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Abstract

In complex incomplete pattern classification, the classification results produced by a single classifier and used for

decision-making may be quite unreliable and uncertain due to the random distribution of missing data. This

paper proposes a new evidence integration credal classification algorithm (EICA) for multiple classifiers working

on different attributes, aiming to reduce the negative impact on incomplete pattern classification by modeling

the missing values locally. In EICA, the dataset is first grouped into several subsets, and missing values in each

subset are estimated by similar subpatterns with different weights. The similarity is measured by discounting the

overall similarity of subpatterns and the local similarity of attributes on the basis of fully exploiting the distribution

characteristics of the attributes. The greater the variation in distribution across classes, the greater the weight.

The classification results of the edited subpatterns with different discounting factors obtained by the optimization

function can often provide (more or less) useful information for the classification of the query pattern. Thus, these

discounted pieces of evidence (outputs) represented by basic belief assignments (BBAs) are globally fused to classify

the query pattern on the basis of evidence theory. The validity has been demonstrated with various real datasets.

Keywords: Missing data, Evidence theory, Classifier fusion, Credal classification, Incomplete pattern.

1. Introduction

Missing data classification is an important branch in statistical multivariate analysis and supervised machine

learning, with broad applications in various fields such as financial fraud, medical diagnosis, image processing, infor-

mation retrieval, and bioinformatics, etc. To make traditional classifiers applicable to missing data, preprocessing

is considered the dominant technique, and a number of methods [1, 2] have been developed based on the three5

mechanisms [1]. The simplest method is the deletion of incomplete patterns [2], and it is applicable only in cases

where the number of incomplete patterns is small (less than 5% of the overall data).

The estimation strategy is a common method for classifying incomplete patterns in many cases [3]-[12]. Missing

values in these methods are estimated by the observed values, and the chosen classifier can then classify these

patterns with estimations as if they were complete data. For example, mean imputation (MI) [4, 5] can replace10
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Figure 1: Illustration of similarity analysis for missing data.

missing values with the average of the corresponding attributes in the entire dataset. The use of similar patterns

to estimate missing values for incomplete patterns, also known as K-nearest neighbor imputation (KNNI)[6, 7], is

considered to be one of the most popular methods for classifying missing data. In [8, 9], an interesting estimation

method based on a machine learning process, named fuzzy c-mean imputation (FCMI), is introduced to fill in

the missing values with the clustering centers produced by FCM. In particular, a new method, named fuzzy-15

based information decomposition (FID) [11], has been developed to solve both class imbalance and missing value

problems, which consists of two steps: weighting and recovery. In the weighting step, the weights generated by the

fuzzy membership function are used to quantify the contribution of the observations to the missing estimates. In

the recovery step, the different contributions of the observations will be considered to estimate the missing values.

Interestingly, in [12], a local linear approximation (LLA) method for processing incomplete pattern is proposed,20

which adopts the optimal weight of KNNs gained from local linear reconstruction to fill the missing values.

In complex incomplete pattern classifications, however, the classification results produced by a single classifier

and used for final decision-making can be quite unreliable and uncertain due to the random nature of the missing data

distribution. For instance, in Fig. 1, if the x-dimension of the pattern O5 is missing, one can obtain the neighbors,

i.e., O6 and O7, by calculating the similarity when KNNI is adopted here. By contrast, if the y-dimension is missing,25

the neighbors of O5 will become the patterns O1 and O2, which is far away from the truth. A similar erroneous

conclusion can be drawn from the O8 pattern without the x-dimension attribute, since then the neighbors are O3

and O4. In this case, it would be an excellent option to model the uncertainty caused by missing values and to

minimize the negative impact of missing values.

Based on the above analysis, we propose a new weighted evidence integration credal classification algorithm30

(EICA) for multiple classifiers working on different attributes (features) of patterns, aiming to reduce the negative

impact of missing data distributions on incomplete pattern classification by modeling the missing values locally. In
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EICA, the dataset is grouped into several subsets based on prior knowledge (i.e., the correlation between different

attributes) or random combinations. Missing values in each subset are imputed from similar subpatterns (neighbors),

where the choice of neighbors is a compromise between the overall similarity of the subpatterns and the local35

similarity of the attributes. The (edited) subpatterns in each subset are then classified, and the results of several

subclassifications with different discounting factors, represented by basic belief assignments (BBAs), are fused to

make the credal classification for the query pattern.

The rest of this paper is organized as follows. The basics of evidence theory will be introduced in Section 2,

and the EICA method is introduced in the Section 3. The performance of the proposed method is then tested and40

compared with several other widely used methods in Section 4, followed by conclusions.

2. Related works

2.1. Some other classical methods

Although many estimation strategies have been reviewed, there are still a number of methods are designed

to deal with incomplete data without estimation [13, 14], such as model-based algorithms [15, 16]. For example,45

a (supervised) logistic regression algorithm is proposed in [15] to deal with missing values, where missing values

are estimated by performing analytic integration with an estimated conditional density function. The conditional

density functions are estimated with a Gaussian mixture model (GMM), the parameters of which are obtained by

Expectation-Maximization (EM) and variational Bayesian EM (VB-EM). In [13], the method based on Support

Vector Machine (SVM) [17] adopts a non-parametric perspective by defining a modified risk taking into account the50

uncertainty of the predicted outputs when missing values are involved. The method is extended to the multivariate

case of fitting additive models using componentwise kernel machines. All of these methods have performed well to

some extent. The models however are difficult to obtain sometimes, thus estimation strategies are still the main

pre-processing methods in classifying missing data.

2.2. The basics of evidence theory55

Evidence theory, also called Dempster-Shafer theory (DST) or belief function theory [18]-[21], has been widely

used in fusion decision-making [22]-[28], and also good at clustering [29]-[32] and classification [33]-[35] since it

can well characterize the uncertain and imprecise information. In evidence theory, one starts with a frame of

discernment Ω = {ω1, ..., ωc}, which consists of a finite discrete set of mutually exclusive and exhaustive hypotheses

(classes), and the power-set of Ω denoted 2Ω is the set of all the subsets of Ω. For example, if Ω = {ω1, ω2, ω3},60

then 2Ω = {, ω1, ω2, ω3, ω1 ∪ ω2, ω1 ∪ ω3, ω2 ∪ ω3,Ω}. The singleton element (e.g., ωi) represents a specific class.

The disjunctions (union) of several singleton elements represents the partial uncertainty in 2Ω (e.g., ωi ∪ ωj or

ωi ∪ ωj ∪ ωk, etc), and they are called meta-classes.

In evidence theory, the pattern can be well associated with different singleton elements and sets of elements

according to a basic belief assignment (BBA), which is a function m(.) from 2Ω to [0, 1] satisfying m(∅) = 0 and65

the normalization condition satisfying
∑
A∈2Ω m(A) = 1. The belief function Bel(.) and the plausibility function
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Pl(.) represent the lower and upper bounds of the imprecision probability associated with BBA’s. [Bel(.), P l(.)] is

interpreted as the imprecision interval of the unknown probability P (A) of any element A of 2Θ. These bounds are

defined for all A ∈ 2Ω as:

Bel(A) =
∑
B⊆A

m(B) (1)

70

Pl(A) =
∑

A∩B 6=∅

m(B) (2)

where Bel(.) and Pl(.) can be used for decision-making support when adopting pessimistic or optimistic attitudes

if necessary.

In a multi-classifier system, the output of each classifier can be considered as an evidence represented by a BBA.

The well-known DS rule is still widely applied for combining multiple BBA’s mainly because of its commutative and

associative properties, which makes it relatively easy to implement. In ET framework, Shafer proposed that the75

different pieces of evidence represented by BBA’s should be combined using Dempster’s rule, which is commonly

denoted by DS rule and expressed by ⊕ symbol. DS rule offers a compromise between the specificity and complexity

for the combination of BBA’s. The DS combination of two distinct sources of evidence characterized by the BBA’s

m1(.) and m2(.) over 2Ω is denoted m = m1 ⊕ m2, and it is mathematically defined by mDS(∅) = 0 and for

A 6= ∅, B,C ∈ 2Θ by:80

mDS(A) = [m1 ⊕m2](A) =

∑
B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅
m1(B)m2(C)

(3)

DS rule is exchangeable and correlative, making a compromise between the particularity and complexity of

BBA composition. All the conflicting beliefs
∑
B∪C=∅m1(B)m2(C) are proportionally redistributed back to the

focal elements by using this rule through a classical normalization step. However, some paradoxes under the high

conflicting cases and under some special low conflicting cases maybe produced because of this redistribution. Many

different rules of combination have emerged to overcome its limitations. Among the possible alternatives of DS rule,85

some rules such as the well-known Smets’ conjunctive rule (used in his transferable belief model (TBM) [19, 20]),

Dubois-Prade (DP) rule [36], and more recently the more complex Proportional Conflict Redistributions (PCR)

rules [37, 38] are found. Inspired by the above methods, the EICA method treats the classification result of each

subpattern as one evidence, and then the final class of the query pattern is determined by the integration of these

evidences.90

2.3. Some methods based on evidence theory

Due to the advantages in modeling and combining the uncertain information, evidence theory [18]-[21] has

been widely used in evidence integration [22]-[26]. In this theory, different pieces of evidence (i.e., classifiers)

can provide often provide (more or less) useful supplementary information to reduce the error rate and enhance

the robustness of classification. Given the non-independence between classifiers, for example, the literature [23]95

investigates an approach that combines other operators with the Dempster’s rule, aiming to mediate their behavior
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between Dempster’s rule and the cautious rule, where two strategies (i.e., a single combination rule and a two-step

fusion method) are investigated for learning an optimal combination scheme, based on a parameterized family of

t-norms. These integration methods, based on evidence theory, achieved good performance, however, they were

designed for complete data. Only a few methods for incomplete patterns based on evidence theory [27, 28] have100

been proposed. In [27], a prototype-based credal classification (PCC) method is proposed. The incomplete pattern

is first edited into c versions, for a c-class problem, with the class prototypes obtained by training patterns. Then

the c classification results are globally fused with different discounting factors to finally determine the class of

the incomplete pattern. In [28], the missing values in wireless sensor networks are estimated with the regularized

extreme learning machine. Then the estimations are converts into multiple classification results on the basis of the105

distance between interval numbers. These results are fused to classify the query pattern by an evidential reasoning

rule. Although these methods use evidence integration locally, they do not fully consider the negative impact of

incomplete data distribution on the accuracy of estimations. For example, in [27], some of the missing values can

be filled in with class centers, but others may be unreliable.

3. Evidence Integration Credal Classification110

Let us consider a query set Y = {y1, ...,yN} being classified on the frame of discernment Ω = {ω1, ..., ωc}

according to a set of labeled patterns, i.e., X = {x1, ...,xH}. Each pattern xh has S different attributes (features)

and the class label is represented by L(xh). We assume that both the training set X and the test set Y contain

missing data. To avoid the possible negative impacts of missing value distributions, the EICA method first groups the

dataset into non-overlapping Φ subsets based on the prior knowledge (i.e., correlations between different attributes)115

or random combinations, e.g., X = X 1, ...,XΦ. Of course, different subversions (subpatterns), i.e., x1
h, ...,x

Φ
h , share

the same class label L(xh). For the incomplete pattern y, the missing values of the subversion yϕ are estimated by

the neighbors in the subset Yϕ. Each neighbor has a corresponding weight depending on the Euclidean distance from

it to yϕ. In addition, the importance of different attributes is also considered when measuring similarity (seeking

neighbors). By doing this, one thereby can obtain Φ soft outputs for y. These outputs can be the probabilistic120

membership (for classifiers under the probabilistic framework, e.g., Naive Bayes [39]) or belief degree (for evidential

classifiers working with evidence theory, e.g., EK-NN [34]). After that, the Φ outputs are discounted with different

discounting factors obtained by a global optimization function. The global fusion of the Φ discounted outputs,

represented by the basic belief assignments (BBAs), is used to make the final dicision-making for y.

3.1. Estimate missing values on Φ subsets125

As we have previously analyzed, the selection of true similar patterns in the same class is a key factor for effective

imputation. Thus, we should prioritize mining some a priori information about the distribution of data attributes

to aid in the selection of true neighbors. In general, the greater the difference in the distribution of an attribute

across classes, the greater its weight, as it provides us with more information about the class. By contrast, the

more similar the distribution of an attribute in different classes, the smaller its weight, because the attribute does130
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not provide us with much useful information to find the neighbors in the class. Many methods exist to calculate

the weighting factor αs for the s-th attribute. Here we argue that the greater the mean-variance of an attribute

across classes, the greater the weight of that attribute. For s = 1, ...,S, the mean-variance Vs of the s-th attribute

is defined by:

Vs =
1

c

c∑
j=1

(
1

Cj

Cj∑
i=1

xsi −
1

H

H∑
h=1

xsh)2 (4)

where 1
H

H∑
h=1

xsh is the mean value of the s-th attribute in the training set X , and H is the number of training135

patterns. 1
Cj

Cj∑
i=1

xsi is the mean value of the s-th attribute in the j-th class. Cj is the number of the training patterns

in the j-th class, j = 1, ..., c.

Since the dataset (e.g., X ) is grouped into Φ subsets, and the missing values for each pattern (e.g., xϕ) in each

subset (e.g., Xϕ) may be different, it is necessary to calculate the attribute weighting factor αs of each incomplete

pattern xϕ separately. From these mean-variance Vs for s = 1, ...,S, for example, we can define the weighting factor140

αs of the s-th attribute of xϕ in the Xϕ partition by:

αs =
Vs

Sϕ−Sm∑
∃s,s=1

Vs
(5)

subject to 
αs > 0,
Sϕ−Sm∑
∃s,s=1

αs = 1.
(6)

where xϕ is an incomplete pattern in Xϕ, i.e., the subversion of x in the subset Xϕ. αs represents the weighting

factor of the s-th known attribute of xϕ. Sϕ is the number of attributes included in Xϕ, and Sm is denoted as the

number of the missing values of xϕ. Vs is the mean-variance of the s-th attribute obtained from E.q. (4). Then we145

can select the neighbors of xϕ in the same class using the Euclidean distance d(xϕ,xϕk ), defined by:

d(xϕ,xϕk ) =

√√√√Sϕ−Sm∑
∃s,s=1

αs(x
ϕ
s − xϕk,s)

2
(7)

where xϕs and xϕk,s represent the s-th attribute values of the patterns, respectively.

Since the contribution of different neighbors to the missing values is different, before estimating the missing

values of xϕ, we need to calculate the reliability βk of each neighbor xϕk . In fact, the smaller distance d(xϕ,xϕk )

generally leads to the bigger reliability βk. Therefore, a rational way that has been widely applied in many works150

is adopted here to estimate the reliability βk. For k = 1, ...,K, the reliability βk is defined by:

βk =
e−d(xϕ,xϕ

k )

K∑
k=1

e−d(xϕ,xϕ
k )

(8)
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submit to 
βk > 0,
K∑
k=1

βk = 1.
(9)

where K is the number of the selected neighbors for estimating the missing values of xϕ. Then, the o-th missing

value of xϕ is given by:

xϕo =

K∑
k=1

βk·xϕk,o (10)

By doing this, it is possible to obtain all the incomplete patterns with estimations in each subset of the training155

sets, and then use these edited patterns to train Φ basic classifiers. Since we are not intended to improve the per-

formance of the chosen classifier itself, the classifiers that satisfy the probabilistic framework or similar probabilistic

frameworks can be used here as basic classifiers, e.g., K-NN [40], NB [39], EK-NN [34], etc.

After obtaining the mean-variance Vs, the missing values for different partitions (e.g., Yϕ) in the test pattern

(e.g., yϕ) can also be imputed by the similar method to the training pattern xϕ. The difference, however, is that160

we will find the neighbors for yϕ globally, aiming to select the similar patterns as much as possible in the same

class. In other words, the candidate database is extended to all patterns in the training subset Xϕ and the test

subset Yϕ.

3.2. Optimize reliability of different classifiers165

Since the classifiers to be integrated learn based on different attribute knowledge, they may have different

classification capabilities, so the reliability of the classification results provided by Φ subversions (e.g., yϕ) is

different. Therefore, each classifier should be given appropriate reliability (discounting factor) in the fusion to

achieve the best classification performance. In general, the closer the trained basic classifier Θϕ is to the truth,

the more valuable the information provided by the classifier Θϕ, i.e., the higher reliability γϕ should be given to170

the classifier Θϕ. Here the complete patterns in the training set X , i.e., Xcom = {x1, ...,xH}, are used to optimize

the discounting factor γ = [γ1, ..., γΦ] of Φ basic classifiers to eliminate the possible negative effects of missing

values. The optimal discounting vector γ should make the combination results as close as possible to the truth of

the complete training patterns. The classification result of the subpattern xϕh in the subset Xϕ is given by:

Pϕ
h = Θϕ(xϕh | X

ϕ) (11)

where Θ represents the chosen classifier. Pϕ
h is the classification result of xϕh using the classifier Θϕ trained by the175

set Xϕ. Pϕ
h can be a Bayesian BBA if the chosen classifier works under probability framework (e.g., K-NN [40],

NB [39]), and it can also be a regular BBA with having some mass of beliefs committed to the ignorant class Ω if

the classifier works under evidence theory (e.g., EK-NN [34]). Therefore, a BBA (probability) matrix Ph of Φ× c
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for xh can be obtained with Eq. (11), and defined as:

Ph =


ph11 · · · ph1c
...

. . .
...

phΦ1 · · · phΦc

 (12)

subject to180 
phϕj ∈ [0, 1],
c∑
j=1

phϕj = 1.
(13)

where phϕj is defined as the support degree (probability) that the subpattern xϕh is classified into class ωj by the

basic classifier Θϕ, j = 1, ..., c, and h = 1, ...,H. In order to optimize the reliability matrix γ = [γ1, ..., γΦ], we

assume that the Φ subpattern xϕh have the same label L(xh) characterized by the binary vector Th = [Th1, ..., Thc].

It can be found that for the pattern xh belonging to the class xh, all components of Th are equal to zero, but

Thj = 1. For a 3-class problem, for example, the vector Th should be represented as Th = [0, 0, 1] if the training185

pattern xh belongs to the class ω3. For all patterns in Xcom, we can construct a set of equations as follows:



‖γP1 − T1‖ = θ1

‖γP2 − T2‖ = θ2

...

‖γPH − TH‖ = θH

(14)

where ‖.‖ stands for Euclidean distance and θ represents the deviation value. H is the number of the complete

pattern in the set Xcom. The sum of all deviations is defined as a global objective function, and the global objective

function O is expressed as follows:

O =

H∑
h=1

‖γPh − Th‖ (15)

The reliability matrix γ = [γ1, ..., γΦ] can be obtained by minimizing the global objective function O, i.e., the190

sum of the expected deviation values is as close to zero as possible. Therefore, we obtain γ by the following formula:

γ = arg min
γ

(

H∑
h=1

‖γPh − Th‖) (16)

In the optimization process, the Sequential Quadratic Programming (SQP) method is used and the estimation

of the Lagrange-Hessen equation is updated by using Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula (quasi-

Newton method), where the objective function O must satisfy the constraint Eq. (13). In MatlabTM software, the195

function fmincon can be called directly to solve this type of constraint optimization problem. Setting the initial

value of γ to the unit matrix has no effect on the result.
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3.3. Global fuse Φ discounted evidence

For the query (test) pattern y, the Φ classification results obtained from the basic classifier Θ may be in conflict

due to the missing values. In other words, the Φ classification results may support that the query pattern y belongs200

to different classes. Thus, some discounting techniques are needed to weight the impact of these sources of evidence

differently in the global fusion process. In general, the greater the reliability of the classifier γϕ, the more reliable

the ϕ-th output for y. From these discounting factors γϕ for ϕ = 1, ...,Φ, we can then define the relative reliability

(discounting factors) by:

γ̂ϕ =
γϕ

max
j
γj

(17)

where max
j
γj = max{γ1, ..., γΦ}. The discounting method proposed by Shafer in [18] is applied here to discount205

the BBA of each evidence (output) depending on the discounting factors γ̂ϕ, and the discounted masses of belief

(i.e., γ̂
ϕ

m) for ϕ-th evidence can be defined as follows: γ̂ϕ

m(A) = γ̂ϕm(A),∀A ⊂ Ω

γ̂ϕ

m(Ω) = γ̂ϕm(Ω) + 1− γ̂ϕ
(18)

In (18), the conflict information is transferred into the total ignorance denoted by the framework of discernment,

i.e., Ω. The advantage of Ω is not only to reduce the possible negative effects of high conflict but also to maintain

neutrality in the fusion process. For the query pattern y, the global fusion results of the Φ BBAs are given by the210

DS rule, for a focal element A ∈ 2Ω, defined by:

my(A) = [γ̂
1

m⊕ ...⊕ γ̂Φ

m]y(A) (19)

where my is the final BBAs of credal classification for the query pattern y. ⊕ represents the DS combination defined

in (3). Since the DS rule is associative, these BBAs can be combined sequentially using (3) and the sequential order

does not matter.

3.4. Some discussions in applications215

We discuss some issues that may be encountered in applications of the proposed EICA method in this subsection.

1) Guideline for attribute combinations: For a particular problem, if some a priori information is available,

then reconstructing a subset of Φ with correlations between attributes is the best solution, as it provides a good

estimate of the missing values of incomplete patterns in subsets Xϕ or Yϕ. Random combinations can also be used

as an alternative method if prior knowledge of attribute correlation is insufficient. In order to verify the validity of220

the proposed EICA method in this paper, several simulation experiments are conducted on both combinations.

2) The effectiveness of local imputation: In this paper we present the idea of local modeling of missing

values, aiming to form the dataset into Φ subset and estimate missing values in the subset using similar patterns

(neighbors). This approach can effectively avoid the negative effects of irrelevant attributes, especially for high

dimensional data. It is well known that the selection of neighbors is highly dependent on methods that measure225
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similarity, such as Euclidean distance. Since the distribution of attributes can be very different, this sometimes

leads to observed “neighbors” that are not actual neighbors and thus to estimations that are far from the truth.

In such cases, if a part of attributes can be isolated into a subset based on correlation or relatedness, the negative

influence of irrelevant attributes can be avoided and the attributes in each subset are (possibly) linearly correlated,

which greatly guarantees the reliability of the estimations. Of course, the importance of different attributes in one230

subset is also different. Similar to principal component analysis, we give different weights to different attributes,

which can further observe the neighbors that are relevant to the classification and thus provide more reasonable

estimations.

Table 1: Basic information of the used datasets.

Data #Class #Attr. #Inst.

Wine (Wi) 3 13 178
Heart (He) 2 13 270

Knowledge (Kn) 4 5 403
Wdbc (Wd) 2 30 569

Hayes-Roth (Hay) 3 5 160
Pima (Pi) 2 8 768

Red wine quality (Rwq) 6 11 1599
White wine quality (Wwq) 7 11 4898

Iris (Ir) 3 4 150
Ionosphere (Io) 2 34 351

Tae (Ta) 3 5 151
Movement-libras (Ml) 15 90 360

Vehicle (Ve) 4 18 946
Parkinson (Pa) 21 26 2938
German (Ge) 2 24 1000
Segment (Seg) 7 19 2310
Seeds (Se) 3 7 210
sonar (So) 2 60 208

4. Experiment applications

Three experiments have been carried out to test and evaluate the performance of the proposed method with235

that of some classical methods, i.e., mean imputation (MI) method [4, 5], K-Nearest neighbors imputation (KNNI)

method [6], fuzzy c-means imputation (FCMI) method [8, 9], fuzzy-based information decomposition (FID) method

[11], prototype-based credal classification (PCC) method [27] and locally linear approximation method [12].

In our experiments, we assume the presence of partially incomplete patterns in both the training set and the

test set. In MI, the missing values are replaced by the mean values of the same attributes of the complete patterns240

in the training and test sets. In KNNI, the missing values in the different sets are estimated using the neighbors. In

FCMI, the missing values of incomplete patterns in each set are filled based on the centers generated by FCM and

the distances between the pattern and the cluster centers. In FID, the missing values of incomplete patterns are

estimated by the observed data (complete attributes) in different sets and the different contributions (weights) of

the observed data obtained through the membership function. In PCC, the missing values of incomplete patterns245

10



in the training set are replaced by the mean value of the same class of complete patterns, while the others are

estimated in multiple versions separately for each prototype in the training set. In LLA, the missing values are

estimated by the optimal weights of the KNNs obtained from local linear reconstruction of the different sets. In

addition, the default parameters of these methods are given as follows. Specifically, we take K = 11 in KNNI,

β = 2, ε = 10−3 in FCMI, ε = 0 in PCC, K = 11, iter=10 in LLA, and K = 11 in EICA.250

In this paper, K-Nearest neighbor (K-NN) [40], Naive Bayesian (NB) [39] and Evidence K-Nearest neighbor

(EK-NN) [34] classifier are employed as basic classifiers to classify test patterns. K = 11 is default in KNNs, K-NN

and EK-NN, and the parameters of EK-NN are automatically optimized by the method introduced in [34].

In our simulations, the classification accuracy of the test patterns is used as the main indicator to assess the

effectiveness of these methods. In addition, the precision (P), recall (R), F1 score (F1), and random index (RI)255

are also employed as indicators in Experiment 3 to show the robustness of the proposed method. 18 well-known

real datasets obtained from the UCI repository are used here as the benchmarks. Half of each dataset is randomly

selected as training patterns and the rest consists of test patterns, some of which randomly lose the n attributes.

Here ten training and test sets are randomly generated for the same dataset, and the average of the evaluation

index is reported. In PCC, we adjust the meta-class threshold ε = 0 so that it can produce certain classification260

results. The basics of the used dataset, including the number of classes (#Class.), attributes (#Attr.), and instances

(#Inst.), are shown in Table 1, all details of which can be found at http://archive.ics.uci.edu/ml/. In the follow-up,

each experiment used part of these datasets, as determined by how the attributes are combined. For example, the

Iris dataset has only four attributes, which does not lend itself to random combinations. Therefore, this dataset

is not used in Experiments 1 and 2. By contrast, the datasets with prior knowledge of attribute correlations are265

tested in Experiment 3.

Table 2: Classification accuracy of different methods with different Φ (In %).

Data n MI KNNI FCMI FID PCC LLA EICA EICA EICA EICA

(Φ = 2) (Φ = 3) (Φ = 4) (Φ = 5)

Wi 5 66.52±3.36 69.66±3.76 65.39±2.70 68.55±2.13 71.69±1.31 70.11±1.83 89.89±1.01 90.56±2.20 90.56±1.53 90.11±1.10
Wi 7 60.90±3.05 65.17±2.36 63.60±2.72 66.79±2.16 68.54±1.23 65.62±2.03 86.29±1.65 84.94±1.68 86.52±1.74 84.94±2.08
He 5 60.30±2.13 61.78±2.23 62.37±3.16 63.26±2.55 66.07±2.79 61.33±1.71 68.74±1.84 71.70±1.43 70.96±0.86 71.70±1.71
He 7 58.81±2.83 58.07±2.32 59.11±2.75 62.77±1.24 64.15±1.91 60.44±1.37 67.85±0.89 70.96±2.36 70.81±1.29 69.48±1.84
Wd 10 88.63±1.23 91.02±0.82 90.32±1.01 86.53±0.96 91.30±0.93 91.44±0.85 92.14±1.51 92.70±0.34 91.79±0.61 91.79±0.98
Wd 20 87.16±1.51 90.60±0.81 89.54±1.71 81.26±1.31 90.95±0.81 91.02±1.34 90.88±0.74 92.14±0.82 90.95±0.60 90.88±1.28
Rwq 4 48.85±1.51 49.29±1.47 48.75±1.52 48.27±1.06 48.32±1.46 48.55±1.41 52.49±1.69 51.86±1.31 53.03±1.09 54.07±1.34
Rwq 6 49.34±0.66 48.93±1.42 48.17±0.60 47.88±1.59 47.81±1.19 49.52±0.78 51.88±1.01 52.26±1.14 52.14±0.62 51.35±1.53
Wwq 4 44.44±0.85 44.00±0.27 44.71±0.94 44.09±0.45 42.80±0.65 44.39±0.77 47.24±1.43 47.93±1.66 46.93±0.73 45.67±1.86
Wwq 6 44.21±1.00 44.97±0.38 44.87±0.92 43.90±0.94 39.75±0.77 44.20±0.81 46.48±1.48 47.39±0.85 46.92±0.82 46.80±1.02

Io 10 88.07±1.30 88.30±1.37 88.07±1.08 86.25±1.88 88.30±1.33 88.41±1.51 90.34±1.65 90.68±1.22 90.45±1.36 91.02±1.16
Io 20 80.68±2.03 85.34±0.43 80.80±2.11 80.57±1.66 83.64±2.01 84.43±0.45 86.36±1.25 87.27±1.32 87.16±1.37 87.27±1.17
Ml 30 58.67±1.43 57.33±1.38 58.56±1.43 58.11±1.43 58.00±2.01 58.11±1.34 62.67±1.02 63.11±0.57 63.44±1.51 63.55±1.30
Ml 50 53.00±1.20 52.89±2.09 52.89±1.38 46.89±1.30 52.00±2.45 54.22±2.15 56.78±1.33 58.11±1.71 57.56±1.59 56.56±1.42
Ve 7 53.81±0.51 56.93±1.67 53.90±0.42 52.44±1.65 54.18±0.61 56.69±0.75 60.75±1.76 61.23±1.53 60.28±1.73 59.57±1.79
Ve 10 53.43±1.46 57.49±0.77 55.13±1.06 51.77±1.69 53.43±1.39 56.03±1.18 58.49±0.66 59.81±1.41 58.96±1.53 58.20±0.83
Pa 8 59.52±0.47 64.06±0.97 59.44±0.91 57.88±1.29 67.23±1.36 63.35±1.29 88.14±0.63 86.59±1.99 86.83±0.89 85.13±1.18
Pa 12 57.24±0.78 61.50±0.69 56.23±0.85 52.86±1.78 65.85±1.03 61.49±0.75 84.97±1.17 83.18±1.08 84.66±0.64 82.69±1.63
Ge 3 61.56±0.81 61.76±1.66 61.32±0.80 61.64±1.50 61.96±1.02 62.03±1.23 75.28±1.92 79.76±1.41 80.80±2.08 81.44±0.73
Ge 8 59.64±1.18 59.40±1.41 59.48±1.54 59.72±0.97 59.84±1.46 60.20±0.97 73.96±1.99 77.12±1.03 77.36±1.93 79.04±0.60
Seg 4 85.35±0.59 89.04±0.71 85.44±0.67 81.19±0.89 88.21±0.85 89.07±0.91 90.94±1.01 89.32±0.50 89.31±0.83 88.19±0.60
Seg 8 79.41±0.79 86.89±0.89 79.57±0.85 75.19±1.48 84.90±1.17 87.38±1.08 87.86±0.78 87.80±1.60 87.43±0.64 85.31±1.05
So 20 65.96±1.56 65.58±1.65 65.58±1.96 67.11±2.94 67.69±1.68 64.62±2.61 69.61±1.56 69.81±1.98 70.19±1.61 70.77±1.31
So 40 61.54±1.36 62.50±0.86 61.54±1.36 61.73±2.23 63.27±2.23 63.65±2.05 66.73±1.44 66.54±1.54 68.46±1.86 68.84±1.98

Ave 63.63±1.40 65.52±1.35 63.95±1.44 62.78±1.55 65.83±1.40 64.30±1.30 72.78±1.31 73.45±1.36 73.47±1.21 73.11±1.31
WT 0 2 0 0 2 3 23 24 23 21
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(a) Wine with n = 5. (b) Heart with n = 5. (c) Wdbc with n = 10.

(d) Red wine with n = 4. (e) White wine with n = 4. (f) Ionosphere with n = 10.

(g) Movement with n = 30. (h) Vehicle with n = 7. (i) Parkinson with n = 8.

(j) German with n = 8. (k) Segment with n = 8. (l) Sonar with n = 20.

Figure 2: Classification accuracy of different methods with various missing rates.
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(g) Movement with n = 30
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(h) Vehicle with n = 7
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(i) Parkinson with n = 8
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(j) German with n = 8
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(k) Segment with n = 8
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(l) Sonar with n = 20

Figure 3: Classification results of different methods with various K.
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4.1. Experiment 1

In this experiment, we use 12 real datasets to test the performance of EICA with respect to MI, KNNI, FCMI,

FID, PCC, and LLA. In each set, randomly selected 30% patterns are used for missing values in different dimensions.

Here EK-NN is chosen as the basic classifier. The average accuracy (including standard deviation) of the different270

methods is shown in Table 2. In EICA, it can be seen that with different values of Φ, the level of accuracy varies

(i.e., Φ = 2, 3, 4, 5). Here we assume that the correlation between attributes is not known in advance, i.e., the

dataset is randomly divided into Φ subsets, as evenly as possible.

From Table 2, it can be seen that the EICA method generally has higher accuracy than that of other methods.

That is, evidence integration classification yields higher robustness than single classification, suggesting that different275

classifiers can provide useful and complementary information to improve classification performance. It is worth

noting that an increase in the number of missing values (i.e., n) in the training and test sets generally leads to a

decrease in accuracy. The higher the number of missing values, the higher the likelihood that the estimate is wrong,

due to the inevitable deviation between the estimations and the true. In the process, EICA uses local modeling,

which can effectively reduce the possible negative impact of the distribution of missing data.280

Table 3: Classification accuracy of different methods with K-NN classifier (In %).

Data n MI KNNI FCMI FID PCC LLA EICA

Wi 5 65.17±2.56 69.21±3.38 65.84±2.62 67.79±0.95 70.11±1.52 68.31±3.58 90.78±1.31
Wi 7 61.35±2.08 65.39±1.93 63.37±3.52 66.92±1.82 69.66±1.00 64.94±2.18 84.95±2.20
He 5 60.59±2.36 61.93±1.66 62.07±3.05 63.26±2.42 63.85±1.51 61.33±1.84 71.85±3.86
He 7 59.85±1.44 59.85±1.90 60.74±1.33 62.52±1.21 63.70±1.81 60.59±2.01 70.67±2.12
Hay 1 44.54±1.54 44.54±1.54 44.54±1.54 44.54±1.54 44.54±1.54 44.55±1.55 54.24±1.77
Hay 2 42.42±1.92 41.51±2.81 42.42±2.71 41.82±2.64 42.73±2.61 41.52±2.61 43.94±3.59
Pi 1 70.94±2.05 71.82±1.81 71.20±1.85 70.47±2.50 71.15±2.19 72.45±2.49 74.95±1.44
Pi 3 69.64±1.02 69.53±0.89 69.01±1.27 69.53±1.66 69.11±1.10 68.59±1.99 72.24±1.14

Rwq 4 49.59±1.86 49.47±1.37 49.75±1.89 48.68±0.68 48.80±2.12 49.08±1.30 52.88±1.40
Rwq 6 49.87±0.90 49.64±1.67 49.01±0.41 48.80±1.37 49.19±1.14 50.25±1.25 52.72±1.41
Wwq 4 44.87±0.83 44.28±0.19 45.00±0.75 44.33±0.67 44.22±0.93 44.54±0.77 49.92±0.88
Wwq 6 44.60±0.94 44.93±0.28 44.89±1.03 44.07±0.74 41.01±1.19 44.32±0.81 48.75±0.54

Io 10 82.39±1.24 83.52±1.19 82.27±1.04 82.96±1.24 84.20±0.91 84.09±1.48 84.77±0.98
Io 20 72.84±2.05 76.93±3.57 72.50±2.29 72.73±2.96 77.50±1.89 75.68±3.44 80.12±1.19
Ve 7 55.13±1.01 57.45±0.72 54.80±1.09 52.63±1.08 54.70±1.17 56.93±1.59 61.09±1.36
Ve 10 53.57±0.93 57.26±1.21 55.08±1.17 52.10±1.28 54.33±1.17 56.64±0.80 60.38±1.22
Pa 8 60.81±0.28 65.41±1.11 60.75±0.96 59.04±1.31 67.43±1.36 64.36±1.58 86.90±1.38
Pa 12 58.74±0.69 62.21±0.68 57.40±0.69 54.28±1.54 66.52±0.92 62.60±0.77 83.37±1.24
Ge 3 61.36±1.23 61.72±1.84 61.16±0.91 61.28±1.00 61.92±1.59 61.83±1.45 78.64±1.01
Ge 8 60.28±0.56 59.24±1.64 59.84±0.97 59.76±0.92 60.88±1.37 60.36±0.67 76.12±0.64
Seg 4 85.18±0.49 88.88±0.67 85.25±0.55 80.83±0.42 87.81±0.54 88.80±0.45 90.60±0.97
Seg 8 78.87±0.78 86.74±0.86 78.93±0.76 74.72±1.59 85.45±1.13 87.15±1.03 88.69±1.31
So 20 63.27±1.28 62.12±2.62 62.50±1.05 65.19±2.61 64.42±1.72 61.35±2.68 67.12±1.41
So 40 58.46±1.86 58.46±2.46 58.65±1.61 59.04±2.48 59.23±1.15 59.81±2.23 65.58±0.95

Ave 60.60±1.33 62.17±1.58 60.71±1.46 60.30±1.53 62.60±1.40 62.09±1.73 70.47±1.47
WT 0 0 0 0 0 0 24

Fig. 2 shows the accuracy of these methods with different missing rates. The x-axis indicates the missing rate

(%) and the y-axis indicates the level of accuracy, where EICA reports the average accuracy of Φ ∈ {2, 3, 4, 5}. We

can intuitively see that EICA has better classification performance than that of other methods. It can also be seen

that there is a tendency for the accuracy of the different methods to decrease as the proportion of missing values

increases. This is consistent with the increase in n values in Table 2. Here the average accuracy (denoted by Ave)285
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Table 4: Classification accuracy of different methods with NB classifier (In %).

Data n MI KNNI FCMI FID PCC LLA EICA

Wi 5 92.13±1.23 92.81±1.15 92.58±1.68 92.08±1.55 93.71±1.52 93.03±1.31 94.16±1.93
Wi 7 90.11±1.65 89.89±2.56 90.11±2.18 90.26±3.07 91.91±1.65 89.44±1.96 90.78±1.31
He 5 80.74±0.66 80.59±1.09 81.04±0.76 80.96±1.18 81.19±1.29 80.00±1.93 82.66±0.75
He 7 78.52±1.05 79.41±1.78 78.22±0.59 78.26±2.74 78.96±1.79 79.41±1.84 81.78±1.66

Hay 1 59.74±2.61 60.61±1.92 60.00±1.55 59.70±2.06 60.91±2.01 59.70±2.06 62.73±1.21
Hay 2 55.46±1.82 57.27±2.61 56.36±1.77 54.85±3.51 55.45±2.81 56.06±2.71 59.40±2.94
Pi 1 72.45±2.11 72.81±1.99 72.71±1.84 72.40±2.95 72.71±2.02 73.02±1.85 75.00±1.24
Pi 3 70.99±1.02 71.82±1.36 71.04±1.35 70.36±1.28 71.72±1.24 71.25±1.58 72.29±1.26

Rwq 4 53.46±1.93 53.82±1.83 53.51±1.71 51.63±1.67 52.93±1.71 53.74±1.87 55.62±0.80
Rwq 6 51.40±0.87 51.55±1.03 50.87±1.18 51.20±2.01 51.70±1.00 51.30±0.75 53.94±1.53
Wwq 4 44.36±0.67 44.00±0.78 44.01±0.81 44.17±0.89 44.39±0.72 44.15±0.73 49.04±0.68
Wwq 6 43.41±0.54 42.90±0.84 43.12±0.70 44.42±1.16 43.03±0.46 43.00±0.82 48.76±1.41

Ve 7 45.53±1.53 42.79±2.03 43.88±2.00 41.84±2.85 44.02±1.87 43.07±1.77 49.64±2.79
Ve 10 43.36±2.04 43.07±1.97 43.26±2.15 40.57±2.09 42.98±2.77 43.07±1.91 45.63±1.84
So 20 65.96±1.78 66.73±0.47 66.15±1.65 67.12±0.72 66.92±2.16 66.35±1.05 70.96±1.66
So 40 63.85±2.76 64.42±2.02 63.65±3.41 61.35±3.82 65.38±2.51 64.04±2.32 69.23±2.58

Ave 63.22±1.52 63.41±1.59 63.16±1.58 62.57±2.10 63.62±1.72 63.16±1.65 66.35±1.60
WT 0 0 0 0 1 0 15

is given in the penultimate row to represent the general performance of the corresponding method and winning

times1 (denoted by WT) of different methods on these datasets are also reported in the last row to demonstrate

the generalization capability of the proposed method. Although EICA experienced the same trend, the accuracy

level is less affected by the missing values, as seen in Fig. 2, which proves the robustness of EICA.

Fig. 3 shows more clearly and intuitively the effect of different K values in KNN on the classification results of290

the KNNI, LLA, and EICA methods. The x-axis corresponds to the K values, ranging from 5 to 15, and the y-axis

corresponds to the average accuracy in the classification method, denoted by [0, 1]. Among them, the 12 datasets

shown in Fig. 3 are randomly missing in different dimensions. It can be observed that the accuracy of EICA is

much higher than that of the other methods. The classification results associated with different K values do not

change much in EICA, which further indicates that the classification performance is not sensitive to the setting of295

K values. This also indicates that the EICA method is robust to the choice of K values so that it can be taken

from 5 to 15 in practice.

4.2. Experiment 2

In this experiment, we test and evaluate the performance of different methods using the 12 real datasets in

Table 1. K-NN, NB2, and EK-NN are chosen as the basic classifiers, and we choose Φ = 3 in this experiment. The300

average accuracy (including standard deviation) of the different basic classifiers is reported in Tables 3-5.

As can be seen from the Tables 3-5, the accuracy of the EICA method using K-NN, EK-NN, and NB is higher

than that of the other methods in most cases. In addition, as the missing values (i.e., n) increase, this may lead

to a decrease in accuracy, but EICA still provides better performance than the other methods. Since conflicting

information from different sources is effectively discounted to the full ignorance during evidence integration, it can305

1If one method produces the maximum accuracy compared with the other methods, it wins one time.
2Naive Bayes does not apply to the Io, Pa, Ge, and Seg datasets because the within-class variance of several attributes is not positive.
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Table 5: Classification accuracy of different methods with EK-NN classifier (In %).

Data n MI KNNI FCMI FID PCC LLA EICA

Wi 5 66.52±3.36 69.66±3.76 65.39±2.70 68.55±2.13 71.69±1.31 70.11±1.83 90.56±2.20
Wi 7 60.90±3.05 65.17±2.36 63.60±2.72 66.79±2.16 68.54±1.23 65.62±2.03 84.94±1.68
He 5 60.30±2.13 61.78±2.23 62.37±3.16 63.26±2.55 66.07±2.79 61.33±1.71 71.70±1.43
He 7 58.81±2.83 58.07±2.32 59.11±2.75 62.77±1.24 64.15±1.91 60.44±1.37 70.96±2.36
Hay 1 45.45±1.66 45.45±1.66 45.45±1.66 45.45±1.66 45.45±1.66 45.45±1.66 58.49±2.64
Hay 2 42.12±1.13 42.12±1.13 42.12±1.13 42.12±1.13 42.12±1.13 42.12±1.13 50.91±2.06
Pi 1 71.56±1.64 72.34±1.74 71.88±1.21 70.68±2.59 71.72±1.64 72.66±2.04 74.27±1.41
Pi 3 70.31±1.66 70.36±1.25 69.79±2.06 69.90±2.22 70.36±1.25 69.74±2.10 70.62±1.05

Rwq 4 48.85±1.51 49.29±1.47 48.75±1.52 48.27±1.06 48.32±1.46 48.55±1.41 51.86±1.31
Rwq 6 49.34±0.66 48.93±1.42 48.17±0.60 47.88±1.59 47.81±1.19 49.52±0.78 52.26±1.14
Wwq 4 44.44±0.85 44.00±0.27 44.71±0.94 44.09±0.45 42.80±0.65 44.39±0.77 47.92±1.66
Wwq 6 44.21±1.00 44.97±0.38 44.87±0.92 43.90±0.94 39.75±0.77 44.20±0.81 47.39±0.85

Io 10 88.07±1.30 88.30±1.37 88.07±1.08 86.25±1.88 88.30±1.33 88.41±1.51 90.68±1.22
Io 20 80.68±2.03 85.34±0.43 80.80±2.11 80.57±1.66 83.64±2.01 84.43±0.45 87.27±1.32
Ve 7 53.81±0.51 56.93±1.67 53.90±0.42 52.44±1.65 54.18±0.61 56.69±0.75 61.23±1.53
Ve 10 53.43±1.46 57.49±0.77 55.13±1.06 51.77±1.69 53.43±1.39 56.08±1.18 59.81±1.41
Pa 8 59.52±0.47 64.06±0.97 59.44±0.91 57.88±1.29 67.23±1.36 63.35±1.29 86.59±1.99
Pa 12 57.24±0.78 61.50±0.69 56.23±0.85 52.86±1.78 65.85±1.03 61.49±0.75 83.18±1.08
Ge 3 61.56±0.81 61.76±1.66 61.32±0.80 61.64±1.50 61.96±1.02 62.03±1.23 79.76±1.41
Ge 8 59.64±1.18 59.40±1.41 59.48±1.54 59.72±0.97 59.84±1.46 60.20±0.97 77.12±1.03
Seg 4 85.35±0.59 89.04±0.71 85.44±0.67 81.18±0.89 88.21±0.85 89.07±0.40 89.32±0.50
Seg 8 79.41±0.79 86.89±0.89 79.57±0.85 75.19±1.48 84.90±1.17 87.38±1.08 87.80±1.60
So 20 65.96±1.56 65.58±1.65 65.58±1.96 67.11±2.94 67.69±1.68 64.62±2.61 69.81±1.98
So 40 61.54±1.36 62.50±0.86 61.54±1.36 61.73±2.23 63.27±2.23 63.65±2.05 66.54±1.54

Ave 62.21±1.43 62.96±1.38 61.36±1.46 60.92±1.65 63.22±1.38 63.02±1.54 71.29±1.52
WT 0 0 0 0 0 0 24

effectively characterize the uncertainty caused by missing values while remaining neutral during the fusion process.

Thus, the proposed method is effective in reducing the classification error. The average accuracy of different methods

on these datasets of the same classifier is given in the penultimate row of the Tables 3-5. In addition, the winning

times of each method on these datasets is reported in the last row of Tables 3-5. It can be seen that the EICA

method is well adapted to the three basic classifiers: K-NN, NB, and EK-NN. In other words, the EICA method310

is robust and can be applied to a variety of basic classifiers. However, in the case of large amounts of data, we

find that the NB classifier is less time consuming than K-NN and EK-NN. This is because the K-NN and EK-NN

methods impose a heavy computational burden in such a case.

4.3. Experiment 3

In this experiment, we combine 11 real datasets into Φ subsets according to the correlation between attributes,315

as shown in Table 6. Here K-NN is chosen as the basic classifier. The average classification accuracy (including

standard deviation) of the different methods is given in Table 7.

As shown in Table 7, our proposed EICA method outperforms other methods in terms of accuracy because EICA

fully considers the correlation between attributes and thus divides the dataset into several reasonable subsets.

By doing this, it can effectively avoid the negative effects of attribute distribution diversity and provide useful320

information for the final decision. EICA reduces error rates and improves classification performance by combining

useful information of different classifiers under the framework of evidence theory. PCC, while also working within

the framework of evidence theory, may not be accurate enough based on class prototype estimations, and thus

16



Table 6: Specific attribute combinations of different datasets.

Data Attritube

{Magnesium, Nonflavanoid phenols, Proanthocyanins, OD280/OD315 of diluted wines}
Wi {Alcohol, Flavanoids, Proline}

{Total phenols, Color intensity, Hue}
{Malic acid, Ash, Alcalinity of ash}

{Resting blood pressure, Serum cholestoral, Fasting blood sugar, Oldpeak, The slope of the ST segment}
He {Age, Sex, Number of major vessels, Thal}

{Chest pain type, Resting electrocardiographic, Maximum heart rate, Exercise induced angina }
Kn {STR, LPR, PEG}

{STG, SCG}
{Hobby, Educational level}

Hay {Age, Marital status}
{Name}

Pi {Pregnancies, Insulin, BMI, Age}
{Glucose, Blood Pressure, Skin Thickness, Diabetes Pedigree Function}

{Fixed acidity, Volatile acidity, Citric acid, Residual sugar}
Rwq {Chlorides, pH, Sulphates, Alcohol}

{Free sulfur dioxide, Total sulfur dioxide, Density}
{Fixed acidity, Volatile acidity, Citric acid, Residual sugar}

Wwq {Chlorides, pH, Sulphates, Alcohol}
{Free sulfur dioxide, Total sulfur dioxide, Density}

Ir {Sepal length in cm, Sepal width in cm }
{Petal length in cm, Petal width in cm}

Ta {Native English speaker, Course instructor, Class size}
{Course, Summer or regular semester}

{Scaled variance along major axis, Scaled variance along minor axis, Skewness about major axis, Skewness about
minor axis, Kurtosis about major axis, Kurtosis about minor axis}

Ve {Verage perim, Distance from border, Axis aspect ratio, Length aspect ratio, Scatter ratio}
{Elongatedness, Axis rectangularity, Length rectangularity, Hollows ratio}

{Average radius, Radius ratio, Scaled radius of gyration}
Se {Area, Perimeter, Compactness, Asymmetry coefficient}

{ Width of kernel, Length of kernel, Length of kernel groove}

PCC has a lower level of accuracy than EICA. Our tests and analyses illustrate the interest of EICA in classifying

incomplete patterns.325

Since EICA and PCC both works under the framework of evidence theory, we will further analyze the perfor-

mance of them separately. In addition to comparing the accuracy on 11 real datasets, the precision (P ), recall (R),

F1 score (F1), and random index (RI) are also employed here to show the robustness of the proposed method. Fig.

4 shows the mean values of P , R, F1, and RI obtained by EICA relative to PCC. As can be seen in Fig. 4(a),

EICA outperforms PCC on the 11 datasets in terms of the mean P value. In Fig. 4(b), the mean R of EICA is330

higher than that of PCC in most cases except for the Pima dataset. Similarly, Fig. 4(c) and Fig. 4(d) also verify

the superiority of EICA in terms of F1 and RI. In Fig. 4(d), the mean RI value of EICA is higher than that of

PCC on the 10 datasets except for the white wine dataset.

5. Conclusion

In this paper, a new evidence integration credal classification algorithm (EICA) is proposed to classify incomplete335

patterns thanks to the evidence theory. The proposed EICA method is dedicated to solve the classification problem
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Table 7: Classification accuracy of different datasets with specific combinations (In %).

Data n MI KNNI FCMI FID PCC LLA EICA

Wi 5 65.17±2.56 69.21±3.38 65.84±2.62 67.79±0.95 70.11±1.52 68.31±3.58 89.66±0.84
Wi 7 61.35±2.08 65.39±1.93 63.37±3.52 66.92±1.82 69.66±1.00 65.62±1.83 84.72±2.62
He 5 60.59±2.36 61.93±1.66 62.07±3.05 63.26±2.42 63.85±1.51 61.63±1.53 71.41±2.55
He 7 59.85±1.44 59.85±1.90 60.74±1.33 62.52±1.21 63.70±1.81 62.52±3.06 69.33±2.22
Kn 1 77.52±1.79 77.82±1.15 77.72±1.96 77.13±1.30 77.03±1.20 77.72±1.50 83.27±1.75
Kn 2 68.91±2.06 69.41±2.33 69.41±2.45 67.43±2.65 70.59±0.80 70.10±2.11 77.53±1.52
Hay 1 44.54±1.54 44.54±1.54 44.54±1.54 44.54±1.54 44.54±1.54 44.55±1.55 50.91±1.55
Hay 2 42.42±1.92 41.82±2.64 42.42±2.71 41.82±2.64 42.42±2.71 41.52±2.81 49.70±2.94
Pi 1 70.94±2.05 71.82±1.81 71.20±1.85 70.47±2.50 71.15±2.19 72.45±2.49 72.66±0.96
Pi 3 69.64±1.02 69.53±0.89 69.01±1.27 69.53±1.66 69.11±1.10 68.59±1.99 70.99±0.39

Rwq 4 49.59±1.86 49.47±1.37 49.75±1.89 48.68±0.68 48.80±2.12 49.08±1.30 56.24±1.56
Rwq 6 49.87±0.90 49.64±1.67 49.01±0.41 48.80±1.37 49.19±1.14 50.25±1.25 55.78±1.66
Wwq 4 44.87±0.83 44.28±0.19 45.00±0.75 44.33±0.67 44.22±0.93 44.54±0.77 48.81±0.73
Wwq 6 44.60±0.94 44.93±0.28 44.89±1.03 44.07±0.74 41.01±1.19 44.32±0.81 49.73±0.84

Ir 1 90.40±3.20 94.67±1.46 94.67±1.46 91.20±3.11 95.20±1.36 94.40±2.44 96.80±1.36
Ir 2 86.40±1.96 89.07±1.55 90.67±1.69 87.73±2.59 91.47±0.65 90.93±3.09 93.86±1.81
Ta 1 42.63±2.71 40.00±1.78 42.89±2.44 42.37±2.93 43.42±1.66 43.42±1.86 50.00±3.22
Ta 3 38.42±1.29 38.95±1.97 36.32±1.78 38.95±2.58 38.42±1.93 38.42±0.53 45.26±3.39
Ve 7 55.13±1.01 57.45±0.72 54.80±1.09 52.63±1.08 54.70±1.17 56.93±1.59 66.38±1.48
Ve 10 53.57±0.93 57.26±1.21 55.08±1.17 52.10±1.28 54.33±1.17 56.64±0.80 63.07±1.23
Se 1 90.29±1.40 90.86±0.47 90.67±0.71 89.71±1.11 90.67±0.71 91.43±1.04 91.81±0.47
Se 3 88.00±1.55 87.43±1.11 87.43±1.11 87.62±1.60 87.62±0.85 88.00±1.55 89.52±0.85

Ave 61.58±1.70 62.52±1.50 62.16±1.72 61.80±1.75 62.78±1.38 62.79±1.79 69.43±1.63
WT 0 0 0 0 0 0 22

with missing values in both the training and test sets. In EICA, we first group the query set into multiple subsets

depending on the correlation between attributes or random combinations without prior knowledge. This kind

of local modeling for incomplete patterns can reduce the negative impact of attributes distribution diversity and

provide more or less complementary information for decision-making. Then, we model the missing values in each340

subset using similar subpatterns, in which we also fully consider the importance of different attributes to minimize

the negative impact caused by missing values. Finally, the discounted classification results of multiple subversions,

represented by basic belief assignment (BBA), are fused globally to determine the final class of incomplete patterns.

Three experiments with real datasets have been done to evaluate the performances of EICA with respect to other

classical methods. The results show that local modeling of missing values is effective for the classification of345

incomplete patterns. In this paper, we give the combinations based on prior knowledge or randomly. This however

may not suitable for some specific applications. In the future, we will consider a more effective credal classification

method for incomplete patterns, especially in some specific cases, such as imbalanced data [41, 42], mining the

original distribution information of data attributes in multiple subversions from adaptive selection and imputation

methods. In addition, we find large differences in the distribution characteristics across attributes, suggesting that350

local modeling, while reducing the negative impact of missing values, has the potential for further improvement. It is

thereby considered to model the missing values at the attribute-level to fully consider the distribution characteristics

of the attributes and to improve the effective identification of incomplete patterns.
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(b) R with EICA vs. R with PCC.
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(c) F1 with EICA vs. F1 with PCC.
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Figure 4: The mean P,R, F1 and RI values via different methods.
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