 1].

5.4 Transport for London (TfL) Open Data

In this section we apply our test to the real data coming from the Transport for London
(TfL) Open Data API1. The data contains information about London Bicycle Sharing
Network collected since 2012. The dataset contains the following information: the ID of
each bicycle, the ID and name of the origin and the destination trip stations, the journey
(rental) starting and ending time and date, and the unique ID and the duration of each
trip.

We have analyzed the data during the two-month period from June 24, 2012 to August
31, 2012. The summer of 2012 is a remarkable period because of the Games of the XXX
Olympiad that was held from July 27 to August 12, 2012 in London. The dynamic network
is a sequence of T = 69 daily observations. Each observation is a graph with n = 595
vertices corresponding to the bike rental stations. We say that two vertices are connected
if the minimal trip duration between the corresponding stations is not less than 3 minutes
and the number of trips is greater than a predefined threshold. For each day, the threshold
on the number of trips is equal to the 0.9975-level empirical quantile of the distribution of
the total number of trips between every couple of stations excluding disconnected stations
(zero trips during the day). The obtained network has the average sparsity κ̄n = 43.2319
(over T = 69 observations). The corresponding value of ρn = κn/n = 0.0727 � n−0.4.

In Fig. 5 we present the graph of the matrix CUSUM statistic calculated over the whole
period from June 24, 2012 to August 31, 2012. We can see that the maximum of the statistic
is attained at the position corresponding to July 22, 2012. This date corresponds to the
day of the arrival of the Olympic Torch to London.2. Our test detects this change-point at
the significance level α = 0.05 and our estimator correctly estimates it. The value of the
test statistic is 53.3311, the corresponding threshold is equal to 40.5244.

We see several peaks on the graph of the matrix CUSUM statistics which may imply
that actually this data exhibits several change points. One of them corresponds to the
end of the Olympics on August 12, 2012. It is possible to combine our test with the

1Acces to the data via https://api.tfl.gov.uk
2The details about the traffic perturbation in London on July 22, 2012 can be found at the TfL

website: https://tfl.gov.uk/info-for/media/press-releases/2012/july/olympic-torch-relay-has-

arrived-in-london--plan-your-travel-and-get-ahead-of-the-games-tomorrow--sunday-22-july-

2012.
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Figure 4: The value of the matrix CUSUM statistic calculated during the whole period of
observations. The vertical grid lines correspond to Sundays.

segmentation methods for multiple change-point localization (see, for example, SMUCE
(Frick et al. 2014), WBS (Fryzlewicz 2014) or the method proposed recently in (Verzelen
et al. 2020)).

For example, if we take the data covering the period from July 23 to August, 22 (see
Fig. 4), our test detects the change-point corresponding to the date of the London Olympics
closing ceremony on August 12, 2012. Here we observe the network during T = 31 day and
the values of the test statistic and the corresponding threshold at the level α = 0.05 are,
respectively, 43.5854 and 41.7997. The estimator estimates correctly the change-point.
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Figure 5: The value of the matrix CUSUM statistic calculated during 31 day from July 23
to August, 22.
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A Definitions from minimax testing theory

Let Y = (Y 1, . . . , Y T ) be observed data satisfying model (1). Let ψn,T : Y → {0, 1} be
a test for one of the problems (P1) or (P2). Let α ∈ (0, 1) be a given significance level.
Denote by Ψα the set of all tests of level at most α:

Ψα = {ψn,T : α(ψn,T ) ≤ α} .

Let us define the global type I and type II errors of a test ψn,T associated with testing
problems (P1) and (P2).

Definition 3. The type I global error of a test ψn,T is defined as

α(ψn,T ) = sup
(Θ0,Π)∈Sn(ωn)

P
(
ψn,T = 1 | Y t ∼ Bernoulli(Π�Θ0), t = 1, . . . , T

)
.
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The type II global error of the test ψn,T is defined as

β(ψn,T , Rn,DT ) = sup
τ∈DT

sup
((Θ0+∆Θτ ,Π),(Θ0,Π))∈Wτ

n(ωn,Rn,DT )

P
(
ψn,T = 0 | Y t ∼ Bernoulli(Π�Θt),

Θt = Θ01{1≤t≤τ} + (Θ0 + ∆Θτ )1{τ<t≤T}, t = 1, . . . , T
)
.

Definition 4. A test ψ∗n,T ∈ Ψα is called minimax if

β(ψ∗n,T , Rn,DT ) = inf
ψn,T∈Ψα

β(ψn,T , Rn,DT ).

It is known (see (Ingster and Suslina 2003), Theorem 2.1, p. 55) that, for any Rn,DT > 0,
the minimax test ψ∗n,T exists and

β(ψ∗n,T , Rn,DT ) = inf
ψn,T∈Ψα

β(ψn,T , Rn,DT ) ≥ 1− α− 1

2
inf

P1∈[P1]
‖P0 − P1‖,

where P0 is the measure of observations Y corresponding to the null hypothesis H0 and
[P1] is the convex hull of set of measures P1 = P1(Rn,DT ) corresponding to the alternatives
H1. It might happen that the minimax test ψ∗n,T is trivial, i.e. β(ψ∗n,T , Rn,DT ) = 1 − α
∀α ∈ (0, 1). In this case the global risk of testing defined as the sum of two testing errors
is equal to 1 and the hypotheses H0 and H1 are not distinguishable. The problem becomes
trivial if some points of the set of alternatives are too close to the null hypothesis set. To
avoid this problem, we remove a ball of radius Rn,DT from the set of alternatives H1.

It is of crucial interest to know what are the conditions on the jump matrix and the
radius Rn,DT that guarantee the existence of a non-trivial minimax test. These conditions
are formulated in terms of the minimax separation rate.

Definition 5. Let α, β ∈ (0, 1) be given. Let Ψα be the set of all tests ψ of level at most α.
We say that the radius R∗n,DT is (α, β)-minimax detection boundary in problems (P1)–(P2)
of testing against the alternative Vn(κn,Rn,DT ) if

R∗n,DT = inf
ψ∈Ψα

Rn,DT (α,ψ),

where
Rn,DT (α,ψ) = inf

{
R > 0 : β(ψ,R) ≤ β

}
.

The minimax detection boundary is often written as the product R∗n,DT = Cϕn,DT ,
where ϕn,DT is called minimax detection rate and C is a constant independent of n and T .
We say that the radius Rn,DT satisfies the upper bound condition if there exists a constant
C∗ > 0 and a test ψ∗n,T ∈ Ψα such that ∀C > C∗ β(ψ∗n,T ,Rn,DT ) ≤ β. We say that Rn,DT
satisfies the lower bound condition if for any 0 < C ≤ C∗ there is no test of level α with
type II error smaller than β. Our goal is to find the minimax detection rate ϕn,DT and two
constants C∗ and C∗ such that

C∗ϕn,DT ≤ R
∗
n,DT ≤ C

∗ϕn,DT .
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B Upper bound results

B.1 Upper bound for problem (P1)

Here we give the proof of the upper bound for problem of testing at a given point with fully
observed data.

Proof Theorem 1. The proof of this theorem is based on Lemmas 2 and 3. Lemma 2 implies
immediately that α(ψn,T ) ≤ α. By Lemma 3, the type II error smaller than β is guaranteed
if Rn,DT satisfies (31) which completes the proof of Theorem 1.

Lemma 2. Let α ∈ (0, 1) and assume that 9Tq2(τ/T )κn ≥ log(n/α). Then, the type I
error of test (12) in problem (P1) is bounded by α.

Proof. Recall that ZT (t) = −µτT (t)∆Θτ + ξ(t). By definition of α(ψn,T ) we have

α(ψτn,T ) = PH0

{
‖ZT (τ)‖2→2 > Hα,n

}
= sup

Θ0∈Mn(κn)

PΘ0

{
‖ξ(τ)‖2→2 > c∗

√
κn log(n/α)

}
We bound ‖ξ(τ)‖2→2 using Lemma 10. Note that ‖Θ0‖1,∞ ≤ κn which implies σ ≤ √κn.
Now, taking x = − log(α) and using 9Tq2(τ/T )κn ≥ log (n/α) we get α(ψτn,T ) ≤ α.

Lemma 3. Let α, β ∈ (0, 1) and Hα,n be given by (13). Assume that 9Tq2(τ/T )κn ≥
log (n/β) and

Rn,DT ≥ c∗
(κn
T

)1/2 {√
log (n/α) +

√
log (n/β)

}
. (31)

Then, the type II error in problem (P1) is bounded by β.

Proof. By definition of β(ψτn,T , Rn,DT ) we have

β(ψτn,T , Rn,DT ) = sup
(Θ0+∆Θ,Θ0)∈Vτn(κn,Rn,DT )

PΘ0,∆Θτ {‖ZT (τ)‖2→2 ≤ Hα,n} .

Using the triangle inequality, (31), µτT (τ) =
√
Tq(τ/T ) and the choice of Hα,n, we compute

β(ψτn,T , Rn,DT )

≤ sup
(Θ0+∆Θ,Θ0)∈Vn(κn,Rn,DT )

PΘ0,∆Θτ

{
‖ξ(τ)‖2→2 > µτT (τ)‖∆Θτ‖2→2 −Hα,n

}
≤ sup

(Θ0+∆Θ,Θ0)∈Vn(κn,Rn,DT )

PΘ0,∆Θτ

{
‖ξ(τ)‖2→2 > µτT (τ)Rn,DT − c∗

√
κn log(n/α)

}
≤ sup

(Θ0+∆Θ,Θ0)∈Vn(κn,Rn,DT )

PΘ0,∆Θτ

{
‖ξ(τ)‖2→2 > c∗

√
κn log(n/β)

}
.

Applying Lemma 10 to ξ(τ), using ‖Θ0‖1,∞ ≤ κn, ‖Θ0+∆Θτ‖1,∞ ≤ κn and 9Tq2(τ/T )κn ≥
log (n/β) we obtain the statement of Lemma 3.
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B.2 Upper bound for the test with a dyadic grid

Recall that the test ψdn,T is based on the maximum of the operator norm test statistic
‖ZT (t)‖2→2 over the dyadic grid T of the size |T | = 2 + 2blog2(T/2)c. Note that |T | ≤
2 log2(T ).

Lemma 4. Assume that for any τ ∈ DT

9Tq2(τ/T )ωn ≥ log
(2n log2(T )

α

)
. (32)

Then, for any α ∈ (0, 1), the type I error of test (20) in problem (P2) is less than α.

Proof. By the definition of α(ψn,T ) we have

α(ψn,T (Y )) = PH0

{
max
t∈T
‖ZYT (t)‖2→2 > Hα,n,T

}
≤
∑
t∈T

sup
(Θ0,Π)∈Sn(ωn)

P(Θ0,Π)

{
‖ZT (t)‖2→2 > Hα,n,T

}
=
∑
t∈T

sup
(Θ0,Π)∈Sn(ωn)

P(Θ0,Π)

{
‖ξ(t)‖2→2 > c∗

√
ωn log

(2n log2(T )

α

)}

≤ 2 log2(T ) max
t∈T

sup
(Θ0,Π)∈Sn(ωn)

P(Θ0,Π)

{
‖ξ(t)‖2→2 > c∗ω1/2

n

√
log n+ log

(2 log2(T )

α

)}
.

Applying Lemma 10 to ‖ξ(t)‖2→2 =
√
Tq(t/T )‖η(t)‖2→2 and using condition (32) and

‖Π�Θ0‖1,∞ ≤ ωn we get that for every t ∈ DT ,

sup
(Θ0,Π)∈Sn(ωn)

P(Θ0,Π)

{
‖ξ(t)‖2→2 > c∗ω1/2

n

√
log n+ log

(2 log2(T )

α

)}
≤ α

2 log2(T )
,

and, consequently, α(ψn,T ) ≤ α.

Lemma 5. Let α, β ∈ (0, 1) and Hα,n,T be given by (21). Assume that 9Tq2(τ/T )ωn ≥
log(n/β) and

Rn,DT ≥
√

3c∗

(ωn
T

)1/2 {√
log (2n log2(T )/α) +

√
log (n/β)

}
. (33)

Then, the type II error of the test ψn,T given by (20), is bounded by β.

Proof. For ease of notation we denote

(Θ,∆Θτ ) = {(Θ + ∆Θτ ,Π), (Θ,Π)} .

By definition of β(ψn,T , Rn,DT ) we have

β(ψn,T , Rn,DT ) = sup
τ∈DT

sup
(Θ,∆Θτ )∈Wτ

n,T (ωn,Rn,DT )
P(Θ,∆Θτ )

{
max
t∈T
‖ZYT (t)‖2→2 ≤ Hα,n,T

}
≤ inf

t∈T
sup
τ∈DT

sup
(Θ,∆Θτ )∈Wτ

n,T (ωn,Rn,DT )
P(Θ,∆Θτ )

{
‖ZYT (t)‖2→2 ≤ Hα,n,T

}
≤ inf

t∈T
sup
τ∈DT

sup
(Θ,∆Θτ )∈Wτ

n,T (ωn,Rn,DT )
P(Θ,∆Θτ ) {‖ξ(t)‖2→2 > µτT (t)‖Π�∆Θτ‖2→2 −Hα,n,T } .
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If τ ≤ T/2, there exists a t∗ ∈ T L such that τ/2 ≤ t∗ < τ . It is easy to see that

µτT (t∗) =

√
t∗(T − τ)

(T − t∗)τ

√
τ(T − τ)

T
≥

√
τ/2(T − τ)

(T − τ/2)τ

√
τ(T − τ)

T
≥ 1√

3

√
Tq(τ/T ),

since τ < T/2 iff (T − τ)/(2T − τ) > 1/3. If τ ≥ T/2, noting that µτT (t) = µT−τT (T − t),
we can reduce the estimation of µτT (t) to the previous case: there exists T − t′ ∈ T R such
that (T − τ)/2 < T − t′ < T − τ and µτT (t′) = µT−τT (T − t′) ≥ 1√

3

√
Tq(τ/T ).

For any τ ∈ DT we have

sup
(Θ,∆Θτ )∈Wτ

n,T (ωn,Rn,DT )
P(Θ,∆Θτ )

{
‖ξ(t∗)‖2→2 > µτT (t)‖Π�∆Θτ‖2→2 −Hα,n,T

}
≤ sup

(Θ,∆Θτ )∈Wτ
n,T (ωn,Rn,DT )

P(Θ,∆Θτ )

{
‖ξ(t∗)‖2→2 >

1√
3

√
Tq(τ/T )‖Π�∆Θτ‖2→2 −Hα,n,T

}
≤ sup

(Θ,∆Θτ )∈Wτ
n,T (ωn,Rn,DT )

P(Θ,∆Θτ )

{
‖ξ(t∗)‖2→2 >

1√
3

√
TRn,DT −Hα,n,T

}
≤ sup

(Θ,∆Θτ )∈Wτ
n,T (ωn,Rn,DT )

P(Θ,∆Θτ )

{
‖ξ(t∗)‖2→2 > c∗

√
ωn log(n/β)

}
≤ β,

where in the last display we use Lemma 10 together with ‖Π � Θ‖1,∞ ≤ ωn, ‖Π �
(Θ + ∆Θ) ‖1,∞ ≤ ωn and the condition 9Tq2(τ/T )ωn ≥ log(n/β).

C Lower bound results

C.1 General idea of the lower bound construction

The lower bound construction is based on the following machinery. For simplicity, consider
problem (P1) without missing links, note that here Rn,DT = Rn,τ . We impose two priors
πτn,0 and πτn,1 on the parameters of the model ∀t = 1, . . . , T Y = (Y 1, . . . , Y T ) (under

H0 and H1) such that πTn,i
(
Θt ∈ Mn(κn)

)
= 1, i = 0, 1, and πTn,1

(
(Θ0 + ∆Θτ ,Θ0) ∈

Vτn,T (κn,Rn,DT )
)

= 1, where Mn(κn) and Vτn,T (κn,Rn,DT ) are defined in (2) and in (4),
respectively.

Define the mixtures pTn,0(Y ) = EπTn,0
P(Y ), pTn,1(Y ) = EπTn,1

P(Y ), where P is the prob-

ability measure of Y . The expectations w.r.t. to the measures pTn,i are denoted by ETn,i,
i = 0, 1. The following bounds hold true (see, for example, (Ingster and Suslina 2003)):

inf
ψτn,T∈Ψα

β(ψτn,T , Rn,τ ) = inf
ψτn,T∈Ψα

sup
(Θ0+∆Θτ ,Θ0)∈Vτn,T (κn,Rn,τ )

P(Θ0+∆Θτ ,Θ0)

{
ψτn,T = 0

}
≥ 1− 1

2
‖pTn,1 − pTn,0‖TV − α

≥ 1− 1

2

ETn,0

[
dpTn,1

dpTn,0
(Y )

]2

− 1

1/2

− α. (34)

26



Let α ∈ (0, 1) and β ∈ (0, 1−α]. Set η = 1−α−β. To establish a non-asymptotic lower
bound inf

ψτn,T∈Ψα
β(ψn,T , Rn,τ ) ≥ β and the corresponding (α, β)-minimax detection rate, we

need to find the conditions on Rn,τ such that

ETn,0

[
dpTn,1

dpTn,0
(Y )

]2

≤ 4(1− α− β)2 + 1 = 1 + 4η2.

If we pass to the case of problem (P2) with unknown change-point location τ ∈ DT =
{1, . . . , T}, it is sufficient to note that the lower bound for known τ provided in (34) can
be written in the following way:

inf
ψn,T∈Ψα

β(ψn,T , Rn,DT ) = inf
ψn,T∈Ψα

sup
τ∈DT

sup
(Θ0+∆Θτ ,Θ0)∈Vτn,T (κn,Rn,DT )

P(Θ0+∆Θτ ,Θ0)

{
ψn,T = 0

}
≥ inf

ψn,T∈Ψα
sup

(Θ0+∆Θτ∗ ,Θ0)∈Vτ∗n,T (κn,Rn,DT )

P(Θ0+∆Θτ∗ ,Θ0)

{
ψn,T = 0

}
,

(35)

where τ∗ ∈ DT is any possible change-point from the set of alternatives. Thus, we can
reduce the construction of the lower bound for the case of an unknown change-point to the
case of a given change-point τ∗. Moreover, we will see that the minimax detection rate and
constant are independent of the change-point location.

C.2 Auxiliary lemma

Let ρn ∈ (0, 1/2] and q ∈ [−1, 1]. Denote by p0 and pq the Bernoulli measures with the
parameters ρn and ρn(1 + q) with the corresponding densities dp0 and dpq with respect to
some dominating measure λ. The following simple formulas will be useful in the proof of
the lower bound.

Lemma 6. Let ρn ∈ (0, 1/2], q, q1, q2 ∈ [−1, 1]. The following relations hold true for a
Bernoulli variable X ∼ p0:

E0

[
dpq
dp0

]2

(X) = 1 +
ρn

1− ρn
q2,

E0

[
dpq1
dp0

dpq2
dp0

]
(X) = 1 +

ρn
1− ρn

q1q2.

C.3 Proof of the lower bound

We will establish the lower bound for the case of the known change-point location τ . Let
Πn be the sampling matrix with the unit entries on the diagonal, diag(Πn) = 1n and with
non-zero entries, minij Πij > 0. In case of minij Πij = 1 there is no missing links. Recall
that α ∈ (0, 1), β ∈ (0, 1− α] and η = 1− α− β.

Proof of Theorem 3. Set ρ̃n = ωn/(2(n − 1)). In what follows we denote by δρ̃n the Dirac

measure concentrated at ρ̃n. Denote by P(Y ) =
∏T
t=1 P(Y t) the measure of the observations

Y = (Y 1, . . . , Y T ) from (1).
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Denote by Θ̃t = Πn�Θt the parameter of the observed adjacency matrix. We will impose
the following priors on the matrix parameters Θ̃t of the dynamic network Y = (Y 1, . . . , Y T ).

Prior under H0: Assume that for all 1 ≤ t ≤ T all the observed connections occur inde-
pendently with the same probability ρ̃n. Set V0 = ρ̃n(1n1

T
n − idn) and define the prior

on the sequence of the sampled connection probability matrices Θ̃t (1 ≤ t ≤ T ):

πTn,0(Θ̃1, . . . , Θ̃T ) =
T∏
t=1

δV0(Θ̃t) =
T∏
t=1

∏
i 6=j

δρ̃n(Θ̃t
ij). (36)

Here δV0 stands for the Dirac measure concentrated at V0 and defined on the set
of matrices Πn � Θ such that (Θ,Πn) ∈ Sn(ωn). The prior is indeed concentrated
(Θ,Πn) ∈ Sn(ωn), since ‖V0‖1,∞ = (n− 1)ρ̃n = ωn/2 < ωn.

Prior under H1: Let ε = (ε1, . . . , εn) be a vector of i.i.d. Rademacher random variables
taking values in {−1, 1} with probability 1/2. Assume that the matrix Θ̃t changes at
the point τ ∈ DT by the matrix value Λn,τ,ε = ρ̃nλn,τ (εεt − diag(εεt)), where

λn =
Rn,τ

ρ̃n(n− 1)q(τ/T )
.

Then the sampled connection probability matrices before and after the change are

V1,ε = V0 −
(

1− τ

T

)
Λn,τ,ε, V2,ε = V0 +

τ

T
Λn,τ,ε. (37)

Note that the operator norm of Λn,ε is equal to ρ̃nλn,τ (n − 1). Consequently, under
this prior, the energy of the jump is q(τ/T )‖Λn,ε‖2→2 = Rn,τ .

To define the prior concentrated onW(ωn,Rn,τ ), we need to show that ‖Vi,ε‖1,∞ ≤ ωn,
i = 1, 2 for sufficiently large n. By (23) we have that for all n ≥ 2,

‖V1,ε‖1,∞ ≤ max
i

∑
j 6=i
|ρn − (1− τ/T )ρ̃nλn,τεiεj |

≤ ρ̃n(n− 1)
(

1 + λn

)
≤ ωn

2
+
Rn,τ
q(τ/T )

=
ωn
2

+ ω1/2
n

log1/4(1 + η2)

4
√

2
√
Tq(τ/T )

.

Since Tq2(τ/T ) ≥ (T − 1)/T ≥ 1/2 for all T ≥ 2 and log(1 + η2) ≤ log 2 for all
η ∈ (0, 1), we obtain that for all ωn > log1/2(2)/4,

‖V1,ε‖1,∞ ≤
ωn
2

+
ω

1/2
n

4
log1/4(2) ≤ ωn.

Similarly, we can obtain that ‖V2,ε‖1,∞ ≤ ωn. Thus, the prior under H1 is well defined
and is given by

πτn,1(Θ̃1, . . . , Θ̃T ) =
τ∏
t=1

δV1,ε(Θ̃
t)

T∏
t=τ+1

δV2,ε(Θ̃
t). (38)
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To shorten the notation, denote

q1,τ := −
(

1− τ

T

)
λn,τ , q2,τ :=

τ

T
λn,τ = λn,τ + q1,τ .

We can now calculate the mixtures under H0 that are given by

pn,0(Y ) = EπTn,0
P(Y ) =

∏
i 6=j

T∏
t=1

ρ̃
Y tij
n (1− ρ̃n)1−Y tij

and under H1 that are given by

pτn,1(Y ) = EπTn,1
P(Y ) = Eε

∏
i 6=j

(
τ∏
t=1

(ρ̃n + ρ̃nq1,τεiεj)
Y tij (1− ρ̃n − ρ̃nq1,τεiεj)

1−Y tij

×
T∏

t=τ+1

(ρ̃n + ρ̃nq2,τεiεj)
Y tij (1− ρ̃n − ρ̃nq2,τεiεj)

1−Y tij

)]
,

where Eε stands for the expectation w.r.t. to the distribution of ε.
Denote by E = {−1,+1}n the set of all sequences ε = (ε1, . . . , εn) taking values in

{−1,+1}. We can write the likelihood ratio of mixtures,

dpτn,1
dpn,0

(Y ) =
1

2n

∑
ε∈E

∏
i 6=j

(
τ∏
t=1

dpq1,τ εiεj
dp0

(Y t
ij)

T∏
t=τ+1

dpq2,τ εiεj
dp0

(Y t
ij)

)
,

where p0 stands for the Bernoulli measure with the parameter ρ̃n and pq denotes the
Bernoulli measure with the parameter ρ̃n + q, as in Lemma 6, Section C.2. Taking into
account this lemma, we can calculate the second moment of the likelihood ratio,

E0

[dpτn,1
dpn,0

]2
(Y ) =

1

22n

∑
ε,ε̃∈E

E0

∏
i 6=j

τ∏
t=1

dpq1,τ εiεj
dp0

dpq1,τ ε̃iε̃j
dp0

(Y t
ij)

T∏
t=τ+1

dpq2,τ εiεj
dp0

dpq2,τ ε̃iε̃j
dp0

(Y t
ij)


=

1

22n

∑
ε,ε̃∈E

∏
i 6=j

(
1 +

ρ̃n
1− ρ̃n

q2
1,τεiεj ε̃iε̃j

)τ(
1 +

ρ̃n
1− ρ̃n

q2
2,τεiεj ε̃iε̃j

)T−τ

≤ 1

22n

∑
ε,ε̃∈E

exp

∑
i 6=j

τ log
(

1 +
ρ̃n

1− ρ̃n
q2

1,τεiεj ε̃iε̃j

)
+ (T − τ) log

(
1 +

ρ̃n
1− ρ̃n

q2
2,τεiεj ε̃iε̃j

)
Applying the inequality log(1 + x) ≤ x and using the fact that

τ
ρ̃n

1− ρ̃n
q2

1,τ + (T − τ)
ρ̃n

1− ρ̃n
q2

2,τ =
ρ̃n

1− ρ̃n
τ(T − τ)

T
λ2
n,τ

and that the distribution of
∑

i 6=j εiεj ε̃iε̃j is the same as the one of
∑

i 6=j εiεj , we obtain
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the upper bound

E0

[dpτn,1
dpn,0

]2
(Y ) ≤ 1

22n

∑
ε,ε̃∈E

exp

 ρ̃n
1− ρ̃n

τ(T − τ)

T
λ2
n

∑
i 6=j

εiεj ε̃iε̃j


= Eε exp

 ρ̃n
1− ρ̃n

Tq2
( τ
T

)
λ2
n

∑
i 6=j

εiεj


= Eε exp

 1

1− ρ̃n
2R2

n,τT

ωn(n− 1)

∑
i 6=j

εiεj


= Eε exp

{ 2µn
(1− ρ̃n)(n− 1)

∑
i 6=j

εiεj

}
≤ Eε exp

{ 4µn
n− 1

∑
i 6=j

εiεj

}
where we set µn = R2

n,τT/ωn and use ρ̃n ≤ 1/2 in the last inequality. Using the result of
Proposition 8.13 in (Foucart and Rauhut 2013), we can bound the Laplace transform of
the Rademacher chaos

∑
i 6=j εiεj as follows. We have, for any µ2

n < 1/1024,

Eε exp

{
4µn
n− 1

∑
i 6=j

εiεj

}
= Eε exp

{ 4µn
n− 1

εt(1n1
t
n − idn)ε

}
≤ exp

{
128µ2

n‖1n1tn − idn ‖2F /(n− 1)2

1− 1024γ2
n‖1n1tn − idn ‖22→2/(n− 1)2

}
= exp

{
128µ2

nn/(n− 1)

1− 1024µ2
n

}
.

The condition µ2
n < 1/1024 follows from (23) and relation (40) below. Thus, taking into

account the fact that n/(n− 1) ≤ 2 ∀n ≥ 2 we obtain

E0

[dpτn,1
dpn,0

]2
(Y ) ≤ exp

{
256µ2

n

1− 1024µ2
n

}
. (39)

Using condition (23) we get for any η ∈ (0, 1),

µ2
n =

(R2
n,τT

κn

)2
≤ 1

1024
log(1 + η2) <

1

256

log(1 + η2)

1 + 4 log(1 + η2))
, (40)

where we used the estimate 1 + 4 log(1 + η2) ≤ 1 + 4 log 2 < 4 ∀η ∈ (0, 1). This bound
together with (39) immediately implies

E0

[dpτn,1
dpn,0

]2
(Y ) ≤ 1 + 4η2

and the theorem follows for the case of DT = {τ}. The statement of the theorem for a
general DT follows from (35).
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D Proof of result on the change-point localization

Proof of Proposition 1. Lemma 10 implies that for any s ∈ [T ], with probability at least
1− γ

T

‖ξ(s)‖2→2 ≤ c∗
√
ωn log (nT/γ). (41)

By the definition of τ̂n we have that ‖ZT (τ̂n)‖2→2 ≥ ‖ZT (τ)‖2→2 which implies that

µτT (τ)∆− ‖ξ(τ)‖2→2 ≤ µτT (τ̂n)∆ + ‖ξ(τ̂n)‖2→2.

Using (41) and the union bound we get that with probability at least 1− γ

(µτT (τ)− µτT (τ̂n)) ∆ ≤ 2c∗
√
ωn log (nT/γ). (42)

First, consider the case τ̂n ≤ τ . Then, using the definition of µτT (t), (9), we compute

µτT (τ)− µτT (τ̂n) =
√
T

(
q(x∗)− q(x̂)

1− x∗

1− x̂

)
=
√
T (1− x∗)

(
q(x∗)

1− x∗
− q(x̂)

1− x̂

)
=
√
T (1− x∗)

(√
x∗

1− x∗
−
√

x̂

1− x̂

)

=

√
T (1− x∗)

1− x̂
x∗ − x̂√

x̂(1− x∗) +
√
x∗(1− x̂)

≥
√
T (1− x∗)x

∗ − x̂
1.5

where we use that for any x ∈ (0, 1), x(1−x) ≤ 1/4. Plugging this calculation into (42) we
get

(x∗ − x̂) ∆ ≤ 3c∗

√
ωn log (nT/γ)

T (1− x∗)
. (43)

Now assume that τ̂n ≥ τ . Then, using the definition of µτT (t), (9), we compute

µτT (τ)− µτT (τ̂n) =
√
T

(
q(x∗)− q(x̂)

x∗

x̂

)
=
√
Tx∗

(
q(x∗)

x∗
− q(x̂)

x̂

)
=
√
Tx∗

(√
1− x∗

x∗
−
√

1− x̂
x̂

)

=

√
Tx∗

x̂

x̂− x∗√
x̂(1− x∗) +

√
x∗(1− x̂)

≥
√
T (1− x∗) x̂− x

∗

1.5
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which implies

(x̂− x∗) ∆ ≤ 3c∗
√
ωn log (nT/γ)

Tx∗
. (44)

Combining (43) and (44) and using q2(x∗) ≤ x∗ ∧ (1 − x∗) we get the statement of the
Proposition 1.

E Proofs of results for the sparse graphon model

We start by summarizing some facts and notation that we use in the proofs:
Different graphons can be at the origin of the same distributions on the space of graphs.
More precisely, two graphons U1 and U2 define the same probability distribution on graphs if
and only if there exists two measure-preserving maps φ1, φ2 such that, for all (x, y) ∈ [0, 1]2,
we have U1(φ1(x), φ1(y)) = U2(φ2(x), φ2(y)). Thus, we need to consider the quotient space
of graphons that defines the same probability distribution on graphs equipped with the
following distance:

δ2(U1, U2) = inf
ι∈M

∫∫
[0,1]2

|U1(ι(x), ι(y))− U2(x, y)|2 dx dy, (45)

where M is the set of all measure-preserving bijections ι : [0, 1]→ [0, 1].
Given a matrix Θ ∈ [0, 1]n×n, we define the empirical graphon as follows:

f̃Θ(x, y) = Θdnxe,dnye, (x, y) ∈ [0, 1]2. (46)

In the same spirit, given a vector v = (v1, . . . , vn), for any x ∈ [0, 1], we define the following
piecewise constant function

ψv(x) =
√
nvdnxe, x ∈ [0, 1] (47)

and set
F =

{
ψv : ‖v‖`2 ≤ 1

}
. (48)

We have that ‖v‖`2 ≤ 1 implies

‖ψv‖L2[0,1] =

(
1

n

n∑
i=1

nv2
i

)
≤ 1.

Note that F is dense in the space of continuous functions on [0, 1] and so F is dense in
L2[0, 1].

Proof of Theorem 5. By definition, we have that ∆Θt
ij = ρn∆W t(εi, εj). Then, using

Lemma 7, we get

‖∆Θτ‖2→2 ≥ nρn‖∆W τ‖2→2 − nρnδ(f̃∆Θτ ,∆W
τ ).

Combining this lower bound with the bound obtained in Lemma 8, we get

‖∆Θτ‖2→2 ≥ nρn‖∆W τ‖2→2 − 4nρn

(
K log (n)

n

)1/4

.
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Then, (29) guarantees that

‖∆Θτ‖2→2 ≥ c∗
(

nρn
Tq2(τ/T )

)1/2 {√
log (nT/α) +

√
log (n/β)

}
and Theorem 5 follows from Theorem 2.

Proof of Theorem 6. Theorem 6 follows combining the bounds obtained in Lemma 7, Lemma 9
and Theorem 2.

Lemma 7. Let Θ = (Θij) ∈ [0, 1]n×n be symmetric matrix with entries Θij = W (εi, εj) for
i < j, where εi are i.i.d. uniform random variables on [0, 1]. Then

‖Θ‖2→2 ≥ n‖W‖2→2 − nδ(f̃Θ,W ).

Proof. Since Θ is a symmetric matrix, we have

‖Θ‖2→2 = sup
‖v‖`2≤1

∣∣∣∑
i,j

Θijvivj

∣∣∣ = sup
‖v‖`2≤1

∣∣∣n ∫∫
[0,1]2

f̃Θ(x, y)ψv(x)ψv(y) dx dy
∣∣∣.

For any ι ∈M we have

‖Θ‖2→2 = n sup
‖v‖`2≤1

∣∣∣∫∫
[0,1]2

(
f̃Θ(x, y)−W (ι(x), ι(y))

)
ψv(x)ψv(y) dx dy

+

∫∫
[0,1]2

W (ι(x), ι(y))ψv(x)ψv(y) dx dy
∣∣∣.

Consequently,

‖Θ‖2→2 ≥ n sup
‖v‖`2≤1

∣∣∣∫∫
[0,1]2

W (ι(x), ι(y))ψv(x)ψv(y) dx dy
∣∣∣

− n sup
‖v‖`2≤1

∣∣∣∫∫
[0,1]2

(
f̃Θ(x, y)−W (ι(x), ι(y))

)
ψv(x)ψv(y) dx dy

∣∣∣.
Note that, as ι is a measure-preserving bijection, for any function ψ such that ‖ψ‖L2 ≤ 1
we have that ‖ψ ◦ ι−1‖L2 ≤ 1. Then, using the fact that F is dense in L2[0, 1], we get

sup
‖v‖`2≤1

∣∣∣∫∫
[0,1]2

W (ι(x), ι(y))ψv(x)ψv(y) dx dy
∣∣∣ = sup

‖v‖`2≤1

∣∣∣∫∫
[0,1]2

W (x, y)ψv(x)ψv(y) dx dy
∣∣∣

= sup
ψ∈L2[0,1],‖ψ‖L2

≤1

∣∣∣∫∫
[0,1]2

W (x, y)ψ(x)ψ(y) dx dy
∣∣∣ = ‖W‖2→2.

On the other hand we have

sup
‖v‖`2≤1

∣∣∣∫∫
[0,1]2

(
f̃Θ(x, y)−W (ι(x), ι(y))

)
ψv(x)ψv(y) dx dy

∣∣∣
≤

(∫∫
[0,1]2

(
f̃Θ(x, y)−W (ι(x), ι(y)

)2
dx dy

)1/2
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Taking infimum over ι ∈M in the latter inequality, we obtain

‖Θ‖2→2 ≥ n‖W‖2→2 − nδ(f̃Θ,W )

and the lemma follows.

Lemma 8. For any K ≤ n
log(n) assume that W ∈ WK . Let Θ = (Θij) ∈ [0, 1]n×n be

symmetric matrix with entries Θij = W (εi, εj) for i < j, where εi are i.i.d. uniform
random variables on [0, 1]. We have that, with probability large than 1− 2/n,

δ(f̃Θ,W ) ≤ 4
(K
n

log (n)
)1/4

.

Proof. Following the proof of Proposition 3.2 in (Klopp et al. 2017), we get

δ2(f̃Θ,W ) ≤ 1

n
+

K∑
a=1

|λa − λ̂a|,

with

λ̂a =
1

n

n∑
i=1

1{εi∈φ−1(a)}

and λa = λ−1(φ(a)), where λ stands for the Lebesgue measure. Since ε1, . . . εn are i.i.d.
uniform random variables, nλ̂a has a binomial distribution with parameters (n, λa). We
have nλ̂a − nλa =

∑n
i=1(Yi − λa), where Yi ∼ Bernoulli(λa). Applying the Bernstein

inequality we obtain that for any t > 0

|nλ̂a − nλa| ≤

(
2t

K∑
a=1

λa(1− λa)

)1/2

+ 2t/3

with probability 1− 2e−t. Taking t = log(nK) implies that with probability 1− 2/(nK)

|nλ̂a − nλa| ≤ (2nλa log(nK))1/2 +
2

3
log(nK).

Using K ≤ n and the union bound we obtain that, with probability 1− 2/(n),

δ2(f̃θ,W ) ≤ 1

n
+

2

n

K∑
a=1

(nλa log n)1/2 +
4K log(n)

3n
≤ 1

n
+ 2

(
K log n

n

)1/2

+
4K log(n)

3n

where we use
∑K

a=1 λa = 1 and the Cauchy–Schwarz inequality. Using K log(n)
n ≤ 1 we

complete the proof of Lemma 8.

Lemma 9. Assume that W ∈ Σ(γ, L). Let Θ = (Θij) ∈ [0, 1]n×n be symmetric matrix with
entries Θij = W (εi, εj) for i < j, where εi are i.i.d. uniform random variables on [0, 1].
We have that, with probability at least 1− 2/n,

δ(f̃Θ,W ) ≤ C
(

log n

n

)− γ∧1
2
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Proof. Following the proof of Proposition 3.6 in (Klopp et al. 2017), we get

δ2(f̃Θ,W ) ≤ 2

n
+

1

n

n∑
m=1

∣∣∣ m

n+ 1
− ε(m)

∣∣∣2γ′
where γ′ = γ ∧ 1 and ε(m) stands for the m-th largest element of the set {ε1, . . . , εn}.
Note that, the random variable ε(m) follows β-distribution with parameters (m,n+ 1−m),
ε(m) ∼ Beta(m,n+ 1−m). The β-distribution is sub-Gaussian and the proxy variance σ2

for Beta(m,n+ 1−m) is bounded by 1
4(n+2) (see, for example, (Marchal and Arbel 2017)).

By the exponential Markov inequality (see, for example, (Vershynin 2018), Lemma 5.5) we
get

P

{∣∣∣ε(m) −
m

n+ 1

∣∣∣ > t

}
≤ 2e−t

2/(4σ2).

Taking t = (log n/(n+ 2))1/2 implies that, with probability at least 1− 2/n2,

∣∣∣ε(m) −
m

n+ 1

∣∣∣ < ( log n

n+ 2

)1/2

.

Now, applying the union bound we obtain

δ2(f̃Θ,W ) ≤ 2

n
+

(
log n

n+ 2

)γ′
and Lemma 9 follows.

F Auxiliary results

F.1 Concentration inequalities for matrix processes

We start by obtaining a concentration inequality for the operator norm of the centered
Bernoulli CUSUM statistics. Let Xt ∈ [−1, 1]n×n (1 ≤ t ≤ T ) be a sequence of symmetric
matrices with entries Xt

ij that are independent for any 1 ≤ j ≤ i ≤ n and any t =
1, . . . T . Assume that, for each (i, j) ∈ [n]× [n] and 1 ≤ t ≤ T , Xt

ij are centered Bernoulli
random variables taking values in {1 − Bt

ij ,−Bt
ij} with success probability Bt

ij and let
Bt = (Bt

ij)(i,j)∈[n]×[n]. Consider the following centered matrix process

η(t) =
1

t

t∑
s=1

Xs − 1

T − t

T∑
s=t+1

Xs (1 ≤ t ≤ T − 1). (49)

Lemma 10. Let the process η(t) be defined in (49). Then, with probability larger than
1− exp (−x),

‖η(t)‖2→2 ≤ c
∗max

{
σ
√
x+ log(n),

x+ log(n)

3Tq2(t/T )

}
,

with c∗ = 1 +
√

3 and σ =
√

1
t2
∑t

s=1 ‖Bs‖1,∞ + 1
(T−t)2

∑T
s=t+1 ‖Bs‖1,∞.
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Proof. This result follows from the application of the matrix Bernstein inequality, see The-

orem 1.4 in (Tropp 2011). Let Zsij = Xs
ij

(
eie

T
j + eje

T
i

)
where (ei)i∈[n] are canonical basis

vectors in Rn and eTi denotes the transpose of ei. Then, we can write η(t) as the following
sum of independent matrices:

η(t) =
∑
i<j

(
1

t

t∑
s=1

Zsij −
1

T − t

T∑
s=t+1

Zsij

)
.

Note that for any s ∈ [T ] and (i, j) ∈ [n] × [n], ‖Zsij‖2→2 ≤ 1. On the other hand, using
that Zsij are independent, we can compute:

σ2 =

∥∥∥∥∥∥
∑
i<j

(
1

t2

t∑
s=1

E
(
Zsij
)2

+
1

(T − t)2

T∑
s=t+1

E
(
Zsij
)2)∥∥∥∥∥∥

2→2

=

∥∥∥∥∥∥
∑
i<j

(
1

t2

t∑
s=1

E
(
Xs
ij

)2 (
eie

T
i + eje

T
j

)
+

1

(T − t)2

T∑
s=t+1

E
(
Xs
ij

)2 (
eie

T
i + eje

T
j

))∥∥∥∥∥∥
2→2

≤

∥∥∥∥∥∥ 1

t2

t∑
s=1

∑
i<j

Bs
ij

(
eie

T
i + eje

T
j

)
+

1

(T − t)2

T∑
s=t+1

∑
i<j

Bs
ij

(
eie

T
i + eje

T
j

)∥∥∥∥∥∥
2→2

≤ 1

t2

t∑
s=1

‖Bs‖1,∞ +
1

(T − t)2

T∑
s=t+1

‖Bs‖1,∞.

Applying Theorem 1.4 in (Tropp 2011) we get that with probability larger than 1−exp (−x)

‖η(t)‖2→2 ≤ c
∗max

{
σ
√
x+ log(n),

x+ log(n)

6Tq2(t/T )

}
,

with c∗ = 1 +
√

3 where we used Tq2(t/T ) ≤ min(t, T − t). This completes the proof of
Lemma 10.

F.2 Result on the Hadamard product of two matrices

Lemma 11. Let A = (Aij) ∈ [0,∞)n×n and B = (Bij) ∈ Rn×n. Assume that diag(B) = 0.
Then,

‖A�B‖2→2 ≥
min

(ij): i 6=j
Aij

√
r ∨ 1

‖B‖2→2, (50)

where r = rank(A�B). Moreover, if A and B are symmetric, we have that

‖A�B‖2→2 ≥
minij Aij

2
√
r∗ ∨ 1

‖B‖2→2, (51)

where
r∗ = min

M=(Mij):Mij=(A�B)ij for i 6=j
rank(M).
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Proof. If min
(ij): i 6=j

Aij = 0, then the statement of the Lemma is trivially true. Now assume

that min
(ij): i 6=j

Aij > 0. We have that

‖B‖22→2 ≤ ‖B‖2F =
∑
i 6=j

A2
ij(A

−1
ij )2B2

ij

≤ max
i 6=j

(A−1
ij )2‖A�B‖2F ≤ rmax

i 6=j
(A−1

ij )2‖A�B‖22→2

which implies (50). On the other hand, let M be a solution to

M ∈ arg min
M=(Mij):Mij=(A�B)ij for i 6=j

rank(M).

Let rank(M) = r∗ < r. We have that

‖B‖22→2 ≤ ‖B‖2F =
∑
i 6=j

A2
ij(A

−1
ij )2B2

ij ≤ max
i 6=j

(A−1
ij )2

∑
i 6=j

(AijB)2
ij +

∑
i

M2
ii


= max

i 6=j
(A−1

ij )2‖M‖2F ≤ r∗max
i 6=j

(A−1
ij )2‖M‖22→2

which implies

‖B‖2→2 ≤
√
r∗max

i 6=j
(A−1

ij )‖M‖2→2 ≤ 2
√
r∗max

i 6=j
(A−1

ij )‖A�B‖2→2 (52)

where in the last inequality we use that ‖M‖2→2 ≤ 2‖A � B‖2→2. To prove it, using the
triangle inequality, it is enough to prove that ‖M −A�B‖2→2 ≤ ‖A�B‖2→2. Let denote
by λ1(X) ≤ λ2(X) ≤ · · · ≤ λn(X) the eigenvalues of a symmetric matrix X. Then, using
Weyl’s inequality, we have that

λj+k−n(A�B) ≤ λj(A�B −M) + λk(M) ≤ λj+k−1(A�B). (53)

Note that r∗ < r implies that there exist a k such that λk(M) = 0 but λk(A � B) 6= 0.
Assume first that ‖M −A�B‖2→2 = −λ1(M −A�B). Then, taking in (53) j = 1 we get
−λ1(M −A�B) ≤ λk(A�B) ≤ ‖A�B‖2→2. Now, if ‖M −A�B‖2→2 = λn(M −A�B),
taking j = n we also get λn(M −A�B) ≤ −λk(A�B) ≤ ‖A�B‖2→2.

To conclude the proof, note that (52) implies (51).

G Simulation results for Erdős–Rényi model

In this section we provide additional simulation results for Scenario 1. Recall that under
this scenario the network follows the Erdős–Rényi model with Θ0 = 1

2ρn(1n1
T
n − idn) and

Θ1 = 1
2δρn(1n1

T
n − idn), where δ ∈ [−2, 2]. The sparsity parameter is set at κn = nρn with

ρn = n−1/2.
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G.1 Power and ENR for different change-point locations

We have studied the dependency of the test power on the energy-to-noise ratio ENR. We
have performed simulations for the graphs of size n = 100 and n = 150 observed during
T = 20, 50, 100, 250 moments of time. The results of simulations are presented in Table 1
of the main text of the paper and in Fig. 6.

We observe that the power of the test ψτn,T at the known τ is greater than the power
of the two other tests. We also see that the test ψn,T defined over the dyadic grid has a

greater power that the test ψfulln,T for all regimes. The test ψn,T is much powerful in case
of the change in the middle for T = 250, since the size of the full grid becomes significant
with respect to the size of the dyadic grid. We also observe that the change is easier to
detect if the number of observations T is large.
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Figure 6: The power of the three tests for n = 100, T = 20, 250, τ/T = 0.5 (top row) and
n = 100, T = 20, 250, τ/T = 0.1 (lower row).

If we compare the results of the tests in the models with the same T and n but with
the change-point at different locations τ/T = 0.1 and τ/T = 0.5 (two graphs in the left
column in Fig. 6 for T = 20 and two graphs in the right column for T = 250), we see that
the minimal detectable ENR is higher if the change-point is in the middle. This is not
surprising, since

ENRn,T (0.5,∆Θτ1)

ENRn,T (0.1,∆Θτ2)
=

5

3

‖∆Θτ1‖2→2

‖∆Θτ2‖2→2
.

The minimal detectable ENR for Scenario 1 and different change-points is reported in
Table 1. We see that, for example, for the test ψτn,T , n = 100, T = 20, the ratio between
the ENR for τ1 = 10 and τ2 = 2 is 2.2274/1.4128 which implies the ratio of the minimal
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detectable norms of the change:

‖∆Θ10‖2→2

‖∆Θ2‖2→2
=

3

5
× 2.2274

1.4128
= 0.946.

Thus, as expected, we can detect smaller changes in Θt if the change-point is located in
middle of the interval.

G.2 Change-point localization with links missing uniformly at random

In this part we study the problem of change-point estimation in the case of missing links.
We have performed 100 simulations of networks following Scenario 1 of size n = 100 and
T = 100 with one change-point τ ∈ {5, 25, 50}. In Fig. 7 we clearly see the dependence
of the risk on τ : the closer τ is to the middle of the interval, the easier the estimation
is. We also see the dependence of the rate of convergence of the estimator on the norm
‖Π�∆Θt‖2→2 = pn‖∆Θt‖2→2. Indeed, we see the level curve pn‖∆Θt‖2→2 ≈ const between
the black area which corresponds to low change-point localization error and the light one
corresponding to the high error.
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Figure 7: The risk of the change-point estimator for T = 100, n = 100 and τ = 5, 25, 50
(left to right).
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