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Abstract 

Background and objective: Lyme disease which is one of the most common infectious vector-

borne diseases manifests itself in most cases with erythema migrans (EM) skin lesions. Recent 

studies show that convolutional neural networks (CNNs) perform well to identify skin lesions from 

images. Lightweight CNN based pre-scanner applications for resource-constrained mobile devices 

can help users with early diagnosis of Lyme disease and prevent the transition to a severe late form 

https://doi.org/10.1016/j.cmpb.2022.106624
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thanks to appropriate antibiotic therapy. Also, resource-intensive CNN based robust computer 

applications can assist non-expert practitioners with an accurate diagnosis. The main objective of 

this study is to extensively analyze the effectiveness of CNNs for diagnosing Lyme disease from 

images and to find out the best CNN architectures considering resource constraints. 

 

Methods: First, we created an EM dataset with the help of expert dermatologists from Clermont-

Ferrand University Hospital Center of France. Second, we benchmarked this dataset for twenty-

three CNN architectures customized from VGG, ResNet, DenseNet, MobileNet, Xception, 

NASNet, and EfficientNet architectures in terms of predictive performance, computational 

complexity, and statistical significance. Third, to improve the performance of the CNNs, we used 

custom transfer learning from ImageNet pre-trained models as well as pre-trained the CNNs with 

the skin lesion dataset HAM10000. Fourth, for model explainability, we utilized Gradient-

weighted Class Activation Mapping to visualize the regions of input that are significant to the 

CNNs for making predictions. Fifth, we provided guidelines for model selection based on 

predictive performance and computational complexity.  

 

Results: Customized ResNet50 architecture gave the best classification accuracy of 84.42% ±1.36, 

AUC of 0.9189±0.0115, precision of 83.1%±2.49, sensitivity of 87.93%±1.47, and specificity of 

80.65%±3.59. A lightweight model customized from EfficientNetB0 also performed well with an 

accuracy of 83.13%±1.2, AUC of 0.9094±0.0129, precision of 82.83%±1.75, sensitivity of 85.21% 

±3.91, and specificity of 80.89%±2.95. All the trained models are publicly available at 

https://dappem.limos.fr/download.html, which can be used by others for transfer learning and 

building pre-scanners for Lyme disease. 

 

Conclusion: Our study confirmed the effectiveness of even some lightweight CNNs for building 

Lyme disease pre-scanner mobile applications to assist people with an initial self-assessment and 

referring them to expert dermatologist for further diagnosis. 

 

Keywords: Lyme disease, Erythema Migrans, Transfer Learning, CNN, Explainability. 

 

1. Introduction 

 Lyme disease is an infectious disease transmitted by ticks and caused by pathogenic 

bacteria of the Borrelia burgdorferi sensu lato group [1]. It is estimated that around 476,000 

people in the United States and more than 200,000 people in western Europe are affected by Lyme 

disease each year [2]. Most of the time an expanding round or oval red skin lesion known as 

erythema migrans (EM) becomes visible in the victim’s body which is the most common early 

symptom of Lyme disease [1,3]. EM usually appears at the site of a tick bite after one to two weeks 

(range, 3 to 30 days) as a small redness and expands almost a centimeter per day, creating the 

characteristic bull’s-eye pattern as shown in Figure 1 (a) [1,3–5]. EM generally vanishes within a 

few weeks or months but the Lyme disease infection advances to affect the nervous system, skin, 

joints, eyes, and heart [1,4]. Antibiotics can be used as a medium of effective treatment in the early 

stage of Lyme disease. So, early recognition of EM is extremely important to avoid long-term 

complications of Lyme disease. Most European and North American guidelines recommend a two-

https://doi.org/10.1016/j.cmpb.2022.106624
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tier serology test to detect antibodies against Borrelia burgdorferi sensu lato for diagnosing Lyme 

disease [6,7]. However, a serology test is only recommended in the absence of EM because early 

serology has low sensitivity (40% to 60%) and may result in false negatives [6]. Alternatively, 

direct detection of Borrelia burgdorferi sensu lato can be done using culture, microscopy, or PCR 

[7]. The gold standard of microbiological diagnosis - the culture of bacteria requires laboratory 

expertise and special media for Borrelia burgdorferi sensu lato [6]. Light microscopy-based 

detection is not feasible in clinical practice [7]. PCR based diagnosis is also very difficult and 

shows highly variable sensitivity [7]. Direct detection methods are not always feasible for 

clinicians because of extended processing time and required expertise [8]. The diagnosis of EM is 

a challenging task because EM can create different patterns instead of the trademark bull’s-eye 

pattern as shown in Figure 1 (b). 

Diagnosing skin disorders requires a careful inspection from dermatologists or 

infectiologists but their availability, especially in rural areas is scarce [9]. As a result, the diagnosis 

is generally carried out by non-specialists, and their diagnostic accuracy is in the range of twenty-

four to seventy percent [10,11]. The wrong diagnosis can result in improper or delayed treatment 

which can be harmful to the patient.  

Artificial intelligence (AI) powered diagnostic tools can help with the scarcity of expert 

dermatologists. Recent advancement in deep learning techniques has eased the creation of AI 

solutions to aid in skin disorder diagnosis. Many works have been done utilizing deep learning 

techniques specifically convolutional neural networks (CNNs) for diagnosing cancerous and other 

common skin lesions from dermoscopic images [12–15]. As dermoscopic images require 

dermatoscopes from dermatology clinics other works have focused on diagnosing skin diseases 

using deep learning from clinical images [16–18]. According to some of these studies, deep 

learning-based systems compete on par with expert dermatologists for diagnosing diseases from 

dermoscopic and clinical images [12–14,17,18].  

Despite the vast application of AI in the field of skin lesion diagnosis, there are only a few 

works related to Lyme disease detection from EM skin lesion images. The unavailability of public 

EM datasets as a result of privacy concerns of medical data may be the reason for the lack of 

extensive studies in this field. Čuk et al. [19] proposed a visual system for EM recognition on a 

  
(a) Bull’s-eye pattern  (b) Atypical pattern 

Figure 1: Patterns of erythema migrans (EM). 

(source: https://commons.wikimedia.org/wiki/Category:Erythema_migrans, 

Accessed April 1, 2021) 
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private EM dataset using classical machine learning techniques including naïve Bayes, SVM, 

boosting, and neural nets (not deep learning). They considered ellipse, the common shape of EM 

and used eccentricity, small and large axis ratio, ellipse angular, and ellipse focus attributes for 

classification. Deep learning techniques learn image features from training images via an 

optimization process and recent studies show that image features extracted by deep learning 

techniques outperform human-engineered image features for medical image classification tasks 

[8].   Burlina et al. [3] created a dataset of EM by collecting images from the internet and trained 

a CNN architecture ResNet50 as a binary classifier to distinguish between EM and other skin 

conditions. Although their dataset is not public, the trained model is publicly available. Burlina et 

al. [8] further enriched the dataset with more images from the East Coast and Upper Midwest of 

the United States and trained six CNNs namely ResNet50, InceptionV3, MobileNetV2, 

DenseNet121, InceptionResNetV2, and ResNet152 for EM classification. Burlina et al. [8] did not 

make the dataset or the trained models public. Burlina et al. [3] and Burlina et al. [8] used transfer 

learning from ImageNet [20] pre-trained models and studied the CNNs in terms of predictive 

performance. With the advancement of CNNs, it is a timely need to extensively study their 

effectiveness for Lyme disease prediction from EM images. 

Lightweight CNN based mobile applications can help people with an initial self-assessment 

of EM and referring them to expert dermatologist for further diagnosis. Also, resource-intensive 

CNN based computer applications can assist non-expert practitioners for identifying EM. In this 

article, our main objective was to study the performance of state-of-the-art CNNs for diagnosing 

Lyme disease from EM images and to find out the best architecture based on different criteria. As 

there is no publicly available Lyme dataset of EM images, first, we created a dataset consisting of 

866 images of confirmed EM lesions. Images collected from the internet and Clermont-Ferrand 

University Hospital Center (CF-CHU) of France were carefully labeled into two classes: EM and 

Confuser, by expert dermatologists and infectiologists from CF-CHU. CF-CHU collected the 

images from several hospitals in France. Second, we benchmarked twenty-three well-known 

DCCNs on this dataset in terms of several predictive performance metrics, computational 

complexity metrics, and statistical significance tests. Best practices for training CNNs on limited 

data like transfer learning and data augmentation were used. Third, instead of only using transfer 

learning from models pre-trained on ImageNet dataset we also utilized a dataset of common skin 

lesions “Human Against Machine with 10000 training images (HAM10000)” [21] for pretraining 

the CNNs. The use of HAM10000 proved fruitful according to the experimental results. We 

experimentally searched for the best performing number of layers to unfreeze during transfer 

learning fine-tuning for each of the studied CNNs. Fourth, for visualizing the regions of the input 

image that are significant for predictions from the CNN models we used Gradient-weighted Class 

Activation Mapping (Grad-CAM) [22]. Fifth, we provided guidelines for model selection based 

on predictive performance and computational complexity. Moreover, we made all the trained 

models publicly available which can be used for transfer learning and building pre-scanners for 

Lyme disease. Figure 2 presents the graphical overview of this study. 

The rest of the paper is structured as follows: Section 2 contains dataset description, a brief 

overview of CNN architectures, performance measures, and transfer learning approach used in this 

study; Section 3 presents experimental studies; Section 4 contains recommendations for model 

selection, discussion on limitations and scopes; finally, Section 5 presents concluding remarks.   
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 2. Methods 

 The following subsections describe the data organization including data augmentation and 

cross-validation, a short overview of the considered CNN architectures, performance measures, 

explainability method, and the transfer learning approach used in this study. 

 

2.1. Dataset Preparation 

As a labeled public dataset is not available for Lyme disease prediction from EM images, 

we created a dataset by collecting images from the internet and CF-CHU. CF-CHU collected EM 

images from several hospitals located in France. The use of images from the internet was inspired 

by related skin lesion analysis studies [3,8,17]. Duplicate images were removed using an image 

hashing-based duplicate image detector followed by the removal of inappropriate images through 

human inspection. After the initial curation steps, we got a total of 1672 images. Expert 

dermatologists and infectiologists from CF-CHU classified the curated images into two categories: 

EM and Confuser, making it a two-class classification problem. Out of 1672 images, 866 images 

were assigned to EM class and 806 images were assigned to Confuser class. 

 
Figure 2: Graphical overview of the study on the effectiveness of CNNs for the diagnosis of 

Lyme disease from images. 
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We further subdivided the dataset into five-folds using stratified five-fold cross-validation 

to make sure each of the folds maintains the original class ratio. One of the folds was used as a test 

set and the remaining four were used as the training set with a rotation of the folds for five runs. 

Each time, 10% of the training data was assigned to the validation set as shown in Figure 3. 

DCCNs require a considerable amount of data for training and data augmentation can help 

with expanding the dataset. We applied data augmentation techniques only to the training set to 

expand it twenty times. We used data augmentation to create 20 images from a single image both 

for EM and Confuser categories because our dataset was balanced. We used flip (vertical or 

horizontal), rotation, brightness, contrast, and saturation augmentation by considering the best 

performing augmentations for skin lesions [15]. Besides, we also used perspective skew 

transformation to cover the case of looking at a picture from different angles. Augmentor [23] an 

image augmentation library specially built for biomedical image augmentation was used for 

applying the augmentations. We used 0.5 as the probability of applying each of the augmentation 

operations. Rotation operation was performed with a maximum rotation angle of 5 degrees. We 

also used random rotation by either 90, 180, or 270 degrees. Brightness, contrast, and saturation 

augmentations were performed with a minimum adjustment factor of 0.7 and a maximum 

adjustment factor of 1.3. For all the other parameters we used default values provided by 

Augmentor library. Figure 4 shows some example images resulting from augmentations applied 

on a sample image. 

 

 
Figure 4: Data augmentation examples. 

 
Figure 3: Five-fold cross-validation setup. 

TRAIN TRAIN TRAIN TRAIN TEST

10%

VALIDATION

Stratified split of 866 erythema migrans (EM) and 806 Confuser images
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2.2. Brief Overview of CNN Architectures for Lyme Disease Diagnosis 

CNNs are a kind of neural network that simulates some actions generated in the human 

visual cortex using convolution mathematical operation to extract features from input and passing 

these features through successive layers generates more abstract features to yield a final output 

[24]. CNNs are modular in design, where convolution-based building blocks are repeatedly 

stacked for feature extraction with pooling layers placed in between for reducing feature space, 

learnable parameters, and controlling overfitting [25]. Starting with LeNet [24] in 1988 the 

popularity of CNNs increased with AlexNet [26] winning the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) [20] of 2012. As a result of the effectiveness of CNNs in solving 

complex problems, several CNN architectures have been introduced over the past few years. The 

following subsections provide a brief overview of the CNN architectures used in this study for 

diagnosing Lyme disease from EM images.  

 

2.2.1. VGG Architecture 

 VGG architecture [27] is based on the idea of deeper networks with smaller filters (3 × 3). 

There are thirteen convolutional layers and three fully connected layers in VGG16 architecture as 

shown in Figure 5. Another variation of VGG architecture called VGG19 has sixteen convolutional 

layers and three fully connected layers. VGG architecture showed better effectiveness of deeper 

architectures in terms of predictive performance but requires training a huge number of parameters. 

To the best of our knowledge, VGG architectures have not been used previously for Lyme disease 

analysis. 

 

2.2.2. Inception Architecture 

Inception architecture [28] uses inception module as shown in Figure 6, which is a 

combination of several convolution layers with small filters (1 × 1, 3 × 3, 5 × 5) applied 

simultaneously on the same input to facilitate the extraction of more information. The output filter 

banks from the convolution layers of inception module are concatenated into a single vector, which 

is served as the input for next stage. To reduce learnable parameters and computational complexity 

inception module uses 1 × 1 convolution at the beginning of convolution layers. InceptionV1 

 
Figure 5: VGG16 architecture. Input image is of shape 224 × 224 × 3. 𝐹𝐶 stands for fully 

connected layer and 𝐾 is the number of target classes. 
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architecture is the winner of ILSVRC 2014 competition, and it’s also known as GoogleNet. Further 

improvement resulted in the creation of several versions of inception architectures named 

InceptionV2, InceptionV3, and InceptionV4 [29,30].  InceptionV2 and InceptionV3 improved the 

architecture with smart factorized convolution, batch normalized auxiliary classifier, and label 

smoothing whereas, InceptionV4 focused on the uniformity of the architecture with more inception 

modules than InceptionV3. Burlina et al. [8] used ImageNet pre-trained InceptionV3 architecture 

for Lyme disease analysis. 

2.2.3. ResNet Architecture 

 ResNet architecture [31] tried to solve the vanishing gradient and accuracy degradation 

problems of deep models by introducing residual block with identity shortcut connection that 

directly connects the input to the output of the block allowing the gradient to flow through the 

shortcut path as shown in Figure 7. It’s the winner of ILSVRC 2015 competition. Depending on 

the number of weight layers there are many variants of ResNet architecture such as ResNet18, 

ResNet34, ResNet50, ResNet101, ResNet152, ResNet164, ResNet1202, etc., where the number 

represents the count of weight layers. He et al. [32] proposed ResNetV2 with pre-activation of the 

weight layers as opposed to the post-activation of original ResNet architecture.  InceptionResNet 

is a hybrid of Inception and ResNet architecture having two variations named InceptionResNetV1 

and InceptionResNetV2, which differ mainly in terms of the number of used filters [30].  Burlina 

et al. [3] used ImageNet pre-trained ResNet50 and Burlina et al. [8] used ImageNet pre-trained 

ResNet50, ResNet152, and InceptionResNetV2 architectures for Lyme disease analysis. 

 

 
Figure 6: Inception module of Inception architecture. 

 
Figure 7: Residual block of ResNet architecture. 

identity connection

https://doi.org/10.1016/j.cmpb.2022.106624


This is a preprint. Published version available at : https://doi.org/10.1016/j.cmpb.2022.106624 

9 
 

2.2.4. DenseNet Architecture 

 Dense Convolutional Network (DenseNet) [33] extended ResNet by introducing dense 

blocks where each layer within a dense block receives inputs from all the previous layers as shown 

in Figure 8. DenseNet concatenates the incoming feature maps of a layer with output feature maps 

instead of summing them up as done in ResNet. Dense blocks within DenseNet are connected with 

transition layers consisting of convolution and pooling to perform the required downsampling 

operation. Depending on the number of weight layers there are several versions of DenseNet like 

DenseNet121, DenseNet169, DenseNet201, DenseNet264, etc. Besides solving the vanishing 

gradient problem DenseNet also eases feature propagation and reuse, and a reduction in the number 

of learnable parameters compared to ResNet. Burlina et al. [8] used ImageNet pre-trained 

DenseNet121 architecture for Lyme disease analysis. 

2.2.5. MobileNet Architecture 

 MobileNetV1 [34] used depthwise separable convolution extensively to reduce the 

computational cost. Standard convolution performs spatial and channel-wise computations one 

step but depthwise separable convolution first applies separate convolutional filter for each input 

channel and then uses pointwise convolution on concatenated channels to produce required 

number of output channels as shown in Figure 9. MobileNetV1 was designed to run very efficiently 

on mobile and embedded devices. MobileNetV2 [35] improved upon the concepts of MobileNetV1 

by incorporating thin linear bottlenecks with shortcut connections between the bottlenecks as 

shown in Figure 10. This is called inverted residual block as it uses narrow → wide → narrow as 

opposed to the wide → narrow → wide architecture of traditional residual block. MobileNetV3 

[36] incorporated squeeze-and-excitation layers [37] in the building block of MobileNetV2 which 

provides channel-wise attention and used MnasNet [38] to search for a coarse architecture that was 

 
Figure 8: Building block of DenseNet architecture. 

 
Figure 9: Depthwise separable convolution. 
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further optimized with NetAdapt [39] algorithm. Burlina et al. [8] used ImageNet pre-trained 

MobileNetV2 architecture for Lyme disease analysis. 

2.2.6. Xception architecture 

 Extreme version of Inception the Xception architecture [40] replaced the Inception 

module with a modified version of depthwise separable convolution where the order of depthwise 

convolution and pointwise convolutions are reversed as shown in Figure 11. Xception also uses 

shortcut connections like ResNet architecture. On ImageNet dataset Xception performs slightly 

better than the InceptionV3 architecture. To the best of our knowledge, Xception architecture has 

not been used previously for Lyme disease analysis. 

2.2.7. NASNet architecture 

Neural Architecture Search Netowork [41] from Google Brain utilizes reinforcement 

learning with a Recurrent Neural Network based controller to search for efficient building block 

 
Figure 10: Building block of MobileNetV2 architecture. 

 
Figure 11: Building block of Xception architecture. 

 
Figure 12: Building block of NASNet architecture. 
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for a smaller dataset which is then transferred to a larger dataset by stacking multiple copies of the 

found building block.  NASNet blocks are comprised of normal and reduction cells as shown in 

Figure 12. Normal cells produce feature map of same size as input whereas reduction cells reduce 

the size by a factor of two. NASNet optimized for mobile applications is called NASNetMobile 

whereas the larger version is called NASNetLarge. To the best of our knowledge, NASNet 

architectures have not been used previously for Lyme disease analysis. 

 

2.2.8. EfficientNet architecture 

EfficientNet [42] which is among the most efficient models proposed a scaling method to 

uniformly scale all dimensions of depth, width, and resolution of a network using a compound 

coefficient. The baseline network of EfficientNet was built with neural architecture search 

incorporating squeeze-and-excitation in the building block of MobileNetV2. The scaling method 

is defined as: 

 𝑑𝑒𝑝𝑡ℎ = 𝛼∅  

width = 𝛽∅ 

resolution = 𝛾∅ , 

s.t. 𝛼. 𝛽2. 𝛾2 ≈ 2; 𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1 

(1) 

where, the coefficient ∅ controls available resources and 𝛼, 𝛽, and 𝛾 are constants obtained 

by grid search. EfficientNetB0-B7 are a family of architectures scaled up from the baseline 

network that reflects a good balance of accuracy and efficiency.  To the best of our knowledge, 

EfficientNet architectures have not been used previously for Lyme disease analysis. 

 

2.3. Predictive Performance Measures 

To compare the predictive performance of the trained CNN models we used accuracy, 

recall/sensitivity/hit rate/true positive rate (TPR), specificity/selectivity/true negative rate (TNR), 

precision/ positive predictive value (PPV), negative predictive value (NPV), Matthews correlation 

coefficient (MCC), Cohen’s kappa coefficient (𝜅), positive likelihood ratio (LR+), negative 

likelihood ratio (LR-), F1-score, confusion matrix and area under the receiver operating 

characteristic (ROC) curve (AUC) metrics. Confusion matrix is a way of presenting the count of 

true negatives (TN), false positives (FP), false negatives (FN), and true positives (TP) in a matrix 

format where the y-axis presents true labels and x-axis presents predicted labels. Accuracy 

measures the proportion of correctly classified predictions among all the predictions, and it is 

calculated as: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  

(2) 

Recall/sensitivity/hit rate/TPR measures the proportion of actual positives correctly identified, and 

it is expressed as: 

 
𝑅𝑒𝑐𝑎𝑙𝑙, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, ℎ𝑖𝑡 𝑟𝑎𝑡𝑒, 𝑇𝑃𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

Specificity/selectivity/ TNR measures the proportion of actual negatives correctly identified, and 

it is expressed as: 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦,  𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦,  𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(4) 
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Precision/ PPV measures the proportion of correct positive predictions, and it is calculated as: 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,  𝑃𝑃𝑉 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(5) 

NPV measures the proportion of negative predictions that are correct, and it is calculated as: 

 
𝑁𝑃𝑉 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

(6) 

MCC provides a summary of the confusion matrix, and it is calculated as: 

 
𝑀𝐶𝐶 =

𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

(7) 

MCC value is in the range [−1, +1], where 0 is like random prediction, +1 means a perfect 

prediction, and −1 represents inverse prediction. Cohen’s kappa coefficient (𝜅) metric is used to 

assess inter-rater agreement which tells us how the model is performing compared to a random 

classifier, and it is calculated with the formula: 

 𝜅 =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒
 (8) 

where, 𝑝𝑜 is the relative observed agreement among the raters and 𝑝𝑒 is the hypothetical probability 

of expected agreement which is defined for 𝑐 categories as: 

 
𝑝𝑒 =

1

𝑁2
∑ 𝑛𝑐1𝑛𝑐2

𝑐

 
(9) 

where, 𝑁 is the total number of observations, and 𝑛𝑐𝑟 is the number of predictions of category 𝑐 

by rater 𝑟. Value of 𝜅 is in the range [−1, +1], where a value of 1 indicates perfect agreement, 0 

means agreement only by chance, and a negative value indicates the agreement is worse than the 

agreement by chance. Likelihood ratio (LR) is used for assessing the potential utility of performing 

a diagnostic test and it is calculated for both positive test and negative test results called LR+ and 

LR-, respectively. LR+ is the ratio of the probability of a person having a disease testing positive 

to the probability of a person without the disease testing positive. LR- is the ratio of the probability 

of a person having the disease testing negative to the probability of without the disease testing 

negative. LR+ and LR- are calculated based on sensitivity and specificity values using the 

following formulas: 

 
𝐿𝑅 +  =

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
  

(10) 

 
𝐿𝑅 −  =

1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
 

(11) 

A value of LR greater than 1 shows increased evidence. F1-Score combines precision and recall, 

and it is defined as the harmonic mean of precision and recall as follows: 

 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(12) 

ROC curve is a plot of TPR against false positive rate (FPR) at various threshold settings where 

FPR is defined as:  

 
𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
  

(13) 
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Area under the ROC curve (AUC) is the measure of the classifier’s ability to separate between 

classes and the higher the AUC, the better the ability of the classifier for separating the positive 

class from the negative class.  

As our dataset was balanced so, accuracy can be considered a good measure of predictive 

performance [43] and we did most of the analysis in terms of accuracy but also kept the other 

metrics to provide insights for experts from different domains as done in relevant studies [3,8]. 

We also used critical difference (CD) diagram [44] to rank the CNN models in terms of accuracy 

and to show the statistically significant difference in predictive performance. A thick horizontal 

line connects a group of models in the CD diagram that are not significantly different in terms of 

predictive performance. We used non-parametric Friedman test [45] to reject the null hypothesis 

of statistical similarity among all the models followed by Nemenyi post-hoc all-pair comparison 

test [46] for showing the difference among the models at a significance level, 𝛼 = 0.1. We kept 

the confusion matrix, ROC curve, and cross-validation fold-wise details of all the trained models 

at https://dappem.limos.fr/sdata.html to keep the paper concise and readable. 

 

2.4. Model Complexity Measures 

 To compare the trained CNNs in terms of complexity we used the total number of model 

parameters, the total number of floating-point operations (FLOPs), average training time per 

epoch, disk and GPU memory usage, and average inference time per image. FLOPs reveal how 

computationally costly a model is and we counted FLOPs for each of the models using TensorFlow 

profiler [47] considering a batch size of one.  For reporting the average training time per epoch, 

we calculated the average of the training time of three epochs during transfer learning fine-tuning. 

Disk usage of a CNN model is the amount of storage required to save the model architecture along 

with weights. We calculated the GPU usage of a CNN model by inspecting the memory allocated 

in GPU after loading a trained instance of the model.  To measure the average inference time per 

image of a model we took the average of three hundred inferences on the same input image. 

 

2.5. Model Explainability 

Explainability is important for AI tools especially in the case of medical applications [48]. 

We used Grad-CAM explainability technique for visualizing the regions of the input image that 

are significant for predictions from the CNN models as shown in Figure 13. Grad-CAM uses 

gradient flowing into the ultimate convolution layer for producing heatmaps, and it is a kind of 

post-hoc attention that can be applied on an already trained model. Grad-CAM provides similar 

 
Figure 13: Gard-CAM visualization example. 

Input Image Grad-CAM Visualization
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result to occlusion sensitivity map [49] that works by masking patches of the input image, but 

Grad-CAM is much faster to calculate compared to image occlusion [22].  

 

2.6. Transfer Learning Approach 

In this study, we used transfer learning as our Lyme dataset is not huge enough to obtain 

good performance by training large CNNs from scratch. We started with a CNN already pre-

trained on ImageNet dataset and after removing the original ImageNet classification head our EM 

classification head consisting of Global Average Pooling (GAP) layer, dropout layer, and a fully 

connected layer with sigmoid activation for binary classification was added as shown in Figure 14. 

According to our experiments fine-tuning the whole CNN architecture after training the classifier 

head with our Lyme dataset performed poorly compared to the partial fine-tuning of several layers 

at the end of the CNN while keeping rest of the layers frozen. We empirically found out the number 

of layers 𝑈 to fine-tune from 𝑁 number of ImageNet pre-trained layers for each of the CNN 

architectures used in this study. According to the experimental results pretraining the unfrozen part 

with HAM10000 dataset further improved the performance of the DCCNs.  

3. Experimental Studies 

 The following subsections describe experimental settings including model selection and 

parameter settings, software and hardware used for the study, the experimental results, and 

recommendations for model selection. 

 

3.1. Experimental Settings 

 In this study, we benchmarked twenty-three CNN models, namely VGG16, VGG19, 

ResNet50, ResNet101, ResNet50V2, ResNet101V2, InceptionV3, InceptionV4, 

InceptionResNetV2, Xception, DenseNet121, DenseNet169, DenseNet201, MobileNetV2, 

MobileNetV3Large, MobileNetV3Small, NASNetMobile, EfficientNetB0, EfficientNetB1, 

EfficientNetB2, EfficientNetB3, EfficientNetB4, and EfficientNetB5 for diagnosing Lyme disease 

from EM images. These models were selected to explore a diverse set of CNN models covering 

various prospects, like different architectures, depths, and complexities. 

 
Figure 14: Transfer learning workflow used in this study. 𝐺𝐴𝑃 stands for Global Average 

Polling. 𝑁 is the number of ImageNet pre-trained layers and 𝑈 represents the number of layers 

used for fine-tuning. 
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 To the best of our knowledge ResNet50 is the only publicly available trained CNN that 

was used for Lyme disease identification by Burlina et al. [3]. We are calling this model ResNet50-

Burlina which is a collection of five models (trained on five-fold cross-validation data) available 

at https://github.com/neil454/lyme-1600-model. We did extensive analysis on the ResNet50 

architecture using seven different transfer learning configurations: (i) training ResNet50 model on 

our Lyme dataset from scratch without using transfer learning (called ResNet50-NTL, where, NTL 

stands  for no transfer learning), (ii) pretraining ResNet50 model with only HAM10000 data 

followed by fine-tuning all the layers with our Lyme dataset (called ResNet50-HAM-FFT, where 

HAM means HAM10000 and FFT stands for full fine-tuning), (iii) training only the EM classifier 

head of an ImageNet pre-trained ResNet50 model with our Lyme dataset (called ResNet50-IMG-

WFT, where IMG means ImageNet and WFT stands for without fine-tuning), (iv) fine-tuning all 

the layers of ImageNet pre-trained ResNet50 model with our Lyme dataset (called ResNet50-IMG-

FFT), (v) fine-tuning 𝑈 no of layers of an ImageNet pre-trained ResNet50 model with our Lyme 

dataset (called ResNet50-IMG-FT𝑈, where FT𝑼 means fine-tuning 𝑈 no of layers), (vi) 

pretraining the whole ImgaeNet pre-trained ResNet50 model by HAM10000 data before fine-

tuning 𝑈 layers with our Lyme dataset (called ResNet50-IMG-HAMFP-FT𝑈, where, HAMFP 

means full pre-training with HAM10000 dataset), and (vii) pretraining only the unfrozen 𝑈 layers 

of a ImgaeNet pre-trained ResNet50 model with HAM10000 data before fine-tuning 𝑈 layers with 

our Lyme dataset (called  ResNet50-IMG-HAMPP-FT𝑈, where, HAMPP means partial pre-

training with HAM10000 dataset). To see the effect of data augmentation, we trained a ResNet50 

model without data augmentation and transfer learning (called ResNet50-NoAug, where NoAug 

means no data augmentation). All the other models were trained with data augmentation as 

described in section 2.1. According to experimental results (discussed below), ResNet50-IMG-

HAMPP-FT𝑈 configuration performed best, and we used this configuration (pretraining only the 

unfrozen 𝑈 layers of an ImgaeNet pre-trained model with HAM10000 data before fine-tuning 𝑈 

layers with our Lyme dataset) for training all the architectures used in this study. For simplicity, 

the best performing trained models of each of the architectures are presented in ModelName-𝑼 

format, where 𝑈 represents the no of unfrozen layers. For example, EfficientNetB0-187 means 

EfficientNetB0-IMG-HAMPP-FT187 and ResNet50-141 means ResNet50-IMG-HAMPP-FT141. 

 For training all the models, we used a dropout rate of 0.2 for the dropout layer in EM 

classifier head section. Adaptive Moment Estimation (ADAM) [50] optimizer with exponential 

decay rate for the first and second moment estimates set to 0.9 and 0.999 respectively was used 

with a learning rate of 0.0001 for training the classifier head and 0.00001 for fine-tuning. We also 

used early stopping to terminate the training if there was no improvement in validation accuracy 

for ten epochs. A batch size of 32 was used. For reporting the number of layers to unfreeze during 

transfer learning, we stated the total number of layers to unfreeze including layers containing both 

trainable and non-trainable parameters. 

 We used three NVIDIA QUADRO RTX 8000 GPUs and two Desktop Computers with 

Intel Xeon W-2175 processor, 64 GB DDR4 RAM, and Ubuntu 18.04 operating system to perform 

all the experiments. Python v3.6.9, and TensorFlow v2.4.1 platform [47] were used for all the 

implementations and experimentations of this study. 
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3.2. Experimental Results 

 Čuk et al. [19] reported accuracies in the range of 69.23% to 80.42% using classical 

machine learning methods whereas, Burlina et al. [8] reported the best accuracy of 81.51% using 

ResNet50 architecture for the case of EM vs all classification problems. There was a common 

subset of images collected from the internet in both the dataset of Burlina et al. [3] and our Lyme 

dataset. ResNet50-Burlina model gave an accuracy of  76.05% when tested on our full dataset as 

shown in Table 1.  

 

Table 1: Performance metrics of ResNet50-Burlina model trained by Burlina et al. [3] tested on 

the whole dataset of this study. Within each cell, the value after (±) symbol represents the standard 

deviation. 

 

           

ResNet50-

Burlina 

76.05 

±0.74 

70.05 

±3.6 

82.51 

±3.31 

81.29 

±2.1 

72.04 

±1.71 

0.5294 

±0.0132 

0.5229 

±0.0145 

4.1017 

±0.5172 

0.362 

±0.0309 

0.7515 

±0.0137 

0.481 

±0.0509 

 

Table 2 presents the predictive performance measures of our experimentation with 

ResNet50 architecture. ResNet50-NoAug model resulting from training a ResNet50 architecture 

from scratch without using data augmentation and transfer learning gave an accuracy of 61.42%. 

ResNet50-NTL model obtained by training ResNet50 architecture with data augmentation and 

without transfer learning improved the accuracy to 76.35%. So, data augmentation provided large 

gain in predictive performance (ResNet50-NTL compared to ResNet50-NoAug). ResNet50-

HAM-FFT model resulting from pretraining ResNet50 architecture with only HAM10000 data 

followed by fine-tuning of all the layers with our Lyme dataset showed a degraded accuracy of 

72.27%. ResNet50-IMG-WFT, generated by training only the EM classifier head of an ImageNet 

pre-trained ResNet50 architecture improved the accuracy to 78.94%. ResNet50-IMG-FFT, 

resulting from fine-tuning all the layers of ImageNet pre-trained ResNet50 architecture, further 

improved the classification accuracy to 82.22%. Whereas ResNet50-IMG-FT141, model resulting 

from fine-tuning 141 layers of pre-trained ResNet50 architecture gave an accuracy of 83.24% 

which is better compared to unfreezing the full architecture. ResNet50-IMG-HAMFP-FT141, 

model resulting from pretraining the whole ImgaeNet pre-trained ResNet50 model by HAM10000 

data before fine-tuning 141 layers with our Lyme dataset reduced the accuracy to 82.35%. But 

pretraining only the unfrozen 141 layers with HAM10000 data gave us the model ResNet50-IMG-

HAMPP-FT141 with the best accuracy of 84.42%. Figure 15 shows the CD diagram in terms of 

accuracy for these ResNet50 based models. We excluded ResNet50-Burlina model from this 

diagram because the model was tested on the whole dataset as opposed to other configurations. 

The Friedman test null hypothesis was rejected with a 𝑝 value of 0.00003. From the CD diagram, 

we can see that ResNet50-IMG-HAMPP-FT141 achieved the best average ranking among the 

compared models. Although there is no statistically significant difference among ResNet50-IMG-

FFT, ResNet50-IMG-FT141, ResNet50-IMG-HAMFP-FT141, and ResNet50-IMG-HAMPP-

Model 

()% 

 

Metric 
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FT141 in terms of accuracy the ResNet50-IMG-HAMPP-FT141 model performed better in terms 

of most of the metrics (7 out of 11) as highlighted in Table 2.  To summarize, pretraining only the 

unfrozen part of an ImageNet pre-trained CNN with HAM10000 data provided the best accuracy 

according to our experiments. So, for all the other CNN architectures, we only reported the 

performance resulting from this configuration. 

  Performance metrics for the best performing configuration of all the CNN architectures 

used in this study are shown in Table 3. All these models used HAM10000 pretraining for the 

unfrozen part of the network. The number at the end of the model’s name represents the number 

of layers unfrozen during transfer learning fine-tuning. ResNet50-141 achieved the best accuracy 

of 84.42%. Most of the models except MobileNetV2-62, MobileNetV3Small-182, and 

NASNetMobile-617 showed good AUC values of above 90% and good sensitivity suggesting that 

these CNNs can be a good choice for building pre-scanners for Lyme disease. Figure 16 shows the 

CD diagram in terms of accuracy for these models. The Friedman test null hypothesis was rejected 

with a 𝑝 value of 0.0822. From the CD diagram, we can see that ResNet50- 141 achieved the best 

average ranking followed by VGG19-13 and DenseNet121-379 respectively. Xception and 

Inception-based architectures had a similar ranking. NasNetMobile-617 ranked worst among all  

 the models. The accuracy of the models varied from 81.3% to 84.42% and there is no statistically 

significant difference in terms of accuracy metric among most of the trained models. Overall, 

ResNet50-141 performed better in terms of various metrics (5 out of 11) as highlighted in Table 

3. 

 

Table 2: Five-fold cross-validation performance metrics of ResNet50 based models. Within each 

cell, the value after (±) symbol represents the standard deviation across five folds. Bold indicates 

the best result for each of the metrics. 

 

           

ResNet50- 

NoAug 

61.42 

±1.29 

71.73 

±8.65 

50.37±

8.79 

61.0 

±1.5 

63.03 

±3.17 

0.2302 

±0.0234 

0.2224 

±0.0256 

1.4592 

±0.0863 

0.5497 

±0.0764 

0.656 

±0.0325 

0.6505 

±0.0216 

ResNet50-NTL 

 

76.35 

±2.43 

78.49 

±8.47 

74.04 

±4.6 

76.64 

±1.64 

76.92 

±5.22 

0.5305 

±0.0431 

0.5261 

±0.0464 

3.0735 

±0.2867 

0.2853 

±0.0906 

0.7723 

±0.0398 

0.8471 

±0.0185 

ResNet50-HAM-

FFT 

72.27 

±1.69 

75.85 

±1.27 

68.42 

±4.05 

72.18 

±2.55 

72.48 

±1.08 

0.4447 

±0.0341 

0.4435 

±0.0347 

2.4434 

±0.3248 

0.3536 

±0.0193 

0.7393 

±0.0116 

0.7979 

±0.0251 

ResNet50-IMG-

WFT 

78.94 

±1.48 

82.55 

±2.77 

75.06 

±5.11 

78.27 

±3.2 

80.11 

±1.77 

0.5799 

±0.03 

0.5772 

±0.0305 

3.4636 

±0.7671 

0.2316 

±0.0255 

0.8025 

±0.0101 

0.8666 

±0.0163 

ResNet50-IMG-

FFT 

82.22 

±1.36 

85.27 

±2.67 

78.93 

±5.26 

81.55 

±3.42 

83.42 

±1.63 

0.6458 

±0.0262 

0.6431 

±0.028 

4.3127 

±1.0994 

0.1854 

±0.0226 

0.8326 

±0.0083 

0.909 

±0.0092 

ResNet50-IMG-

FT141 

83.24 

±1.04 

85.29 

±2.27 

81.04 

±2.28 

82.91 

±1.49 

83.74 

±1.96 

0.6649 

±0.0212 

0.6641 

±0.021 

4.5575 

±0.493 

0.1812 

±0.0255 

0.8405 

±0.0104 

0.9134 

±0.0091 

ResNet50-IMG-

HAMFP-FT141 

82.35 

±1.62 

89.28 

±2.42 

74.91 

±5.11 

79.45 

±3.05 

86.81 

±2.03 

0.6521 

±0.0295 

0.6448 

±0.0333 

3.7072 

±0.7368 

0.1421 

±0.0251 

0.84 

±0.0111 

0.9113 

±0.0091 

ResNet50-IMG-

HAMPP-FT141 

84.42 

±1.36 

87.93 

±1.47 

80.65 

±3.59 

83.1 

±2.49 

86.19 

±1.27 

0.6893 

±0.0263 

0.6874 

±0.0277 

4.703 

±0.8624 

0.1493 

±0.0155 

0.8541 

±0.0106 

0.9189 

±0.0115 

Model 

()% 

 

Metric 
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Table 4 summarizes the complexities of the CNN models used in this study. 

MobileNetV3Small-182 was the most lightweight model with the lowest number of parameters, 

FLOPs, and memory usage. InceptionResNetV2-500 has the highest number of parameters and 

memory usage and slowest inference time. Xception-118 was the fastest in terms of inference time. 

VGG19-13 required the highest number of FLOPs. ResNet50V2-105 required the least amount of 

time to train on average whereas, EfficientNetB5-444 was the slowest to train. 

Figure 17 shows the Grad-CAM visualizations of the models trained on the same training 

fold for two test images. The test images are shown at the lower right corner of the image. From 

the figure, it can be seen that different versions of EfficientNet focused more on the lesion part of 

the image compared to other models. 

 

Table 3: Five-fold cross-validation performance metrics for the best performing configurations of 

the trained CNN models. Within each cell, the value after (±) symbol represents the standard 

deviation across five folds. Bold indicates the best result for each of the metrics. 

 

           

VGG16-8 82.17 

±1.23 

85.77 

±3.58 

78.31 

±4.36 

81.12 

±2.62 

83.88 

±3.02 

0.6453 

±0.0253 

0.6422 

±0.0249 

4.0983 

±0.7329 

0.1802 

±0.0388 

0.8328 

±0.0116 

0.9011 

±0.0079 

VGG19-13 84.14 

±1.62 

85.29 

±1.69 

82.9 

±2.63 

84.32 

±1.97 

84.0 

±1.67 

0.6826 

±0.0323 

0.6823 

±0.0326 

5.0924 

±0.6884 

0.1777 

±0.0214 

0.8479 

±0.0146 

0.913 

±0.0074 

ResNet50-141 84.42 

±1.36 

87.93 

±1.47 

80.65 

±3.59 

83.1 

±2.49 

86.19 

±1.27 

0.6893 

±0.0263 

0.6874 

±0.0277 

4.703 

±0.8624 

0.1493 

±0.0155 

0.8541 

±0.0106 

0.9189 

±0.0115 

ResNet101-150 82.64 

±2.1 

83.68 

±3.49 

81.52 

±2.29 

82.97 

±1.8 

82.4 

±3.09 

0.6528 

±0.0419 

0.6522 

±0.0418 

4.6001 

±0.6257 

0.2004 

±0.0427 

0.8329 

±0.022 

0.9044 

±0.0094 

ResNet50V2-

105 

82.37 

±2.15 

85.53 

±3.35 

78.96 

±6.13 

81.66 

±3.83 

83.72 

±2.63 

0.6493 

±0.0411 

0.6461 

±0.0439 

4.3618 

±1.0495 

0.1819 

±0.0349 

0.8343 

±0.017 

0.9013 

±0.0133 

ResNet101V2-

233 

82.58 

±2.21 

81.9 

±4.78 

83.32 

±3.71 

84.17 

±2.55 

81.31 

±3.7 

0.6535 

±0.0429 

0.6515 

±0.0439 

5.104 

±0.9811 

0.2163 

±0.0541 

0.8292 

±0.0254 

0.9118 

±0.0149 

InceptionV3-274 82.73 

±2.08 

86.57 

±2.42 

78.6 

±2.8 

81.33 

±2.12 

84.52 

±2.52 

0.6551 

±0.0419 

0.6533 

±0.0419 

4.1259 

±0.639 

0.1714 

±0.0328 

0.8385 

±0.0195 

0.9052 

±0.0185 

InceptionV4-327 82.76 

±1.78 

85.7 

±3.96 

79.58 

±2.87 

81.92 

±1.8 

84.02 

±3.41 

0.6561 

±0.0358 

0.6541 

±0.0353 

4.2716 

±0.5734 

0.179 

±0.0465 

0.837 

±0.0197 

0.9092 

±0.019 

Model 

()% 

 

Metric 

 
Figure 15: Accuracy critical difference diagram for ResNet50 models. The models are ordered 

by best to worst average ranking from left to right. The number beside a model’s name 

represents the average rank of the model. CD is the critical difference for Nemenyi post-hoc 

test. Thick horizontal line connects the models that are not statistically significantly different. 
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Table 3: (continued). 

InceptionResNet

V2-500 

82.67 

±2.06 

83.54 

±3.88 

81.74 

±3.16 

83.17 

±2.16 

82.37 

±3.32 

0.6541 

±0.0406 

0.653 

±0.041 

4.6886 

±0.7264 

0.2009 

±0.0456 

0.8329 

±0.0218 

0.9011 

±0.0133 

Xception-118 82.48 

±2.45 

83.16 

±5.1 

81.75 

±2.76 

83.08 

±1.94 

82.16 

±4.4 

0.6507 

±0.0487 

0.6492 

±0.0484 

4.6434 

±0.6571 

0.2054 

±0.0609 

0.8304 

±0.0276 

0.9081 

±0.0148 

DenseNet121-

379 

83.88 

±0.92 

85.85 

±1.76 

81.75 

±0.95 

83.49 

±0.69 

84.35 

±1.57 

0.6773 

±0.0186 

0.6768 

±0.0184 

4.7169 

±0.254 

0.173 

±0.0211 

0.8465 

±0.01 

0.9158 

±0.0097 

DenseNet169-

395 

83.66 

±1.25 

88.6 

±3.59 

78.35 

±2.75 

81.54 

±1.53 

86.68 

±3.33 

0.6758 

±0.0265 

0.6717 

±0.0249 

4.1454 

±0.4187 

0.1446 

±0.0414 

0.8486 

±0.0138 

0.9123 

±0.0129 

DenseNet201-

561 

83.12 

±1.11 

85.61 

±1.81 

80.45 

±3.92 

82.61 

±2.7 

83.93 

±1.13 

0.663 

±0.0221 

0.6615 

±0.0228 

4.5729 

±0.9885 

0.1783 

±0.0153 

0.8403 

±0.0073 

0.9125 

±0.0083 

MobileNetV2-62 81.68 

±1.99 

81.94 

±3.49 

81.39 

±1.26 

82.55 

±1.21 

80.85 

±3.09 

0.6337 

±0.0394 

0.6332 

±0.0395 

4.4256 

±0.3596 

0.222 

±0.0441 

0.8222 

±0.0218 

0.8933 

±0.0135 

MobileNetV3Sm

all-182 

81.53 

±1.98 

84.93 

±3.29 

77.87 

±3.89 

80.6 

±2.55 

82.91 

±2.85 

0.6315 

±0.0398 

0.6294 

±0.04 

3.9496 

±0.6356 

0.1933 

±0.0386 

0.8265 

±0.0186 

0.896 

±0.013 

MobileNetV3Lar

ge-193 

82.74 

±2.17 

83.69 

±0.43 

81.71 

±4.6 

83.26 

±3.39 

82.3 

±0.89 

0.6548 

±0.0437 

0.6542 

±0.0442 

4.8573 

±1.1585 

0.2002 

±0.0117 

0.8344 

±0.017 

0.9034 

±0.0094 

NASNetMobile -

617 

81.3 

±1.45 

83.2 

±1.66 

79.25 

±3.98 

81.29 

±2.65 

81.48 

±1.07 

0.6261 

±0.0287 

0.6251 

±0.0297 

4.1452 

±0.7283 

0.2117 

±0.0156 

0.8219 

±0.0108 

0.8897 

±0.0152 

EfficientNetB0-

187 

83.13 

±1.2 

85.21 

±3.91 

80.89 

±2.95 

82.83 

±1.75 

83.79 

±3.19 

0.6636 

±0.0244 

0.6618 

±0.0237 

4.5522 

±0.6116 

0.1817 

±0.0427 

0.8392 

±0.0147 

0.9094 

±0.0129 

EfficientNetB1-

308 

82.42 

±1.04 

85.85 

±2.14 

78.71 

±3.75 

81.37 

±2.34 

83.9 

±1.59 

0.6492 

±0.0202 

0.647 

±0.0214 

4.1494 

±0.6707 

0.179 

±0.0209 

0.835 

±0.0074 

0.9088 

±0.0134 

EfficientNetB2-

316 

82.75 

±1.4 

84.95 

±3.41 

80.39 

±3.02 

82.39 

±1.91 

83.4 

±2.69 

0.6556 

±0.0276 

0.6542 

±0.0279 

4.4211 

±0.6202 

0.1865 

±0.0379 

0.8359 

±0.0158 

0.9075 

±0.0082 

EfficientNetB3-

194 

83.46 

±0.87 

85.15 

±4.28 

81.64 

±2.9 

83.4 

±1.6 

83.9 

±3.14 

0.6704 

±0.0157 

0.6685 

±0.0167 

4.7361 

±0.6283 

0.1803 

±0.0443 

0.8416 

±0.0144 

0.9163 

±0.0074 

EfficientNetB4-

384 

82.98 

±1.31 

87.55 

±2.2 

78.06 

±3.76 

81.2 

±2.33 

85.46 

±1.76 

0.6613 

±0.0249 

0.6581 

±0.0268 

4.0946 

±0.6159 

0.1589 

±0.0233 

0.842 

±0.0107 

0.9138 

±0.0074 

EfficientNetB5-

444 

83.7 

±1.21 

86.85 

±2.89 

80.32 

±3.73 

82.71 

±2.39 

85.17 

±2.38 

0.6752 

±0.024 

0.6729 

±0.0245 

4.5562 

±0.7645 

0.1629 

±0.0303 

0.8466 

±0.0108 

0.9138 

±0.0161 

 

 
Figure 16: Accuracy critical difference diagram for the best performing configurations of the 

trained DCNN models. The models are ordered by best to worst average ranking from left to 

right. The number beside a model’s name represents the average rank of the model. CD is the 

critical difference for Nemenyi post-hoc test. Thick horizontal line connects the models that are 

not statistically significantly different. 
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Figure 17: Grad-CAM visualization of the trained models. Input images are shown at the 

lower right corner. 
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Table 4: Complexity metrics of trained CNN models. Bold indicates the best result for each of 

the metrics. 
Model Parameters 

(million) 

FLOPs 

(giga) 

Average training 

time 

(sec per epoch) 

Disk usage 

(megabyte) 

GPU usage 

(megabyte) 

Average 

inference 

time 

(sec per 

image) 

Input 

shape 

VGG16-8 14.72 30.7 111 146.24 565 0.0426 224x224x3 

VGG19-13 20.02 39 164 216.03 565 0.0431 224x224x3 

ResNet50-141 23.59 7.75 113 268.64 821 0.0484 224x224x3 

ResNet101-150 42.66 15.2 123.33 378.41 821 0.0539 224x224x3 

ResNet50V2-105 23.57 6.99 76 258.84 821 0.0464 224x224x3 

ResNet101V2-233 42.63 14.4 152 429.45 821 0.0599 224x224x3 

InceptionV3-274 21.8 11.5 133 246.94 821 0.0540 224x224x3 

InceptionV4-327 41.18 24.6 223.33 424.93 1333 0.0735 299x299x3 

InceptionResNetV2-500 54.34 26.4 281.33 588.12 1333 0.0958 299x299x3 

Xception-118 20.86 16.8 243.33 238.48 821 0.0392 299x299x3 

DenseNet121-379 7.04 5.7 140.67 78.7 437 0.0673 224x224x3 

DenseNet169-395 12.64 6.76 130 128.59 565 0.0686 224x224x3 

DenseNet201-561 18.32 8.63 182.67 198.7 565 0.0840 224x224x3 

MobileNetV2-62 2.26 0.613 78 24.02 341 0.0429 224x224x3 

MobileNetV3Small-182 1.53 0.174 81 17.8 341 0.0444 224x224x3 

MobileNetV3Large-193 4.23 0.564 86.33 48.34 373 0.0444 224x224x3 

NASNetMobile -617 4.27 1.15 152 50.74 373 0.0741 224x224x3 

EfficientNetB0-187 4.05 0.794 87 46.59 373 0.0523 224x224x3 

EfficientNetB1-308 6.58 1.41 158.33 75.89 437 0.0546 240x240x3 

EfficientNetB2-316 7.77 2.04 210 89.53 437 0.0565 260x260x3 

EfficientNetB3-194 10.79 3.74 143 117.6 565 0.0648 300x300x3 

EfficientNetB4-384 17.68 8.97 431 202.2 565 0.0614 380x380x3 

EfficientNetB5-444 28.52 20.9 771 325.21 821 0.0659 456x456x3 

 

4. Discussion 

The experimental result described above makes it evident that CNNs have great potential 

to be used for Lyme disease pre-scanner application. Figure 18 shows a bubble chart reporting 

model accuracy vs FLOPs. The size of each bubble represents the number of parameters of the 

model. This figure serves as a guideline for selecting models based on complexity and accuracy. 

It can be seen from the figure that EfficientNetB0-187 is a good choice with reasonable accuracy 

for resource-constrained mobile platforms. EfficientNetB0-187 also showed good results in Grad-

CAM visualization. If resource constraint is not a problem, then RestNet50-141 can be used for 

the best accuracy. 

Even the lightweight EfficientNetB0-187 model showed good performance, and it can be 

directly deployed in mobile devices without requiring an internet connection for processing the 

lesion image in a remote server. It can help people living in remote areas without good internet 

facilities with an initial assessment of the probability of Lyme disease.  

For this study, we utilized images from the internet alongside images collected from several 

hospitals in France.  This approach was inspired by related studies on skin lesion analysis. 

Although a portion of images in our dataset was collected from the internet the annotation of the  
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dataset is reliable because we ignored the online labels, and all the images were reannotated by 

expert dermatologists and infectiologists. 

Existing works including this study on AI-based Lyme disease analysis only utilize images 

but including patients’ metadata can be a great way of strengthening the analysis. We trained the 

CNNs with whole images without EM lesion segmentation. The effect of the EM lesion 

segmentation on the predictive performance of CNNs can be an interesting study. Another 

limitation is that dark-skinned samples are underrepresented in our dataset. A limited number of 

samples in the dataset with skin hair artifact over the EM lesion is also a concern. Although hair 

removal algorithms can be used for removing skin hair it will increase the computational 

complexity of the real-time mobile application. A better alternate can be augmenting the training 

dataset with artificial skin hair. 

 

5. Conclusion 

 In this study, we benchmarked and extensively analyzed twenty-three well-known CNNs 

based on predictive performance, complexity, significance tests, and explainability using a novel 

Lyme disease dataset to find out the effectiveness of CNNs for Lyme disease diagnosis from EM 

images. To improve the performance of CNNs we utilized HAM10000 dataset with ImageNet pre-

trained models for transfer learning. We also provided guidelines for model selection. We found 

that even the lightweight models like EffiicentNetB0 performed well suggesting the application of 

CNNs for Lyme disease pre-scanner mobile applications which can help people with an initial 

 
Figure 18: Bubble chart reporting model accuracy vs floating-point operations (FLOPs). The 

size of each bubble represents number of model parameters measured in millions unit. Beside 

each model name the three values represent FLOPs, accuracy, and model parameters, 

respectively. 
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assessment of the probability of Lyme disease and referring them to expert dermatologist for 

further diagnosis. Resource intensive models like ResNet50 can be effective for building computer 

applications to assist non-expert practitioners with identifying EM. We also made all the trained 

models publicly available, which can be utilized by others for transfer learning and building pre-

scanners for Lyme disease.    
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