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When does a parsimonious model fail to simulate floods? Learning from the 
seasonality of model bias
Paul C. Astagneau , François Bourgin , Vazken Andréassian and Charles Perrin

Université Paris-Saclay, INRAE, HYCAR Research Unit, Antony, France

ABSTRACT
Identifying situations where a hydrological model yields poor performance is useful for improving its 
predictive capability. Here we applied an evaluation methodology to diagnose the weaknesses of 
a parsimonious rainfall-runoff model for flood simulation. The GR5H-I hourly lumped model was eval-
uated over a large set of 229 French catchments and 2990 flood events. Model bias was calculated 
considering different streamflow time windows, from calculations using all observations to analyses of 
individual flood events. We then analysed bias across seasons and against several flood characteristics. 
Our results show that although GR5H-I had good overall performance, most of the summer floods were 
underestimated. In summer and autumn, compensations between flood and recession periods were 
identified. The largest underestimations of flood volumes were identified when high-intensity precipita-
tion events occurred, especially under low soil moisture conditions.
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1 Introduction

1.1 On the need to improve hydrological models for flood 
forecasting

Reliable hydrometeorological predictions are important for 
mitigating the hazards associated with floods, including loss 
of lives and livelihoods as well as economic losses (e.g. Carsell 
et al. 2004, Hallegatte 2012, Jeuland et al. 2019). Many opera-
tional flood forecasting systems have been implemented 
around the world to produce streamflow forecasts 
(Pappenberger et al. 2016) and hydrological models are the 
basis of these flood forecasting systems (Pagano et al. 2014). 
However, streamflow predictions produced by these models 
are still subject to large uncertainties (Roundy et al. 2018). 
Different sources of uncertainty can affect the predictive cap-
ability of hydrological models (e.g. Beven 2016). These 
uncertainties can be related to the input data, model parame-
terization or model structural deficiencies, for example. 
Consequently, advances in hydrological modelling are needed 
to obtain more accurate estimates of flood peak, timing and 
volume, and therefore issue earlier and better warnings (e.g. 
Pagano et al. 2014, Jain et al. 2018). Flood forecasting systems 
have been improved over the years (e.g. Zanchetta and 
Coulibaly 2020). For example, the use of continuous models 
instead of event-based models allowed a reduction of the 
uncertainty associated with initial conditions (e.g. Berthet 
et al. 2009, Grimaldi et al. 2020). However, common failures 
to predict floods are still encountered. For example, the severe 
floods that occurred in the Seine and Loire rivers and their 
tributaries (France) in June 2016 were underestimated by our 
own GRP flood forecasting model (Berthet 2010, Viatgé et al. 

2019). Hydrological models are also less reliable in arid or dry 
areas (e.g. McMillan et al. 2016, Melsen et al. 2018), especially 
when flash floods occur (Hapuarachchi et al. 2011). Improving 
the predictive capability of hydrological models is therefore 
essential for improved flood forecasting.

1.2 Relevance of large-sample model diagnostics

To be able to improve a model, one must first identify situa-
tions where the model fails to yield reliable results, i.e. the first- 
order factors leading to simulation errors (Gupta et al. 2008). 
In this regard, various diagnostic methods have been used on 
hydrological models. Some studies were based on a limited 
number of catchments (e.g. Butts et al. 2004, Clark et al. 2008, 
Nicolle et al. 2014). Diagnostics are now increasingly relying 
on large-sample approaches in order to draw more general 
conclusions from model performance (e.g. Andréassian et al. 
2009, Gupta et al. 2014). Large-sample studies make it possible 
to establish performance benchmarks, i.e. to determine 
the current performance of hydrological models across 
a representative set of catchments (e.g. Seibert 2001, Seibert 
et al. 2018). The effects of changes in, for instance, model 
structure or parameterization can then be assessed in light of 
the performance of the benchmark. Several recently published 
country-scale studies investigate different model structures 
over large sets of catchments representing a variety of hydro-
climatic conditions. For example, Lane et al. (2019) investi-
gated the predictive capability of four models over 1000 
catchments in the UK and the relationships between model 
performance and catchment attributes, flow regimes and 
model structures. Knoben et al. (2020) compared the 
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performance of 38 models over 559 US catchments and high-
lighted groups of models for which the structural hypotheses 
were better suited for some catchments rather than others (e.g. 
seven models had better performance for flashy catchments).

1.3 Model evaluation issues

One of the challenges of large-sample hydrology is related to the 
advantage of exploiting the robust statistical properties of large 
samples (Mathevet et al. 2006, 2020) while summarizing the 
results into an understandable outcome but still maintaining 
a certain degree of precision to find emerging patterns (Gupta 
et al. 2014). Many large-sample studies used aggregated statistics 
to assess model performance across comprehensive datasets 
(e.g. Perrin et al. 2008, Vaze et al. 2010, 2011, Coron et al. 
2012, Andréassian et al. 2014). Some comparative studies of 
rainfall-runoff models found similar levels of performance 
between model structures when using aggregated metrics (e.g. 
Perrin et al. 2001, Van Esse et al. 2013). It has been widely 
recognized that the use of single aggregated metrics is not 
sufficient to assess model performance (e.g. Schaefli and Gupta 
2007, Euser et al. 2013). For example, Mathevet et al. (2020) 
compared the performance of two conceptual models across 
a global set of catchments within a multi-objective framework. 
They found that while the two models yielded similar overall 
performance, when looking at sub-period statistics, one model 
performed slightly better in short-term processes. Furthermore, 
commonly used performance indicators, such as the Nash- 
Sutcliffe efficiency criterion (NSE; Nash and Sutcliffe 1970), 
are known to be biased towards high flows, although their use 
in model calibration leads to underestimation of flow variability 
(Gupta et al. 2009) and a limited ability to reproduce extreme 
flows (Oudin et al. 2006, Crochemore et al. 2015). Therefore 
they must be used cautiously when evaluating the ability of 
models to simulate floods.

Hydrological signatures have been found useful in improv-
ing the identification of patterns between model performance 
and our understanding of underlying catchment processes 
(Yilmaz et al. 2008, Hrachowitz et al. 2014, McMillan et al. 
2017). They are used as indicators of situations where models 
perform well and are suitable for further applications. 
Consequently, a growing number of studies are using sets of 
hydrological signatures for model evaluation to emphasize 
particular aspects of the hydrograph (e.g. Shafii and Tolson 
2015, Donnelly et al. 2016, Poncelet et al. 2017, Gnann et al. 
2020). Signatures to investigate model performance on high 
flows can be, for example, the runoff volume above the 80th 

percentile of the flow duration curve (Yilmaz et al. 2008). 
Another way to highlight model errors in flood predictions is 
to evaluate the simulation of peak flows by calculating specific 
criteria, such as the time to peak or the peak flow ratio. For 
example, Mizukami et al. (2019) investigated the choice of 
objective functions to better simulate high flows by calculating 
the annual peak flow bias.

1.4 A focus on events and seasonality

Event-based models are usually evaluated by their ability to 
reproduce several flood characteristics, such as rising limb, 

peak flow magnitude or timing (e.g. Borah et al. 2007, Javelle 
et al. 2010, Stanić et al. 2018, Stephens et al. 2018). To focus on 
the ability of continuous models to reproduce floods, model 
performance can also be assessed against a set of events in 
streamflow time series. By selecting 3620 flood events in 181 
catchments, Lobligeois et al. (2014) identified where and when 
accounting explicitly for the spatial variability of rainfall and 
potential evapotranspiration inputs (i.e. by using a semi- 
distributed approach) improved streamflow simulations. Ficchì 
et al. (2016) showed that the peaks and timing of 2400 floods in 
240 catchments were better reproduced at sub-daily time steps 
than at a daily time step. Vergara et al. (2016) evaluated the 
regionalization of the parameters of a hydraulic routing function 
by calculating peak flow and timing errors in the simulation of 
47 563 flood events. de Boer-Euser et al. (2017) compared eight 
hydrological models in one catchment and found similar results 
in terms of overall performance but clear differences when 
looking at specific events and metrics. For different purposes, 
these studies showed that a change of focus in model evaluation, 
e.g. investigating flood events, can help to identify patterns in 
the performance of hydrological models.

Streamflow can have strong seasonal variations depending 
on climate seasonality and catchment characteristics (Berghuijs 
et al. 2014, Gnann et al. 2020). The seasonal streamflow varia-
tions also reflect varying antecedent soil moisture conditions, 
which can have significant impacts on flood event generation 
(Blöschl et al. 2013, Berghuijs et al. 2014). In terms of model 
diagnostics, some studies used signatures to assess the ability of 
the models to simulate the streamflow regime (e.g. Wang et al. 
2008, Massmann 2020). Other model evaluations investigating 
the seasonality of model performance relied on the analysis of 
metrics calculated for each season of the year independently 
(e.g. Muleta 2012, Kim and Lee 2014, Lane et al. 2019).

1.5 Scope of the paper

While it is clear that analysing the performance of hydro-
logical models in simulating flood events can help to 
characterize model performance, a deeper investigation 
on the seasonality of model performance considering 
different streamflow time windows has, to our knowledge, 
not been conducted to date. In an effort to find patterns 
of model errors and therefore help target model improve-
ments, we apply a new methodology to assess the simula-
tions of a continuous conceptual rainfall-runoff model 
over a large sample of flood events at an hourly time 
step. Bennett et al. (2013) suggested that, to evaluate 
environmental models, we must first look at basic perfor-
mance criteria and then refine the analyses depending on 
the problem at hand. Here we follow these recommenda-
tions and aim to probe deeper in the analyses by looking 
at the seasonality of model bias through different disag-
gregations of the observed hydrograph. The objectives of 
this paper are (i) to determine whether investigating the 
seasonality of model bias through different streamflow 
time windows can provide information on model defi-
ciencies in simulating high flows and (ii) to identify 
factors causing model weaknesses in flood simulations.

HYDROLOGICAL SCIENCES JOURNAL 1289



2 Data

2.1 Catchment set

A total of 229 catchments in France were selected, represent-
ing varying hydroclimatic and morphological characteristics 
(Fig. 1). This catchment selection originates from the work of 
Ficchì et al. (2016). Snow and human activities have limited 
impacts on the streamflow of these catchments. Eleven catch-
ments were discarded from the original set because of low- 
quality data, a too-high percentage of missing streamflows or 
a high solid precipitation fraction (i.e. with more than 10% of 
solid precipitation). A summary of the catchment set char-
acteristics is given in Table 1. Further information can be 
found in the studies by Ficchì et al. (2016) and Ficchì (2017). 
The baseflow index values higher than 0.9 correspond to two 
catchments located in the northern part of France, where flow 
is dominated by the contribution of a dual-porosity chalk 

aquifer. Two karstic catchments, the Laine River at Soulaines- 
Dhuy and the Siagne River at Callian, are included in our 
dataset and have runoff coefficients higher than 1. Flashy 
catchments, i.e. with high-intensity precipitation and low 
values of flow autocorrelation, are mainly located in the 
Mediterranean region and in the Cévennes area in southern 
France. A large part of the catchments in our dataset are 
characterized by pluvial streamflow regimes (as defined by 
Sauquet et al. 2008), where most periods of high flows are in 
winter and most periods of low flows are in summer. 
Fourteen catchments are in the transition regime, meaning 
that high flows occur in winter and spring because of the 
influence of both rainfall and snowmelt. We chose to keep 
these catchments for our analyses because Valéry (2010) 
showed that the sensitivity of model simulations to snow 
dynamics is limited when the part of solid precipitation is 
less than 10%.

Figure 1. Location of the 229 French catchments selected. The streamflow regimes were determined according to the definition of Sauquet et al. (2008).

Table 1. Distribution of nine hydroclimatic and five morphological characteristics of 229 catchments. P99 is the 99th percentile of daily streamflow.

Characteristic Definition/reference Min Q25 Med Mean Q75 Max

Area [km2] - 3.54 164.1 354.1 680.3 772.3 7918
Average altitude [m] - 70 198 358 383 519 1060
Average slope [-] - 0.01 0.03 0.05 0.06 0.08 0.24
Topographic index [-] Ducharne (2009) 8.19 12.13 13.26 13.13 14.25 17.33
Drainage density [km2] Le Moine (2008) 0.06 0.3 0.51 1.19 1.08 19.8
Mean flow (Qm) [mm/year] - 35 262 349 437 524 1398
Mean annual temperature (°C) - 8.2 9.8 10.4 10.6 11.1 14.3
Fraction of solid precipitation (%) - 0.5 2.2 3.1 4.1 5.9 9.4
Mean annual precipitation - 651 818 937 990 1097 2108
(Pm) [mm] 

Mean annual potential
- 594 664 708 739 767 1129

Evapotranspiration (PEm) [mm/year] 
Flow auto-correlation at 24 h [-]

- 0.39 0.77 0.84 0.83 0.91 1.00

Runoff coefficient [-] Qm/Pm 0.04 0.27 0.35 0.38 0.46 1.71
Aridity index [-] Pm/PEm 0.66 1.10 1.32 1.37 1.55 3.47
Daily precipitation intensity [-] P99/Pm 7.58 8.57 9.19 10.56 11.53 19.89
Baseflow index [-] Gustard et al. (1992) 0.19 0.46 0.57 0.56 0.65 0.95
Rainfall-runoff lag time [h] Ficchì (2017) 1 8 15 21 26 117
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2.2 Hydroclimatic data

Time series of precipitation at an hourly time step were aggre-
gated at the catchment scale from the Comephore product 
(Tabary et al. 2012), provided by Météo-France at a 1-km 
resolution over the French metropolitan territory. 
Comephore offers a quantitative precipitation reanalysis com-
bining all of the available information from weather radars and 
rain gauges. The time series of daily temperature extracted by 
Delaigue et al. (2020) from the SAFRAN climate reanalysis 
database of Météo-France (Vidal et al. 2010) were used to 
calculate potential evapotranspiration (PE) time series with 
the Oudin et al. (2005) formula. The daily PE time series 
were then disaggregated at the hourly time step by assuming 
a parabolic shape from 6:00 a.m. to 7:00 p.m. (UTC). The 
maximum PE values are between 12:00 a.m. and 1:00 p.m. 
Instantaneous streamflow data from the database of the 
French hydrometric services (Leleu et al. 2014) were interpo-
lated to obtain hourly time series. Precipitation, temperature 
and streamflow time series covered the period from 
1 August 2005 to 31 July 2013. Two independent sub-periods 
were considered: P1, from 1 July 2005 to 31 June 2009; and P2, 
from 1 July 2009 to 31 June 2013. For most catchments, these 
periods are similar in terms of mean runoff coefficient and PE. 
Differences in the runoff coefficient higher than 5% between 
P1 and P2 are found in only three tributaries of the Rhône 
River (downstream): the Ardèche River at Ucel, the Cèze River 
at Tharaux and at Montclus, and the Argens River at Arcs 
located in the Mediterranean area.

2.3 Selection of flood events

An automated procedure was used to select 2990 flood events 
in the catchment dataset: 1681 events in P1 and 1309 events in 
P2. On average, 13 events were selected per catchment. The 
number of selected events ranges from 3 to 16 events per catch-
ment. Only events with peak flow higher than the 95th stream-
flow quantile were selected. Flood event periods were taken from 
the time when streamflow is higher than 20% of the event peak 
flow to the time when streamflow is lower than 30% of the event 
peak flow. Each flood event was then visually inspected to avoid 
overlaps and other errors arising from the automated selection 
procedure. Figure 2 illustrates some of the flood event charac-
teristics per season. In Fig. 2(c), the ratio of flood volume to total 
water volume was computed as the ratio between the volume of 
each flood and the total water volume.

Winter was considered to extend from the beginning of 
January to the end of March, spring from April to June, summer 
from July to September, and autumn from October to December. 
The highest flow peaks relative to mean catchment flow occurred 
in summer and autumn, mostly in tributaries of the Rhône River 
and in the Mediterranean region. Summer events are shorter and 
lower in volume than the other flood events in our dataset. 
Figure 3 shows that the volume of the selected events ranges 
from 2% (spring 5th percentile) to 45% (autumn 95th percentile) 
of the total streamflow volume of the corresponding season. The 
spring events represent a smaller fraction of the overall spring 
streamflow volume, whereas autumn events represent a larger 
proportion of the streamflow volume of the corresponding season.

3 Methods

3.1 Hydrological model and parameter calibration

The continuous GR5H lumped conceptual rainfall-runoff 
model (Le Moine 2008, Lobligeois 2014) was used to simulate 
streamflow hourly time series at the outlet of each catchment. 
We used a version that integrates an interception store 
(GR5H-I), as formulated by Ficchì et al. (2019). Full mathe-
matical details of the model are given in the Appendix. We 
performed a continuous split-sample test (Klemeš 1986) to 
obtain two parameter sets, on P1 and P2, respectively. The 
model has five free parameters that were estimated for each 
catchment and each independent sub-period. A warm-up per-
iod of 2 years preceding the beginning of each sub-period was 
applied to initialize the model’s states. The hourly precipitation 
time series of the warm-up period before P1 was built from 
a uniform disaggregation of the daily time series of the 
SAFRAN climate reanalysis data. The parameter estimation 
procedure is based on the algorithm developed by Michel 
(1991), a local gradient-based optimization procedure pre-
ceded by a gross screening of the parameter space (243 para-
meter sets tested; see the EGD method of Perrin et al. 2008) so 
as to identify a suitable starting point. We used the same 
starting parameter sets for each catchment. These parameter 
sets correspond to the 10th, 50th and 90th percentiles of 900 
catchments (see Perrin et al. 2008 for more details). The para-
meter set that maximized the Kling-Gupta efficiency criterion 
(KGE; Gupta et al. 2009) was selected with the automated 
procedure. The interception store capacity was estimated 
before applying the parameter estimation algorithm. Its value 
was defined by minimizing the difference between daily and 
hourly interception fluxes as suggested by Ficchì (2017). 
Computations were made in the R environment using the 
airGR package (Coron et al. 2017, 2021).

3.2 Evaluation

GR5H-I simulations were first assessed by looking at the KGE 
criterion calculated for the whole time series of each calibration 
and evaluation period. This gives a general overview of the 
model performance across our large set of catchments. The 
simulations were then evaluated by calculating the bias con-
sidering four levels of hydrograph disaggregation, i.e. different 
streamflow periods. Bias is a basic but essential indicator when 
evaluating how the model performs. Several studies showed the 
importance of investigating model bias, for example, to evalu-
ate the robustness of rainfall-runoff models (e.g. Coron et al. 
2012, Fowler et al. 2016). When investigating specific events, it 
is an indicator of how well a model is able to simulate flood 
volumes. These four criteria were calculated after model cross- 
validation, i.e. model application on P1 and P2 with the para-
meter sets of P2 and P1, respectively. In other words, the four 
biases were calculated on P1 with the parameter sets 
optimized on P2 and on P2 with the parameter sets 
optimized on P1. The first level of hydrograph disaggregation 
is the overall bias calculated for the whole time series (including 
flood flows, but also mean and low flows) of each sub-period 
independently using the following expression: 
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βts ¼

Pp
i¼1 Qsim;i

Pp
i¼1 Qobs;i

� 1 2 � 1;þ1½ Þ (1) 

with p being the length of the sub-period, and Qsim,i and Qobs,i 
being the simulated and observed hourly streamflows at time 
i. βts is a component of the KGE criterion. The second level of 
disaggregation is defined as the bias calculated for each event 

Figure 2. Distribution and localization of the characteristics of 2990 flood events. The distributions are presented between the 5th and 95th percentiles. Parts (b) and (d) 
present maximum values and part (f) presents mean values. nev is the number of flood events of each season and nc is the related number of catchments.
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independently, i.e. bias is computed from flows that were 
observed and simulated during a specific flood event. For 
a given flood event, the event bias is expressed as follows: 

βev;j ¼

Pnj
i¼1 Qsim;i

Pnj
i¼1 Qobs;i

� 1 2 � 1;þ1½ Þ (2) 

with nj the length of the jth event. A single value of βev was 
calculated for each of the 2990 events using cross-validation 
simulations. The third level of disaggregation is a measure of 
flood volume errors at the catchment level. It allows us to 
compare the catchments with the same weight – as the number 
of events differs between catchments – and also to compare 
event bias with overall bias. For each catchment, we calculated 

the bias for all the events combined on each evaluation period. 
In other words, the bias was calculated for the streamflow time 
series during the flood events, i.e. without the times at which 
there is no flood event. The bias was calculated for each sub- 
period of each catchment (458 values). For a given catchment 
and one sub-period, the calculation is expressed as follows: 

βcEv ¼

Pm
j¼1ð
Pnj

i¼1 Qsim;iÞ
Pm

j¼1ð
Pnj

i¼1 Qobs;iÞ
� 1 2 � 1;þ1½ Þ (3) 

with m the number of events of the catchment in a given sub- 
period. The fourth level of bias is calculated in the flow time 
series without the times at which floods occurred. It is 
a measure of how the model simulates the water balance out-
side the selected flood events, i.e. during mean and low flows.

It will therefore help to identify compensations between 
streamflow periods. This bias can be expressed as: 

βcWev ¼

Pp
i¼1 Qsim;i

� �
�
Pm

j¼1ð
Pnj

i¼1 Qsim;iÞ
Pp

i¼1 Qobs;i
� �

�
Pm

j¼1ð
Pnj

i¼1 Qobs;iÞ
� 1

2 � 1;þ1½ Þ (4) 

Figure 4 illustrates the streamflow time windows that are 
considered in the calculation of βcEv and βcWev.

A bounded version of these criteria, βb, is calculated in 
order to facilitate comparison of results between catch-
ments (Mathevet et al. 2006), as the bias can tend 
towards very large values when streamflow is overesti-
mated. The highly skewed distribution introduces difficul-
ties in interpreting mean values and dispersion over a set 
of criteria values. 

βb ¼
β

βþ 2
2 � 1; 1½ � (5) 

Table 2 presents the corresponding values of β for some values 
of βb. Negative values indicate underestimation of observed 
streamflow, and positive values indicate overestimation of 
observed streamflow by the model. A value of 0 indicates 
that there is no bias. We then refined the level of focus by 
investigating the seasonality of each bias. To calculate the four 

Figure 3. Distribution of catchment seasonal flood volumes compared with 
seasonal streamflow volume for 2990 flood events in 229 catchments. nev is the 
number of flood events of each season and nc is the related number of 
catchments.

Figure 4. Illustration of the streamflow time windows used to calculate the event bias per catchment and the bias outside periods with events per catchment. The 
hydrograph presented here corresponds to the Lergue River at Lodève (southern France).
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seasonal biases (βts, βev, βcEv and βcWev), we assumed that 
a flood occurred in a given season if the time of peak was in 
that season.

3.3 Linking flood characteristics with model bias

Considering the catchments on which we identified patterns of 
seasonal event bias, we performed a univariate analysis 
between event bias and certain flood characteristics. Table 3 
lists the characteristics considered in this analysis. 
Precipitation events were attributed to each flood event. The 
time window of a precipitation event was set as the time 
window of the corresponding flood event negatively shifted 
by the time of concentration of the catchment (see Table 1). 
The soil wetness index (SWI), calculated by the ISBA surface 
model (Thirel et al. 2010a, 2010b, Coustau et al. 2015), was 
used as an indicator of the soil moisture condition of the 
catchments. It is defined by Barbu et al. (2011) as follows: 

SWI ¼
wtot � wwilt

wfc � wwilt
(6) 

with wtot being the root soil moisture, wwilt the wilting point 
and wfc the field capacity. We used the daily catchment- 
averaged SWI values. We calculated the mean SWI values of 
each event. Each characteristic was then divided by its 

corresponding catchment event average (over both sub- 
periods) to compare the variability of events within catch-
ments. For example, the relative duration of an event is calcu-
lated by dividing its duration by the average event duration of 
the catchment.

4 Results

4.1 Overall model performance

Figure 5 shows the distributions of KGE values over the 229 
catchments and calculated for the calibration and validation 
periods.

The first and third quartiles (Q1 and Q3) in calibration 
mode are between 0.90 and 0.95 in P1 and between 0.91 and 
0.95 in P2. In validation mode, Q1 and Q3 are between 0.75 and 
0.90 in P1 and between 0.79 and 0.91 in P2. As expected, the 
distributions show a drop in performance between the calibra-
tion and validation periods. The distribution of KGE values is 
more scattered in P1 than in P2. This can be partly explained 
by a change in the runoff coefficient and cumulative rainfall 
between P1 and P2 for some of the catchments in our dataset 
(see Fig. 6).

The lowest KGE values in validation mode correspond to 
a few catchments located in the Mediterranean region. These 
results are consistent with previous nationwide studies with 
the GR models (e.g. Lobligeois et al. 2014, Ficchì et al. 2016, 
Poncelet et al. 2017). Crochemore et al. (2015) showed that 
KGE values between 0.66 and 0.90 are considered to represent 
good model performance according to expert judgement. We 
can therefore consider that the GR5H-I model yields good 
overall performance in our dataset.

4.2 Model bias on four levels of hydrograph 
disaggregation

We then refined the analysis and investigated whether the 
model was able to simulate the 2990 flood events in our 
catchment dataset. In this regard, the model bias was 
calculated considering the four levels of hydrograph disag-
gregation (Fig. 7) defined earlier to enable identification of 

Table 2. Correspondence between bias (β) and bounded bias (βb) values.

βb β β β

−1 −1 0 0
−0.6 −0.75 0.11 0.25
−0.33 −0.5 0.2 0.5
−0.14 −0.25 0.33 1
−0.05 −0.1 0.5 2

Table 3. List of the relative characteristics used for the univariate analysis. All 
characteristics are expressed as percentages.

Relative maximum hourly precipitation of the event
Relative maximum event streamflow (or peak flow)
Relative mean SWI index of the event
(ISBA model; Thirel et al. 2010a, 2010b, Coustau et al. 2015)
Relative event runoff coefficient (Q/P)
Relative event duration

Figure 5. Distribution of GR5H-I performance in calibration and validation periods over 229 French catchments. The distributions are presented between the 5th and 
95th percentiles.
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compensations between streamflow periods, i.e. between 
periods of floods and mean and low flows.

The median event bias (βev
b) of the GR5H-I model is equal to 

−0.03, and its distribution is left-skewed towards negative 
values. The distribution of catchment event bias (βcEv

b) is simi-
lar to the distribution of event bias, with a median value of −0.02 
and a lesser dispersion. When bias is calculated without taking 
the selected flood events into account (βcWev

b), the median bias 
has a value of 0.01. The distribution is wider for positive values 
outside the interquartile range. The model bias calculated for 
the entire time series (βts

b) has a median value of 0.001 and 
a distribution similar to the distribution of βcWev

b . The disper-
sion of the event bias is wider than the distribution of the three 
other biases. The dispersion of the bias calculated for the whole 
time series is narrower than the other distributions. Overall, 
these results show that there are compensations between periods 

where flood events occur and the rest of the hydrograph. The 
four bias criteria were also calculated in the calibration period 
and the results showed similar patterns (not shown here).

4.3 Seasonality of model bias

We investigated to what extent certain flood events are better 
reproduced by the model. As the seasonal variation of stream-
flow affects antecedent soil moisture conditions, it is a good 
indicator of the variability in flood characteristics across 
Metropolitan France. We therefore compared the four bias 
criteria with the seasonality of floods (Fig. 8(a–d)).

Figure 8(b) shows that more than 75% of the observed sum-
mer floods were underestimated by the GR5H-I model. The 
distribution of event bias shows that the underestimation asso-
ciated with summer events is much larger than with the other 

Figure 6. Difference of (a) cumulative rainfall and KGE; (b) runoff coefficient and KGE in validation mode between P1 and P2.

Figure 7. Distribution of GR5H-I bias over 229 catchments and 2990 events. The bias (bounded) was calculated for four levels of hydrograph disaggregation. The 
distributions are presented between the 5th and 95th percentiles. Calculations were made with cross-validation values, i.e. using simulations on P1 and P2 obtained 
with the parameter sets optimized on P2 and P1, respectively.
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flood events of our dataset. Floods that occur in winter and 
autumn were less underestimated by the model. The distribution 
of bias across summer events is wider than the bias calculated for 
the simulations of the other flood events. The largest overestima-
tions of floods were for autumn events. Large underestimations of 
summer events explain the skewness of the distribution of GR5H- 
I event bias presented in Fig. 7. Figure 8(c) shows that the seasonal 
trend of model event bias is also an intra-catchment pattern. The 
distributions are less dispersed but the tendency remains similar. 
The seasonal distribution of model bias calculated in the entire 
hydrograph exhibits a different pattern (Fig. 8(a)). Summer and 
autumn bias distributions have positive median values. Winter 
and spring distributions are similar to the distributions in Fig. 8 
(b) and (c) but with a narrower dispersion. When the bias is 
calculated without flood events (Fig. 8(d)), winter and summer 
distributions remain similar to the time series bias. Summer and 
autumn periods are overestimated for 75% of the corresponding 
catchments. These results indicate compensation between periods 

of flood events and periods where there are no flood events in 
summer and spring. Event bias seems to affect winter and spring 
periods less in our dataset.

Figure 9(a–h) presents the GR5H-I simulations of eight floods 
that occurred in tributaries of three major French rivers, the 
Rhône (Doux and Ardèche tributaries), Seine and Garonne rivers.

The GR5H-I model failed to reproduce the volumes of the 
summer events (Fig. 9(a, c, e, g)), whereas it was able to reproduce 
the volumes of four floods that occurred in other seasons (Fig. 9 
(b, d, f, h)). The GR5H-I model yielded reasonable performance 
for the rest of the time series, as assessed by the KGE index.

4.4 Relationship between event bias and flood 
characteristics

Based on the 80 catchments where flood events occur in 
summer, we investigated the relationships between model 

Figure 8. Seasonality of GR5H-I bias over 229 catchments and 2990 events. The bias (bounded) was calculated on four levels of hydrograph disaggregation. The 
distributions are presented between the 5th and 95th percentiles. Calculations were made with cross-validation values. nc is the related number of catchments and nev is 
the related number of flood events. Part (c) shows the seasonal distributions for all catchments.
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event bias and various flood characteristics. Figure 10 presents 
the univariate analysis of the links between GR5H-I bias on 
floods and flood characteristics.

Figure 10(a) shows that GR5H-I bias is lower for flood 
events for which the maximum hourly precipitation exceeds 
130% of the mean of maximum event precipitation. Figure 10 

(b) shows that there is no clear relationship between event 
peak flow and model bias. Large underestimations of flood 
volumes are associated with low SWI index values (Fig. 10 
(c)) and short-duration events (Fig. 10(e)). Interestingly, low 
runoff coefficient values are associated with larger underesti-
mations (Fig. 10(d)). As expected, the highest correlation 

Figure 9. Examples of simulations of summer floods compared with floods that occurred in other seasons. Simulations of GR5H-I are in validation mode. βev is the flood 
event bias. βts and KGE are the bias and KGE index, respectively, calculated for the entire corresponding validation period.
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between flood characteristics is between the SWI index and the 
runoff coefficient (Fig. 10(f)). The runoff coefficient is also 
positively correlated with flood duration and negatively corre-
lated with maximum precipitation. These results indicate that 
the largest underestimations of flood volumes by the GR5H-I 
model are for short floods occurring in summer under low soil 
moisture conditions and when high-intensity precipitation 
events take place.

5 Discussion
Our analysis was based on bias calculations considering dif-
ferent periods of the hydrograph to evaluate the capacity of 
a conceptual rainfall-runoff model to simulate flood events. By 
refining the time window of analysis and by using the season-
ality of streamflow water balance as a proxy of flood variability, 
we found patterns of seasonal model bias. These patterns of 
seasonal model bias are linked to soil moisture conditions and 

Figure 10. (a) to (e) present the results of a univariate analysis of the relationships between flood characteristics and event bias βev
b for 80 catchments in which floods occur 

in summer. Each characteristic class contains approximatively 211 events. The flood characteristics presented are relative to the mean flood characteristics of the 
corresponding catchment. (b) is the linear correlation matrix between the relative flood characteristics.
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specific characteristics associated with the flood events. We 
now discuss how informative this analysis can be in light of 
other existing diagnostics.

5.1 How informative is the KGE index for summer events?

We have shown that calculating the model bias for different 
streamflow time windows enabled us to highlight compensa-
tions between high-flow periods and periods without floods as 
well as situations where the model was not able to simulate 
flood volumes. One may wonder whether these results could 
be obtained with aggregated statistics such as the KGE criter-
ion. In other words, we wanted to know whether the catch-
ments in which the model yielded low KGE values are the 
catchments in which the summer floods were underestimated. 
First, the comparison between overall bias and event bias 
showed differences in the ability of the GR5H-I model to 
simulate the global water balance and to simulate flood 
volumes. One reason may be the low water volumes associated 
with summer events compared with the other floods in our 
dataset (see Fig. 2). Mizukami et al. (2019) reported similar 
results when investigating differences in annual peak flow 
simulations. They showed that improving streamflow bias 
did not always result in better simulation of flood magnitudes. 
Furthermore, the results presented in Fig. 11 demonstrate that 
there is no clear relationship between aggregated KGE values 
and event bias for catchments in which summer floods occur.

This is consistent with the findings of Brunner et al. (2020), 
who showed that while the KGE index integrates a flow bias 
component, it does not explicitly account for high-flow values. 
These results are also in line with the study by Mathevet et al. 
(2020), who found that two conceptual models yielded similar 
results when looking at criteria calculated for the whole time 
series but found differences in the ability of the model to 
capture short-term processes when investigating criteria cal-
culated for specific sub-periods. These results show that inves-
tigating the seasonality of model bias considering different 

streamflow time windows can offer new information on the 
ability of a model to simulate specific flood events.

5.2 On the relevance of event and seasonality analyses to 
improve simulation of floods

To investigate seasonal patterns in model errors, other hydro-
logical signatures could be based on the hydrological regime 
(or 365-d rolling mean, e.g. Mathevet et al. 2020) or the flow 
duration curve (e.g. Yilmaz et al. 2008). However, as presented 
in section 4.3, the seasonal model bias did not highlight under-
estimations by the model of flood events observed in summer. 
The investigation of specific events along with seasonality 
clearly enabled the identification of patterns in model errors. 
Another way to identify these patterns would be to derive the 
flow duration curve in summer periods and calculate differ-
ences above the 80th percentile. But the advantage of flood 
event selection and analysis lies in the possibility to investigate 
links to various flood characteristics. Floods can have very 
different seasonal triggers affecting antecedent soil moisture 
conditions at different time scales (Blöschl et al. 2013, 
Berghuijs et al. 2014). Therefore, fast processes are not always 
considered in overall performance analyses. The seasonality of 
floods is a good indicator of flood triggers in metropolitan 
France. Our results showed that combining event analysis with 
streamflow seasonality analysis can help to identify where 
a conceptual model fails to reproduce flood volumes even 
when the model yields an aggregated performance considered 
to be reasonable.

5.3 First-order factors controlling simulation errors

One of the underlying ideas behind diagnosing a model is to be 
able to identify where model improvement is needed. In the 
case of the GR5H-I model, our results showed a clear seasonal 
pattern with an unbiased estimation of floods except in sum-
mer, where there is a clear underestimation signal. A central 
question remains regarding the first-order factors leading to 
the identified deficiency. Model deficiency can be related to 
parameter estimation, either because of the choice of objective 
function (e.g. Mizukami et al. 2019, Brunner et al. 2020) or 
because of data uncertainty (i.e. wrong parameterization 
because of uncertainty in forcings or streamflows; see e.g. 
Beven 2016). However, structural deficiencies may be the 
underlying cause in the case of our model, as its parsimonious 
structure could limit its ability to reproduce specific processes 
occurring in summer, where short-duration processes can take 
place, such as high-intensity precipitation events. We have 
seen that this is especially the case under low soil moisture 
conditions. Furthermore, Fig. 12(a) indicates that the simula-
tion of effective rainfall by the GR5H-I model partly explains 
the large underestimations of some of the flood events. When 
the simulation of effective rainfall is low compared with the 
other floods of a catchment, the model tends to underestimate 
the flood volume. Figure 12(b) presents the relationship 
between a measure of precipitation intensity and flashiness of 
the catchment response and GR5H-I simulation of event effec-
tive rainfall. Low values of effective rainfall are associated with 

Figure 11. GR5H-I summer event bias per catchment plotted against KGE values 
for catchments where flood events occurred in summer.
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short-duration events with high precipitation intensity (large 
y-axis values) and mostly for late spring, summer and early 
autumn events.

Whatever parameter set is chosen, models sometimes do not 
have the structural ability to reproduce an observed flood. This 
explanation is consistent with the findings of Mathevet et al. 
(2020), who reported that the shorter the sub-period of evalua-
tion, the greater the difference in performance between the MRX 
model and the GRX model (similar to GR5H-I). They concluded 
that MRX is better able to reproduce short-term processes than 
GRX because of the more complex structure of the former. The 
lumped spatial configuration could also be the restraining factor 
explaining the deficiencies identified, since spatial interactions 
between precipitations and soil wetness have impacts on flood 
generation (Tarasova et al. 2020). Short-duration events with 
high precipitation intensity are sometimes subject to large 
uncertainties in the input precipitation data (e.g. Zoccatelli 
et al. 2011, Ruiz-Villanueva et al. 2012, Zhang et al. 2017). If 
the total amount of rainfall is underestimated during an event, 
the model cannot simulate the required amount of effective 
rainfall. This could explain, to some extent, that the model 
does not perform well on such events. Whatever the first-order 
factor is, the present methodology, by establishing a finer bench-
mark for high-flow simulations, helped reveal the difficulties 
involved in modelling specific flood events. This is particularly 
relevant to reduce model structure uncertainty and therefore to 
improve the predictive capability of our model. This work will 
contribute to future improvements of the GR5H-I model.

6 Conclusion

In this study, we proposed an approach to diagnose the quality 
of floods simulated by a conceptual rainfall-runoff model over 
a large set of catchments and flood events. Starting from over-
all performance criteria calculated for the whole time series, 
our methodology consisted in computing model bias for 
selected flood events and looking for seasonal trends and 
compensations between streamflow periods. From these 

seasonal patterns, we aimed to link the model bias to certain 
flood characteristics. We found that while the model yielded 
reasonable performance for the dataset in terms of aggregated 
statistics, patterns in model errors were revealed when inves-
tigating performance across selected flood events. Using sea-
sonality as an indicator of the variability of flood 
characteristics enabled us to identify situations where the 
GR5H-I model did not manage to reproduce the observed 
flood volumes. We found that the summer events of our 
dataset were associated with systematic underestimations by 
the GR5H-I model. Short-duration processes, such as high- 
intensity precipitation events, associated with low soil moist-
ure conditions are not explicitly taken into account in the 
structure of the GR5H-I model. For these specific events, this 
results in a too-low simulation of effective rainfall and there-
fore underestimation of flood volumes. However, these simu-
lation errors were not detected when considering the KGE 
index calculated for the entire streamflow time series. By 
examining both the seasonality of model bias and different 
streamflow time windows, we have identified compensations 
between flood events and the rest of the hydrograph in sum-
mer and autumn.

Overall, this study confirmed the limitations of using criteria 
computed on the whole time series to evaluate model perfor-
mance in simulating high-flow events, even when these criteria 
are known to be biased towards high flows. The seasonality of 
streamflow was found to be an indicator of the ability of the 
GR5H-I model to simulate specific floods that occurred in some 
of the catchments of our dataset. It enabled us to refine the 
analyses and look for links to flood characteristics for these 
catchments. Future developments of the model could focus on 
improving the calculation of effective rainfall by accounting for 
summer flood-generating processes. This could be achieved by 
better considering the spatial variability of rainfall (e.g. 
Lobligeois et al. 2014, Loritz et al. 2021) or by taking precipita-
tion intensity into account (e.g. Peredo et al. 2021). Multi- 
objective calibration could also lead to an improved identifica-
tion of the parameter sets (e.g. Monteil et al. 2020), using, for 

Figure 12. (a) Relationship between GR5H-I simulation of event effective rainfall and event bias (each class contains approximatively 211 events). (b) Relationship 
between GR5H-I simulation of event effective rainfall and precipitation intensity relative to event duration. The results are for 1054 events that took place in 80 
catchments in which floods can occur in summer.
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example, objective functions that were found to be more suited 
for flood simulation (e.g. Mizukami et al. 2019).

In this study, we focused on model bias because we con-
sidered it a first-order property of model errors. Another 
perspective on our work could be to further analyse model 
simulations within a multicriteria assessment framework so as 
to cover more aspects of model performance (Willems 2009). 
Also, data uncertainty was not considered for model parame-
terization or for streamflow result analyses, although it can 
have an impact on model parameterization and interpretation 
of model errors (Beven 2016). Finally, further tests on other 
catchments, such as dry or arid catchments (e.g. in Australia), 
could improve the generalizability of our results.
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Appendix. Equations of the GR5H-I model

Here we provide the main equations (integrated over the time step) of the 
GR5H-I model along with a diagram that depicts the model conceptual 
storages and fluxes (Fig. A1). Definitions of the variables and parameters 
are given in Tables A1 and Tables A2, respectively. More information 
about the model can be found in Le Moine (2008), Lobligeois (2014) and 
Ficchì et al. (2019).

The following equations provide the detailed computations of the 
various internal and output variables of the model on a given time step. 
The sequence can be repeated within a loop to compute a time series of 
simulated streamflow. Before these computations start, the ordinates of 
the unit hydrograph must be calculated (see Equations A9 and A10).

Interception store:
At current time step k, evapotranspiration from the interception store Ei 
is calculated from potential evapotranspiration input E, precipitation 
input P and antecedent interception store level I: 

Ei kð Þ ¼ min E kð Þ; P kð Þ þ I k � 1ð Þð Þ (A1) 

Then, net rainfall is calculated as follows: 

Pth kð Þ ¼ max 0; P kð Þ � Imax � I k � 1ð Þð Þ � Ei kð Þ½ � (A2) 

The interception store level is then updated as follows: 

I kð Þ ¼ I k � 1ð Þ þ P kð Þ � Ei kð Þ � Pth kð Þ (A3) 

Production store:

The part of net rainfall that fills the production store depends on the 
antecedent production store level and the net rainfall: 

Ps kð Þ ¼
X1 1 � S k� 1ð Þ

X1

� �2
� �

tanh Pth kð Þ
X1

� �

1þ S k� 1ð Þ

X1
tanh Pth kð Þ

X1

� � (A4) 

In case E kð Þ � Ei kð Þ is greater than zero, evapotranspiration from the 
production store occurs and depends on the antecedent production store 
level: 

Es kð Þ ¼
S k � 1ð Þ: 2 � S k� 1ð Þ

X1

� �
tanh E kð Þ� Ei kð Þ

X1

� �

1þ 1 � S k� 1ð Þ

X1

� �
tanh E kð Þ� Ei kð Þ

X1

� � (A5) 

The production store level is then updated as follows: 

S� kð Þ ¼ S k � 1ð Þ þ Ps kð Þ � Es kð Þ (A6) 

Percolation from the production store is calculated as: 

Perc kð Þ ¼ S� kð Þ: 1 � 1þ
4

21
:
S kð Þ
X1

� �4
" #� 1

4

8
<

:

9
=

;
(A7) 

S kð Þ ¼ S� kð Þ � Perc kð Þ (A8) 

HYDROLOGICAL SCIENCES JOURNAL 1303

https://doi.org/10.2166/nh.2008.331
https://doi.org/10.1002/hyp.6825
https://doi.org/10.1002/hyp.446
https://doi.org/10.1002/hyp.11476
https://doi.org/10.1002/hyp.11476
https://doi.org/10.1002/2014WR016520
https://doi.org/10.1002/2014WR016520
https://doi.org/10.2166/hydro.2017.050
https://doi.org/10.1016/j.advwatres.2018.07.004
https://doi.org/10.1016/j.advwatres.2018.07.004
https://doi.org/10.1029/2019WR026951
https://doi.org/10.5194/hess-14-1623-2010
https://doi.org/10.5194/hess-14-1639-2010
https://doi.org/10.5194/hess-17-4227-2013
https://doi.org/10.1016/j.jhydrol.2010.09.018
https://doi.org/10.1175/2011JHM1340.1
https://doi.org/10.1016/j.jhydrol.2016.06.011
https://doi.org/10.1051/lhb/2019017
https://doi.org/10.1002/joc.2003
https://doi.org/10.1029/2007JD009246
https://doi.org/10.1016/j.envsoft.2008.09.005
https://doi.org/10.1029/2007WR006716
https://doi.org/10.3390/w12020570
https://doi.org/10.3390/w12020570
https://doi.org/10.1038/ngeo2911
https://doi.org/10.1038/ngeo2911
https://doi.org/10.5194/hess-15-3767-2011
https://doi.org/10.5194/hess-15-3767-2011


Unit hydrograph (UH):

The S-curve along time t is defined independently from the current time step: 

0; t< 0

� 1
2 :

t
X4

� �1:25
; 0< t<X4

1 � 1
2 : 2 � t

X4

� �1:25
; X4 < t< 2:X4

1; t � 2:X4

8
>>>><

>>>>:

(A9) 

The resulting unit hydrograph ordinates are calculated by: 

UH jð Þ ¼ SH jð Þ � SH j � 1ð Þ (A10) 

where j is an integer between 1 and the maximum number of unit 
hydrograph ordinates (n).

The unit hydrograph ordinates are used to calculate the outflow from 
the unit hydrograph to the routing store at the current time step: 

Q9 kð Þ ¼
9

10
:
Xn

j¼1
UH jð Þ:Pr k � jþ 1ð Þ (A11) 

and the outflow from the unit hydrograph to the direct branch: 

Figure A1. Diagram of the GR5H-I model (modified from Le Moine 2008, Ficchì et al. 2019).

Table A1. List of the variables of GR5H-I expressed for a given time step (mm 
or mm/h).

Notation Definition

E Potential evapotranspiration input
P Precipitation input
En Net evapotranspiration
Ei Evapotranspiration from interception store
Imax Interception store capacity
I Interception store level
Pth Net rainfall from interception store
Es Evapotranspiration from production store
Ps Part of net rainfall that fills the production store
S� Temporary level of the production store
S Production store level
Perc Percolation from production store
Pr Effective rainfall
Q9 Part of the unit hydrograph outflow that fills the routing store
Q1 Part of the unit hydrograph outflow that does not fill the routing 

store
F Potential intercatchment semi-exchange

Outflow from the routing store
Qd Outflow from the direct branch
R� Temporary level of the routing store
R Routing store level
Q Simulated streamflow
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Q1 kð Þ ¼
1

10
:
Xn

j¼1
UH jð Þ:Pr k � jþ 1ð Þ (A12) 

Exchange function:

An intercatchment exchange flow is then added (or released) to (or from) 
both outflows depending on the antecedent routing store level. The 
potential intercatchment semi-exchange is calculated as follows: 

F kð Þ ¼ X2
R k � 1ð Þ

X3
� X5

� �

(A13) 

Routing store:

The routing store level is updated as follows: 

R� kð Þ ¼ max½0; R k � 1ð Þ þ Q9 kð Þ þ F kð Þ (A14) 

The outflow from the routing store is then calculated as: 

Qr kð Þ ¼ R� kð Þ: 1 � 1þ
R kð Þ
X3

� �4
" #� 1

4

8
<

:

9
=

;
(A15) 

R kð Þ ¼ R� kð Þ � Qr kð Þ (A16) 

The outflow from the direct branch is expressed as: 

Qd kð Þ ¼ max 0; Q1 kð Þ þ F kð Þ½ � (A17) 

Finally, the simulated streamflow is calculated as: 

Q kð Þ ¼ Qr kð Þ þ Qd kð Þ (A18) 

Table A2. List of the free parameters of GR5H-I.

Notation Definition Unit

X1 Production store capacity mm
X2 Intercatchment exchange coefficient mm/h
X3 Routing store capacity mm
X4 Unit hydrograph time constant h
X5 Intercatchment exchange threshold -
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