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24

25 Abstract

26 The closure of the Cache Creek Ocean during the Jurassic led to the structuration of the Canadian 

27 Cordillera. To reassess the timing of this major tectonic event, this study proposes a 

28 biochronological review of all the youngest radiolarian-bearing localities of the Cache Creek 

29 Terrane in British Columbia and Yukon using updated radiolarian biozonations and taxonomy, 

30 complemented by new data from the type locality. The results show that all ages are Early 

31 Jurassic and fairly homogenous along the entire terrane. All the youngest siliceous rocks are 

32 restricted to the Late Sinemurian−Early Toarcian interval (~195−180 Ma). The youngest well-

33 dated pelagic cherts are Early Pliensbachian, with slightly younger siliceous argillites of 

34 Pliensbachian and possibly Early Toarcian age. These results suggest that Cache Creek deep 

35 pelagic sedimentation ceased fairly synchronously along the entire belt, probably during the 

36 Pliensbachian (~191−183 Ma), predating the final closure of the basin when Cache Creek units 

37 were thrust over Stikinia and Quesnellia in the Middle and Late Jurassic. This apparent 

38 synchronicity should result in re-evaluating the tectonic mechanism of the Cache Creek 

39 “entrapment model” in its present form. The study also shows that pelagic sedimentation ceased 

40 22 to 31 m.y. earlier in the Cache Creek Terrane than in the Bridge River Terrane, confirming the 

41 stratigraphic discrepancy between the two terranes during the Jurassic.
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42 Résumé

43 La fermeture de l'océan Cache Creek au Jurassique a conduit à la structuration de la Cordillère 

44 Canadienne. Afin de réévaluer la chronologie de cet événement tectonique majeur, l’étude 

45 propose une synthèse biochronologique de toutes les plus jeunes localités à radiolaires du terrane 

46 de Cache Creek en Colombie-Britannique et au Yukon grâce aux nouvelles biozonations et à une 

47 taxonomie actualisée, avec en complément de nouvelles données pour la localité-type. Les 

48 résultats montrent que tous les âges sont du Jurassique inférieur et sont homogènes pour 

49 l'ensemble du terrane. Toutes les roches siliceuses les plus jeunes sont comprises dans l'intervalle 

50 Sinémurien supérieur−Toarcien inférieur (~ 195180 Ma). Les plus jeunes cherts pélagiques sont 

51 du Pliensbachien inférieur, avec des argilites siliceuses légèrement plus jeunes du Pliensbachien 

52 et peut-être du Toarcien inférieur. Ces résultats suggèrent que la sédimentation pélagique 

53 profonde de l’océan Cache Creek a cessé de manière relativement synchrone sur toute sa 

54 longueur, probablement pendant le Pliensbachien (~191−183 Ma), avant la fermeture finale du 

55 bassin lorsque les unités de Cache Creek ont été charriées sur la Stikinia et la Quesnellia au 

56 Jurassique moyen et supérieur. Ce synchronisme apparent devrait conduire à réévaluer les 

57 modalités du modèle tectonique en ciseau sous sa forme actuelle. L'étude montre aussi que la 

58 sédimentation pélagique a cessé 22 à 31 Ma plus tôt dans le terrane de Cache Creek que dans 

59 celui de Bridge River, confirmant la différence stratigraphique entre les deux unités au 

60 Jurassique.

61

62 Mots-clés : terrane de Cache Creek, Radiolaria, Jurassique, Cordillère canadienne, radiolarite, 

63 terrane de Bridge River 

64
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65 Introduction

66

67 The Canadian Cordillera (Fig. 1) is a complex collage of arc and oceanic terranes which has been 

68 the subject of a vast amount of studies and literature in the past 50 years. Various models 

69 describing the tectonic history of the orogen are still debated (Monger & Gibson 2019 and 

70 references therein) but they all point to the importance of the Cache Creek Terrane, considered as 

71 one major evidence for a large Mesozoic ocean basin in the Canadian Cordillera. One important 

72 issue is the timing of the ocean closure during the Jurassic period which led to collision with 

73 Stikinia and Quesnellia volcanic arcs, contributing to the structuration of the Cordillera (Nelson 

74 and Mihalynuk 1993, Colpron et al. 2015, Monger & Gibson 2019). 

75 To determine the age of the Cache Creek Terrane, radiolarian biostratigraphy has been applied 

76 over the last 40 years to its deep ocean strata with a particular focus on the youngest localities 

77 considered to predate the final stages of convergence. The youngest Jurassic unit of the Cache 

78 Creek Terrane was originally found in its type locality in southern British Columbia (Cordey et 

79 al. 1987). At the time, it contradicted the scenario in which amalgamation of the Cache Creek and 

80 Quesnellia terranes occurred in the Late Triassic (Monger 1981, Monger et al. 1982). Further 

81 investigations confirmed the occurrence of Jurassic radiolarian-bearing oceanic strata in all 

82 segments of the Cache Creek Terrane in British Columbia and Yukon (Fig. 2; Cordey et al. 1991, 

83 Cordey & Struik 1996, Cordey 1998, Orchard et al. 2001, Struik et al. 2001, Mihalynuk et al. 

84 2004). Although most of these localities are Early Jurassic, some confusion remained due to the 

85 “Early or Middle Jurassic” age of the youngest Cache Creek rocks in the type locality. This 

86 question also led to conflicting interpretations in comparisons between the Cache Creek Terrane 

87 and other Paleozoic-Mesozoic oceanic units of the Canadian Cordillera such as the Bridge River 

88 and Hozameen terranes (Cordey et al. 1987, Cordey & Schiarizza 1993, Mihalynuk et al. 1994, 

89 Cordey 1998, Monger 2014).
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90 To clarify the stratigraphy of the youngest Cache Creek strata, the goal of this study is to review 

91 all the youngest radiolarian localities and, when possible, improve and refine previous ages with 

92 new Jurassic radiolarian biozonations and taxonomy (Baumgartner et al. 1995, Carter et al. 1988, 

93 1998, 2010, Goričan et al. 2006, 2018, O’Dogherty et al. 2009). The results reveal that the 

94 youngest ages are fairly homogenous along the entire Cache Creek belt, which provides some 

95 clues regarding the accuracy of current tectonic models such as the Cache Creek Terrane 

96 entrapment in its present form (Mihalynuk et al. 1994). Finally, the study provides some new 

97 elements for stratigraphic comparison of the Cache Creek Terrane with other main oceanic units 

98 of the Canadian Cordillera during the Jurassic (Cordey and Schiarizza 1993, Monger and Gibson 

99 2019).

100

101

102 Material and Methods

103

104 The radiolarian assemblages presented in this paper are part of a large dataset of Devonian to 

105 Jurassic radiolarian samples collected and studied in several terranes of the Canadian Cordillera 

106 since the 1980s. Among them, the youngest Jurassic assemblages of the Cache Creek Terrane 

107 were found at eight localities from southern British Columbia to southern Yukon (Fig. 2: J1, 

108 Pavilion; J2, Alkali Lake; J3, Blackwater; J4, Pinchi Lake; J5, French Range; J6-J8, Teslin 

109 Plateau). The geological setting and lithostratigraphy of these localities are described in detail in 

110 former publications (J1: Mortimer 1987, Cordey et al. 1987, Cordey 1998; J2: Read 1993, 

111 Cordey, unpub. data; J3: Cordey and Struik 1996, Orchard et al. 2001; J4: Orchard et al. 2001, 

112 Struik et al. 2001; J5: Mihalynuk et al. 2004; J6-J8: Cordey et al. 1991). 

113 The radiolarian faunas from the Cache Creek Terrane are usually poorly or moderately preserved 

114 due to silica recrystallization as a result of diagenesis associated with P/T conditions during 
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115 tectonic emplacement and local magmatic intrusions. To maximize the quality of the 

116 microfossils, the samples were selected with specific field detection techniques applied to pelagic 

117 strata from orogenic belts, using a strong hand lens and investigating specific microfacies such as 

118 argillaceous layers within chert beds (Cordey & Krauss 1990, Cordey 1998). Radiolarians were 

119 then extracted by repetitive leaching of samples with low-concentration hydrofluoric acid (HF) 

120 and then hand-picked and mounted on aluminum stubs for SEM observation and taxonomical 

121 identifications (Tabletop SEM Phenom ProX, Laboratoire de Géologie de Lyon). 

122 Although most radiolarian assemblages presented here are described in previous publications, 

123 new SEM images have been obtained for a selection of samples to improve the quality of 

124 previous illustrations and complement former studies with new taxa. 

125 When microfossil assemblages are not well-preserved, radiolarians are usually identified at the 

126 genus level only (J1, J2, J5, J7, J8; Table 1). In this case, the age is established from overlapping 

127 ranges of genera (O’Dogherty et al. 2009). Other assemblages show a better state of preservation 

128 with radiolarians identified at the species level (J3, J4, J6), allowing correlations to more precise 

129 biozones (Carter et al. 1988, Cordey 1998, Whalen and Carter 2002, Goričan et al. 2006, Carter 

130 et al. 2010). A selection of biostratigraphically-significant radiolarians is presented in Figures 5 

131 and 6. Radiolarian assemblages and ages are synthesized in Table 1.

132

133

134 Results

135

136 New radiolarian assemblage from the type locality

137 In southern British Columbia, the Cache Creek Terrane is divided into three belts (Figs. 3, 4) 

138 (Duffell and McTaggart 1952, Trettin 1980, Shannon 1981, Monger and McMillan 1984, Monger 

139 1985, Mortimer 1987). The central belt is composed of massive limestone and marble of the 
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140 Marble Canyon Formation where schwagerinid fusulinids of Late Permian age (Colania 

141 assemblage) belong to a Tethyan faunal province and are cited as evidence that carbonate units of 

142 the Cache Creek Terrane are far-travelled (Monger and Ross 1971; Monger et al. 1982; Danner 

143 1985; Orchard et al. 2001). To the west of Marble Canyon, the western belt contains the youngest 

144 strata of the type locality as shown by Early or Middle Jurassic radiolarians found in siliceous 

145 argillites above Hambrook Creek (“R2”, Cordey et al. 1987, Cordey 1998).

146 With the aim of improving this previous radiolarian dating, this locality was resampled (NEO-R2, 

147 Figs. 3, 4). A new radiolarian assemblage J1 (Table 1) is composed of the following taxa: 

148 Archaeodictyomitra sp., Homoeoparonaella sp. cf. reciproqua Carter, Hsuum sp., 

149 Pseudocrucella? sp., Thurstonia sp., Trillus sp., Xiphostylus? sp., Triactoma sp., and Zartus sp.. 

150 The previous collection was dated as Pliensbachian−Bajocian based on the age range of Zartus 

151 sp. (Cordey et al. 1987). In the new sample NEO-R2, the co-occurrence of Thurstonia sp., Trillus 

152 sp. and Zartus sp. provides an age restricted to the Early Pliensbachian−Early Toarcian interval 

153 (O’Dogherty et al. 2009). Although the preservation of the assemblage is poor, the specimens of 

154 Thurstonia sp. display well-developed nodes at pore frame intersections (Fig. 5, no. 1), showing 

155 affinities with Thurstonia specimens from the northern part of the Cache Creek Terrane (J6, Fig. 

156 5, no. 3) as well as Thurstonia sp. B documented in Early Jurassic radiolarian assemblages from 

157 the Bridge River and Hozameen terranes (Cordey 1998). 

158

159 Refined Jurassic radiolarian ages

160 Southern British Columbia

161 An Early Jurassic radiolarian assemblage was found in gray-green radiolarian chert of the Riske 

162 Creek Formation in the Alkali Lake map area (locality J2, Fig. 2) as a result of mapping and 

163 sampling by Read (1993). Such as J1, it is located within the western belt of the terrane. This 

164 assemblage is composed of Canutus sp., Lantus sp., Orbiculiformella sp., Parahsuum sp. and 
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165 Praeconocaryomma sp. (Table 1). Originally dated as Sinemurian or Pliensbachian, its age is 

166 refined to the Early Pliensbachian−Early Toarcian interval (Table 1) based on co-occurrence of 

167 the genera Canutus sp. and Lantus sp.. (O’Dogherty et al. 2009). It is noteworthy that the age 

168 ranges of J1 and J2 assemblages are identical, although based on different radiolarian taxa.

169

170 Central British Columbia

171 Geological mapping of the Cache Creek Terrane in central British Columbia (Struik et al. 2007 

172 and references therein) resulted in an important number of Paleozoic and Mesozoic radiolarian 

173 collections (Cordey and Struik 1996, Struik 1998, Orchard et al. 2001). The youngest radiolarian 

174 chert succession of this region is exposed along the Blackwater River in Punchaw Lake map area 

175 (J3, Fig. 2), 25 km to the south-southwest of the town of Prince George (Cordey and Struik 1996, 

176 Orchard et al. 2001, Struik et al. 2001). This succession is broadly continuous and contains 

177 Middle Triassic, Late Triassic, and Early Jurassic radiolarians. The youngest radiolarian 

178 assemblage found near the top of the section was initially dated as Pliensbachian (Cordey and 

179 Struik 1996, Orchard et al. 2001). Complementary chemical processing and new SEM images 

180 reveal an abundant and well-preserved assemblage (Table 1) composed of Atalantria sp., 

181 Beatricea? argescens Cordey, Bipedis japonicus Hori, Broctus sp., Canoptum rugosum Pessagno 

182 & Poisson, Canoptum sp. cf. dixoni Pessagno & Whalen, Charlottea sp., Katroma sp. cf. 

183 elongata Carter, Lantus sp. cf. praeobesus Carter, Laxtorum sp., Orbiculiformella? trispina s.l. 

184 (Yeh), Orbiculiformella sp., Palaeosaturnalis sp., Parahsuum simplum Yao, Parahsuum 

185 vizcainoense Whalen & Carter, Praeconocaryomma sp. cf. sarahae Carter, Thurstonia sp. and 

186 Spumellaria gen. sp. indet. (Figs. 5, 6). This assemblage corresponds to the interval from the 

187 middle part of the Canutus tipperi − Katroma clara Zone to the base of the Gigi fustis − Lantus 

188 sixi Zone of Early Pliensbachian age (Carter et al. 2010).

189
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190 In the Fort-St-James area, the Tezzeron succession (originally called the Pinchi succession by 

191 Struik et al. (1996) and Cordey and Struik (1996)) is exposed to the north of Stuart and Pinchi 

192 lakes and bears some similarities with clastic assemblages from the upper part of the Cache Creek 

193 Terrane in southern British Columbia (Shannon 1981, Monger 1985) and in Yukon (Cordey et al. 

194 1991, Gordey and Stevens 1994). It is interpreted as belonging to the Cache Creek Terrane 

195 (Bellefontaine et al. 1995, Struik et al. 1996, Orchard et al. 2001, Struik et al. 2001). 

196 Within the Tezzeron succession, a limy siltstone unit located near the south end of Pinchi Lake 

197 contains an Early Jurassic radiolarian assemblage (J4, Fig. 2, Table 1) previously reported by 

198 Orchard et al. (2001) and Struik et al. (2001). It is composed of Emiluvia? sp. A (Carter et al. 

199 1988), Hsuum lucidum Yeh (formerly interpreted as H. sp. cf. optimum Carter), Paronaella 

200 grahamensis Carter, Praeconocaryomma decora gr. Yeh (formerly P. sp. A), and 

201 Praeparvicingula tlellensis Carter (formerly Parvicingula sp. E, Carter et al. 1988). This 

202 assemblage was originally assigned to the biozones 2 to 5 of Carter et al. (1988). It correlates 

203 with the Elodium pessagnoi – Hexasaturnalis hexagonus Zone of Carter et al. (2010) of Middle-

204 Late Toarcian age. The corresponding sample, which is a limy siltstone, cannot be considered 

205 part of “deep ocean” Cache Creek strata. It shows, however, that radiolarian pelagic input lasted 

206 until the Toarcian, at least locally.

207

208 Northern British Columbia

209 In the French Range to the west of the Dease Lake area, a unit belonging to the Cache Creek 

210 Terrane is composed of cherty argillites with local tuffaceous layers that contain Middle Triassic 

211 and Early Jurassic radiolarians (Mihalynuk et al. 2004). This succession is correlative to the rocks 

212 on the Teslin Plateau, ~200 km to the north (Cordey et al. 1991). One Early Jurassic radiolarian 

213 assemblage (J5, Fig. 2, Table 1) was extracted from a black cherty argillite exposure located 2.5 

214 km to the north of Slate Creek. It is from blueschists, and therefore places a maximum age limit 
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215 on blueschist mineral formation ((Mihalynuk et al. 2004). The assemblage is composed of 

216 Parahsuum izeense (Pessagno & Whalen) (formerly Canutus izeensis Pessagno & Whalen), 

217 Orbiculiformella? trispina s.l. (Yeh) (formerly Orbiculiforma silicatilis Cordey), 

218 Praeconocaryomma sp. cf. sarahae Carter (formerly P. aff. media Pessagno & Poisson), 

219 Praeconocaryomma sp., and Thurstonia sp. (Table 1). Initially, the radiolarian assemblage was 

220 dated as Pliensbachian−Toarcian (Mihalynuk et al. 2004). The age is revised to the 

221 Pliensbachian−Early Toarcian based on the occurrence of Parahsuum izeense Pessagno & 

222 Whalen and the refined range of Thurstonia (Table 1). The presence of Praeconocaryomma sp. 

223 cf. sarahae Carter suggests that this assemblage could be restricted to the Pliensbachian (Carter et 

224 al. 2010), but this cannot be confirmed due to the incomplete nature of the specimen.

225

226 Yukon

227 An assemblage composed of radiolarian cherts and fine-grained clastic rocks is exposed on the 

228 Teslin Plateau, ~20 km to the north of the British Columbia-Yukon border (Gordey 1991). This 

229 succession has previously been called the Lewes River assemblage (Wheeler et al. 1991, Gordey 

230 1991) or Teenah Lake assemblage (Jackson 1992), and is equivalent in part to the Kedahda 

231 Formation of Monger (1975). Several localities with Middle Triassic, Late Triassic, and Early 

232 Jurassic radiolarian assemblages were discovered along a five-kilometre-long ridge north of 

233 Mount Bryde and Sterlin Lake (Gordey 1991, Cordey et al. 1991). The ridge consists of 

234 successive outcrops and isolated sections of stacked radiolarian chert, argillite and graywacke 

235 previously described and discussed in detail (Cordey et al. 1991).

236 The first Early Jurassic radiolarian assemblage J6 (Fig. 2, Table 1) is from siliceous argillite 

237 interbedded with graywacke that contain Bipedis sp., Broctus sp., Canoptum anulatum Pessagno 

238 & Poisson, Canoptum sp., Hagiastrum majusculum Whalen & Carter (formerly called H. sp. A, 

239 Cordey 1998), Homoeoparonaella sp., Lantus sixi Yeh, Napora cerromesaensis Pessagno, 
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240 Whalen & Yeh, Pantanellium cumshewaense Pessagno & Blome, Parahsuum izeense (Pessagno 

241 & Whalen) (formerly described as Canutus giganteus Pessagno & Whalen), Praeconocaryomma? 

242 sp. cf. yakounensis Carter (formerly interpreted as Praeconocaryomma. sp. aff. P. sp. B Yeh), 

243 Thurstonia sp., and Wrangellium sp.. This assemblage was originally dated as 

244 Pliensbachian−Early Toarcian (Table 1). It is now correlated with the base of the Gigi fustis – 

245 Lantus sixi Zone to the middle part of the Eucyrtidiellum nagaiae – Praeparvicingula tlellensis 

246 Zone (Unitary associations UA 12-22) (Carter et al. 2010), establishing a late Early Pliensbachian 

247 to Late Pliensbachian age.

248 The second youngest Early Jurassic sample on the Teslin Plateau (J7, Fig. 2, Table 1) is from a 

249 radiolarian chert succession located 4 km to the south of J6 (Cordey et al. 1991). It was 

250 previously dated as Sinemurian−Toarcian (Cordey et al. 1991). It is composed of Beatricea? 

251 argescens Cordey, Canoptum sp. cf. anulatum Pessagno & Poisson (previously interpreted as 

252 Wrangellium sp. cf. thurstonense Pessagno & Whalen), Canoptum sp., Praeconocaryomma sp. 

253 cf. immodica Pessagno & Poisson, and Wrangellium sp. (Table 1). The age is here refined to the 

254 Late Sinemurian−Late Pliensbachian interval based on the co-occurrence of Beatricea sp. and 

255 Wrangellium sp..

256 The third sample (J8, Fig. 2, Table 1) is part of the same radiolarian chert succession and location 

257 as J7. The radiolarian assemblage is composed of Beatricea? argescens Cordey, Bipedis sp., 

258 Canoptum sp. cf. dixoni Pessagno & Whalen, Gorgansium sp., Pantanellium sp., Parahsuum sp., 

259 Praeconocaryomma sp., and Wrangellium sp.. It was previously dated as Sinemurian−Toarcian 

260 (Cordey et al. 1991). It is here refined to the Late Sinemurian−Late Pliensbachian interval, based 

261 on the co-occurrence and refined ranges of Beatricea sp., Bipedis sp. and Wrangellium sp. (Table 

262 1). 

263

264
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265 Discussion 

266

267 Homogeneity of youngest Cache Creek ages

268 Revised Jurassic radiolarian ages reveal that the youngest Cache Creek ages are fairly 

269 homogenous along the entire Canadian Cordillera (Fig. 7). These ages are comprised within the 

270 Late Sinemurian−Late Toarcian interval (~195−174 Ma, Cohen et al. 2013). The siliceous rocks 

271 (radiolarian chert and siliceous argillite) are restricted to the Late Sinemurian−Early Toarcian 

272 interval (~195−180 Ma), including error margins. The most precise age determinations from 

273 central British Columbia and Yukon (Fig. 7) indicate that the youngest true radiolarian cherts (= 

274 devoid of clastic intercalations) are Pliensbachian in age (J3), and the youngest siliceous argillites 

275 may also be Pliensbachian in age, possibly reaching the Early Toarcian (J1, J5, J6). The youngest 

276 Jurassic age obtained on a limy siltstone in the Tezzeron succession (J4) suggests that radiolarian 

277 pelagic input possibly lasted until the Middle or Late Toarcian in central British Columbia, 

278 although chert sedimentation might have ceased. To date, no pelagic sedimentary strata of Middle 

279 Jurassic age have been found in the Cache Creek Terrane.

280

281 Cache Creek Terrane and overlap assemblages

282 Some of the youngest Cache Creek strata have locally been interpreted as overlap assemblages, 

283 for instance the chert-argillite-graywacke successions exposed on the Teslin Plateau (Lewes 

284 River assemblage, Wheeler et al. 1991, Gordey 1991; Teenah Lake assemblage, Jackson 1992). 

285 More recently, all post-Middle Triassic sequences were proposed to represent overlap 

286 assemblages on top of already assembled terranes including the Paleozoic units of the Cache 

287 Creek Terrane (Zagorevski et al. 2017).

288 The notion of an “overlap assemblage” implies that marine sedimentation ceased prior to the 

289 deposition of clastic sediments on top of exhumed oceanic units. Regarding the Cache Creek 

Page 12 of 43



13

290 Terrane, this view is not consistent with the occurrence of radiolarian chert sedimentation as 

291 young as Pliensbachian or of Middle Jurassic blueschists with in part Early Jurassic sedimentary 

292 protoliths (Mihalynuk et al. 2004), which demonstrate that deep ocean sedimentation persisted 

293 between Stikinia and Quesnellia until the end of the Early Jurassic. In central British Columbia 

294 (Blackwater; Figs. 7, 8), a Triassic−Early Jurassic chert succession also suggests that Cache 

295 Creek marine sedimentation was continuous prior to the closure of the basin. However, pelagic 

296 and clastic regimes are interrelated: in the northern part of the Cache Creek Terrane, the argillites 

297 and graywackes are locally intercalated with Late Triassic radiolarian cherts (Cordey et al. 1991). 

298 More recently, a Hettangian age (199.5 ± 2.0 Ma) was obtained on detrital zircons from a Cache 

299 Creek graywacke east of Carcross (Colpron et al. 2015) and interpreted as a probable distal 

300 equivalent of the Richtofen Formation (Laberge Group), showing a probable link between the 

301 Cache Creek Terrane and the Whitehorse trough as early as the end of the Triassic or the 

302 beginning of the Jurassic. The input of clastic sediments within Cache Creek pelagic strata may 

303 be a result of the geometry of the terrane at this time, flanking the Yukon-Tanana Terrane to the 

304 north during the counterclockwise rotation of Stikinia (“isolation stage” of Mihalynuk et al. 1994; 

305 Colpron et al. 2015). These transitional regimes evolved towards a narrowing Cache Creek basin 

306 incorporating thicker and coarser siliciclastic sediments associated with tectonic convergence in 

307 the form of synorogenic piggyback basins (Colpron et al. 2015, Bickerton et al. 2020).

308 Numerous examples of pelagic to clastic successions are found in other segments of the circum-

309 Pacific ranges such as in Japan and Siberia where the Permian-Jurassic oceanic terranes display 

310 Jurassic intercalations of radiolarian chert, siliceous argillite and sandstone interpreted as ocean 

311 environments within the depositional influence of one continental margin or flanking sources 

312 (Isozaki et al. 1990, Matsuoka et al. 1996). In general, the intercalations and lateral facies 

313 changes between pelagic and clastic rocks make it difficult to delineate a clear boundary where 

314 oceanic terrane sedimentation ends and where clastic assemblages begin. This is true for the 

Page 13 of 43



14

315 Cache Creek Terrane in the Yukon, but also in southern British Columbia (Mortimer 1987, 

316 Cordey et al. 1987). The composite nature of Cordilleran oceanic terranes, i.e. the likelihood for 

317 these terranes to be the end-result of juxtaposed basinal entities, has previously been suggested 

318 for the Bridge River Terrane (Cordey and Schiarizza 1993, Cordey 1998) and the Cache Creek 

319 Terrane (Golding 2018) but these hypotheses do not challenge the interpretation that these 

320 terranes were dominantly oceanic until the final stages of convergence.

321

322 Cache Creek closure: fast entrapment?

323 Several models have been proposed for the tectonic mechanism of Cache Creek Ocean closure 

324 (see Golding 2018 for a recent review). The consensus model of Cache Creek “entrapment” from 

325 Nelson and Mihalynuk (1993) and Mihalynuk et al. (1994) proposes that the terrane became 

326 enclosed between the Stikinia and Quesnellia terranes leading to Cache Creek oceanic crust being 

327 subducted during an oroclinal bending event, with a progressive “scissor-like” closure from north 

328 to south, and the Yukon-Tanana Terrane acting as the hinge. In this scenario, the Whitehorse 

329 trough is considered a northern precursor to the Bowser Basin (Ricketts et al. 1992, Evenchick et 

330 al. 2010) accompanying the final stages of convergence and closure (Colpron et al. 2015).

331 The entrapment model implies a diachronous closure of the Cache Creek Ocean, with the 

332 youngest oceanic sedimentary rocks progressively younging to the south (basin isolation 

333 followed by closure, Mihalynuk et al. 1994). The updated radiolarian ages suggest instead a 

334 relative synchronicity in the cessation of pelagic sedimentation along the entire Cache Creek 

335 Terrane. While Yukon hemipelagic rocks (J6) are Pliensbachian in age, a similar age 

336 (Pliensbachian−Early Toarcian) is obtained on siliceous argillites 1200 km to the south in the 

337 type locality (J1). Additionally, radiolarian cherts from central British Columbia (J3) and Yukon 

338 (J8) could have a common Pliensbachian age, even though they are ~1000 km apart. 

339 One could argue that the speed and geometry of the counterclockwise oroclinal bending of 
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340 Stikinia towards Quesnellia are not precisely known. One way to reconcile the entrapment model 

341 with the relative synchronicity of the youngest Cache Creek oceanic strata is through very rapid 

342 tectonic rotation. In northern British Columbia, Mihalynuk et al. (1994, 2004) assessed that the 

343 final closure of the Cache Creek Terrane in the north occurred before 171 Ma (late Aalenian or 

344 early Bajocian, Cohen et al. 2013), the age of the post-kinematic Fourth of July batholith that 

345 intrudes deformed Cache Creek units in the Atlin Lake area (Mihalynuk et al. 1992). The 

346 minimum age of Cache Creek extrusion in the French Range was constrained to ~174.5–172 Ma 

347 (latest Toarcian or Aalenian, Cohen et al. 2013), using the interval between the youngest 

348 blueschists and the oldest intrusions (Mihalynuk et al. 2004). In the south, the Cache Creek 

349 Terrane was thrust eastward over Quesnellia in the Late Jurassic (≤ 160 Ma) (Travers 1978).

350 The most precise ages of the youngest Cache Creek Terrane strata are Pliensbachian and found in 

351 central British Columbia (J3) and Yukon (J6). The Early Pliensbachian chert J3 (Figs. 7, 8) found 

352 at the top of a Triassic-Early Jurassic succession along the Blackwater River in central British 

353 Columbia is a good time proxy for the age of the youngest and still truly oceanic Cache Creek 

354 sedimentation at the center of the Cache Creek belt, suggesting that the youngest sustained 

355 hemipelagic sedimentation in southern British Columbia could be slightly younger, possibly Late 

356 Pliensbachian or Early Toarcian, predating the final closure of the Cache Creek Ocean. In this 

357 case, the final phase of the counterclockwise rotation of Stikinia must have occurred within 8 

358 m.y. (the interval between late Early Pliensbachian and Early Toarcian, ~188−180 Ma, Cohen et 

359 al. 2013).

360

361 Comparison between youngest Cache Creek and Bridge River ages

362 Since the 1980s, geological and paleontological studies have established that the oceanic strata of 

363 the Cache Creek and the Bridge River terranes (Fig. 1) share fairly similar Carboniferous-Jurassic 

364 stratigraphic ages (Cordey et al. 1987, Mihalynuk et al. 1994, Monger 2014). The Hozameen 
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365 Terrane exposed in southern British Columbia and northern Washington (Fig. 1) is considered as 

366 a southern continuation of the Bridge River Terrane (Monger 1985). 

367 Early Jurassic radiolarian assemblages found in the Cache Creek Terrane are also present in the 

368 Bridge River and Hozameen terranes which contain Pliensbachian and Toarcian radiolarian 

369 cherts (Cordey and Schiarizza 1993, Cordey 1998). However, the cherts of the Bridge River 

370 Terrane document a pelagic sedimentation that lasted significantly longer: the youngest 

371 radiolarian assemblages are from the Noaxe Creek area (Cordey and Schiarizza 1993, Cordey 

372 1998) where six localities are Middle Jurassic (Aalenian−Bajocian, Early−Middle Bathonian, 

373 Late Bathonian−Middle Callovian, Late Bathonian−Late Callovian), and one locality is Middle 

374 or Late Jurassic (Late Callovian−?Middle Oxfordian) based on biozonations for the Middle-Late 

375 Jurassic (Baumgartner et al. 1995, Matsuoka 1995, Goričan et al. 2018). This Bridge River 

376 radiolarian chert succession probably grades into Late Jurassic and earliest Cretaceous clastic 

377 rocks of the Tyaughton-Methow basin (Mahoney and Journeay 1993, Cordey 1996, Monger 

378 2014, Monger and Gibson 2019). 

379 It is hypothesized here that the youngest radiolarian chert of the Cache Creek Terrane is Early 

380 Pliensbachian in age (~191−187 Ma, Cohen et al. 2013) based on the well-constrained 

381 assemblage at the Blackwater section in central British Columbia (J3, Figs. 7-8). In the Bridge 

382 River Terrane, the youngest age for a radiolarian chert is within the “Late Callovian − Middle 

383 Oxfordian” interval (~165−160 Ma, Cohen et al. 2013). These ages imply that the Cache Creek 

384 Terrane oceanic sedimentation had ceased since 22 to 31 m.y. (minimum and maximum possible 

385 durations due to the error margins of biostratigraphic data, corresponding to “Late 

386 Pliensbachian−Late Callovian” and “Early Pliensbachian−Middle Oxfordian” intervals, 

387 respectively) while the Bridge River Ocean was still recording pelagic sedimentation in the 

388 Middle Jurassic and possibly the early Late Jurassic.

389

Page 16 of 43



17

390 Cache Creek and Bridge River terranes: one or two sutures?

391 The question whether the Cache Creek and Bridge River terranes mark two distinct sutures or are 

392 the remnants of a single oceanic domain has long been debated (Monger et al. 1972, Coney et al. 

393 1980, Monger et al. 1982, Monger 1985, Cordey 1986, Cordey et al. 1987, Monger et al. 1994, 

394 Nokleberg et al. 2000, Dickinson 2004, Johnston and Borel 2006, Gehrels et al. 2009). This issue 

395 has been revived by Sigloch and Mihalynuk (2013, 2017) who combined high-resolution 

396 tomography, plate reconstructions and the concept of vertical slab walls. Their analysis of the 

397 North American Cordillera implies that a cryptic suture zone existed between the Insular and 

398 Intermontane superterranes. In this model, the Bridge River Terrane corresponds to the land 

399 remnant of an intraoceanic domain identified in the subducted Mezcalera slab wall (named from 

400 the Mezcalera oceanic plate hypothesized in Mexico by Dickinson and Lawton 2001).

401 However, some authors question the accuracy of this “two-sutures” model which also implies a 

402 west-dipping subduction zone inboard of Wrangellia (see the recent discussion by Pavlis et al. 

403 2019). Monger (2014) and Monger and Brown (2016) have proposed instead that the Bridge 

404 River and Hozameen terranes are the southern continuation of the Cache Creek Terrane, prior to 

405 dextral displacements of ~115 km on the latest Cretaceous−Paleocene Yalakom Fault (Umhoefer 

406 and Schiarizza 1996) and ~140 km of Eocene movement on the Fraser-Straight Fault (Monger 

407 and Brown 2016). The age discrepancy between the two terranes is interpreted by implying that 

408 the Bridge River Terrane faced open ocean to the west until it was trapped in the Early 

409 Cretaceous (≤130 Ma) behind the arc rocks in the southwestern Coast Mountains, whereas in 

410 northern British Columbia, the Cache Creek Terrane was thrust southwestward over Stikinia in 

411 the earliest Middle Jurassic (~174 Ma) (Mihalynuk et al. 2004), and in southern British Columbia 

412 was thrust eastward over Quesnellia probably in the Late Jurassic (≤ 160 Ma) (Travers 1978). 

413 The likelihood of differentiating the two terranes based on provincial radiolarian signatures has 

414 been discussed by Cordey (1998) and Orchard et al. (2001) and present some limitations. Some 
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415 elements of correlation with Tethyan assemblages may be found in older Paleozoic and Triassic 

416 assemblages of the Cache Creek Terrane (Cordey 1998, Orchard et al. 2001), but also in the 

417 Bridge River Terrane (Cordey and Schiarizza 1993, Cordey 1996, Cordey 1998). During the 

418 Jurassic, one can only demonstrate that the Bridge River Terrane has a longer record of chert 

419 sedimentation than the Cache Creek Terrane.

420

421

422 Conclusions

423

424 So far as known, all the youngest radiolarian assemblages of the Cache Creek Terrane are Early 

425 Jurassic in age, including in the type locality in southern British Columbia. All refined ages of the 

426 youngest radiolarian cherts and siliceous argillites are within the Late Sinemurian−Early Toarcian 

427 interval (~195−180 Ma) with a possible Pliensbachian common age (~191−183 Ma). Well-dated 

428 Early Pliensbachian radiolarian cherts are exposed in the central part of the terrane and may 

429 correspond to the youngest pelagic strata. These results suggest that Cache Creek deep pelagic 

430 “true chert” sedimentation ceased fairly synchronously along the entire belt, probably during the 

431 Pliensbachian, followed by hemipelagic sedimentation in the Pliensbachian and/or the Toarcian, 

432 predating the final closure of the basin that occurred by tectonic thrusting of Cache Creek units 

433 over Stikinia and Quesnellia in the Middle and Late Jurassic.

434 These results should lead to re-evaluating the tectonic mechanism of the Cache Creek entrapment 

435 model in its present form, either in speed or geometry. In addition, the study shows that pelagic 

436 sedimentation ceased ~22 to 31 m.y. earlier in the Cache Creek Terrane than in the Bridge River 

437 Terrane, confirming the stratigraphic discrepancy between the two terranes during the Jurassic. 

438 These refined chronological data now need to be more precisely taken into account by the current 

439 tectonic models which integrate the two terranes and the suture(s) they represent at the core of the 
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440 discussion.

441
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757 Table 1. Jurassic radiolarian taxa and ages from the Cache Creek Terrane

Locality, 
Region

Subterrane or unit, 
map area & UTM 
coordinates
 

Lithology, 
Sample, GSC 
locality number 
when available

Radiolarian assemblage Original age,
Reference(s)

New or revised 
age

Generic assemblage or 
correlation to biozones 
(when applicable)

J1
southern 
British 
Columbia

western belt 

Pavilion
NTS 092I13
UTM zone 10
581045E
5646753N

siliceous argillite
NEO-R2
GSC C-300438
(previously R2, 
Cordey et al. 
1987, Cordey 
1998)

Archaeodictyomitra sp., 
Homoeoparonaella sp. cf. 
reciproqua, Hsuum sp., 
Pseudocrucella? sp., Thurstonia sp., 
Trillus sp., Xiphostylus? sp., Zartus 
sp.

Early Jurassic 
(Pliensbachian- 
Bajocian)
(Cordey et al. 
1987, Cordey 
1998)

Early Jurassic 
(Early 
Pliensbachian - 
Early Toarcian)

Co-occurrence of 
Thurstonia, Trillus and 
Zartus (O’Dogherty et al. 
2009) 

J2
southern 
British 
Columbia

western belt

Alkali Lake
NTS 092O16 
UTM zone 10
548240E
5749410N

gray-green 
radiolarian chert
92-PBR-C92-78F
GSC C-210033

Canutus sp., Lantus sp., 
Orbiculiformella sp., Parahsuum sp., 
Praeconocaryomma sp.

Early Jurassic 
(Sinemurian-
Pliensbachian)
(Cordey, unp. 
data; Read 
1993)

Early Jurassic 
(Early 
Pliensbachian - 
Early Toarcian)

Co-occurrence of 
Canutus and Lantus 
(O’Dogherty et al. 2009)

J3
central 
British 
Columbia

Blackwater River

Punchaw Lake
NTS 093G6 
UTM zone 10
490750E
5904150N

gray radiolarian 
chert
95FC-21-4
GSC C-303032

Atalantria sp., Beatricea? 
argescens, Bipedis japonicus, 
Broctus sp., Broctus? sp., 
Canoptum rugosum, Canoptum sp. 
cf. dixoni,Charlottea sp., Katroma 
sp. cf. elongata, Lantus sp. cf. 
praeobesus, Laxtorum sp., 
Orbiculiformella? trispina s.l. (Yeh), 
Orbiculiformella sp., 
Palaeosaturnalis sp., Parahsuum 
simplum, Parahsuum vizcainoense, 
Praeconocaryomma sp. cf. sarahae, 
Thurstonia sp., Spumellaria gen. sp. 
indet.

Early Jurassic 
(Pliensbachian)
(Cordey and 
Struik 1996,
Orchard et al. 
2001)

Early Jurassic 
(Early 
Pliensbachian)

Interval from the middle 
part of the Canutus tipperi 
– Katroma clara Zone to 
the base of the Gigi fustis 
– Lantus sixi Zone 
(Unitary associations UA 
04-12) (Carter et al. 
2010).

J4
central 
British 
Columbia

Tezzeron 
succession

Pinchi Lake
NTS 093K9
UTM zone 10, 
418200E
6049406N

limy siltstone
97-SCB-3602
GSC C-209935

Emiluvia? sp. A, Hsuum lucidum, 
Paronaella grahamensis,
Praeconocaryomma decora gr., 
Praeparvicingula tlellensis

Early Jurassic 
(Toarcian)
(Struik et al. 
2001, Orchard 
et al. 2001)

Early Jurassic 
(Middle - Late 
Toarcian)

Interval represented by 
the Elodium pessagnoi – 
Hexasaturnalis 
hexagonus Zone (Carter 
et al. 2010)

J5
northern 
British 
Columbia

French Range

Little Dease Lake
NTS 104J09
UTM zone 10,
419000E
6508000N

siliceous argillite
MMI99-34-12

Parahsuum izeense, 
Orbiculiformella? trispina s.l., 
Praeconocaryomma sp. cf. sarahae, 
Praeconocaryomma sp., Thurstonia 
sp.

Early Jurassic 
(Pliensbachian-
Toarcian)
(Mihalynuk et 
al. 2004)

Early Jurassic 
(Pliensbachian - 
Early Toarcian)

Co-occurrence of 
Parahsuum izeense and 
Thurstonia (Carter et al. 
2010, O’Dogherty et al. 
2009).

J6
Yukon

Teslin Plateau

Mount Bryde
NTS 105C03 
UTM zone 10,
599028E
6676847N

siliceous argillite 
interbedded with 
sandstone
90FC-56-6
GSC C-177569

Bipedis sp., Broctus sp., Canoptum 
anulatum, Canoptum sp., 
Hagiastrum majusculum, 
Homoeoparonaella sp., Lantus sixi, 
Napora cerromesaensis, 
Pantanellium cumshewaense, 
Parahsuum izeense, 
Praeconocaryomma? sp. cf. 
yakounensis, Thurstonia sp., 
Wrangellium sp.

Early Jurassic 
(Pliensbachian-
Early Toarcian)
(Cordey et al. 
1991)

Early Jurassic 
(late Early 
Pliensbachian - 
Late 
Pliensbachian)

Interval from the base of 
the Gigi fustis – Lantus 
sixi Zone to the middle 
part of the Eucyrtidiellum 
nagaiae – 
Praeparvicingula tlellensis 
Zone (Unitary 
associations UA 12-22; 
Carter et al. 2010)

J7
Yukon

Teslin Plateau

Mount Bryde
NTS 105C03
UTM zone 10,
600094E
6673025N

black radiolarian 
chert
90FC-63-2
GSC C-177580

Beatricea? argescens, Canoptum 
sp. cf. anulatum, Canoptum sp., 
Praeconocaryomma sp. cf. 
immodica, Wrangellium sp.

Early Jurassic 
(Sinemurian-
Toarcian)
(Cordey et al. 
1991)

Early Jurassic 
(Late Sinemurian 
- Late 
Pliensbachian)

Co-occurrence of 
Beatricea and 
Wrangellium (O’Dogherty 
et al. 2009)

J8
Yukon

Teslin Plateau

Mount Bryde
NTS 105C03
UTM zone 10,
600094E
6673025N

dark gray 
radiolarian chert
90FC-63-9
GSC C-177587

Beatricea? argescens, Bipedis sp., 
Canoptum sp. cf. dixoni, 
Gorgansium sp., Pantanellium sp., 
Parahsuum sp., 
Praeconocaryomma sp., 
Wrangellium sp.

Early Jurassic 
(Sinemurian-
Toarcian)
(Cordey et al. 
1991)

Early Jurassic 
(Late Sinemurian 
- Late 
Pliensbachian)

Co-occurrence of 
Beatricea, Bipedis, and 
Wrangellium (O’Dogherty 
et al. 2009)
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759 Figure captions

760 Figure 1 (colour online and printed). Paleozoic to early Mesozoic terranes of the Canadian 

761 Cordillera and location of the Cache Creek Terrane. Modified from Piercey and Colpron (2009). 

762

763 Figure 2. Geographic location of Jurassic radiolarian assemblages from the Cache Creek Terrane 

764 (J1 to J8, Table 1). Black frame: Fig. 3a (type locality of the terrane).

765

766 Figure 3. a: Distribution of Paleozoic and Mesozoic rock units in the type locality of the Cache 

767 Creek Terrane and position of the study area for locality J1 (Fig. 2). Geology from Monger 

768 (1985). b: Geological map of the Pavilion area and location of the Early Jurassic radiolarian 

769 sample NEO-R2. Geology from Monger and McMillan (1984), Mortimer (1987), and Cordey et 

770 al. (1987).

771

772 Figure 4. Synthetic lithostratigraphic successions of the Cache Creek Terrane in its type locality 

773 (southern British Columbia). The locality numbers (C-) refer to the Geological Survey of Canada 

774 database and the radiolarian localities from Cordey (1998). Black lines (eastern belt): age of 

775 blocks (Cache Creek mélange). Conodont data from Orchard (1981, 1984), Beyers and Orchard 

776 (1989, 1991); fusulinid data from Monger and Ross (1971). Geological time scale from Cohen et 

777 al. (2013). G: Guadalupian; L: Lopingian. LO: Lower.

778

779 Figure 5. Early Jurassic radiolarians from the Cache Creek Terrane. For each picture: taxon, 

780 sample, locality (Table 1), length of scale bar. 1. Thurstonia sp., NEO-R2, J1, 150 μm. White 

781 arrows point to fifth and sixth spines. 2. Thurstonia? sp., NEO-R2, J1, 170 μm. 3-7: Thurstonia 

782 sp.; 3-5: 90FC-56-6, J6, 160 μm; 6: MMI99-34-12, J5, 110 μm; 7: 90FC-56-6, J6, 180 μm. White 
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783 arrows point to sixth spine. 8-9. Spumellaria gen. sp. indet., 95FC-21-4, J3, 165 and 140 μm. 10. 

784 Pantanellium cumshewaense Pessagno & Blome, 90FC-56-6, J6, 110 μm. 11-12. Trillus spp., 

785 NEO-R2, J1, 120 μm. 13. Zartus sp., NEO-R2, J1, 115 μm. 14. Charlottea sp., 95FC-21-4, J3, 

786 115 μm. 15. Palaeosaturnalis sp., 95FC-21-4, J3, 160 μm. 16. Hagiastrum majusculum Whalen 

787 & Carter, 90FC-56-6, J6, 170 μm. 17. Homoeoparonaella sp. cf. reciproqua Carter, NEO-R2, J1, 

788 220 μm. 18. Homoeoparonaella sp., 90FC-56-6, J6, 140 μm. 19. Orbiculiformella sp., 95FC-21-

789 4, J3, 170 μm. 20. Orbiculiformella? trispina s.l. (Yeh), 95FC-21-4, J3, 150 μm. 21. Beatricea? 

790 argescens Cordey, 90FC-63-2, J7, 160 μm. 22. Praeconocaryomma? sp. cf. yakounensis Carter, 

791 90FC-56-6, J6, 150 μm. 23-24. Praeconocaryomma sp. cf. sarahae Carter; 23: 95FC-21-4, J3, 

792 130 μm; 24: MMI99-34-12, J5, 160 μm.

793

794 Figure 6. Early Jurassic radiolarians from the Cache Creek Terrane. For each picture: taxon, 

795 sample, locality (Table 1), length of scale bar. 1. Lantus sixi Yeh, 90FC-56-6, J6, 110 μm. 2. 

796 Lantus sp. cf. praeobesus Carter, 95FC-21-4, J3, 110 μm. 3. Broctus sp., 95FC-21-4, J3, 100 μm. 

797 4. Broctus sp., 90FC-56-6, J6, 130 μm. 5. Xiphostylus? sp., NEO-R2, J1, 140 μm. 6. Katroma sp. 

798 cf. elongata Carter, 95FC-21-4, J3, 150 μm. 7. Parahsuum vizcainoense Whalen & Carter, 95FC-

799 21-4, J3, 90 μm. 8. Parahsuum izeense (Pessagno & Whalen), 90FC-56-6, J6, 140 μm. 9. 

800 Canoptum sp., 95FC-21-4, J3, 100 μm. 10. Canoptum rugosum Pessagno & Poisson, 95FC-21-4, 

801 J3, 90 μm. 11-12. Canoptum spp., 90FC-56-6, J6, 120 μm. 13. Broctus? sp., 95FC-21-4, J3, 110 

802 μm. 14. Canoptum sp. cf. anulatum Pessagno & Poisson, 90FC-63-2, J7, 120 μm. 15. Canoptum 

803 sp. cf. dixoni Pessagno & Whalen, 95FC-21-4, J3, 120 μm. 16. Atalantria sp., 95FC-21-4, J3, 120 

804 μm. 17. Laxtorum sp., 95FC-21-4, J3, 130 μm. 18. Wrangellium sp., 90FC-56-6, J6, 120 μm. 19. 

805 Hsuum sp., NEO-R2, J1, 110 μm. 20. Archaeodictyomitra sp., NEO-R2, J1, 130 μm. 21. Bipedis 

806 sp., 90FC-56-6, J6, 110 μm. 22. Bipedis japonicus Hori, 95FC-21-4, J3, 130 μm. 23. Napora 

807 cerromesaensis Pessagno, Whalen & Yeh, 90FC-56-6, J6, 105 μm.
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808

809 Figure 7. Synthesis of the youngest Jurassic radiolarian ages of the Cache Creek Terrane. 

810 Previous age determinations: J1: Cordey et al. (1987), Cordey (1998); J2: Read (1993), Cordey 

811 (unpub. data); J3: Cordey and Struik (1996), Orchard et al. (2001); J4: Struik et al. (2001), 

812 Orchard et al. (2001) ; J5 : Mihalynuk et al. (2004) ; J6-J8 : Cordey et al. (1991).

813

814 Figure 8. Radiolarian age ranges and correlations of youngest Cache Creek strata in British 

815 Columbia and Yukon. The hatched band materializes the youngest common age range of 

816 siliceous rocks (radiolarian cherts and siliceous argillites); limy siltstones at J4 are not included in 

817 the correlation. The gray band shows the hypothetical age range of the youngest siliceous 

818 argillites overlying the youngest well-dated radiolarian cherts (J3, Early Pliensbachian). The 

819 oblique line represents the maximum age difference of the youngest well-dated hemipelagic 

820 rocks (siliceous argillites) between southern British Columbia (J1) and Yukon (J6); this interval 

821 (late Early Pliensbachian to Early Toarcian) is ~8 m.y. (~188−180 Ma, Cohen et al. 2013).

822
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