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Abstract: Coherent quantum optics, where the phase of 
a photon is not scrambled as it interacts with an emit-
ter, lies at the heart of many quantum optical effects and 
emerging technologies. Solid-state emitters coupled to 
nanophotonic waveguides are a promising platform for 
quantum devices, as this element can be integrated into 
complex photonic chips. Yet, preserving the full coher-
ence properties of the coupled emitter-waveguide sys-
tem is challenging because of the complex and dynamic 
electromagnetic landscape found in the solid state. Here, 
we review progress toward coherent light-matter interac-
tions with solid-state quantum emitters coupled to nano-
photonic waveguides. We first lay down the theoretical 
foundation for coherent and nonlinear light-matter inter-
actions of a two-level system in a quasi-one-dimensional 

system, and then benchmark experimental realizations. 
We discuss higher order nonlinearities that arise as a 
result of the addition of photons of different frequencies, 
more complex energy level schemes of the emitters, and 
the coupling of multiple emitters via a shared photonic 
mode. Throughout, we highlight protocols for applica-
tions and novel effects that are based on these coherent 
interactions, the steps taken toward their realization, and 
the challenges that remain to be overcome.

Keywords: quantum photonics; nonlinear optics; wave-
guides; solid-state emitters.

1   Introduction
Quantum optical research no longer focuses solely on 
fundamental demonstrations of the quantum nature of 
atoms, photons, or their interactions, but rather integrates 
these constituents into increasingly complex systems. 
These provide an ever-growing view of the rich realm of 
many-body quantum physics [1] and bring us closer to 
functional quantum technologies such as quantum net-
works [2–4] and, ultimately, quantum computers [5, 6].

One basic element that has the potential to fulfill 
many of the functionalities required in complex, active 
quantum architectures is a quantum emitter coupled to 
a photonic waveguide, as sketched in Figure 1. Nanopho-
tonic waveguides confine and guide light and reshape the 
emission from dipole sources to match their fundamental 
mode [7–9], and can be engineered to strongly suppress 
emission into free space [10], resulting in efficient emitter-
photon coupling [11]. An emitter efficiently coupled to a 
waveguide can therefore act as a source of high-quality 
single photons [12], for example, for quantum information 
processing with linear optical systems [13, 14]. The strong 
confinement of light in waveguides also leads to the pres-
ence of a large longitudinal component of the electric 
field, and the interaction of this vector field with circu-
lar dipoles can result in unidirectional emission [15–19]. 
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These directional light-matter interactions enable the cre-
ation of chiral quantum optical elements such as optical 
isolators, single-photon routers, quantum logic gates, and 
even networks [20, 21].

Spurred by this potential, researchers have, in the 
past few years, worked to couple a variety of quantum 
emitters to waveguides, including single organic mole-
cules [22–25], a variety of color centers in diamond [26–29], 
atoms [30–33], quantum dots (QDs) [9], and supercon-
ducting qubits [34]. These systems, with the exception 
of superconducting qubits and free-space Rydberg-atom 
quantum optics that are covered by the latter review, have, 
over the last decade, been brought to the nanoscale.

The challenge to interfacing solid-state emitters with 
nanophotonic waveguides is in keeping the ensuing light-
matter interactions coherent. As sketched in Figure 1A, 
there are many possible sources of noise in solid-state 
systems, from ballistic or trapped charges near the emitter, 
to spin noise in the surrounding nuclear bath, to the cou-
pling to phonons or to vibration in the vicinity of the 

emitter [35–46]. The methods implemented to overcome 
these processes depend on the type of quantum emitter 
and include, for example, the careful crystallization of the 
host matrix of single organic molecules [22, 45], embed-
ding epitaxially grown QDs in a diode to shield them from 
electronic fluctuations [47, 48], using Purcell enhance-
ment to overcome dephasing [26, 49, 50], and searching 
for better shielded defects within diamond [51].

Here, we review the current state of the art in coher-
ent quantum optics in nanophotonic waveguides, focus-
ing on quantum optical nonlinearities. We begin with the 
theoretical background that describes coherent quantum 
optics of two-level systems in one dimension, highlighting 
the important parameters and figures of merits associated 
with these interactions, and the corresponding experi-
mental demonstrations. We then review higher order 
quantum optical nonlinearities, touching on effects that 
require multiple photons and extending beyond two-level 
systems, before concluding with a discussion of coherent 
quantum optics in multi-emitter systems.

2   Nonlinear response of a two-level 
system coupled to a waveguide

2.1   Transmission and reflection

Of the many theories developed to describe quantum 
light-matter interactions [52], the Green’s function for-
malism is particularly well suited to describe the coher-
ent interaction of guided photons with two-level systems 
(TLSs) [53]. This formalism allows for a full quantum 
treatment of  dispersive and absorbing open systems and 
therefore spans both plasmonic and dielectric wave-
guides and, importantly, can be extended to multi-emitter 
systems (Section 4). In this section, we briefly outline this 
formalism, focusing on measurable signatures of coher-
ent light-matter interactions with TLSs embedded in 
 one-dimensional waveguides.

The Hamiltonian describing the interaction of a TLS 
with light in a single photonic mode, in a reference frame 
rotating at the angular frequency of the light field ωP, is

 
Δ σ σ ω− + − ⋅  †

P P
ˆ ˆ ˆˆ ˆˆ ˆ= ( ) ( ) ( ),eg ge f r f r d E rH  (1)

where ΔP = ωP–ωA. The first term describes the TLS, whose 
transition energy is ħωA and whose coherences between 
the i and j levels are given by ˆ | | .ij i jσ = 〉〈  Likewise, the 
second term relates to the excitation of the light field, here 
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Figure 1: The basic system considered in this review: a quantum 
emitter coupled to a quasi-one-dimensional photonic waveguide.
The coherence of this quantum system is degraded by the 
interaction of the emitter with the solid-state environment, as 
discussed in the text. (A) Here, sources of noise such as charge, 
spin, phonons, and nearby defects are schematically depicted. (B) 
Emission, in this system, occurs either into the guided modes, with 
a rate Γ1D, or is lost into other modes with a rate Γloss.
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taken to have energy ħωP, described by the creation and 
annihilation bosonic operators f̂ and †ˆ .f

The last term of Eq. (1) describes the light-matter 
interaction, which is mediated by the transition dipole 
of the emitter. Here, the dipole operator can be written 
in terms of the dipole matrix elements = 〈 〉ˆ| |g ed d  as 

σ σ∗= +ˆ ˆ ˆ
eg ged d d  and ˆ ( )E r  is the electric field operator, to 

which we will return shortly.
First, however, it is instructive to consider solely the 

state of the emitter, using the reduced density matrix for 
the TLS ρ̂, which is related to the expectation values of the 
atomic operators through σ ρ〈 〉 =ˆ .ij ji  The emitter density 
matrix operator evolves according to [54]

 

ˆd ˆ ˆ ˆ[ , ] [ ],
d

i
t
ρ

ρ ρ= − +

H L  (2)

where the Lindblad operator for the single emitter system 
[55, 56]

 
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ[ ] (2 )

2
ij

ji ij ii ii
ij

Γ
ρ σ ρσ σ ρ ρσ= − −∑L  (3)

accounts for both the decay and decoherence of the 
emitter. For the emitter-waveguide system, this operator 
has three nonzero terms: Γeg ≡ Γ, which is the spontane-
ous emission rate associated with the transition from |e〉 
to |g〉, and Γee = Γgg ≡ Γdeph, which is the pure dephasing of 
the system through which it decoheres without undergo-
ing a transition.

Equation (2) can be solved using the rotating wave 
approximation and by assuming Markovian dephasing 

processes to yield the steady-state ρ
 

=  
d ˆ 0
dt

 elements of 
the reduced density matrix
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where Γ2 = Γ/2 + Γdeph and we have defined the Rabi fre-
quency to be ΩP = d · E/ħ for the driving field amplitude 
at the position of the emitter = 〈 〉.ˆE E  Note that the other 
two elements of the reduced density matrix are simply 
ρ ρ= −1gg ee and ρ ρ∗= .eg ge  Interestingly, Eq. (4) describes 
the spontaneous emission of the emitter, showing both 
the amplitude saturation and linewidth broadening as a 
function of ΩP.

To understand how the emitter interacts with 
photons propagating through the waveguide, we return 

to Eq. (1), now writing the electric field operator as 
ω ω ω+ −= +ˆ ˆ ˆ( , ) ( , ) ( , ),E r E r E r  where, in general [57]

 

2

0 I2
0

ˆˆ ( , ) d ( , )  ( , , ) ( , ),i
c
ω

ω μ ε ω ω ω
πε

+ ′ ′ ′ ′= ⋅∫E r r r G r r f r

 
(6)

and the negative frequency component of the field opera-
tor, ω−ˆ ( , ),E r  is the Hermitian conjugate of Eq. (6). Here, we 
explicitly note the frequency dependence of the different 
quantities (which, henceforth, will be removed for clarity 
and understood to be evaluated at ωP). The presence of the 
imaginary component of the dielectric function εI along 
side ˆ,f  as required by the fluctuation dissipation theorem 
[58], ensures that this formalism is valid for dispersive 
and absorbing systems. Intuitively, this equation states 
that the field at any position r is comprised of photons 
emitted at all positions r′, which then propagate back to r. 
This process is described by the Green’s tensor G(r, r′, ω), 
meaning that photons propagate through the system in 
the same manner as classical electromagnetic waves.

The dipole-projected Green’s function for a one-
dimensional waveguide, where light propagates in the z 
direction, is [59, 60]

 

2
0 A

P

( , ) ( ) ( , ) ( ),

e ,
2

i j i i j j

ik z zi ji

μ ω

βΓ

∗

−

= ⋅ ⋅

≈

g r r d r G r r d r
  (7)

where kP is the wavenumber of the photonic mode. Here, 
we define the emitter-waveguide coupling efficiency 
β ≡ Γ1D/Γ as the emission rate into the guided mode Γ1D 
normalized by the total emission rate Γ = Γ1D + Γloss (c.f. 
inset to Figure 1B). Following some algebra, this equation 
for g(ri, rj) allows us to rewrite Eq. (6) in terms of the inci-
dent field +

PÊ  and scattered field

 

βΓ
σ

Ω
+ + += +P P

P

ˆ ˆ ˆ ˆ( ) ( ) ( ) .
2 geiE r E r E r  (8)

Equations (4), (5), and (8) allow us to quantify the 
light-matter interaction of the TLS with guided photons. 
The transmission through the waveguide, for example, is 

− + − += 〈 〉 〈 〉,P P
ˆ ˆ ˆ ˆ/T E E E E  which can be written using Eq. (8) as

 

βΓ βΓ
ρ ρ ρ

Ω Ω

 
= + + −  

2

P P

1 ( ).
2 2ee eg geT i  (9)

The first term of this equation, which depends on the 
population of the excited state of the emitter, is typically 
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thought to govern the incoherent interactions, while the 
second term depends on the atomic coherences and is 
therefore viewed as the source of the coherent interac-
tions. This view is particularly attractive since σ〈 〉ˆ

ee  domi-
nates over σ〈 〉ˆ

eg  at high energies [c.f. Eqs. (4) and (5)]. 
In light of these equations and the prefactors of Eq. (9), 
however, it is clear that both terms have the same power 
dependence, and it is not so simple to separate the coher-
ent and incoherent contributions to the transmitted field.

Such a separation is, however, relatively straightfor-
ward in the low-power and no-detuning limit, where we 
can use Eqs. (4) and (5) to rewrite the transmission as

 

Γ Γ
β β

Γ Γ
≈ − + 2

2 2

1 ,
2

T  (10)

where it is clear that, in the limit of no pure dephasing, all 
terms contribute. If we then define the fraction of coher-
ent interactions to be βco ≡ Γ1D/2Γ2, we can rewrite the low-
power transmittance as

 
β β β β≈ − + −2

co co co(1 ) ( ),T  (11)

where the first and second terms are the coherent and 
incoherent contributions.

More generally, the transmission expressed in terms 
of the system parameters is

 

βΓΓ β
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−
= −

+ +
2

2 2 2
2 P 2 P

(2 )
1 .

2( 4( / ) )
T  (12)

Similarly, the reflection from the TLS is

 

β ΓΓ
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=

+ +

2
2

2 2 2
2 P 2 P

,
2( 4( / ) )

R  (13)

and, in the absence of absorption, the losses due to the 
scattering of light out of the waveguide mode is simply 
S = 1–T–R. Note that these equations have been derived 
for excitation by a weak, continuous wave beam, but they 
also hold for spectrally narrow single photons (in the limit 
of ΩP  1) [61].

A clear signature of the coherent interaction between 
a TLS and an emitter can be found in the transmis-
sion (and reflection) signals [62]. For a perfect system 
(β→1, Γdeph→0) in the low-power limit (ΩP→0), all single 
photons are reflected, leading to a perfect extinction 
of the transmission ΔT = T(ΔP = ± ∞)–T(ΔP = 0) = 1. As is 
evident from Eq. (12), this extinction depends nonlinearly 
on the power, coupling efficiency, and dephasing rate of 
the emitter. Perfect extinction is not possible with tightly 

focused plane waves, where a theoretical maximum of 
ΔT = 0.85 has been calculated [63]. Rather, perfect extinc-
tion in free space requires perfectly matching the dipole 
mode with the excitation beam, a notoriously difficult 
proposition that motivates the importance of nanopho-
tonic platforms. Waveguides, as we noted earlier, both 
reshape the radiation pattern of dipoles to match their fun-
damental modes [7, 8] and are non-diffracting, meaning 
that these structures are particularly well suited to ideally 
interface with quantum emitters.

Coherent extinction has recently been observed in a 
variety of systems, as summarized in Figure 2 and Table 1. 
Multiple organic molecules have been coupled coherently 
to a single nanoguide, each of which has a near-lifetime-
limited transition that can be addressed individually 
through spectral-spatial selection [22] (Figure 2A). Extinc-
tion up to ΔT ≈ 0.09 has been reported for this system [23]. 
Likewise, ΔT ≈ 0.18 has been measured for Ge vacancies, 
deterministically implanted in a diamond waveguide 
(Figure 2B) [28], and ΔT ≈ 0.67 for InAs QDs embedded 
in a gated nanobeam waveguide [64] (Figure 2C). In all  
cases, the limiting factor has been the β of the systems 
[c.f. Eq. (12)]. For nanoguides, such as those used in the 
aforementioned experiments, the maximum achievable  
β depends on the confinement of the guided mode, which, 
in turn, is a function of the refractive index ratio between 
the waveguiding medium and its surrounding, and the 
geometrical size of the waveguide. These dependencies 
are plotted in Figure 2D, where β is semianalytically calcu-
lated for nanoguides with circular cross-sections, showing 
the largest possible β for the different quantum emitters.

Alternatively, β could be increased through the use 
of photonic resonators, or highly structured systems 
such as photonic crystals. The generalization of Eqs. (12) 
and (13) to account for cavity Purcell enhancement is 
relatively straightforward and leads to the observation of 
Fano-like lineshapes in the transmission, as the phase of 
the photons that do not interact with the emitter is now 
dependent on their spectral detuning from the resonance 
[75]. Coherent and deterministic light-matter interactions 
have, in fact, recently been demonstrated with a single 
molecule [74], defect centers [68], and QDs [72] in micro-
cavities, where a ΔT ≈ 0.99  has been observed, albeit at 
the cost of operational bandwidth. Here, the emission 
into the photonic mode was Purcell enhanced, increasing 
the emission rate in the desired channel relative to other 
radiative channels and the dephasing rate. The nonlinear 
dependence of ΔT has been observed for both molecules 
[23] and QDs [64, 69, 70], where a critical flux of ≈1 photon 
per lifetime was found to saturate the emitter, as shown 
in Figure 3A, since it can only scatter a single photon at 
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a time. In a complementary fashion, the phase of a scat-
tered photon can be tuned, as the presence of a TLS funda-
mentally changes the response of a nanophotonic system, 
as shown in Figure 3B [67]. Altogether, these results hint at 
the power of coherent quantum optics in integrated pho-
tonic systems.

2.2   Nonlinearity and photon statistics

A more profound signature of the coherent nonlinearity 
of the TLS can be found in the ensuing photon statistics, 

which explicitly demonstrates the different response of 
the TLS to single and multiple incident photons. This is 
seen in the normalized second-order correlation function

 

τ
τ =

(2)
(2)

(1) 2
( ,  )( ) ,

[ ( )]
G tg
G t  (14)

where ( ) − +〈 〉1 ˆ ˆ( ) = ( ) ( ) ,G t t tE E  and τ τ τ− − + += 〈 + + 〉.(2) ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( )G t t t t tE E E E 
τ τ τ− − + += 〈 + + 〉.(2) ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( )G t t t t tE E E E  The field operator used in these correla-

tion functions is given in Eq. (8), but here σ̂ ( )ge t  evolves in 
time. For continuous wave excitation, the first-order cor-
relation function can be simply derived by noting that in 
the steady-state ρ σ= 〈 〉ˆ (0)ij ji  and by using Eqs. (4) and (5). 
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Figure 2: State-of-the-art coherent extinction with a variety of solid-state quantum emitters in differing nanoguide geometries, including 
(A) single organic molecules, (B) Ge defects in diamond, and (C) InAs quantum dots. Adapted from [22], [28], and [64], respectively. (D) 
Maximum achievable coupling coefficient β for cylindrical nanoguides of different core sizes and the refractive index contrast surrounding 
the core. The core size is parameterized by the unitless variable x = k2r, where k2 is the wavenumber of light in the bulk material of the core 
and r is the radius of the nanoguide. Achievable β-factors for the different solid-state quantum emitters are marked in red symbols (dashed 
red line denotes the optimal achievable β for a given refractive index contrast), as is the geometry for which the effective mode area is equal 
to the scattering cross-section of an emitter (dashed blue line).
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Similarly, the quantum regression theorem [54] allows us 
to express the two-time correlations found in τ(2)( )G  in 
terms of the steady-state elements of the density matrix. 
In this manner, and in the low-excitation limit (ΩP→0), we 
can write

 

Γ τΓτΓ Γ β Γβ Γ Γ β
τ

Γ Γ Γ Γβ β

−− − + −
= +

− + −

2 4 2 2 2
(2) 2 2

2
2 2

e [2 ( 2)] e
( ) 1 .

( )[2 ( 2)]
g  (15)

In the limit of no pure dephasing (Γ2→Γ/2), this equa-
tion converges to that of Chang et al. [76].

The highly nonlinear response of a TLS is encoded 
into the photon statistics of the transmitted light. A signa-
ture of this nonlinearity is the photon bunching observed 
in g(2)(0), which we plot in Figure 4A as a function of 
both β and the relative dephasing rate Γdeph/Γ. The strong 
photon bunching is observed when β→1 and Γdeph→0. 
Here, g(2)(0)→ ∞, as T→0 (c.f. Section 2.1), meaning that 
all single-photon components of the incident coherent 
state are reflected. Conversely, in transmission, the coher-
ent superposition of the zero and multi-photon compo-
nents results in photon bunching. This photon bunching 
has been observed with both QDs [69–71] and Ge vacancy 
centers [28] coupled to waveguides, with peak values of 

g(2)(0) ranging from 1.1 to 6. Higher values have recently 
been reported using a variety of emitters coupled to reso-
nators, as summarized in Table 1. The photon statistics 
can be actively manipulated, for example, to alternate 
between bunching and antibunching, using the higher 
order nonlinearity of the emitter [77] or by modulating the 
local phase of the quantum interference [78, 79].

This multi-photon transmission is comprised of two 
components: one in which the two photons are uncorre-
lated and therefore scatter independently, and one where 
the photons are correlated and cannot be considered 
independently [63, 80–82]. Shen and Fan derived analytic 
formulas for both components using a scattering matrix 
approach, and later using the input-output formalism 
[83]. Subsequently, Ramos and Garcia-Ripoll proposed an 
experimental method to measure the single- and two-pho-
ton scattering matrices using weak coherent beams [84].

A part of the correlated component of the two-photon 
wavepacket whose shape does not change as a result of 
scattering from the TLS exists. This component acts like 
a “quantum soliton” and is known as a photon-photon 
bound state. This is much like photon-emitter bound states, 
which are characterized by the entanglement between the 
light and matter degrees of freedom [85, 86], a hallmark 

Table 1: State-of-the-art coherent light-matter interactions with solid-state quantum emitters coupled to nanophotonic waveguides.

System   Extinction  Linewidtha   g2 (0)b  Details   Reference

Atoms coupled to photonic waveguides
 Cs-nanoguide   0.01  5.8 (5.8) MHz   –  More than 2000 resonantly coupled emitters   [30, 65]
 Cs-PhCW   0.25  15 (4.6) MHz   –  Mean number of coupled atoms is 3; observation of 

superradiance
  [33]

 Rb-nanoguide   0.20  6.1 (6.1) MHz   –  1-6, mean number of coupled atoms; observation of 
superradiance

  [66]

 Rb-PhCC   –  53 MHz   0.12(4.1)  Nanophotonic control of photon phase   [67]

Defect centers in diamond
 GeV-PhCW   0.18  73(26) MHz   <0.08(1.1)  Coherent nonlinearity at the single-photon level   [28]
 SiV-PhCW   0.38  590(90) MHz   <0.15(1.5)  Two emitters remotely entangled by Raman transitions   [26]
 SiV-PhCC   >0.95  4.6 GHz   0.23  Two Si vacancies, near-field-coupled inside a single cavity   [68]

InAs QDs
 QD-nanobeam   0.66  1.2(0.9) GHz   <0.01  Charge-stabilized and tunable by a diode   [12, 64]
 QD-PhCW   0.07–0.35  1.1–4(0.9) GHz   <0.01(1.15)  Coherent nonlinearity at the single photon level   [69, 70]
 QD-PhCW   0.85  1.36(1.22) GHz   (6)  Charge-stabilized and tunable by a diode   [71]
 QD-microcavity   –  0.28(0.28) GHz   (25–80)  Charge-stabilized in a μ-pillar or μ-cavity diode   [72, 73]

Organic molecules
 DBT-nanoguide   0.07–0.09  30(30) MHz   <0.01  Observation of up to 5000 single molecules coupled to the 

waveguide
  [22, 23]

 DBT-microcavity   0.99  40(40) MHz   0.1(21)  Measured g2(0) limited by timing-resolution of the detectors   [74]

Atoms are included for completeness.
PhCW, Photonic crystal waveguide; PhCC, photonic crystal cavity.
aNatural linewidth, which may be Purcell-enhanced, is given in brackets.
bBunching value observed in coherent transmission experiments is given in brackets.
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of polaritonics [87]. The work on photonic bound states 
was generalized to higher number multi-photon bound 
states [88] and to their spectral and temporal signatures in 
structured photonic environments [89]. Experimental sig-
natures of the correlated components of two [90] and three 
[91, 92] photon scattering events were recently reported 
with Rydberg atoms, but an unambiguous observation of 
a photonic bound state is, to date, missing.

The highly nonlinear coherent scattering of guided 
photons from single emitters, and the ensuing strong 
correlations of photon-photon bound states, constitute 
a valuable quantum resource and have played a central 
role in recent proposals. The large disparity between 
the response of the emitter to single- and two-photon 
inputs can form the basis for a photon sorter, allowing 
for the realization of quantum nondemolition measure-
ments [93] and for the creation of a Bell-State analyzer 
and  controlled-sign gate [94]. This latter proposal may 
benefit from chiral coupling, meaning that all photons 
scatter in a single (forward) direction [21]. Interestingly, if 
this  coupling could be made asymmetric but not perfectly 
directional, then this passive two-level nonlinearity has 
been predicted to act as a  few-photon diode [95].
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Figure 3: Nonlinear dependence of ΔT and the presence of a TLS 
fundamentally changes the response of a nanophotonic system.
(A) The coherent nonlinear response of a TLS is seen in the power-
dependent extinction of the transmitted light, which vanishes as 
the photon flux increases beyond one photon per lifetime (top 
panel). As the same time, the bandwidth of the transition begins to 
power-broaden (bottom panel), signifying the loss of coherence in 
the light-matter interactions. Adapted from [64]. (B) An efficiently 
coupled TLS, here an atom evanescently coupled to a photonic 
crystal cavity (top inset), can also modulate the phase of the 
scattered photons. In fact, markedly different responses are seen 
in the presence of the emitter (blue symbols) and in its absence 
(yellow symbols). The bottom inset shows the corresponding 
normalized count rate in one arm of an interferometer, relative to 
the expected cavity response (blue curve). Adapted from [67].
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3   Nonlinearities of multilevel 
systems

In analogy to classical optics, there are a host of quantum 
optical nonlinearities beyond the interaction of photons 
with a TLS described above. These higher order quantum 
nonlinearities result from (i) the presence of multiple 
photons of different frequencies or (ii) a richer energy 
level structure of the emitter, and cannot be described 
by a perturbative susceptibility tensor like classical non-
linearities. In this section we describe these effects and 
highlight recent efforts to observe them in nanophotonic 
waveguides.

3.1   Dressed two-level systems

TLSs can coherently mediate the interaction between 
two different photons that, unlike the scenario described 
in Section 2, can be frequency-detuned. The resulting 
multi-photon nonlinear effects were first explored by Wu, 
Ezekiel, Duckloy, and Mollow in 1977, who measured the 
transmission of a weak probe beam through a large ensem-
ble of sodium atoms in the presence of a strong excitation 
laser [96]. Because of the weak light-matter interactions 
in these initial experiments, they were conducted using 
large ensembles of atoms and with intense control beams. 
In fact, 30 years would pass before technological progress 
enabled the observation of these nonlinearities at the 
single-photon single-emitter level, as we discuss below, 
when spectra such as those shown in the right panel of 
Figure 5A were recorded using a single molecule [23, 97].

The physics underlying these spectra can be under-
stood in terms of the three available transitions of the 
dressed state picture [98], where the bare states of the 
emitter hybridize with the manifold of light states, as 
shown in the left panel of Figure 5A. First, the emitter  
resonance, which is observed as an extinction of the 
transmission as in Section 2.1, is AC-Stark shifted by 
the presence of pump photons (red arrows). Second, 
when the pump and signal are only slightly detuned, the 
emitter can mediate the transfer of photons between the 
two beams, which appears as a kink in the transmission 
spectra (corresponding to the green transition). Finally, a 
stimulated process that requires two pump photons can 
coherently amplify the signal beam without the need for 
population inversion, resulting in the bump of the trans-
mission signal (corresponding to the blue transition). A 
theoretical model, based on the optical Bloch equations, 
accurately reproduces these complex spectra [99, 100].

Initially, observing these multicolor nonlinear effects 
with single emitters proved challenging, because of the 
low probability of each photon interacting with an emitter 
in bulk. These constraints were first overcome using a com-
bination of sensitive lock-in techniques and ultra-strong 
pump fields, to observe the signatures of these nonlineari-
ties at the 10−5 level, first in the absorption [101] and then 
in the transmission [102] of a single QD in a bulk medium. 
Maser et al. improved this signal by three orders of magni-
tude by focusing tightly on a single organic molecule with 
a transform-limited transition, embedded in a thin organic 
matrix. Using this same platform, researchers were then 
able to observe these multicolor nonlinearities mediated 
by a single organic molecule coupled to a waveguide on 
a photonic chip [23], as shown in Figure 5B. Here, a clear 
nonlinear dependence of both the extinction and coher-
ent amplification signals on the detuned pump photons is 
seen. Note, however, that even in this most recent experi-
ment the extinction peaks at ΔT ≈ 0.1 because of a weak 
molecule-waveguide coupling of only β = 0.08. Regard-
less, this increased sensitivity both drastically reduced the 
amount of pump photons needed to observe these effects 
and allowed for the observation of additional nonlinear 
effects such as the four-wave mixing shown in Figure 5C 
[97]. Additional nonlinear frequency conversion processes 
have been predicted, but not yet observed, for strong 
driving fields and sufficiently strong coupling [103].

Experimentally, the current challenge is to reach 
the regime where these multicolor nonlinearities can 
be deterministically observed, and perhaps exploited 
to control light-matter interactions at the single-photon 
level. This requires that the light-matter coupling effi-
ciency approaches unity while maintaining a fully coher-
ent interaction (i.e. Γdeph = 0), further motivating the use of 
structured nanophotonic waveguides and resonators.

3.2   Three- and four-level emitters

Although we often approximate quantum emitters as 
TLSs, they may actually have a much richer energy level 
structure that gives rise to new coherent and nonlinear 
quantum optical effects. In recent years, there have been 
many theoretical studies on the use of waveguides to 
enhance and exploit these effects, laying out the frame-
work for future experiments.

A prototypical example of such a coherent, multi-
level quantum optical nonlinearity is electromagneti-
cally induced transparency (EIT). EIT occurs when, in the 
presence of a control field, destructive quantum inter-
ference between two transitions of a three-level system 
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(c.f. Figure 6A) prevents absorption of a weak signal field 
[104]. The coherent control of quantum absorption enables, 
for example, the storage and retrieval of quantum states, 
a crucial requirement for emergent quantum  technologies 
[107]. In this and other similar demonstrations, the low 
emitter-photon interaction probabilities necessitated the 
use of dense atomic ensembles, as was also the case when 
the atoms were weakly coupled to a waveguide [108–110]. 
Using waveguides to enhance the emitter-photon interac-
tion can bring EIT to the single-photon and single-emitter 
level [106, 111], and such a system could form the basis for 
a single-photon all-optical switch [112].

Other coherent effects in three-level systems can be 
used to control the transport of photons. Population inver-
sion of a single molecule, for example, allowed it to act as 
a quantum optical transistor [113, 114], coherently attenu-
ating or amplifying a stream of photons. Interestingly, it is 
possible to form an optical transistor using a three-level Ʌ 
system without the need for population inversion. Rather, 
the coherent reflection and transmission outlined in 
Section 2.1 can be used, in conjunction with a gate pulse 
that effectively couples or decouples the emitter from the 
waveguide, bringing the transistor to the single-photon 
level if the emitter is efficiently coupled to the photonic 
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G 2 2
pmp pmp pmp .Ω = ∆ + Ω  Here, a Stark shift of the resonance (red), a coherent energy transfer between the signal and control photons (green), 

and a coherent amplification of the signal photons (blue) are observed. (B) The nonlinear dependence of the coherent extinction  
and amplification as a function of control beam strength. Adapted from [23]. (C) Four-wave mixing observed using a single organic  
molecule as the nonlinear medium. This nonlinear signal manifests at twice the beat frequency (ii) of the scattered signal (i).  
Adapted from [97].
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mode [76, 111] (c.f. Figure 6B). Similarly, control over the 
state of a ladder-type emitter coupled to a waveguide can 
switch, or even impart a π phase shift, to a guided photon 
[115]. Theories of the interaction of a few photons with three 
(or higher) level emitters predict the generation, or even 
engineering, of entangled photonic states. For example, two 
distinguishable photons can be entangled as they scatter 
from a ladder-type emitter, with the degree of entanglement 
depending on the spectral content of the photons [116]. The 
subsequent scattering of additional photons could thus be 
used to create large photonic entangled states, as shown in 
Figure 6C. The controlled rescattering of selected photon 
pairs from the entangled chain would create a photonic 
cluster state [105], which is a required resource in one-way 
quantum computating architectures [117].

Photonic bound states (c.f. Section 2.2) are also 
created when few-photon coherent states scatter from 
multilevel emitters [118]. In contrast to the scattering from 
two-level emitters, the presence of additional levels pro-
vides a route to the controlled shaping of the bound state. 
Driving a resonance of a Ʌ-type emitter, for example, can 
delocalize the two-photon wavepacket formed as the pair 
of photons scatter from the second transition (Figure 6D), 
paving a route toward control of the temporal proper-
ties of two-photon wavepackets [106]. Similarly, in an 
N-level emitter, multi-photon bound states can be made 
to destructively interfere with the standard multi-photon 
transmission, effectively suppressing multi-photon trans-
mission and leading to a photonic blockade without the 
need for a cavity [88].
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4   Nonlinear response of coupled 
multi-emitter systems

One of the most difficult and potentially most rewarding 
challenges in modern quantum optics is the scaling of 
individual elements into more complex quantum systems. 
This section covers recent works on multi-emitter wave-
guide quantum electrodynamics (QED), the vast majority 
of which are theoretical in nature, and which reflect both 
the difficulty and the reward of this undertaking.

Practically, the task is that the emitters of such a 
system simultaneously fulfill the following requirements: 
(i) They must all couple to the same guided mode, and in 
general this coupling should be efficient. (ii) The emitters 
should all interact coherently with passing photons (i.e. 
Γdeph ≈ 0, c.f. Section 2.1). (iii) The emitters should emit at a 
similar transition frequency and have similar linewidths. 
(iv) Ideally, the emitters could be individually addressed 
such that their relative coupling can be controlled (e.g. by 
local electrical gating).

As we outlined in Section 2, conditions (i) and (ii) 
have been met for a single emitter coupled to a waveguide, 
and the current experimental challenges lie in meeting 
criteria (iii) and (iv). First efforts in this direction involved 
the entanglement of two implanted Si-vacancy defects 
coupled to a single waveguide, first using a remote Raman 
control scheme [26] and then directly via strain tuning 
[119]. A signature of the entanglement between the two 
emitters was observed in their photon correlations. Simi-
larly, superradiance has been observed using ensembles 
with a mean number of atoms ≤6 coupled to waveguide 
[33, 66], although here the emitters could not be individu-
ally addressed. In contrast, microelectrodes were shown 
to Stark-shift the resonance of many individual molecules 
coupled to a nanoguide [120, 121] (see Figure 7A). These 
experiments demonstrate that an efficient and controlla-
ble coupling of multiple solid-state emitters on a photonic 
chip is within reach [123].

Coupling quantum emitters with waveguides has 
been the focus of intense theoretical studies in recent 
years, resulting in prediction of both emergent many-body 
phenomena and new protocols for quantum information 
technology. This is already exemplified in two-emitter 
systems, which, even when coupled to a lossy waveguide, 
can result in sub- and super-radiant states and allow for 
two-qubit gates [124] and entanglement generation [125, 
126]. Conversely, the high efficiency with which individ-
ual solid-state emitters can couple to a waveguide allows 
for the generation of Bell states [127], the entanglement 
and coupling of qubits that operate at vastly different 

frequencies, such as superconducting qubits with single 
molecules [128] or QDs [129]. Similarly, the input-output 
formalism was used to study quantum interference and 
photon statistics in a two-qubit system, demonstrating the 
complex dynamics that result from the quantum jumps of 
the emitters [130].

Concurrently, frameworks describing photonic trans-
port through waveguides coupled to many emitters have 
been developed. Models focusing on specific aspects of 
this transport have quantified both the photon-photon 
[131] and emitter-emitter [132] entanglement that is gener-
ated as photons interact with the emitters, showing that 
this entanglement is more robust and efficient in chiral 
geometries. Interestingly, researchers have predicted that 
both chiral geometries [133] and stronger photonic corre-
lations [134] lead to lower propagation losses, even if the 
emitters are weakly coupled to the waveguide or in the 
presence of disorder. Scattering from multiple emitters can 
also give rise to complex Fano shapes in the transmission 
and reflection spectra [135], providing a new route toward 
the control of photon statistics [79]. At the same time, effi-
cient multiple scattering events between the emitters have 
been predicted to allow for normal mode-splitting without 
the need for cavities, and for the emergence of localized 
excitations [59] (c.f. Figure 7A) and “fermionic” subradi-
ant modes that repel one another [136].

Many different effects and geometries of 
 one-dimensional multi-emitter systems have been 
modeled. These include the addition of evanescent emit-
ter-emitter coupling for closely spaced emitters [59, 137] 
and the inclusion of different decoherence mechanisms 
and inhomogeneous broadening [110]. Likewise, Pivo-
varov et  al. developed a general microscopic model to 
describe single-photon scattering from a chain of multi-
level emitters that describes both ordered and disordered 
geometries, and including both elastic and inelastic scat-
tering channels [138]. Das et al., meanwhile, modeled the 
dynamics and amplitudes of the scattering of photons from 
multilevel emitters in the low excitation limit, working in 
the Heisenberg picture [139]. In this same low-excitation 
regime σ〈 〉 =ˆ( 0),ee  the Green’s tensor approach outlined 
in Section 2 was generalized to N emitters. For two-level 
emitters, in this Green’s function formalism, the general-
ized equation of motion for the emitter coherences is

 

Γ
σ Δ σ Ω σ

 ′= + + +   ∑
A

ˆ ˆ ˆ ,
2

i i i j
ge ge ij ge

j
i i i i g  (16)

where zero dephasing is also assumed. Here, the super-
scripts i and j refer to specific emitters, Γ′ is the rate of 
emission into the non-guided modes, and gij is the 
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dipole-projected Green’s function as defined in Eq. (7). 
Note, however, that in this case gij controls the interac-
tions between the emitters, which can be either dispersive 
or dissipative, depending on whether the real or imagi-
nary component of G(ri, rj) dominates. The general nature 
of this approach means that it can be applied to a variety 
of nanophotonic structures, including emitter chains in 
unstructured waveguides, cavities, and photonic crystals, 
as was done in [60] (Figure 7B). Protocols, based on these 
theories, have begun to emerge, including schemes for 
quantum computation [6] and the efficient generation of 
multi-photon states [140].

The large nonlinearity inherent to quantum emitters 
manifests in novel fashion when many multilevel emitters 
are coupled via waveguides. Emitters in the EIT configu-
ration [141], for example, can exhibit a giant Kerr nonlin-
earity [142]. Using a hollow-core photonic crystal fiber as 
a waveguide, to which they coupled a large ensemble of 
Rydberg atoms, researchers were able to exploit this Kerr 
nonlinearity for few-photon switching [122] (Figure 7C). A 
recent theoretical treatment of this system predicts that, 
in the ideal case, single-photon switching is possible, and 
studies the nonlinear evolution of two-photon wavepacket 
(c.f. Section 2.2) [143]. Photons traveling through such a 
multi-emitter system have also been predicted to crystal-
ize, forming fermionic excitations that repel one another 
and providing an additional route to the creation of a pure 
single-photon source and enabling the study of complex 
quantum phase transitions [144]. Interestingly, the long-
range interactions in such multi-emitter-waveguide 
systems are expected to give rise to nonlocal optical non-
linearities [145], providing yet another route to the crea-
tion of photonic bound states [146].

5   Conclusions and outlook
Advances in the growth and preparation of solid-state 
emitters and nanofabrication protocols have, in recent 
years, brought coherent light-matter interactions to 
quantum photonic chips. For single-emitter systems, 
these advances have allowed for the observation of a 
variety of nonlinear optical effects at, or near, the single-
photon level, bringing a host of classical and quantum 
functionalities tantalizingly within reach. At the same 
time, increasingly complex theories have been developed 
that model the coupling of multiple emitters via long-
range, waveguide-mediated interactions. Such multi-
emitter systems have been predicted to support exotic new 
quantum phases of light and may enable efficient new 

quantum information technologies. Experimentally, we 
stand at the cusp of this exciting field, with multi-emitter 
photonic architectures just around the corner.
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