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An expansion of the Riemann Zeta function on the critical line

Laguerre functions

The Laguerre polynomials x → L m (2x) are defined by the generating function (cf. [START_REF] Lebedev | Special functions and their applications[END_REF]) 

1 1 -a e -2ax 1-a = 1 1 + a
With z = 1+u 1-u , we get for Re(z) > 0

e -xz = √ 2π +∞ m=0 ϕ m (x)ψ m (z), (2) 
where ψ m is the function defined in the half-plane {Re(z) > 0} by

ψ m (z) = 1 √ π(1 + z) z -1 z + 1 m .
By [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] we see that the function ψ m is related to ϕ m by

ψ m (z) = ( e -xz √ 2π , ϕ m ) = +∞ 0 e -xz √ 2π ϕ m (x)dx.
Thus we have ψ m (z) = 1 √ 2π Lϕ m (z), where L is the Laplace transform

Lf (z) = +∞ 0 e -xz f (x) dx.
1

This transformation maps the space L 2 (]0, +∞[, dx) to the Hardy space H 2 (P ) of analytic functions g in the half-plane P = {Re(z > 0} such that: there exists M g > 0 with

R |g(x + iy)| 2 dy ≤ M g for all x > 0.
By a theorem of Paley and Wiener each such g has non-tangential limits g(iy) = lim x→0 g(x + iy) at almost every point of the imaginary axis. The space H 2 (P ) is an Hilbert space with the inner product

(g, h) H 2 = R g(iy)h(iy)dy,
and the functions ψ m (m ≥ 0), form an orthonormal basis of

H 2 (P ). If f ∈ L 2 (]0, +∞[, dx) then f = m≥0 (f, ϕ m )ϕ m ⇔ Lf (z) = √ 2π m≥0 (f, ϕ m )ψ m (z).

Mellin transform and Meixner polynomials

For a function f on ]0, +∞[, we define the Mellin transform of f by

M(f )(s) = +∞ 0 x s-1 f (x) dx,
which is supposed to be defined for s ∈ C such that 0 < Re(s) < 1.

We have MLf (s) = Γ(s)Mf (1 -s) for 0 < Re(s) < 1, and if f and g are in L 2 (]0, +∞[), we have the Parseval-Mellin formula (cf. [START_REF] Ivic | The Riemann Zeta-function[END_REF]) :

1 2iπ 1 2 +i∞ 1 2 -i∞ M(f )(z)M(g)(z) dz = +∞ 0 f (x)g(x) dx.
The Mellin transform of ϕ m is given by

+∞ 0 ϕ m (x)x s-1 dx = √ 2 m k=0 C k m (-2) k k! +∞ 0 e -x x s+k-1 dx = √ 2 Γ(s)q m (s), with q m (s) = m k=0 C k m (-2) k (s) k k! where (s) k = s(s + 1) • • • (s + k -1) (with (s 0 ) = 1).
We have (cf. [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF]) q m (s) = F (-m, s; 1; 2) where F is the Gauss hypergeometric function (also denoted by 2 F 1 ). We have also

q k (s) = 1 k! m k (-s, 1, -1)
, where m k is a Meixner polynomial of the first kind. Since Mϕ m (s) = √ 2 Γ(s)q m (s) and

ψ m = 1 √ 2π Lϕ m , we get for 0 < Re(s) < 1 Mψ m (s) = 1 √ 2π MLϕ m (s) = 1 √ 2π Γ(s)Γ(1 -s)Mϕ m (1 -s) = √ π sin(πs) q m (1 -s).
By the definition of ψ m we verify that

1 x ψ m ( 1 x ) = (-1) m ψ m (x), thus we have Mψ m (1 -s) = (-1) m Mψ m (s), this gives q m (1 -s) = (-1) m q m (s).
By the Parseval-Mellin formula we get

1 2π +∞ -∞ M(ϕ m )( 1 2 + it)M(ϕ n )( 1 2 + it) dt = +∞ 0 ϕ m (x)ϕ n (x) dx = δ m,n (with δ m,n = 1 if m = n and δ m,n = 0 if m = m). This gives δ m,n = +∞ -∞ Γ( 1 2 + it)q m ( 1 2 + it)Γ( 1 2 + it)q n ( 1 2 + it) dt π = +∞ -∞ q m ( 1 2 + it)q n ( 1 2 + it) dt cosh(πt) Thus the polynomials t → q m ( 1 2 + it) form an orthonormal basis of L 2 (R, dt cosh(πt)
) with respect to the scalar product

(f |g) = +∞ -∞ f (t)g(t) dt cosh(πt)
This implies that all the zeros of the polynomials t → q m ( 1 2 + it) are real. We have q 0 = 1 and

q 1 ( 1 2 + it) = -2 it q 2 ( 1 2 + it) = 1 2 -2 t 2 q 3 ( 1 2 + it) = - 5 3 it + 4 3 it 3 q 4 ( 1 2 + it) = 3 8 - 7 3 t 2 + 2 3 t 4 . . .

By Mellin transform of (1), we see that the generating function of the polynomials q

m is +∞ m=0 q m (s)u m = 1 1 -u 1 + u 1 -u -s for u ∈] -1, 1[. ( 3 
)
This gives, with y = 1+u 1-u , the relation

y -s = 2 √ π +∞ m=0 ψ m (y)q m (s) for y > 0. ( 4 
)
Let s = 1 2 + it with t ∈ R and y = e -ξ , we get

e itξ = 2 √ πe -ξ/2 +∞ m=0 ψ m (e -ξ )q m ( 1 2 + it) for ξ ∈ R.
The latter series converges in

L 2 (R, dt cosh(πt) ) since +∞ m=0 |ψ m (e -ξ )| 2 < +∞. If a function h ∈ L 2 (R, dt cosh(πt)
) has, in this space, an expansion kike

h(t) = n≥0 a n q n ( 1 2 + it),
then we have

(h|e itξ ) = 2 √ πe -ξ/2 +∞ m=0 a m ψ m (e -ξ ), that is F h(t) cosh(πt) (ξ) = 2 √ πe -ξ/2 +∞ m=0 a m ψ m (e -ξ ) ( 5 
)
where F is the Fourier transform defined by Fg(ξ) = +∞ -∞ g(t)e -itξ dt.

3 An expansion of Zeta

A Fourier transform

In the critical strip 0 < Re(s) < 1, we have (cf. [START_REF] Titchmarsh | The theory of the Riemann Zeta-function[END_REF])

ζ(s) = 1 Γ(s) +∞ 0 f (x)x s-1 dx = 1 Γ(s) Mf (s) where f (x) = 1 e x -1 - 1 x (also we have ζ(s) = s +∞ 0 ([x] -x)x -s-1 dx, which gives |ζ( 1 2 + it)| = O(|t|) for t → ±∞
). Since we have (cf. [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF]) for x > 0

L(f )(x) = log(x) -Ψ(1 + x) where Ψ = Γ Γ ,
then we get for 0 < Re(s) < 1

M(log(x) -Ψ(1 + x))(s) = ML(f )(s) = Γ(s)M(f )(1 -s) = Γ(s)Γ(1 -s)ζ(1 -s), thus π sin(πs) ζ(1 -s) = M(log(x) -Ψ(1 + x))(s).
By Mellin inversion, we obtain for x > 0

log(x) -Ψ(1 + x) = 1 2iπ c+i∞ c-i∞ π sin(πs) ζ(1 -s)x -s ds for all 0 < c < 1. With c = 1 2 , we have for x > 0 log(x) -Ψ(1 + x) = 1 2 +∞ -∞ ζ( 1 2 + it) 1 √ x e it log(x) dt cosh(πt) . F ζ( 1 2 + it) cosh(πt) (ξ) = -2e -ξ/2 (ξ + Ψ(1 + e -ξ )) = 2e -ξ/2
Lf (e -ξ ). ( 6)

Remark. The Fourier transform given by the relation ( 6), gives for g ∈ L 2 (R), the relation

+∞ -∞ ζ( 1 2 + it)Fg(t) dt cosh(πt) = -2 +∞ -∞
g(ξ)e -ξ/2 (ξ + Ψ(1 + e -ξ )) dξ.

For example, let g(t) = t s-1 e -at χ [0,+∞[ (t) with a > 0 and Re(s) > 1 2 . Then Fg(t) = Γ(s) (a+it) s and we have

- 1 2 +∞ -∞ ζ( 1 2 + it) 1 (a + it) s dt cosh(πt) = 1 Γ(s) +∞ 0 ξ s-1 e -ξ(a+ 1 2 ) (ξ + Ψ(1 + e -ξ )) dξ.
Expanding the Ψ function as

Ψ(1 + e -ξ ) = -γ + +∞ n=1 (-1) n+1 ζ(n + 1)e -nξ since 0 < e -ξ < 1, we get for α = a + 1 2 > 1 2 - 1 2 +∞ -∞ ζ( 1 2 + it) 1 (α -1 2 + it) s dt cosh(πt) = s α s+1 -γ 1 α s + +∞ n=1 (-1) n+1 ζ(n + 1) 1 (n + α) s ,
Thus, for x > - 1 2 and Re(s) > 1 2 , we have a generalization of a formula of I.V.Blagouchine (cf. [START_REF] Blagouchine | A complement to a recent paper on some infinite sums with the zeta values[END_REF])

γ (x + 1) s + +∞ n=2 (-1) n-1 ζ(n) (n + x) s = s (x + 1) s+1 + 1 2 +∞ -∞ ζ( 1 2 + it) 1 (x + 1 2 + it) s dt cosh(πt) (7)

Expansion of ζ( 1 2 + it)

By ( 5) and ( 6), the coefficients a m of the expansion

ζ( 1 2 + it) = m≥0 a m q m ( 1 2 + it) in the space L 2 (R, dt cosh(πt) ) are given by Lf (e -ξ ) = √ π +∞ m=0 a m ψ m (e -ξ ). ( 8 
)
For an explicit evaluation of a m , let u = e -ξ -1 e -ξ +1 in the relation (8), then we get for -1

< u < 1 1 1 -u log( 1 + u 1 -u ) -Ψ(1 + 1 + u 1 -u ) = +∞ m=0 b m u m where b m = a m 2 . ( 9 
)
Now, take the Taylor expansion of the left side of (8). For the logarithmic part, we have simply

1 1 -u log( 1 + u 1 -u ) = 1 1 -u +∞ n=0 1 -(-1) n n u n = +∞ n=1 n p=1 1 -(-1) p p u n ,
For the part involving the function Ψ, we need the help of (cf. [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF]) the integral formula

Ψ(x + 1) = 1 x + Ψ(x) = 1 x -γ + +∞ 0 e -t -e -xt
1 -e -t dt, this gives

- 1 1 -u Ψ 1 + 1 + u 1 -u ) = - 1 1 + u + 1 1 -u γ - 1 1 -u +∞ 0 e -t -e -1+u 1-u t 1 -e -t dt,
and, with (1), we get

- 1 1 -u Ψ 1 + 1 + u 1 -u = - 1 1 + u + 1 1 -u γ - +∞ m=1 +∞ 0 e -t (1 -L m (2t)) 1 -e -t dt u m .
Since, for m integer ≥ 1, we have

- +∞ 0 e -t (1 -L m (2t)) 1 -e -t dt = +∞ 0 e -t 1 -e -t ( m k=1 C k m (-2) k t k k! )dt = m k=1 C k m (-2) k ζ(k + 1).
then we have proved the following theorem.

Theorem. The expansion of t → ζ( 1 2 + it) in the space L 2 (R, dt cosh(πt) ) is given by

ζ( 1 2 + it) = 2 m≥0 b m q m ( 1 2 + it) (10) 
with b 0 = -1 + γ, and for m ≥ 1

b m = m p=1 1 -(-1) p p + (-1) m+1 + γ + m k=1 (-2) k C k m ζ(k + 1). (11) 
For example, we have b 1 = 3 + γ -2ζ(2), and

b 2 = 1 + γ -4ζ(2) + 4 ζ(3) b 3 = 11 3 + γ -6ζ(2) + 12 ζ (3) -8ζ(4) b 4 = 5 3 + γ -8ζ(2) + 24 ζ (3) -32ζ(4) + 16 ζ (5)
Since we have, for m ≥ 1, the combinatorial identity

m p=1 1 -(-1) p p = - m k=1 C k m (-2) k 1 k ,
then we get, for the coefficients of (11), the simple expression

b m = m k=0 C k m (-1) k z k with z 0 = γ -1 and z k = 2 k ζ(k + 1) -1 - 1 k if k ≥ 1. ( 12 
)
Remark. We have for any integer k ≥ 0

+∞ 0 1 e x -1 - 1 x e -x 2 k x k k! = z k , thus we get b m = +∞ 0 1 e x -1 - 1 x e -x L m (2x)dx = 1 √ 2 (f, ϕ m ),
as we expected, since by Mellin transform we have formally

ζ( 1 2 + it) = 2 m≥0 b m q m ( 1 2 + it) ⇔ f = √ 2 +∞ m=0 b m ϕ m

An integral formula

Since the binomial transform v m = m k=0 (-1) k C k m v k is involutive then we have by ( 12)

z m = m k=0 (-1) k C k m b k .
From (10), we have for m ≥ 0

b m = 1 2 +∞ -∞ ζ( 1 2 + it)q m ( 1 2 -it) dt cosh(πt) , (13) 
thus the binomial transform of (b m ) is given by the binomial transform of (q m (s)). We have

q m (s) = m k=0 C k m (-2) k (s) k k! ⇒ 2 m (s) m m! = m k=0 (-1) k C k m q k (s), thus m k=0 (-1) k C k m b k = 2 m +∞ -∞ ζ( 1 2 + it) ( 1 2 -it) m m! dt cosh(πt)
.

Finally we get the integral expression

γ = 1 + 1 2 +∞ -∞ ζ( 1 2 + it) dt cosh(πt) , and 
ζ(m + 1) = 1 + 1 m + 1 2π +∞ -∞ ζ( 1 2 + it) Γ( 1 2 + it)Γ( 1 2 -it + m) Γ(m + 1)
dt for m ≥ 1.

We see that the analytic functions f and g defined by

f (s) = ζ(s + 1) - 1 s for s = 0 with f (0) = γ, and 
g(s) = 1 + 1 2π +∞ -∞ ζ( 1 2 + iu) Γ( 1 2 + iu)Γ( 1 2 -iu + s) Γ(s + 1) du for Re(s) > - 1 2 .
are such that f (m) = g(m) for all integers m ≥ 0. Then by the Carlson's theorem we get f (s) = g(s) for Re(s) > - 

  +∞ m=0L m (2x)a m where |a| < 1.They are given byL m (2x) = m k=0 C k m (-2) k x k k! . The Laguerre functions ϕ m (x) = √ 2 e -x L m (2x),form an orthonormal basis of L 2 (]0, +∞[, dx), and we have the generating function √ x)u m where |u| < 1.

1 2 .(- 1 )f

 21 This gives the integral formula ζ(s + 1) -Let the function defined for Re(s) > 0 by ζ a(s) = +∞ n=1 (x)x s-1 dx where f a (x) = 1 e x + 1.By similar calculations as before we get the following expansion in the spaceL 2 (R, dt cosh(πt) ) c m = (-1) m -Log(2)-m k=1 C k m (-1) k (2 k -1)ζ(k+1).We have c 0 := 1 -ln (2) , andc 1 = -1 -ln (2) + ζ(2) c 2 = 1 -ln(2) + 2ζ(2) -3 ζ(3) c 3 = -1 -ln +3ζ(2) -9 ζ (3) + 7ζ(4) c 4 = 1 -ln (2) + 4ζ(2) -18 ζ (3) + 28ζ(4) -15 ζ (5)
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