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Abstract

This paper studies the suitability of System-on-Chip (SoC) devices to perform
Embedded Real-Time Simulators (eRTS) of electrical systems. These new de-
vices combine powerful ARM processors, a Field-Programmable Gate Array
(FPGA) and other peripherals which make them very convenient for control-
ling, monitoring and emulating a complete electrical system. There are two
main categories of elements with their own respective characteristics and con-
straints: electromechanical/electromagnetic systems, and switching elements.
Accordingly, the proposed investigation will focus on a Doubly-Fed Induction
Generator (DFIG) on one hand, and on a Modular Multi-level Converter (MMC)
on the other hand. In addition to Real-Time (RT) simulation results, SoC
time/resources evaluations will be presented for different implementation strate-
gies: full-software, full-hardware based on High-Level Synthesis (HLS) tools,
and using 64/32-bit floating- and fixed-point formats. The validity of the MMC
implementation will be tested experimentally.
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1. Introduction

Recent industrial controllers of electrical systems are becoming more sophis-
ticated and demanding year after year [1, 2]. In addition to standard control
strategies, these emerging controllers are integrating new functionalities such
as Embedded Real-Time Simulators (eRTS). The latter can be advantageously
deployed within the control closed-loop as estimators, observers, applied for
diagnosis and health-monitoring, or also for sensorless and fault-tolerant con-
trol purposes [3, 4]. Moreover, these eRTS can be applied in the context of
Hardware-In-the-Loop (HIL) so as to test virtually the system controller before
its deployment on the real plant, avoiding the well-known experimental dam-
age risks [3, 5, 6, 7, 8]. Then, when implementing such model-based eRTS, the
main issue of interest is how to balance between the accuracy of the model, the
system dynamics, the simulation time step (implicitly the execution time) and
the needed mathematical computations to be executed on the chosen digital
platform.

To face these implementation issues, a wide range of powerful devices are now
available in the market. Among them, recent System-on-Chip (SoC) platforms
are surely the most promising since they bring new design paradigm thanks to
their heterogeneity and their computational power [9]. Heterogeneity because
they include in the same chip hard processor cores, an FPGA fabric associated
to several peripherals like analog/digital converters; and computational power
thanks to the high level of available hardware resources and of course computa-
tional speed [10, 11]. Hence, the design of an eRTS can be achieved either with
a full-software implementation using the processor cores, with a full-hardware
implementation using the FPGA logic, or with a mixed software/hardware im-
plementation by distributing the treatment between the two parts [12].

In addition to this technological evolution, the design tools have also been
subject of important progress so as to make the development cycle more man-
ageable. This is specifically true when dealing with full-hardware FPGA-based
implementation where the limit is sometimes related to the VHDL program-
ming [13, 14]. An example of design tool that bring a solution to this point
is the Vivado High-Level Synthesis (HLS) provided by Xilinx [15]. Indeed,
this tool generates a full-hardware design directly from a C/C++ or SystemC
source code. Then, by inserting directives and constraints to the source code,
this tool can produce different hardware implementations (full-combinatorial
design, pipelined design, parallel or factorized design, etc.).

Having in mind all these potential features, the proposed paper can be seen
as an extension of works [12, 16] and its aim is to evaluate these SoC plat-
forms through the development of complex eRTS. The Xilinx’s Zynq-7000 All
Programmable SoC device has been chosen and two case studies have been main-
tained: the eRTS of a Doubly Fed Induction Generator (DFIG) and the one of
a Modular Multi-Level converter (MMC). The idea is to evaluate the computa-
tional power, the resources utilization and of course the precision of the results.
For the first study, since the DFIG has low/medium system dynamics (elec-
trical and mechanical ones), both a full-software implementation using solely
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the PS and full-hardware implementation using HLS to program the FPGA
will be evaluated with different design optimizations and data formats (64/32-
bit floating-point, 32-bit fixed-point). However, because of its harsh dynamics
(switching dynamics), the MMC will be implemented only with a full-hardware
approach coded using as well HLS tools. For the MMC application the fidelity
of the eRTS will be tested experimentally.

The paper is then organized as follows: Section 2 gives more details about
the chosen Zynq platform and its associated HLS tool used to program the
FPGA fabric. The adopted evaluation methodology is also recalled. Section 3
and 4 are respectively dedicated to the DFIG and the MMC case study, followed
by conclusions drawn in Section 5.

2. eRTS platform description and methodology

2.1. The Zynq

Recently, Xilinx Inc. provides a new reconfigurable device called Zynq-7000
All Programmable SoC, which integrates the programmability of an ARM-based
hardwired processing system (PS) with the hardware flexibility of an FPGA [10].
Additionally, other useful peripherals like Analog-to-Digital Converters (ADC),
external Direct Memory Access (DMA) controllers, Floating-Point Units (FPU),
and I/O peripherals and interfaces are integrated in the same device as well.
All of them are interconnected using AXI point-to-point channels for commu-
nicating addresses, data, and response transactions between master and slave
clients [17]. All the system components can be accessed using physical addresses
except for the CPU cores and their L1 instruction caches. The memory map of
the Zynq device defined in [18] indicates the address range of each logic block.

The Dual-Core ARM® Cortex�-A9 processor comes with two embedded
hardware accelerators: The NEON SIMD (Single Instruction, Multiple Data)
and the VFPv3 which is a Floating-Point Unit (FPU). The NEON technology
is a 128-bit SIMD architecture extension designed initially to provide flexible
and powerful acceleration for consumer multimedia applications [19]. It has
32 registers, 64-bits wide (dual view as 16 registers, 128-bits wide), which are
shared with the FPU. It can process multiple operations of the same type (e.g.
multiplications, divisions, subtractions or additions) simultaneously on different
registers, which increase considerably the performance of an algorithm. How-
ever, 64-bit floating-point operations are not supported but 32-bit are. Regard-
ing the VFPv3 FPU, it provides hardware support for floating-point operations
in 16-, 32-, and 64-bit arithmetic. It supports basic instructions such as addi-
tion, subtraction, multiplication, division, multiplication-addition, and square
root [20]. The use of these hardware accelerators is done automatically by set-
ting the compiler optimization to -O3 and adding the corresponding compiler
options stated in [21].

2.2. HLS

The traditional way of programming an FPGA is by using Hardware De-
scription Languages like VHDL or Verilog to describe the connections between
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the different internal components of the Programmable Logic (PL). However, in
this paper an HLS tool is used which translates the function coded in C/C++ or
SystemC into Register Transfer Level (RTL) and then, it is synthesized in order
to program the FPGA fabric. The Vivado HLS software provided by Xilinx
Inc. includes several libraries giving support for arbitrary precision data types,
data streaming, math, linear algebra, or data signal processing among others
[15].

This platform allows the use of test bench files written in C or C++ which
eases significantly the debugging and verification of the proper functioning of
the whole algorithm, avoiding the necessity of creating complicated HDL test
bench files commonly used in hardware designs.

Moreover, the C synthesis process can be controlled through optimization
directives which allow to generate different hardware implementations from the
same source code. Among the endless possibilities these directives provide there
are some which are more likely to be used, like pipelining the data paths, inlining
external functions, reduce BRAM usage by resizing and rearranging arrays, or
unrolling loops to execute them in parallel and reduce the total latency. A good
study of different HLS tools available in academia and the market can be found
in [22].

Once the algorithm is finished and ready to be tested, an Intellectual Prop-
erty (IP) is generated which will be added to the hardware design using Vivado
IP Integrator. Then, instantiating a Zynq processing system, Vivado Design
Suite preconfigures the platform with the correct peripherals, drivers, and mem-
ory map to use both software and hardware IPs like the ones just developed using
HLS.

2.3. Implementation

When implementing an eRTS in a heterogeneous system like the Zynq, and
considering that the models are coded in C/C++, one can think of different
approaches:

� A software implementation using the ARM. The mathematical model is a
function that is called from within the main program.

� A hardware implementation using HLS to program the FPGA fabric using
C/C++, which allows to modify easily the size and format of the variables
in order to study different implementations in either fixed- as floating-
point.

� A combination of both where some parts can run in software and some
others in hardware. This is known as hardware accelerators and for some
applications they can help reducing the total algorithm execution time.
When this option is going to be implemented, a shared memory space
has to be used in order to send data between the PS and the PL. This
approach was covered in [12] and evaluates two different implementations,
one using BRAM and the other using the On-Chip Memory (OCM).
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DFIG LoadDFIG

Converter Control
board

Figure 1: DFIG connected to an isolated load

Considering the characteristics of the two systems studied in this paper, different
scenarios are used to evaluate the capabilities of the SoC when implementing
the corresponding eRTS. In Section 3, the case of an electromechanical system
is explained, whereas in Section 4, the case of a power electronics system is
elucidated.

3. eRTS for electromechanical systems

In this section, the capabilities of the Zynq-7020 mounted in the ZedBoard
are evaluated and analysed through the implementation of a DFIG. This eval-
uation board is an economical platform for developing controllers broadly used
in academia and industry. Regarding the machine, the decision has been taken
because it is a quite popular generator used for windgeneration and it has a
representative complexity compared to other electromechanical systems. Two
implementation approaches have been adopted: (i) a full-software ARM-based
implementation, and (ii) a full-hardware one using HLS. The device performance
is evaluated in terms of execution time, resources utilisation and precision of the
calculations.

3.1. The DFIG

A schematic of the complete system where the generator under study is used
can be seen in Figure 1. It is composed of the DFIG, a power converter, and a
three-phase RL load. This is a typical setup for an islanded generator feeding
an isolated load [23, 24].

The dynamic behavior of a DFIG can be described using equations 1 to 4.
Though, these equations have to be converted to the dq reference frame [25]
before being programmed on the Zynq. Some simplifications are adopted like
neglecting the saturation, hysteresis and iron losses, and not considering the
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temperature effect on the windings. More information about the model, the dq
reference frame equations, and the discretization method utilised can be found
in previous works of the same authors [16].

vs = Rsis +
d

dt
ϕs + jωsϕs (1)

vr = Rrir +
d

dt
ϕr + jωrϕr (2)

ϕs = Lsis +Msrir (3)

ϕr = Msris + Lrir (4)

It has to be mentioned that only the DFIG dq model is evaluated in this
study. Therefore, neither the converter, nor the load, nor the dq reference frame
conversions are taken into account. The inputs of the model are vsd, vsq, vrd,
vrq, and Tm; and their outputs isd, isq, ird, irq, and Te.

3.2. DFIG implementation

Four different solutions will be evaluated which can be grouped into two:

� Full-Software: One version featuring 64-bit floating-point variables, and
another one featuring 32-bit floating-point variables. It has to be pointed
out that this is the easiest and most straightforward implementation. It
is supposed that all the system modules are implemented in the PS and
hence, all the system variables are stored in the same memory space which
facilitates and reduces the implementation time considerably.

� Full-hardware: In this case, the two versions are one using 32-bit floating-
point variables and the other 32-bit fixed-point variables. The design and
development of these versions comprise managing variables and commu-
nications between the different system blocks, which can be more time
consuming than the computation itself if care is not taken.

All these four different versions will be compared in terms of accuracy of the
results with a Simulink implementation of the continuous time model equations,
setting a 100ns fixed time step, using Runge-Kutta ODE4 solver and double-
precision (64-bit) floating-point variables. This solver was chosen to produce the
reference values because of its high accuracy. Moreover, these implementations
are studied considering two common case scenarios: (i) one when the speed of
the shaft change between ±30% around the synchronous value; and (ii) another
one when the load pass from consuming 50% to 85% of the nominal power at
constant speed. The variation of the input signals on each of these experiments
can be seen in Figures 2 and 3, along with the speed of the shaft which is an
internal variable. Currents and voltages are shown in per unit whereas omega
and torque are in rad/s and Nm respectively.

It has to be taken into account that the reference data has the same sampling
time of the shortest implementation: 100ns. The other are multiple of this value
in order to be coherent with the sampling time of the calculations.
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Figure 2: DFIG input signals from the mechanical load and controller - Speed change test

The error is calculated using equation 5.

eavg =

∑
|xref − ximp|

N
(5)

where xref is the reference signal obtained in Simulink, ximp is the actual
implementation result, and N the number of samples.

3.2.1. Full-Software implementation

As mentioned before, this is the easiest and most straightforward implemen-
tation. Compiler optimization options are used to infer automatic vectorization
which implies arranging data and operations in a proper way to be executed by
the NEON SIMD and the VFPv3 FPU at a CPU clock frequency of 667MHz.
In some cases it reduced the execution time by 80% while maintaining the same
precision in the results [16].

DFIG 64-bit Floating-point Software Version. When using double-precision floating-
point variables, the time needed by the DFIG function to return the values was
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Figure 3: DFIG input signals from the mechanical load and controller - Load change test
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Table 1: 64-bit Floating-point average errors (SW version)

Speed change test Load change test

isd 7.302e−8 1.739e−6

isq 6.947e−8 2.064e−6

ird 7.328e−8 1.599e−6

irq 4.724e−8 1.884e−6

Te 1.451e−6 4.289e−5

Table 2: 32-bit Floating-point average errors (SW version)

Speed change test Load change test

isd 1.136e−3 1.986e−3

isq 7.959e−4 2.057e−3

ird 1.222e−3 1.896e−3

irq 7.554e−4 1.925e−3

Te 1.674e−2 4.485e−2

372ns.
Then, in order to evaluate the results obtained by this version, a comparison

with the Simulink continuous-time model equations is performed. Results of
both experiments can be seen in Table 1. The values are in p.u.

DFIG 32-bit Floating-point Software version. On the other hand, when using
single-precision floating-point variables, the execution time needed by the IP
was not significantly smaller: 367ns. This gives us an idea about how optimized
are these CPUs to perform 64-bit operations, even though their architecture is
based on 32-bit.

The error results when comparing this version with the Simulink model can
be seen in Table 2.

Opposing the errors of both software implementations and taking into ac-
count that the difference in execution time is barely noticeable, it is obvious that
using double-precision floating-point variables is the most convenient choice.

3.2.2. Full-hardware implementation

During the development of this version, it was found that the best way
to make the full-hardware treatment faster than the full-software one, was to
realize a full combinatorial treatment (i.e. zero latency). By default, HLS uses
a 100MHz clock. So to boost the treatment, the fabric clock was reduced to
5MHz in order to ensure a full combinatorial treatment.

DFIG 32-bit Floating-point Hardware Version. The HLS execution time estima-
tion of this version was 172ns. This means that during one clock cycle (200ns),
the full combinatorial simulation step is achieved after 172ns. Conversely, when
mantaining the clock to 100MHz, the tool adds pipelining registers in order
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to optimize the combinatorial paths which leads in computing the model in
76 clock cycles, thus 760ns which is larger than full-software version. Table 3
presents the corresponding consumed resources.

Regarding the accuracy of the results in the Speed and Load tests, they do
not differ significantly from the 32-bit Floating-point version. See Table 3 for
more details.

However, empiric evaluations showed that the time estimation is not what
the IP really needs to stabilize the combinatorial output. After running the
place and route, the timing analysis summary says that the longest data path is
256ns. Notwithstanding, the model was tested empirically in the ZedBoard and
looking at the waveform the results showed that the outputs were stabilized
between 70 and 80ns. Even though the results were correct, care should be
taken when considering the smaller times as there is a data path that exceeds
the 200ns.

To end with, a 64-bit floating-point version of the DFIG model was also
examined. However, the amount of DSP blocks available in the Zynq-7020 was
not enough to obtain a hardware solution comparable to the software version in
terms of execution time.

DFIG 32-bit Fixed-point Hardware Version. The aim to study a Fixed-point
version was because the logic involved in the mathematical operations is simpler
than its Floating-point counterpart, and hence, the execution may be shorter
and the area utilisation should be reduced significantly. As the model uses p.u.
variables, it was easy to define the format of the fixed-point word for voltages
and currents: 32Q30, which uses 1 sign bit, 1 integer bit, and 30 fractional bits.
However, for the torque and angular speed the format used was 32Q23, which
uses 1 sign bit, 8 integer bits, and 23 fractional bits. This allows the current and
voltage signals to be between the range [−2, 2[, whereas the torque and omega
can vary between [−256, 256[.

Here again, a long clock period has been defined in order to let HLS syn-
thesize the IP in full combinatorial. After the HLS tool finished the synthesis,
estimations said that the fixed-point version executes all the necessary opera-
tions in 110ns using the resources shown in Table 5. Again, these results did
not match after executing the place and route, which showed that the longest
path needed only 76ns. Moreover, after programming and running the model in
the real system, the waveform captured by the Integrated Logic Analyzer (ILA)
showed that the output results were valid and stable after 20ns letting the DFIG
model to be executed in a very short time. But once again, experimental re-
sults should be considered with care as according to the timing summary, which
takes into account worst-case scenario (highest temperature and lowest device
supply voltage) there is a critical path which needs 76ns to output a valid value.
Notwithstanding, taking into account a system of these characteristics where the
time constant is much slower than those 100ns, executing the calculations very
fast can be seen as a great advantage. The model could be improved adding
some other characteristics like aging, losses, etc., and having enough time to be
able to follow the system’s dynamics.
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Table 3: 32-bit Floating-point absolute average errors (HW version)

Speed change test Load change test

isd 4.957e−4 1.848e−3

isq 5.937e−4 1.837e−3

ird 5.788e−4 1.745e−3

irq 4.595e−4 1.705e−3

Te 5.877e−4 2.132e−3

Table 4: 32-bit Fixed-point absolute average errors (HW version)

Speed change test Load change test

isd 4.391e−4 5.657e−4

isq 8.225e−4 4.351e−4

ird 4.706e−4 6.015e−4

irq 7.842e−4 3.971e−4

Te 8.680e−2 5.165e−3

The average absolute errors compared with the Simulink 64-bit Floating-
point version can be seen in Table 4.

4. eRTS for power electronics systems

Some might think that it would have been more appropriate to use the power
converters connected to the DFIG to test the device in a power electronics appli-
cation. However, this work has already been done and can be found extensively
in the literature [3, 8, 7]. The aim of this paper is however to use a scalable
power converter with a more complex structure in order to exploit the device at
maximum coping with the eRTS requirements. Hence, an MMC was chosen as
the application to be studied [26]. The idea is to have a block which estimates
the arm current based on the total DC voltage, the voltages of the Half-Bridge
(HB) capacitors, and the PWM signals. This block could be used in the context
of a fault-tolerant embedded controller where this estimated current will be used
in case of a current sensor fault.

A broad comparison changing the number of cells per arm and using different
variable formats is made as well, but conversely to the DFIG evaluation, in this

Table 5: FPGA hardware resources utilisation
Resource type BRAM DSP48E FF LUT

Available 280 220 106400 53200

Floating-point version 0 179 10832 24505
Usage (%) 0 81 10 46

Fixed-point version 0 128 353 1441
Usage (%) 0 58 ˜0 2
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case the selected device is the Zynq-7045. It has much more resources than
the mid-range Zynq-7020 which will be needed if the goal is to keep low the
execution time when increasing the number of submodules (SM) per arm.

4.1. The MMC

The basic structure of an MMC is shown in Figure 4. It is formed by N HB
SM per arm capable of producing a line-to-neutral voltage waveform of N + 1
levels [26]. An inductor Larm is added on each arm to limit current harmonics
and the fault current in the event of a DC fault. Each SM includes a capacitor
and two IGBTs with antiparallel diodes as shown in the enlarged part of Figure
4.

SMn
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SM1

SMn

SM2

SM1

SMn

SM2

SM1

SMn

SM2

SM1

SMn

SM2

SM1
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Figure 4: Structure of the MMC

The two IGBTs of each SM can be controlled through gate signals which
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allow two different states. In the on state T2 is fired and T1 is blocked and
accordingly, the SM voltage USM is equal to the capacitor voltage. Depending
on the arm current (Iarm) direction, the capacitor will be charged through
the IGBT or discharged through the diode (equations 6 and 7 respectively).
In the off state T1 is fired and T2 is blocked, resulting in USM = 0. The
capacitor voltage remains constant whatever the direction of Iarm is, but in one
case the current flows through the IGBT and in the other through the diode
(equations 8 and 9 respectively). These four possibilities depicted in Figure 5
show graphically these four current paths.
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Taking into account these four options, the output voltage of each SM can
be calculated using the following equations:

USM = RIGBT
ON Iarm + Vcap (6)

USM = Rdiode
ON Iarm + Vcap (7)

USM = RIGBT
ON Iarm (8)

USM = Rdiode
ON Iarm (9)

Concerning the digital implementation of the converter, a solver adapted to
the requirements of the application has to be chosen. Due to its simplicity and
low computational burden it was decided to use the Euler Backward’s discretiza-
tion method. Its accuracy when the step time is sufficiently low does not differ
significantly from other solvers with much more operations to be performed.

A diagram of the circuit used to validate the model in simulation and in the
experiments is the one shown in Figure 6. It is basically composed of three HB,
an inductor Larm, and a resistor Rload. The rest of the circuit includes a voltage
source Vac, an autotransformer AT , a diode based rectifier DB, and a filter
circuit formed by an inductor L and two capacitors C1 and C2 to smooth the
input DC voltage. The behavior of this circuit can be modeled using equation
10, being Si the switch signals for each SM.

VDC (t) =
∑

Si (t)Vcapi (t) + Larm
di (t)

dt
+Rloadi (t) (10)
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Figure 6: The MMC circuit diagram

Applying Euler Backward’s discretization method, equation 11 is obtained,
where x (k) is the value of x in the actual time step, x (k − 1) is the value of x in
the previous time step, and 4T is the sampling time. Then operating, equation
12 is solved for î (k), which is the one programmed on the FPGA fabric for its
use as eRTS.

VDC (k − 1) =
∑

Si (k − 1)Vcapi
(k − 1)+Larm

i (k)− i (k − 1)

4T
+Rloadi (k − 1)

(11)

î (k) = i (k − 1)+
4T
Larm

[
VDC (k − 1)−

∑
Si (k − 1)Vcapi

(k − 1)−Rloadi (k − 1)
]

(12)

4.2. MMC implementation

As previously said, the idea is to develop a full-hardware IP using HLS which
has as inputs the capacitor voltages Vcapi

, the PWM signals Si, and the input
DC voltage VDC as depicted in Figure 7. The only output is the estimated arm
current îarm.

Several HLS implementations were evaluated: changing the number of SM
per arm; and similarly to the DFIG study, changing the format of the variables
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Figure 7: The MMC model IP

between 64-bit floating-point, 32-bit floating-point, and 32-bit fixed-point. In
order to be fair between all the implementations, the same 100MHz clock was
utilised to drive the IPs, which was the best frequency in average for most of
the cases. The different results regarding FPGA area used can be seen in Figure
8. The results are shown in percentage of the total amount of every resource
available in the Zynq-Z7045, which are 1.090 BRAM blocks, 900 DSP units,
437.200 Flip-Flops, and 218.600 Look-up Tables (LUTs).
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Figure 8: MMC FPGA resources usage per arm

It can be seen that in all data formats the resources utilisation increase
linearly with different slopes though, but the number of DSP blocks in the
fixed-point case remains constant and equal to eight. This is because the sub-
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tractions of equation 12 are performed using LUTs instead of DSP units like in
the floating-point cases. It has to be kept in mind that these results are per
arm. Therefore, if the purpose is to simulate the whole converter, these results
have to be multiplied by the number of arms, hence 6. Consequently, the 128
and 64 HB solutions for the 64-bit floating-point version will not be possible to
be implemented on the selected device because of lack of resources if the idea is
to execute all the IPs in parallel.

Regarding the execution time, in Figure 9 can be seen that the difference
between the two floating-point versions is not significantly big. However, the
execution time of the fixed-point version is considerably low. This is due to the
low complexity of a fixed-point operation compared to a floating-point one. The
logarithmic-like shape visible in Figure 9b is due to the implementation of an
adder tree to perform the subtractions of the on capacitor voltages of equation
12, i.e.

∑
Si (k − 1)Vcapi

(k − 1). The execution time increases as a logarithmic
function of the number of SM, tcalc = f (log2 (N)). Consequently, attention has
to be taken in order to not overflow the result of the adder tree in the fixed-
point case. This can be done either by increasing the number of integer bits
at expense of the fractional bits hence loosing accuracy, or by expanding the
overall word length according to the number of levels of the adder tree.
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Figure 9: MMC execution time evaluations
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Figure 10: Experimental test bench subsystems

4.3. Experimental verification

All the subsystems that form the test bench are shown in Figure 10. They
were all built and assembled at the Institute of Automation and Industrial
Informatics (AI2) of the Universitat Politècnica de València, Spain.

Hence, in order to validate the developed eRTS, the test rig was configured
as depicted in Figure 4. It is formed of three HB connected in series to a 5mH
inductance Larm, a 40Ω resistor Rload, and to an AC voltage source through an
autotransformer and a diode based rectifier using a simple LC filter at the out-
put. Both inductance and resistor were identified using common identification
methods and the final values used in the model were 42.89Ω for the resistor, and
3.9mH for the inductance instead of their nominal values. It has to be said that
even though the inductance was working below its nominal value, its behavior
is not linear. Notwithstanding, the eRTS results were acceptable in terms of
accuracy and the estimated current did not diverge.

The SM were all fired with the same PWM signal at a switching frequency
of 5KHz to force the maximum current oscillation possible in order to be sure
that the current estimation does not diverge in harsh conditions.

There were performed two main tests setting the data acquisition of the
scopecorder at two different sampling ratios: One (i) sampling the voltage and
current signals at 10ns during 10ms for a first validation of the model; and
another (ii) sampling the signals at 2µs during 5s to validate that the model does
not diverge in mid-term simulations. The model is also validated for different
execution times which confirms that it can work when the number of cells per
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arm is big and the calculations need more time to be executed. In the same way
as in the DFIG study, three different data formats (64/32-bit floating-point and
32-bit fixed-point) are also compared for a three HB case. All these verifications
were performed using MATLAB and the Vivado Design Suite to confirm that
this model can be used as an eRTS.

4.3.1. Model validation

The proper functioning of the model was verified offline, executing the model
at the same sampling rate as the data acquisition, i.e. at 10ns. The eRTS was
configured to use 64-bit floating-point variables and its results are shown in
Figure 11. It can be seen that the estimation follows the curve quite well.
The small difference is due to the non-linearities of the inductance and the non
consideration of the RON voltage drop in the IGBTs and diodes, but it does
not affect at all the stability of the results.
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Figure 11: MMC Model validation

The equations used to generate the two error plots are equation 13 and 15:

eabs (k) = i (k)− î (k) (13)

erel (k) =

∣∣∣∣∣ i (k)− î (k)

i (k)

∣∣∣∣∣ 100
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Table 6: MMC execution time (in ns)

no. HB 64-bit float 32-bit float 32-bit fixed

3 250 190 30
4 260 200 30
8 300 230 30
16 350 270 30
32 400 310 30
64 450 350 30
128 500 390 40

Table 7: Mean integral errors for different execution times

eint (%)

64fl @ 10ns 5.587e−7

64fl @ 100ns 8.116e−6

64fl @ 200ns 1.708e−5

64fl @ 500ns 4.644e−5

64fl @ 1µs 7.502e−5

eint (k) =

k+1ˆ

k

erel(k)dx ' 4Ts
(
erel (k) + erel (k − 1)

2

)
(14)

eacc (k) =

k∑
k=1

eint (k − 1) (15)

Authors decided to use the mean value of the integral of the relative error
(equation 14) to obtain more easily comparable results. Hence, the mean value
of the integral error eint obtained for the whole 10ms period is 5.87e−7%. It
can be said that the model performs satisfactorily when running at 10ns.

Nevertheless, in none of the versions the model can be executed in less than
10ns. It is then necessary to execute the model at the same period required by
the IP to perform all the calculations to see if the model still emulating the real
system properly. The eRTS is then executed at 100ns, 200ns, 500ns, and 1µs
to be coherent with the execution time needed by the different models when
increasing the number of cells as seen in Table 6. Figure 12 shows the estimated
current of the different versions along with their absolute errors eabs in amperes
and the integral relative error accumulated eacc in %.

It can be seen that even executing the model at 1µs, the estimation does
not differ significantly compared to the version when it runs at 10ns. In Table
7 the mean integral relative errors are shown for comparison. It can then be
firmly said that the simple Euler Backward’s model chosen in this paper can be
utilised as an eRTS.
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Figure 12: MMC execution time comparisons

Table 8: Mean integral errors for different data formats

eint (%)

64fl @ 10ns 5.587e−7

64fl @ 250ns 5.879e−7

32fl @ 190ns 5.872e−7

32fx @ 30ns 5.862e−7

4.3.2. Data format comparison

In this subsection, the three proposed data formats are compared with the
measured current in an offline simulation. The execution rate of every IP is set
to their corresponding execution time for the three HB configuration (see Table
6), i.e. 250ns for the 64-bit floating-point, 190ns for the 32-bit floating-point,
and 30ns for the 32-bit fixed-point. It can be seen in Figure 13 that the errors
differ very little from each other. Moreover, when calculating the mean of the
integral error for the four different solutions it can be verified that the errors
are almost equal.

Watching at the results, it can be said that all three versions perform simi-
larly for the 3 HB case. The choice between one of them will be depending on
the number of SM per arm and the area available for the implementation.
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Figure 13: Data format comparison (10ms)

4.3.3. Longer horizon simulation

The last test performed is a 5s simulation sampling the data at 2µs and
the purpose is to verify that the current estimation does not diverge. Thus,
the second plot of Figure 14 shows that the absolute error (equation 13) re-
mains constant for the whole simulation period. Moreover, the last plot of the
same figure shows that the integral relative error accumulated (equation 15) in-
creases linearly and not exponentially as it would if the absolute error increased
overtime, corroborating the proper functioning of the model.

Figure 15 shows a more detailed view at different times of the simulation
(0s, 2.5s and 5s), which allows to visually verify that the estimation follows the
measured current throughout the whole period. The mean value of the integral
of the relative error (equation 14) for the whole simulation running the model
at 2µs is 3.371e−4%, which still remains a quite satisfactory result.

5. Conclusions

The objective of this paper was to evaluate how suitable is the Zynq SoC
platform to be used as eRTS of electromechanical and power electronic systems.
This study was achieved through the implementation of a DFIG and an MMC
both coded in C/C++.
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Figure 14: 5s simulation

For the DFIG case, four digital implementations have been made and anal-
ysed: Two full-software designs (32-bit and 64-bit floating-point) and two full-
hardware (32-bit floating-point and 32-bit fixed-point) generated by the HLS
tool. For each version, time/resources analyses were presented and discussed.
In addition, a Simulink continuous-time model using 100ns of simulation time
step and a Runge-Kutta ODE4 solver was taken as a reference to compare the
precision of the results in two different scenarios: (i) a ±30% progressive change
in the speed of the shaft; and (ii) a change in the load from 50% to 85% of the
nominal power of the generator.

For this first case study, results showed that in terms of accuracy, having
a model running with a time step four times shorter but half the precision
did not obtain better results than the 64-bit floating-point software implemen-
tation. Furthermore, using a 32-bit floating-point software implementation did
not reduce significantly the execution time compared with its 64-bit counterpart.
Hence, if the system is not execution-time critical, a software double-precision
version is recommended. However, if the best performance in terms of rapidity
of the calculations is needed, the fixed-point version implemented in the PL is
the most convenient solution.

As far as the MMC is concerned, authors were focused exclusively on full-
hardware implementations, still using the HLS tool. Then, there were compared
three different word formats: a 64-bit floating-point, a 32-bit floating-point, and
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Figure 15: 5s simulation enlarged

a 32-bit fixed-point; for 3, 4, 8, 16, 32, 64, and 128 HB cells per arm. Here again,
they were analysed in terms of resources usage, execution time, and precision
compared with values obtained from an experimental test bench.

For the MMC evaluation, an IP block containing the power converter equa-
tion necessary to estimate its arm current was programmed where the circuit
parameters, the number of HBs and the format of the variables can be changed
easily.

Regarding the area used in the floating-point versions, the resources utilisa-
tion increase linearly with the number of cells but the area used for the 32-bit
version is around the half of the 64-bit. This was not the case for the DSP
blocks used by the fixed-point version which remained fixed and equal to eight
due to the realization of the additions using LUTs instead of DSPs.

With respect to the execution time, both floating-point implementations do
not differ significantly. This is not the case of the fixed-point version, where
the execution time is way below their floating-point counterparts because is
specially benefitting from the implementation of an adder tree which performs
the HB voltage subtraction operations using LUT.

It has to be said as well that when using HLS tools is quite straightforward
to change the format and width of the variables, letting the tool to deal with all
the hardware operations automatically. The choice between them will be made
depending on the precision of the results needed, and the area available in order
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to best represent the behavior of the real system.
Taking the MMC IP as an example and considering possible real applications

of these eRTS, if the purpose is to monitor continuously the system in order
to evaluate if diagnostic actions need to be performed, a controller evaluating
windows of the integral of the relative error periodically could be included.
Therefore, a sudden error increase is detected could be caused by a system fault.
Different error scenarios with their corresponding actions should be studied. An
overcurrent could be caused by a short circuit in the load, or by a faulty IGBT.
Conversely, a decrease in the current could be caused due an IGBT failure or a
capacitor explosion, etc. Another plausible use of these eRTS could be in the
context of sensorless or fault-tolerant control. Regarding the latter, a current
sensor malfunction could be overcome by retrieving the current estimated by
the IP instead of the measured one.
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