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Learning a credal classifier
with optimized and adaptive multi-estimation

for missing data imputation
Zuo-wei Zhang, Hong-peng Tian, Ling-zhi Yan, Arnaud Martin, Kuang Zhou

Abstract—The classification analysis of missing data is still a
challenging task since the training patterns may be insufficient
and incomplete in many fields. To train a high-performance
classifier and pursue high accuracy, we learn a credal classifier
based on an optimized and adaptive multi-estimation (OAME)
method for missing data imputation on training and test sets.
In OAME, some incomplete training patterns are estimated
as multiple versions by a global optimization method thereby
expanding the training set. On the other hand, the test pattern
is adaptively estimated as one or multiple versions depending
on the neighbors. For the test pattern with multiple versions,
the corresponding outputs with different discounting factors
(weights), represented by the basic belief assignments (BBAs),
are fused for final credal classification based on evidence theory.
The discounting factor contains two aspects: the importance
and reliability factors that are used respectively to quantify
the importance of the edited version itself and to represent
the reliability of the classification result of the version. The
effectiveness of OAME is widely validated on several real datasets
and critically compared to other related methods.

Index Terms- Missing data, credal classification, evidence
theory, missing values, multiple imputation.

I. INTRODUCTION

M ISSING data, also known as incomplete patterns, have
seriously compromised inferences from sample analy-

sis in many fields [1]–[13]. For example, in networked control
systems, the collected dataset is often not complete and the
problem of missing measurements is inevitable due to dual-
rate or multi-rate sampling, irregular sampling, sensor failure,
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data transmission or storage error, data package dropout [12],
[13]. A number of methods, based on the three types: missing
completely at random (MCAR), missing at random (MAR)
and missing not at random (MNAR), have emerged for clas-
sifying missing data [1], [7], [9], [10]. The simplest is to
directly remove incomplete patterns and only classify complete
ones [1], [14], while it may only be used in the cases with a
few incomplete patterns.

Imputation of missing values, providing estimations by
reasoning from the observed data, is often a crucial step
in data analysis [3]–[5], [15]–[18]. In the mean imputation
(MI) method [1], [14], for example, the missing value is
replaced by the mean of all known values of that attribute.
K-nearest neighbor imputation [15] (KNNI), one of the most
prevalent methods, employs the neighbors to estimate the
missing values. Interestingly, a locally linear approximation
(LLA) approach is proposed in [16], which can provide the
optimal weights of various neighbors by the locally linear
reconstruction. In fuzzy c-means imputation (FCMI) [17], the
query pattern is filled with cluster centers obtained by the
fuzzy c-means (FCM) [19]. Besides, a fuzzy-based informa-
tion decomposition (FID) method is proposed in [20], where
the missing values can be estimated from the observed data
with different optimized weights. Although these methods
single imputation-based are still working, increasingly pieces
of literature are devoted to the study of multiple estima-
tions. Those technologies are considered to be good ways
that reasonably characterize the uncertainty and imprecision
caused by missing values very well and provide information
complementarity for improving the accuracy of classification.

Some prevalent multiple imputation methods, also called
mixed-type data imputation or multivariate imputation, of
course, like Rubin’s method [14], MICE [4], MissForest [5],
GAIN [21], have been developed in the past decades. In the
early Rubin’s method [1], [9], [14], the missing values are
imputed M times to produce M complete datasets based
on an appropriate model with random variation. This has
been implemented, for example, in clinical epidemiological
research under the MAR assumption and provided unbiased
and valid estimates of associations based on information from
the available data [6]. The MICE [3], [4] can specify the
conditional model for the missing data in each incomplete
variable without covering the entire dataset by the multivariate
model. The MissForest method [5] can handle any type of
input data and make as few as possible assumptions (e.g.
normal distributions) about structural aspects of the data. The
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GAIN method [21], based on the Generative Adversarial Nets
(GAN) framework [22], attempts to model the distribution
of the data and then makes multiple imputations by multiple
draws to capture the uncertainty of the imputed values. There
also exist a number of other multiple imputation methods, for
instance, the literature [13] presents two multiple imputation
procedures based on SAS/STAT MI and MIANALYZE. It
implements popular methods for creating imputations under
monotone and non-monotone (arbitrary) patterns of missing
data. Interestingly, the literature [9] holds that multiple impu-
tations are not completely superior to single estimation in any
case by analyzing a large number of data with mixed-model
analyses. Of course, it is consistent with our intuition. Except
that, some sophisticated classifiers particularly designed for
dealing with missing data without estimation have also been
developed [23], [24]. This paper focuses on adaptive single or
multiple imputations for each specific pattern.

The above respectable multiple imputation methods have
achieved good results in some contexts, however, they have
not analyzed the feasibility of multiple imputations in the
training set. As one knows, the training patterns may be
insufficient and incomplete in some specific fields. In such
a case, it is difficult to train a high-performance classifier
and pursue high classification accuracy. In addition, these
methods mainly focus on characterizing the uncertainty and
imprecision of missing values while ignoring how to integrate
these estimations to improve the accuracy of classification. On
the basis of the above analysis, we propose an optimized and
adaptive multi-estimation (OAME) method for missing data
imputation on training and test sets based on evidence theory.

Recently, evidence theory (ET) [25]–[28], also known as
Dempster-Shafer theory or the theory of belief functions,
is often employed to integrate multi-source uncertain com-
plementary information because it can well characterize the
uncertainty in the processing and has been widely used in
classifier (multi-source) fusion [29]–[33]. In [31], for example,
it is reported that evidence theory produced better performance
than Sugeno’s fuzzy integral and the possibility theory in
fusion of sources of information for target recognition. There
are also some methods developed for missing data based on
evidence theory [34]–[36]. For instance, an interesting adaptive
imputation method for incomplete pattern classification is
introduced in [34], where the incomplete pattern will be
committed to a particular class if its available information
is crucial for the classification. If not, K-nearest neighbor
and Self-Organizing Map techniques are employed to fill
multiple versions of the missing values and then an improved
evidence fusion rule is used to fuse the pieces of evidence1.
In particular, the method, so-called prototype-based credal
classification [36], tries to replace the missing values with
the corresponding values of each class center in the training
set and then to obtain different sub-versions with various
estimations for the incomplete pattern. Then, the classification
results of these sub-patterns with various weights are fused for
decision-making. However, they do not evaluate the rationality

1The classification result of each version is regarded as a piece of evidence
for the incomplete pattern classification.

of the imputation strategies.
In this paper, we learn a credal classifier based on an

optimized and adaptive multi-estimation (OAME) method
for missing data imputation on training and test sets. The
contributions mainly include three aspects. 1) We introduce
an optimized multi-estimation strategy to impute the training
set, which can effectively improve the performance of the
classifier when the training patterns are seriously insufficient
and incomplete. 2) We propose an adaptive imputation method
to fill each incomplete pattern as single or multiple versions.
This can capture the imprecision of estimations and avoid
meaningless multiple estimations. 3) We design a discounting
method including the importance factor and the reliability
factor to evaluate the importance of the edited version and the
reliability of its classification result. By doing so, we can train
a high-performance classifier and pursue high accuracy. The
proposed OAME mainly contains two parts: 1) Missing data
imputation on training and test sets; 2) Credal classification of
the query patterns.

Step 1: Some incomplete patterns in the training set are es-
timated as multiple versions by an optimization method while
the remaining ones are filled with single-value imputation. By
doing this, we can effectively expand the training set thereby
improving the performance of the classifier. By contrast, each
incomplete test pattern is imputed only as one single version if
observed neighbors are all from the same class. Otherwise, it
will be imputed as multiple versions according to classes in the
neighbors. In this way, it can not only reasonably characterize
the uncertainty and imprecision due to missing data but also
avoid meaningless multiple estimations.

Step 2: Those test patterns that are estimated as a single
version will be directly recognized by the trained classifier,
while those that are estimated as multiple versions will obtain
multiple corresponding classification results. These results for
the pattern can be regarded as different evidence, and these
pieces of evidence then are fused with different discounting
(weighting) factors to make the final decision. The discounting
factor contains two aspects: the importance factor and the reli-
ability factor. The importance factor quantifies the importance
of the edited version, and the reliability factor represents the
reliability of the classification result of that version.

The rest of this paper is organized as follows. After a brief
introduction of some related works in Section II, the new
OAME method is introduced in detail in Section III. The
proposed method is then tested in Section IV and compared
with several other related methods, followed by conclusions.

II. RELATED WORKS

A. Basics of evidence theory

Evidence theory (ET) [25]–[28], also known as the theory of
belief functions or Dempster-Shafer theory, makes it possible
to model uncertainty and imprecision by defining functions on
a power-set 2Ω of a frame of discernment Ω = {ω1, . . . , ωC}.
The power-set 2Ω is composed of all the subsets of Ω, which
contains 2|Ω| elements. For example, if Ω = {ω1, ω2, ω3},
2Ω = {∅, ω1, ω2, ω3, {ω1, ω2}, {ω1, ω3}, {ω2, ω3},Ω}.



3

A basic belief assignment (BBA) is introduced in this theory
to express the degrees of support for different elements in 2Ω

and it is a function m(.) from 2Ω to [0,1] satisfying:{ ∑
A∈2Ω

m(A) = 1

m(∅) = 0
(1)

m(A) denotes the extent to which evidence supports the
occurrence of proposition A, but does not support the occur-
rence of any true subset of A. If m(A) > 0, A is called focal
element. If 0 < m(A) < 1, the mass of belief on A represents
an uncertainty on the occurrence of A. The classification
based on evidence theory allows pattern to be assigned to
singleton class (e.g. ωc, c = 1, . . . , C) to represent the exact
information or meta-class (e.g. {ωc, . . . , ωc′}) composed of
multiple singleton classes (i.e. ωc, . . . , ωc′ , c 6= c′) to express
imprecise information (i.e. partial ignorance). Specially, m(Ω)
denotes the total ignorance degree, and it usually plays a
particular neutral role in the fusion processing because it
characterizes the vacuous belief source of evidence. Thus, a
simple BBA given by only two focal elements (A ∈ 2Ω and
Ω) can represent both uncertainty and imprecision.

In classification problems, the output of the classifier can be
used as an evidence to represent a BBA. Dempster’s (DS) rule
has been widely used in the combination of multiple sources
of evidence because it is commutative and associative, which
makes it more attractive in practical applications. Assuming
that there are two evidences B,C ∈ 2Ω where the basic belief
assignments are m1(B) and m2(C), then the combination with
the DS rule is defined by:

m(A) =


∑

B∩C=A

m1(B)m2(C)

1−K , ∀A ∈ 2Ω, A 6= ∅

0, A = ∅
(2)

with
K =

∑
B∩C=∅

m1(B)m2(C), K 6= 1. (3)

The factor K can be interpreted such as a measure of
the degree of conflict between the pieces of evidence. The
smaller the value K is, the smaller the conflict information
between the pieces of evidence is. Since the rule distributes
conflict information proportionally to all elements, unreason-
able results may be obtained when dealing with high conflict
evidence fusion. Thus, a number of alternative combination
rules have emerged to overcome the limitations of DS rule,
such as Yager’s rule, Dubois-Prade rule, and proportional
conflict redistribution (PCR6) rule [37].

In [25], Shafer proposes a discounting method for reliability
evidence, which can effectively reduce the degree of conflict
between evidence and discount the partial mass of belief in
a BBA to the total ignorance Ω according to the reliability
(weight) factor, defined as:{

αm(A) = α ·m(A), A ⊂ Ω, A 6= Ω
αm(Ω) = 1− α+ α ·m(Ω)

(4)

where α is the reliability factor and α ∈ [0, 1]. The OAME

employs this method as the basis for discounting different ev-
idence. The DS rule is then used to combine the classification
results provided by different versions because its associativity
property makes it easier to implement than other fusion rules.

Particularly, the well-known pignistic probability transfor-
mation method [26], which approximates a BBA to probability
measure, is usually used for decision-making in ET, and the
pignistic probability of the singleton class ωc is defined by:

BetP (ωc) =
∑

A∈2Ω,ωc∈A

1

|A|
m(A) (5)

where |A| denotes the cardinality of A, i.e. the number of
singleton classes included in A.

B. Related methods

Since some related representative methods have been de-
veloped and employed as the comparisons, we briefly review
these methods in this subsection and clarify the differences be-
tween the proposed method and these existing works. Specif-
ically, the respectable methods are KNNI [15], FCMI [17],
MissForest (MF) [5], GAIN [21], PCC [36], CCAI [34],
FID [20], LLA [16] and IVIACLR [18].

First, the classical KNNI [15] and FCMI [17] methods are
employed as the representatives of classical single estimation
strategies. The KNNI [15] estimates missing values using the
average of the corresponding attributes of the neighbors. In
FCMI [17], the dataset is first clustered by FCM, then the
cluster centers and the membership degrees of the incom-
plete pattern are employed to estimate its missing values.
Besides, the single imputation methods presented in recent
years, named FID [20], LLA [16] and IVIACLR [18], are
also employed as competitions. The FID method fills the
incomplete pattern from the observed data with different
optimized weights obtained by the fuzzy membership func-
tions, which takes into account different contribution of the
observed data. The neighbors with optimal weights obtained
by the locally linear reconstruction are used to yield optimal
estimation for the incomplete patterns in LLA. In IVIACLR,
a simple imputation method (e.g. MI) is employed to initial
imputations, then the missing values are filled by clusterwise
linear regression technology.

Then, we employ MissForest (MF) [5] and GAIN [21] as
the benchmarks for multiple imputations. The MF method
provides multiple estimations for the incomplete pattern by
averaging over many unpruned classification or regression
trees. In GAIN, the goal of the generator (G) is to accurately
fill the incomplete pattern and the discriminator (D) aims to
distinguish whether the value is the estimation or actually
observed, and some additional information in the form of a
hint vector provides for D to obtain multiple estimations and
ensure G models the distribution of the data.

Finally, the methods called PCC [36] and CCAI [34]
integrate multiple imputations and credal classification based
on evidence theory. Here we explain the difference between
OAME and them. In PCC, it assumes that the training set is
complete and sufficient, which may be out of line with reality
sometimes. OAME can fill training patterns and effectively
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improve the performance of the classifier by an optimization
method, especially when the training patterns are seriously
insufficient and incomplete. In addition, PCC fills the incom-
plete test pattern by each class center in the training set, which
is not accurate enough and makes some meaningless multiple
estimations. In OAME, the test patterns are adaptively imputed
as single or multiple versions based on the observed neighbors
to overcome the shortcomings of PCC. Lastly, PCC just
considers the reliability of classification results of evidence
while OAME not only evaluates the reliability of evidence
but also the importance of the edited version. In CCAI, an
adaptive imputation method is proposed for incomplete pattern
classification. In the first step of CCAI, the training set is
assumed complete and the incomplete pattern in the test
set will be committed to a particular class if its available
information is crucial for the classification, which mainly
takes into account the necessity of estimation, whereas the
OAME method is devoted to expending the patterns using an
optimal estimation strategy in the training set. In the second
step, CCAI uses the K nearest weighting vectors of each
class respectively to estimate multiple estimations for missing
values. Then the discounted classification results of these sub-
patterns with various estimations are fused by an improved
evidence fusion rule for the final decision. However, OAME
mainly focuses on the diversity of importance and reliability
for the pieces of evidence. A summary of these methods is
given in Section E of the supplementary file to describe their
features, advantages and disadvantages more intuitively.

III. OPTIMIZED AND ADAPTIVE MULTI-ESTIMATION FOR
CREDAL CLASSIFICATION

In this section, the proposed OAME method is introduced
in detail to address the problem that trains a high-performance
classifier by extending the training set and pursues high classi-
fication accuracy by integrating pieces of estimations. It con-
sists of two parts: 1) Missing data imputation on training and
test sets; 2) Credal classification of the query patterns. These
two parts will be discussed in subsections III-A and III-B,
respectively. In subsection III-C, the tuning of involved pa-
rameters will be introduced. The analysis of complexity is
included in III-D. In addition, we list all the notations in this
paper and give a brief introduction of them in Section E of
the supplementary file for convenience.

A. Missing data imputation on training and test sets

Since the training patterns with missing values have the la-
bel information, we must take a very cautious multi-estimation
strategy to expand the training set. As a simple example, Fig. 1
shows a 3-class problem with two dimensions of attributes
corresponding to x-coordinate and y-coordinate. If the training
pattern O2 loses the x-dimensional attribute, for example, one
can reasonably obtain the neighbors (i.e. O1, O3, O5 and O6)
from different classes (i.e. O1, O3 ∈ ω1 and O5, O6 ∈ ω2)
depending only on the y-dimensional attribute. In such a case,
the incomplete pattern O2 has the potential to be estimated
as two versions, i.e. O′2 with estimation belonging to ω1 and
O′′2 with estimation belonging to ω2. O′2 can be considered
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Figure 1: Illustration of feasibility analysis of
multi-estimation for the training patterns.

as the complete pattern O2 itself and O′′2 represented by the
pentagram is an expanded training pattern in ω2. By doing
this, we can effectively expand the training set. If the training
pattern O2 loses the y-dimensional attribute, however, one can
only impute once for the missing value x since the neighbors
are all from ω1. One can also get similar inference from the
pattern O10 when y losses if interesting, where O′′10 indicated
by the triangle is an expanded training pattern.

From the above analysis, one can find that those patterns
that meet the following two conditions simultaneously have the
right to be estimated as multiple versions in applications: 1)
The pattern loses multiple attribute values; 2) The neighbors
come from different classes. The condition 1) is to prevent
the method of measuring similarity from being inaccurate,
which can be regarded as a prudent strategy. Assuming that
the training pattern loses only one attribute value, we think
that it is not prudent to take multi-estimation for the pattern
even though the neighbors come from different classes since
we cannot judge whether the neighbors are true, especially for
high-dimensional data. Therefore, the key is which incomplete
training patterns should be estimated as multiple versions?
Here we assume that condition 1) is satisfied when the number
of missing values is not less than the threshold δ. The multi-
estimation processing is then explained in detail as follows.

Let us consider a test set Y = {y1, . . . ,yH} and classify it
with a training set X = {x1, . . . ,xN} including s attributes
in the class editing framework Ω = {ω1, . . . , ωC}. Assuming
that X includes two parts: the set X1 with complete patterns
and the set X2 with incomplete patterns, i.e. X = X1+X2. For
a specific pattern, say x ∈ X2 with δ′ (δ′ < s) missing values,
we consider that its known attributes do not play a decisive
role in determining the class if δ′ exceeds the threshold δ. In
other words, the class label is little significance with δ ≤ δ′

since the larger the δ′ is, the more attributes lose2. In such a
case, the pattern x has the potential to be estimated as multiple
versions with different classes to extend the training set.

Here we assume that the known attributes of x are true
and reliable, and the neighbors, x1, . . . ,xK , belonging to

2Here we consider that the more attributes the pattern lose, the more
indistinct its class is.
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X1 contain G (1 ≤ G ≤ C) class information3, denoted as
ωg, g = 1, . . . , G. In such a case, the pattern x should be
edited as G versions, say xg, to characterize the uncertainty
caused by missing values and also to extend the training
set. Mathematically, the g-th version of x is computed for
g = 1, . . . , G by:

xg =

K∑
k=1

λk · xg
k (6)

where xg
k is the k-th neighbor of x in class ωg, and λk

denotes the weight of xg
k. K is the number of neighbors. Since

the distance between the neighbors and x are different, the
importance of these neighbors is also various. A commonly
used and effective method is employed here to calculate the
weight λk and denoted as follows:

λk =
exp(−‖x− xg

k‖)
K∑
k=1

exp(−‖x− xg
k‖)

(7)

where ‖·‖ represents the Euclidean distance4. From Eq. (7),
one can see that the nearer the neighbor to x, the larger the
weight obtained, which means that the more important it is
and the greater the contribution it will make in the process
of estimating the missing values. By doing this, one can also
get the other G−1 versions of x in the corresponding classes
using Eqs. (6) and (7), i.e. the pattern x will be eventually
edited as G versions in total to extend the training set.

The missing values of x, however, are estimated into multi-
ple versions that may bring a greater risk of error imputation
if δ′ is less than the threshold δ. In such a case, a more reliable
single imputation strategy should be used. Specifically, the
missing values will be imputed once with the neighbors from
the same class. Based on the above principles, one can easily
find that too small δ will lead to only a few patterns that are
used for single imputation while a large number of patterns
that are used for multiple imputations. This may increase
the risk of error imputation. By contrast, if most incomplete
patterns adopt single imputation in the class, it can reduce
the risk of error, however, this cannot effectively expand the
training set. Thus, we need to make a compromise between
single and multiple imputations by the optimized δ̂. Next, we
will explain in detail how to optimize δ.

We can obtain multiple corresponding extended training
sets under the different threshold δ. The optimization pro-
cess for threshold δ is based on a basic assumption. The
extended training set that makes the performance of the basic
classifier reach the optimal level is the best one and the
corresponding threshold δ̂ at this time is the optimized value.
The performance index of the basic classifier is defined as the
difference between the classification results of the patterns in
the complete training set X1 and the real labels of the patterns.
The smaller the difference, the better the performance.

Assuming that one can get a corresponding training set X δ

3Although we consider that G = 1 is possible, in fact, the possibility is
very small since the larger δ′, the more classes the neighbors may contain.

4In very high dimensional space, it may be unreliable to use Euclidean
distance to measure the similarity. In such a case, other distances (e.g. Fractal
distance) can be used.

for any δ (δ ∈ [1, s)). Then, one can use the basic classifier
trained by X δ to classify the X1 with N ′ patterns, N ′ < N .
By convention, the real class (known) of the pattern, say xn,
is denoted by L(n), and its estimated class declared by the
classifier is denoted L̂(n). For instance, L(n) = [0, 1, 0]T if
xn belongs to the class ω2 under the frame Ω = {ω1, ω2, ω3}.
The classification result of xn, obtained by the classifier Γ(·),
is denoted by µn = [µn(1), . . . , µn(C)]T . Each component
µn(c) represents the probability of the pattern associated with
class ωc, i.e. µn(c)

∆
= P (L̂(n) = ωc), c = 1, . . . , C. If

the pattern truly belongs to class ω′c, the perfect classifier
output for the pattern should be consistent with the truth as
µn : µn(c′) = 1 and µn(c) = 0 for c 6= c′. However, the
classifier output is usually more or less different from the truth
in practice, and the classification result of the n-th pattern in
X1 can be defined as follow:

µn = Γ(xn|X δ) (8)

where Γ(·) represents the standard (basic) classifier and the
choice of Γ(·) is left to one’s preference. For instance, K-
NN [38], EK-NN [39], or SVM [40] can be employed here.
It is expected that the results obtained by Γ(·) with X δ are as
close to the ground truth as possible in X1, which is expressed
as the set of following equations:

‖L(1)− µ1‖ = ε1
‖L(2)− µ2‖ = ε2

...
‖L(N ′)− µN ′‖ = εN ′

(9)

The global criterion Oδ for the threshold δ can be denoted
as the sum of all errors as follows:

Oδ =
1

N ′

N ′∑
n=1

εn =
1

N ′

N ′∑
n=1

‖L(n)− µn‖ (10)

One can find that different δ corresponds to different X δ
and produces various Oδ . For a high-dimensional dataset, we
can randomly select several δi, and then fit a curve function
f(·) defined as follows:

f(δ) = F(δi,Oδi) (11)

where F(·) represents the fitting method, and the least square
curve fitting [41] is employed here in this paper. Therefore, the
optimal δ̂ is defined as the integer value of δ satisfying the min-
imum f(δ), and denoted mathematically for δi = 1, . . . , s− 1
as follows:

δ̂ = [δ]

with
f(δ) ≤ f(δi) (12)

where [·] is the rounding symbol. Of course, for general s,
one can also let δi directly take all possible values and get the
optimal δ̂ by comparing the values of different Oδi . By doing
this, one can obtain the optimized training set X δ̂ to train the
basic classifier Γ(·).

In the test set Y , we propose an adaptive multiple imputation
method for incomplete patterns, which is similar to imputing
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x. The main procedure is to use the complete patterns in the
training set to estimate the missing values of the query pattern
y. For the query (incomplete) pattern y, let us consider that
there are G′ (1 ≤ G′ ≤ C) classes in the neighbors. Here we
choose the patterns in X1 as the neighbors to avoid the possible
negative effects of the estimations in the training set X δ̂ . Thus,
the query pattern y can be edited as G′ versions using Eqs. (6)
and (7), named y1, . . . ,yG

′
, to model the uncertainty caused

by the missing values.

B. Credal classification of the query patterns

The edited test set Y thereby is classified by the chosen
classifier Γ(·) depending on the dataset X δ̂ . Here the outputs
can be a Bayesian BBA if the chosen classifier works under
probability framework (e.g. K-NN [38] or SVM [40]), and
it can also be a regular BBA having some mass of beliefs
committed to the ignorant class Ω if the classifier works under
evidence theory (e.g. EK-NN [39]). For the test pattern y
estimated as a single version, it can be directly recognized
by the classifier Γ(·). For the test pattern y with multiple
versions, by contrast, one can obtain G′ classification results,
and those results are used together to classify the pattern y.

Evidence theory has been reported that able to deal well
with uncertain and imprecise information and produce better
performance in the fusion of sources of information for pattern
recognition [31]. In such a case, these outputs of corresponding
versions, y1, . . . ,yG

′
, regarded as complementary informa-

tion, are integrated on the basis of evidence theory to make
the final decision for y. Here each output can be regarded
as one evidence represented by the basic belief assignments
(BBAs). One should note that, however, the information used
to estimate the multiple versions are inconsistent. Thus, the
importance of different versions are naturally various for y.
In addition, the classifier obtained by global optimization with
X δ̂ may not be suitable for each special query pattern5. Thus,
the reliability of classification results is also various.

Here the parameters αg′
and βg′

, g′ = 1, . . . , G′, are
employed to represent the importance factor and the reliability
factor, respectively. The importance factor αg′

is used to
quantify the importance of the edited version itself, and the
reliability factor βg′

is used to represent the reliability of the
output of the version. Next we introduce how to obtain them.

1) The importance factor αg′
. The neighbors from X2

generally contain multiple classes. The distances between
these patterns and y are different, and multiple patterns may
belong to the same class. In general, if multiple patterns come
from the same class ωg′ and these patterns are closer to y,
the version yg′ ∈ ωg′ is more important for the query pattern
y. A common distance-based method is employed here to get

5In our recent work, a new pattern classification accuracy improvement
(CIA) method working with local quality matrix is proposed to overcome the
shortcomings of global optimal classifier. If interesting, one can refer to the
literature [42].

the importance factor αg′
for the version yg′

, and defined by:

αg′
=

∑
xk∈ωg′

exp(−‖y − xk‖)

K∑
k=1

exp(−‖y − xk‖)
(13)

By doing this, one can obtain the importance factor αg′
. The

importance factor, however, cannot replace the reliability of the
output for yg′

since the performance of the classifier is often
constrained by many factors [42]. For example, the training
patterns of some classes are not sufficient or the globally
optimized classifier is not applicable to each specific pattern.

2) The reliability factor βg′
. Since the neighbors play an

important role in estimating missing values and classification,
we employ the neighbors to provide (more or less) supplemen-
tary information here. As one knows, if the query pattern y
originally belongs to ωg′ , then yg′

should be the most reliable
version and the classification result of yg′

should also be the
most reliable for y. In such a case, the pattern yg′

and the
neighbors in ωg′ are the most similar because it is estimated
from these neighbors6. This also means that the classification
results of yg′

and the neighbors are the most similar regardless
of the performance of the basic classifier Γ(·). In other words,
the more similar the classification results between yg′

and
the neighbors in the same class ωg′ , the more reliable the
result of yg′

is. Thus, we employ the neighbors to help us
quantify the reliability of different classification results for y.
Here we consider the distance dg′ of the classification results
between the pattern yg′

and the neighbors (e.g. xg′

k ) in ωg′ as
the criterion to measure similarity, and defined by:

dg′ =

K∑
k=1

λk · ‖µg′ − µk‖ (14)

where µg′ (or µk) is the classification result of yg′
(or the

neighbor xg′

k ) obtained by Γ(·), and λk is the weight obtained
by Eq. (7) and has been explained before. Thus, the reliability
factor βg′

is defined by:

βg′
=

exp(−dg′)
G′∑

g′=1

exp(−dg′)

(15)

where βg′
is the reliability factor of the output for yg′

. To more
intuitively show the basic principles and acquisition process of
the importance and reliability factors αg′

and βg′
, we give

specific examples in Section A of the supplementary file.
After obtaining the importance factor αg′

and the reliability
factor βg′

, the Shafer’s discounting method is applied here to
discount the pieces of evidence for y, called the discounting
factor γg′

for g′ = 1, . . . , G′, since the G′ classification results

6It should be noted that the reliable classification result does not mean
that the performance of the classifier is also reliable at this time, because
the performance is often constrained by many factors and also related to the
distribution of yg′ . That is the reason why we employ the classification results
of the neighbors to quantify the reliability of the classification result for yg′ .
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may strongly support different classes7. The discounted masses
of belief are obtained by: mg′(A) = γg′

µg′(A), A ⊂ Ω;

mg′(Ω) = 1− γg′
+ γg′

µg′(Ω).

(16)

subject to

γg′
=

αg′
βg′

G′∑
g′=1

αg′βg′

(17)

where µg′(A) represents the possibility that pattern yg′
be-

longs to the focal element A, and µg′(A) = µg′(c) if A = ωc.
By doing this, one can convert the probability outputs, if
the basic classifier works with the probability framework,
to the mass of beliefs thanks to the Shafer’s discounting
method [25]. Whereas if the basic classifier (e.g. EK-NN [39])
works with belief functions, the focal element A may also
represent the total unknown class Ω. Therefore, µg′ can
represent probability or mass of beliefs, which is determined
by the chosen basic classifier. One can also find that the more
important and reliable the classification result is, the larger the
corresponding discounting factor is, and the less discounted
information assigned to the total unknown class Ω is.

The degree of conflict between discounted BBAs is less
intense because the discounted information is assigned to
unknown class (i.e. Ω). In such a case, the famous DS rule,
defined in Eqs. (2) and (3), can be used to integrate these
discounted BBAs. Then, the fused BBAs of the pattern y are
transferred into pignistic probability by Eq. (5) for the final
decision of y.

The pseudo-code of OAME is presented in Algorithm 1
to clearly show how OAME works.

C. Tuning of parameters

In the proposed (OAME) method, the numbers of neighbors
should be tuned in the real applications, which contains two
parts: the number of global neighbors, called K1, and the
number of local neighbors, called K2.

The K1 neighbors are used to assist the query (training or
test) pattern (i.e. x or y) in determining which classes it may
belong to, and also used to estimate the importance factor αg′

of different versions yg′
for the query pattern y. Since they

come from the complete dataset X2 including patterns from all
classes, the K1 should not be too small because it may cause
the neighbors found for the query pattern to not theoretically
cover all classes. If K1 is too large, however, it is possible
to involve unrelated classes in the discussion, which is not
helpful to estimate the possible versions of the query pattern
(x or y). Thus, we recommend that K1 should not be valued
less than the class number C in the dataset (i.e. K1 ≥ C) in
general and K1 ∈ [8, 15] can be used as the default in most
cases depending on our experiences.

7In this case, if the DS rule is used to fuse them directly, one often gets
an unreasonable result. This is also the reason why we employ the Shafer’s
discounting method here.

Algorithm 1 Optimized and adaptive multi-estimation method
for missing data credal classification.

Require: The training set: X = {x1, . . . ,xN}; The test set:
Y = {y1, . . . ,yH}; The chosen classifier: Γ(·); The given
parameters: K1, K2.

Ensure: Class decision results.
for δ = 1 to s− 1

for n = 1 to N
Select the neighbors for x;
Impute x into G version using Eqs. (6)-(7);

end
end
Classify X δ with estimations using Eq. (8);
Optimize the δ̂ using Eqs. (9)-(12).
for h = 1 to H

Impute y into G′ version using Eqs. (6)-(7);
If G′ = 1

Output the classification of y for decision-making.
else

Calculate the importance factor αg′
using Eq. (13);

Calculate the reliability factor βg′
using Eqs. (14)-(15);

Discount the classification results using Eqs. (16)-(17);
Fuse the discounted results using Eqs. (2)-(3);
Make decision for y using Eq. (5).

end
end
return Class label.

The K2 neighbors are used to estimate the missing values of
the query pattern (xg or yg′

) in the specific class (ωg or ωg′ ),
and also used to assist the specific version yg′

in estimating
the reliability factor βg′

. Since the neighbors come from the
specific class (ωg or ωg′ ), K2 does not need to be too large and
it is an open value. Thus, we recommend a common value,
i.e. K2 = 5, as the default.

D. Complexity analysis

The complexity of OAME is analyzed here. Let us consider
that there are H incomplete patterns in the test set and
they are classified using the training set consisted of N1

complete patterns and N2 incomplete patterns under the class
editing framework Ω = {ω1, ω2, . . . , ωC}. The computational
complexity of OAME mainly comes from the calculation of
Euclidean distances between patterns to find neighbors for
filling incomplete patterns. In the training set, each incom-
plete pattern needs to calculate N1 distances to search K1

neighbors that contain Gi class information. Then it needs
to find K2 neighbors in these Gi classes to estimate missing
values, respectively. Thus, the computational complexity of the

incomplete patterns in training set is O(N1N2)(
N2∑
i=1

Gi∑
c=1

N c
1 ),

where N c
1 represents the number of complete training pat-

terns in class ωc. In the test set, the principle of estimating
missing values for the H incomplete patterns is similar to
that of filling in the incomplete training patterns, so that the
computational complexity of the test pattern can be obtained
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as O(N1H)(
H∑
i=1

Gi∑
c=1

N c
1 ). Therefore, the total computational

complexity of OAME is O(N1(N2 +H)(
N2+H∑
i=1

Gi∑
c=1

N c
1 )).

E. Some discussions on applications

Some discussions are opened in this part for the applications
of the proposed OAME method and they are given in Section
B of the supplementary file.

IV. EXPERIMENT APPLICATIONS

In this section, we perform extensive experiments to eval-
uate the performance of the proposed OAME method and
compare it with several other related methods. The code of MF
and GAIN are implemented in R and Python, respectively, and
the code of the other methods are implemented in MATLAB.
All experiments are performed on a PC with Intel Core i7-
9750H CPU and 16GB RAM. The model performance is
measured here by the four commonly used indexes [43]: 1)
accuracy (AC); 2) precision (PE); 3) recall (RE); 4) f1-
measure (F1). Let us consider that the different classes of
classification results of a test set Y with H patterns is defined
as T = {T1, T2, . . . , TC} and L = {L1, L2, . . . , LC} is the cor-
responding ground truth of the set Y , where Tc (c = 1, . . . , C)
represents the set of patterns that are assigned into class ωc
and the set of original patterns included in class ωc is defined
as Lc. The number nc (c = 1, . . . , C) with nc = |Tc ∩ Lc| is
the number of correctly classified patterns in class ωc. Then,
these indexes are given by:

(1) AC = 1
H

C∑
c=1

nc; (2) PE = 1
C

C∑
c=1

nc

|Tc| ;

(3) RE = 1
C

C∑
c=1

nc

|Lc| ; (4) F1 = 1
C

C∑
c=1

2nc

|Lc|+|Tc| .

The higher the values of AC,PE,RE and F1, the better
the performance of the classification method. In addition, the
confidence interval [44] based on statistical properties, which
has been demonstrated to be powerful to compare different
methods, are used as the benchmark for these indicators.
In experiments, we assume that for each test pattern, the
probability that it is correctly classified follows Gaussian
distribution. In other words, the classification result of each
test pattern can be considered as an independent result. In such
a case, the test set can be consider as running approximately
10×H times to calculate the confidence interval, where H is
the number of test patterns and 10 is the number of executions
of the test set. The confidence intervals with the confidence
level as 95% for different indicators of the real datasets by
different methods are shown in the corresponding Tables.

A. Benchmark datasets

Ten commonly used real datasets from the UCI repository
(available at http://archive.ics.uci.edu/ml) are employed here to
test and evaluate the performance of different methods. The
basic information of these datasets including the number of
classes (#Class.), attributes (#Attr.) and instances (#Inst.) are

reported in Table I. The Vehicle dataset including 846 patterns
is employed here since 100 patterns are retained and not
provided, and the Bank dataset originally contains incomplete
patterns in the UCI repository.

Table I: Basic information of the UCI datasets.

Data #Class #Attr. #Inst.
Bank (Ba) 2 19 539

Contraceptive (Con) 3 9 1473
Biodeg (Bi) 2 41 1055
Vehicle (Ve) 4 18 846

Segment (Seg) 7 19 2310
Sensor (Se) 4 24 5456

Connectionist (Co) 11 10 990
Wifi (Wi) 2 7 2000
Yeast (Ye) 3 8 1136

Parkinson (Pa) 21 21 2928

B. Performance evaluation

In order to verify the effectiveness of the proposed OAME
method from different perspectives, we conduct a large number
of experiments: 1) Fig. 4 is used to reveal how to obtain the
optimized threshold δ̂, and 2) Table III and the results shown in
Section C of the supplementary file are employed to report the
effect of the chosen basic classifiers K-NN, EK-NN and SVM;
3) Fig. 5 and Table IV show the effect of the number (i.e. `) of
attribute losses on the performance of different methods (take
the Connectionist dataset as an example), and 4) Table V is
used to verify that the OAME is still more robust than other
methods at different missing rates (i.e. 50%, 60%, and 70%).

In the process, parameters of different methods are pre-
sented in Table II, where FID has no parameters. Since
the accuracy will be used as an indicator to evaluate the
performance of these methods, we need to adjust the threshold
(i.e. ε = 0) so that PCC can no longer obtain imprecision rate
in classification results.

Table II: Parameters of different methods.
Method Parameters
KNNI K = 5
FCMI ε = 10−5,m = 2

MF Maxiter = 10, T ree = 100
PCC ε = 0
CCAI ε = 0, η = 0.7,M = 3, N = 4
LLA Maxiter = 100, T olerance = 10−4

GAIN α = 0.1
IVIACLR Omax = 5, l = 5, lmax = 150

OAME K1 = 11,K2 = 5

The dataset Bank originally contains incomplete patterns
that are used as test sets, and its complete patterns are used
as training sets. The remaining nine datasets have no missing
values, where half of the patterns are randomly selected as test
sets and the others as training sets. In order to simulate the
actual situation, 65% of the patterns in the training set will be
randomly lost with m ∈ [1, s) missing values, where s is the
dimension of the complete patterns, and each pattern of the
test set is randomly lost ` attributes [36].
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Figure 2: Fitting the curve function f(.) and adaptive the
optimized threshold δ̂.

In order to visualize the optimized threshold δ̂, the OAME
selects some values for δ (i.e. δ = 1, 3, . . . , s−1) to obtain the
corresponding average deviation Oδ based on some of the em-
ployed sets, as shown in Fig. 2, where the number of missing
values in incomplete training patterns corresponds to the x-
coordinate and the y-coordinate represents the corresponding
average deviation Oδ . The fitting curves of other datasets are
given in Section C of the supplementary file. Here the curve
function f(.) depending on the least square rule [41] is used
to get the minimum Oδ , which corresponds to the optimized
threshold δ̂ (i.e. the red dot). One can see from Fig. 2 that
the minimum points of Oδ are not at the two endpoints of
the curve, and most of them are distributed in the relative
central position, which proves that it is feasible to find such
an optimized threshold δ̂ in OAME.

For fairness and reproducibility, each employed dataset is
processed ten times randomly, then the ten different groups
of each dataset are tested ten times by different methods,
respectively, so as to avoid the negative effect of the accidental.
The value of indicators is the average of all the results for the
dataset, which makes our experimental results more reliable.

The confidence intervals of accuracy for different methods
with K-NN are given in Table III. The corresponding results of
EK-NN and SVM are shown in Section C of the supplemen-
tary file. The average of confidence intervals (Ave) on different
datasets with the same classifier is given in the second last
row to show the general performance of the various method
and the winning times (WT)8 of different methods on these
datasets is shown in the last row. From the results, one can see
that the confidence intervals of accuracy of OAME method is
significantly higher than that of comparison methods since the
OAME method effectively improves the performance of the
classifier by expanding the number of patterns in the training
sets. In addition, the results of EK-NN and SVM show that
the performance of OAME is still better than that of other
methods even different classifiers are applied, which indicates
that the implementation of OAME does not depend on the
selection of the basic classifiers.

Since we only show partial results in Table III when ` takes
different values, thus, a dataset, named Connectionist with
different `, is employed here to avoid the negative impact of
the randomness of `-value selection and study the impact of
different ` values on classification performances of different

8One method will win one time if it produces the maximum accuracy rate
for one classification case with respect to the other methods.
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Figure 3: The classification results for Connectionist dataset
with various ` by different methods.

methods. The values of the indexes (AC,PE,RE,F1) of
various methods in classifying the Connectionist dataset with
different ` using K-NN as shown in Fig. 3, where the x-
coordinate denotes the different ` values, ranging from 1 to 9,
and the y-coordinate represents the values of different indexes,
which are expressed in [0,1]. In addition, the average clas-
sification results for Connectionist dataset with various ` by
different methods are given in Table IV. The results intuitively
reveal that the performance of OAME is still better than that of
other methods even if the different number of missing values
is set. Additionally, with the increase of the number (i.e. `)
of missing values in the test set, the performance of different
methods tends to be worse since the more missing data, the
greater the deviation of the estimations, which may increase
the risk of misclassification of incomplete patterns.

In the previous experiment, we only tested the case where
the missing rate was 65% in the training set, and also test the
performance of different methods in the case of the different
numbers of missing values in the test set. Here, the incomplete
patterns of the dataset Bank that original contains missing
values makes up the test set and the complete patterns are used
as training set, of which 50%, 60%, and 70% training patterns
randomly lose the missing values. The classification results of
different methods are given in Table V and the results of other
datasets are reported in Section C of the supplementary file.
From the results, one can see that in the case of different ratios
of incomplete patterns in the training set, the performance of
OAME is still better than that of other methods. This can truly
reflect the fact that the OAME is superior to other methods in
most datasets, especially the training and test sets with a large
number of incomplete patterns.

C. Influence of K1

It worth noting that the performance of the proposed OAME
method in this paper may be affected by the parameter K1,
which is the number of neighbors of the query pattern obtained



10

Table III: The confidence intervals of accuracy for UCI datasets by different methods with K-NN (in %).
data ` KNNI FCMI MF PCC CCAI FID LLA GAIN IVIACLR OAME
Con 1 48.55±1.14 48.36±1.14 47.98±1.14 48.20±1.14 48.79±1.14 48.41±1.14 47.92±1.14 47.46±1.14 48.06±1.14 52.51±1.14
Con 3 45.32±1.14 45.29±1.14 45.13±1.14 45.48±1.14 45.16±1.14 44.61±1.14 45.86±1.14 42.82±1.13 45.64±1.14 47.82±1.14
Bi 5 74.43±1.18 72.61±1.20 73.94±1.18 73.56±1.19 73.98±1.18 74.62±1.17 73.86±1.19 72.27±1.21 73.67±1.19 77.84±1.12
Bi 10 73.48±1.19 71.59±1.22 73.11±1.20 73.71±1.19 73.52±1.19 73.52±1.19 73.60±1.19 70.76±1.23 72.77±1.20 77.08±1.13
Ve 7 53.81±1.50 48.27±1.51 56.97±1.49 47.71±1.51 45.96±1.50 53.85±1.50 50.69±1.51 36.12±1.45 49.50±1.51 59.53±1.48
Ve 13 49.31±1.51 37.40±1.46 49.13±1.51 32.58±1.41 45.13±1.50 51.82±1.51 42.32±1.49 25.30±1.31 32.06±1.41 55.08±1.50

Seg 8 82.16±0.70 54.44±0.91 86.10±0.63 77.97±0.76 78.28±0.75 82.49±0.69 80.66±0.72 58.44±0.90 69.92±0.84 85.82±0.64
Seg 12 76.74±0.77 34.42±0.87 77.71±0.76 69.96±0.84 72.10±0.82 78.01±0.76 73.47±0.81 38.55±0.89 34.75±0.87 82.15±0.70
Se 15 72.62±0.53 53.34±0.59 71.04±0.54 55.87±0.59 51.44±0.59 71.91±0.53 71.00±0.54 47.27±0.59 53.20±0.59 73.34±0.52
Se 18 71.72±0.53 48.24±0.59 59.60±0.58 50.22±0.59 47.43±0.59 71.06±0.54 69.66±0.55 39.40±0.58 48.32±0.59 71.74±0.53
Co 1 59.39±1.37 56.65±1.38 59.76±1.37 57.33±1.38 65.86±1.32 55.35±1.38 61.33±1.36 56.40±1.38 59.92±1.37 70.22±1.27
Co 3 53.17±1.39 45.49±1.39 52.69±1.39 48.93±1.39 60.79±1.36 49.86±1.39 54.30±1.39 41.66±1.37 51.56±1.39 61.98±1.35
Wi 5 74.20±0.86 53.74±0.98 69.16±0.91 72.26±0.88 74.22±0.86 74.08±0.86 62.04±0.95 31.96±0.91 46.68±0.98 76.04±0.84
Wi 6 55.36±0.97 39.56±0.96 35.58±0.94 54.88±0.98 56.78±0.97 54.40±0.98 40.34±0.96 25.82±0.86 35.16±0.94 58.88±0.96
Ye 4 49.37±1.30 47.68±1.30 48.63±1.30 47.50±1.30 49.59±1.30 49.15±1.30 49.01±1.30 44.86±1.29 46.13±1.30 51.34±1.30
Ye 6 42.57±1.29 42.75±1.29 43.10±1.29 43.87±1.29 39.46±1.27 42.32±1.28 39.86±1.27 40.42±1.28 43.94±1.29 44.51±1.29
Pa 8 45.10±0.94 30.40±0.87 48.05±0.95 40.52±0.93 54.80±0.94 49.40±0.95 43.63±0.94 14.54±0.67 35.81±0.91 63.81±0.91
Pa 14 31.61±0.88 15.01±0.68 27.35±0.85 26.69±0.84 42.75±0.94 34.19±0.90 28.70±0.86 7.43±0.50 16.91±0.71 48.14±0.95
Ba / 53.56±2.30 52.78±2.31 52.11±2.31 52.89±2.31 50.22±2.31 50.67±2.31 53.67±2.30 50.11±2.31 53.11±2.31 59.11±2.27

Ave / 58.55±1.13 47.26±1.15 56.69±1.13 53.69±1.14 56.64±1.14 58.41±1.13 55.89±1.14 41.66±1.11 48.27±1.14 64.05±1.11
WT / 0 0 1 0 0 0 0 0 0 18

Table IV: The average classification results for Connectionist dataset with various ` by different methods (in %).
KNNI FCMI MF PCC CCAI FID LLA GAIN IVIACLR OAME

AC 41.35±1.37 32.21±1.30 37.58±1.35 36.77±1.34 46.76±1.39 39.39±1.36 39.60±1.36 30.10±1.28 34.55±1.32 48.57±1.39
PE 46.17±1.39 37.53±1.35 42.78±1.38 42.80±1.38 47.48±1.39 44.86±1.39 44.34±1.38 34.25±1.32 40.03±1.36 51.63±1.39
RE 41.99±1.37 32.32±1.30 38.08±1.35 37.07±1.35 46.87±1.39 40.08±1.37 39.93±1.36 30.30±1.28 34.78±1.33 48.84±1.39
F1 41.26±1.37 32.29±1.30 36.70±1.34 36.52±1.34 46.30±1.39 39.30±1.36 39.60±1.36 29.60±1.27 34.45±1.32 48.03±1.39

Table V: Classification results of Bank with various missing rates by different methods.

Method
50% 60% 70%

AC PE RE F1 AC PE RE F1 AC PE RE F1

KNNI 53.11±2.31 54.50±2.30 53.95±2.30 51.76±2.31 53.11±2.31 55.04±2.30 54.15±2.30 50.64±2.31 53.78±2.30 56.57±2.29 54.87±2.30 50.97±2.31
FCMI 51.11±2.31 52.43±2.31 52.01±2.31 49.45±2.31 52.56±2.31 54.53±2.30 53.54±2.30 50.35±2.31 53.67±2.30 56.44±2.29 54.75±2.30 51.05±2.31

MF 51.56±2.31 52.79±2.31 52.41±2.31 50.10±2.31 52.11±2.31 53.83±2.30 53.07±2.31 49.81±2.31 53.11±2.31 55.14±2.30 54.10±2.30 50.99±2.31
PCC 52.89±2.31 54.56±2.30 53.81±2.30 51.19±2.31 53.11±2.31 55.48±2.30 54.09±2.30 50.84±2.31 52.78±2.31 55.38±2.30 53.84±2.30 50.27±2.31

CCAI 50.44±2.31 50.05±2.31 50.03±2.31 49.62±2.31 48.93±2.31 48.54±2.31 48.59±2.31 47.92±2.31 50.00±2.31 49.83±2.31 49.43±2.31 48.45±2.31
FID 51.44±2.31 52.94±2.31 52.42±2.31 49.41±2.31 51.89±2.31 53.64±2.30 52.86±2.31 49.67±2.31 54.56±2.30 56.57±2.29 55.58±2.30 52.28±2.31
LLA 51.78±2.31 53.23±2.31 52.70±2.31 50.03±2.31 50.89±2.31 51.98±2.31 51.85±2.31 48.65±2.31 53.78±2.30 56.32±2.29 54.82±2.30 51.16±2.31

GAIN 48.22±2.31 48.74±2.31 49.01±2.31 46.81±2.31 48.67±2.31 49.77±2.31 49.52±2.31 46.84±2.31 49.33±2.31 50.22±2.31 50.15±2.31 47.80±2.31
IVIACLR 52.67±2.31 54.22±2.30 53.56±2.30 51.08±2.31 53.11±2.31 55.60±2.30 54.11±2.30 50.68±2.31 52.78±2.31 54.77±2.30 53.78±2.30 50.55±2.31
OAME 57.00±2.29 57.46±2.28 57.33±2.28 56.77±2.29 58.89±2.27 59.26±2.27 59.08±2.27 58.74±2.27 58.89±2.27 59.06±2.27 58.98±2.27 58.79±2.27

by using the corresponding known attributes. The value of
K1 can be slightly larger since too small K1 value cannot
accurately find the most likely classes of the incomplete
pattern when there are a lot of classes in dataset. Of course, it
may find some noise points (isolated points) if we give too
large, which will increase the risk of error. Fig. 4 clearly
and intuitively reveals the influence of different K1 values
in OAME based on some of the employed datasets, and
the results of other datasets are shown in Section D of the
supplementary file. x-coordinate corresponds to the K1 value,
ranging from 8 to 20, and the y-coordinate corresponds to
the average accuracy in the classification method, which is
expressed in [0,1]. The K-NN classifier is employed to classify
the test patterns, each of which contains ` missing values. One
can see that the accuracy of different K1 values is still higher
than other methods, and the variations of accuracy associated
with various K1 values are very small, which confirms the
robustness and effectiveness of the proposed method.
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Figure 4: Classification results of different methods with
various K1 values.

D. Execution time

The execution time in seconds of OAME and other compar-
ison methods on the different datasets with K-NN as shown in
Table VI. One can observe that the execution time of OAME is
higher than that of KNNI and FCMI since the OAME method
needs to calculate a large number of distances between patterns
to obtain the neighbors in the process of imputation and the
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classifier should be trained many times to optimize the training
set. However, the MF and GAIN methods take a long time
on building a random forest and training model, respectively.
Thus, the OAME method runs considerably faster than them.
In general, the proposed OAME method is more suitable for
applications where high classification accuracy is required
whereas efficient computation is not a strong requirement.

A dataset, named Biodeg, is employed here to investigate
the impact of the parameters (i.e K1,K2, δ, `) on execution
time of OAME. The EK-NN classifier is employed to classify
the test patterns, and the classification result is shown in Fig.5,
where x-coordinates represent the values of corresponding
parameters. In particular, the x-coordinate in Fig.5(c) repre-
sents the number of δ that selected in OAME. One can see
that with the increase of the values of these parameters, the
execution time of OAME tends to raise with various reasons.
Specially, the larger the K1 value is, the more classes may
be included in neighbors, thus the more distances are needed
to be computed to find neighbors from different classes in
such a case. The result also reveals that a high value of K2

also brings a high execution time, since it may generate a
large number of computation in the process of estimating the
reliability factor in OAME. Particularly, a large number of
δ will increase the time of model training during optimizing
training set. Furthermore, the higher the number (i.e. `) of
missing values is, the more imprecise the classes of incomplete
patterns become, which will lead to more patterns need to
be filled as multiple versions based on neighbors, so the
execution time is high in such a case. Although the execution
time increases with increasing parameter values, it is within
a reasonable range of increase, which does not affect the
practical application of the proposed method. On the basis
of these analyses, one can take these parameters within a
reasonable range if an efficient computation is necessary for
practice, especially there are a large number of missing values.
In addition, inspired by CCAI [34], OAME can also take the
process of optimizing a training set off-line so as to reduce
the execution time.

Table VI: Execution time of different methods (In seconds).
data KNNI FCMI MF PCC CCAI FID LLA GAIN IVIACLROAME
Ba 0.42 0.46 5.22 0.66 0.59 1.02 0.99 2.82 1.71 1.03
Con 0.41 0.46 4.57 0.47 0.60 0.55 3.13 5.77 0.98 1.81
Bi 0.34 0.55 24.62 0.61 0.68 0.99 1.77 6.86 2.50 2.00
Ve 0.45 0.92 9.40 1.00 1.19 1.01 2.04 6.38 2.29 1.41
Seg 1.06 3.03 39.86 3.92 3.27 2.28 9.36 9.54 13.8 4.11
Se 2.33 1.59 99.12 3.09 4.70 5.18 27.89 6.39 7.69 20.69
Co 0.46 0.79 11.41 1.26 1.59 1.09 2.29 3.61 1.94 1.81
Wi 0.54 1.06 2.74 0.57 0.77 0.71 4.04 5.81 0.38 2.11
Ye 0.52 0.59 4.05 0.95 0.94 0.96 2.99 7.25 1.12 1.45
Pa 1.33 9.80 91.99 17.65 31.57 2.79 13.19 10.80 8.76 26.39

V. CONCLUSION

To train a high-performance classifier and pursue high
accuracy, we learn a credal classifier based on an optimized
and adaptive multi-estimation (OAME) method for missing
data imputation on training and test sets. In this work, we first
introduce an optimized multi-estimation strategy to expand the
training set. Then, each test pattern is adaptively estimated
as one or multiple versions depending on the neighbors.
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Figure 5: Execution time of OAME for Biodeg dataset with
various values of parameters.

For the test pattern with multiple versions, we both estimate
the importance factor of each edited version itself and the
reliability factor of the classification result of the version.
Finally, the corresponding outputs with different discounting
factors, represented by the basic belief assignments (BBAs),
are fused for credal classification based on evidence theory.
Since the proposed OAME can effectively extend the training
patterns while reasonably characterizing the uncertainty and
imprecision caused by missing values in the imputation and
classification process, its effectiveness is well verified on real
datasets. In addition, we also discuss the complexity and
the problems that may be encountered in applications. For
example, the importance and the relevance between attributes
and labels may also need to be considered for optimizing the
parameter δ in applications. Over the longer-term, the goal is
to develop a versatile and flexible framework for classifying
missing data based on evidence theory.
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