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LOGARITHMIC SHEAVES OF COMPLETE INTERSECTIONS

DANIELE FAENZI, MARCOS JARDIM, AND JEAN VALLES, WITH AN APPENDIX BY ALAN MUNIZ

ABSTRACT. We define logarithmic tangent sheaves associated with subvarieties of codimension larger
than 1 in connection with Jacobian syzygies and distributions. We analyze the notions of local
freeness, freeness, and stability of these sheaves.

We carry out a complete study of logarithmic sheaves associated with pencils of quadrics and
compute their projective dimension from the classical invariants such as the Segre symbol and new
invariants (splitting type and degree vector) designed for the classification of irregular pencils. This
leads to a complete classification of free (equivalently, locally free) pencils of quadrics.

Finally, we produce examples of locally free, non-free pencils of surfaces in P? of arbitrary degree
k = 3, answering (in the negative) a question of Calvo-Andrade, Cerveau, Giraldo, and Lins Neto
about codimension foliations on IP3.
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1. INTRODUCTION

Let x be an algebraically closed field of characteristic zero and consider a sequence o = (f1,..., fx)
of homogeneous polynomials f; € R = k[xg,...,x,] of degree d; + 1, for some 0 < d; < -+ < di
and k < n. Let I, := (f1,..., fr) denote the ideal generated by o, and V(o) be the associated closed
subscheme in P™. Consider the Jacobian matrix of ¢, namely:

Vi
Vo = : D ORI — @F Opn(d;)
V fk

The Jacobian scheme of ¢ is defined by the maximal minors of this matrix; it may have several
components of different dimensions and degrees. We will say that o has a singular divisor of degree d
if the Jacobian scheme contains a divisor of degree d.

The main focus of this paper, rather than the Jacobian scheme, is the sheaf

To :=ker(Vo)
which we assume to have rank equal to n — k + 1. By the Jacobian criterion, this is equivalent to
assuming that o is algebraically independent, that is there is no polynomial G € k[z1, ..., z)] such that

G(f1,.-., fx) =0, see [0, Ch. I, 11.4]. More precisely, we will be mostly concerned with the case when
o is a regular sequence so that V(o) is a complete intersection subscheme.

We call T, the logarithmic tangent sheaf associated with o. This nomenclature for T, is motivated
by the following observation. Assuming that o is a regular sequence, set X = V(o) and recall that the
Zariski tangent sheaf TX and the sheaf T’ supported at Sing(X) fit into:

k
0> TX - TP"|x > P Ox(d; +1) > Tx — 0.
i=1

The sheaf Tpn(X) of vector fields on P™ tangent to X is the kernel of the natural morphism TP"™ —
(—szl Ox(d; +1), see [21, Chapter 3]. It turns out that T, (1) is a subsheaf of rank n —k+1 of Tpa{(X).
More precisely (see Lemma 2Z4]), writing V, = @le Ix(d; +1)/Opn and denoting by Q, the cokernel
of Vo, we have:

0— T,(1) > Tpn(X) >V, — Q,(1) > Tk — 0.

When the sequence o consists of a single polynomial f (so that k& = 1), then V, = 0 so T,(1) ~
Tpn(X) is precisely the logarithmic tangent sheaf associated with the divisor V(f), see for instance
[22] or the celebrated [I7].

Note that, for k > 2, the sheaf Tp»(X) cannot be locally free. On the other hand, as we shall see,
T, may be locally free or even completely decomposable as a sum of line bundles. Hence we propose
the following three definitions, whose goal is to generalize the usual concept of a free divisor introduced
in [17].

Definition. An algebraically independent sequence o is said to be:

(1) locally free if the associated logarithmic tangent sheaf T, is locally free.
(2) free if the logarithmic tangent sheaf T, splits as a sum of line bundles.
(3) strongly free if every sequence o’ such that I,r = I, is free.

Clearly, every free algebraically independent sequence of length k& = 1 is also strongly free. On the
other extreme case, we observe that if ¢ is an algebraically independent sequence of length & = n,
then T, = Opn (e) for some negative integer e, since every rank 1 reflexive sheaf on P is a line bundle.
Therefore, every algebraically independent sequence o in k[, . . ., x,] of length n is strongly free. We
provide explicit examples of free and strongly free regular sequences of length 2 in k[xo, x1, 22, 3], see
Example 21T and Example below.

Regarding the middle range 1 < k < n, recall that it is notoriously hard to construct indecomposable
locally free sheaves of rank r on P™ when 2 < r < n—2, cf. [I2, Problem 1 and subsequent paragraph].
In fact, only two examples, up to twist and affine pullback, are known: the Horrocks—Mumford rank
2 bundle on P* and Horrocks’ rank 3 bundle on P5. Furthermore, the Hartshorne conjecture (cf. [12]
Problem 3 and subsequent paragraph]) seems to indicate that every locally free sheaf of rank r on P
with 3r < n splits as a sum of line bundles, as the vanishing locus of a general section of a sufficiently
positive twist of a non-split bundle would be a good candidate to contradict the conjecture. This
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would imply that locally free algebraically independent sequences of length k in [z, ..., x,] are free
whenever 3k > 2n + 3.

With these facts in mind, it seems natural to investigate algebraically independent sequences of
length 2 in R = k[xo,...,x,]. Following two directions usually pursued in the literature concerning
logarithmic sheaves for hypersurfaces, our goal is to find criteria to determine when, on the one hand,
an algebraically independent sequence o = {fi, f2} is (locally) free, and, on the other hand, when the
associated logarithmic tangent sheaf 7T, is slope-stable.

We start in Section [2] by setting up basic definitions and examples. Most importantly, we provide
criteria to determine when an algebraically independent sequence in R is locally free (see Lemma 2.2)),
as well as examples of free regular sequences that are not strongly free (Example2.11]), and of a strongly
free regular sequence (Example[ZT12). In Section[Z2]we show that algebraically independent sequences
of length %k induce codimension k — 1 distributions on IP", see Lemma 2.3} these distributions are in
fact integrable, and, as it is shown in the Appendix, coincide with the rational foliations introduced
by Cukierman, Pereira, and Vainsencher in [6]. Yet another important notion in this paper is the
compressibility of an algebraically independent o (that is, an algebraically independent sequence of
length k consisting only of forms of equal degree): o is said to be compressible if there is a variable
that occurs in none of the polynomials contained in ¢; an algebraically independent sequence that is
not compressible is said to be incompressible (see Definition [20]).

Sections [ through [1 are dedicated to a thorough study of algebraically independent sequences
consisting of 2 polynomials of degree 2, also referred to as pencils of quadrics.

First, recall that the slope of a torsion-free sheaf F' of rank p > 0 on P™ of determinant ( N F ) s
Opn (e) is defined as pu(F) = e/p. The sheaf F is said to be slope-(semi)stable if any proper subsheaf
K of E has slope u(K) < (<) u(E); F is slope-polystable if it is the direct sum of slope-stable sheaves
with the same slope, and F' is slope-unstable if it is not slope-semistable. The following result is proved
in Section [Bl

Theorem A. Let o be a pencil of quadrics in P™ and let ro be the mazimal corank of the Hessian
matriz of the quadrics in the pencil.

1. The singular divisor of o consists of two simple hyperplanes or a double hyperplane if and only
if c1(T5) = 0 and this happens if and only if T, ~ O%T(Ln_l).
2. If o contains one and only one simple singular hyperplane, then ¢1(Ty) = —1 and T, is slope-
stable if and only if o is incompressible.
If o is compressible and contains no singular hyperplane, then T, is slope-unstable.
4. If o is incompressible and contains no singular hyperplane, then
i) Ty is slope-stable when 2rqg <mn + 1;
i) T, is strictly slope-semistable when 2rg = n + 1;
1i) T, is slope-unstable when 2rg > n + 1.

o

The upshot is that, for the most interesting case (namely that of incompressible pencils without
double hyperplanes), stability depends only on the maximal corank 7y of the quadrics in the pencil.
By [1], semistability of a pencil of quadrics in the sense of geometric invariant theory is equivalent to
the fact that the discriminant of the pencil is non-zero (i.e. the pencil is regular) and has no root of
multiplicity greater than (n+ 1)/2. So there are many GIT-unstable pencils o whose logarithmic sheaf
T is still slope-semistable or even slope-stable, see Remark

Next, we look at freeness and local freeness of pencils of quadrics and, more generally, at the
projective dimension of T,, both in the local and in the graded senses. This turns out to depend
on more subtle invariants of the pencil. To review them, note that the pencil of quadrics defined by
o gives a symmetric matrix p, of linear forms on P!, whose generic corank 71 is the corank of the
Hessian matrix of a generic quadric in the pencil. Note that ;1 = 0 if and only if ¢ contains smooth
quadrics, we call o reqular in this case and irreqular otherwise. When ¢ is irregular, there are integers
1<ec <+ < ¢pyom, with m = dim(H%(T,)) such that the torsion-free part of €, = coker(p,) is
DL, Op1(c;). We call ¢ = (c1,. .., ¢, ) the degree vector of o. If A = {A1,..., A} < P! is the support

of the torsion part C; of C,, then, for each j € {1,...,¢}, denoting by )\§-a) the a-tuple structure over

\j, the localization at \; of C; is D], O?@é‘i), for some s; and (a;:,p;q | i €{1,...,s;}). These data
J
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are arranged into the Segre symbol ¥ = [X1,...,%,], defined for all j € {1,...,¢} by:
Ej = (aj71, 7R PR (PP ,aj,sj), with aj1 > "> Qjs;-
- N
Pj.1 Pj,s;
The data (r1, A, X) completely characterize an incompressible pencil of quadrics up to homography,
a result that goes back to Kronecker, Segre and Weierstrass, see Section [3.1.2] for further details.
With these data, we describe the scheme-theoretic structure of the Jacobian scheme, when o is
regular, as a union of nilpotent structures on pairwise disjoint linear spaces whose dimension and
degree of nilpotency depend on ¥ and whose position depends on A. If ¢ is irregular, the Jacobian
scheme contains an additional component which is a rational normal scroll of dimension r; and degree
c1 + -+ + ¢y, that connects all the linear spaces, with a prescribed intersection along each space.

The upshot is that these invariants also characterize the projective and graded projective dimensions
of T4, as it is described in the following two results, proved in Section 5.1l and Section [£5.2] respectively

Theorem B. Let o have Segre symbol ¥. For q > 0, Exth, (To,Opn) # 0 if and only if there are
jef{l,....t} and ke {l,...,s;} such that:

qg+pji+...+pjr=n—r1—1,
orry >0 and ¢+ ry =n — 2. In particular, we have:

i) if o is regular and p = min{p; . | j € {1,...,€}}, then pdim(T,) =n—p—1;
it) if o is irregular, then pdim(T,) =n —ry — 2.

We have a rather different situation for the graded projective dimension gpdim(7T,), namely, the
projective dimension of the module of global sections of T,. This is summarized in the following result.

Theorem C. For a reqular pencil of quadrics o in P™ we have gpdim(T,) = n — 2 except if o has
Segre symbol [17,17] forp = q = 1 or [(29,17)] with ¢ = 1. In both these cases gpdim(T,) =n—q— 1.

For an irregular pencil of quadrics o of generic corank r1 we have gpdim(T,) = n — 1 except if o
has degree vector (1,...,1), in which case gpdim(T,) =n —r; — 2.

With this in mind, after a careful analysis of pencils of quadrics in P?, performed in Section [6, we
come to the conclusion that freeness and local freeness are equivalent conditions for pencils of quadrics
in P" and we completely classify pencils satisfying such condition.

Theorem D. A pencil of quadrics o in P™, n = 3, is free if and only if T, is locally free. More
precisely, the only free pencils of quadrics are displayed in Table [{9

By contrast, we provide in Section B a series of examples of locally free pencils of degree k > 3
that are not free. This indicates that potentially interesting vector bundles may arise as logarithmic
sheaves associated with regular sequences of higher degrees having deep singularities. To understand
our following result, recall that a null correlation bundle is defined as the cokernel of a non vanishing
morphism Ops(—1) — Qs (1); every slope-stable rank 2 locally free sheaf N on P? with ¢y (N) = 0
and c(N) =1 arises in this way.

Theorem E. Fiz k >0, and consider the pencil o = (f,g) of degree k + 3 with:

k+2 |k k+2 k1 kel
=202y + 25 + 25223 and g = zoxs(abtt — i),

Then T, ~ N(—k — 2), where N is a null correlation bundle.

We complete this paper with an application of our results to the study of rational codimension one
foliations on P™, see Section [0 To be precise, recall that a rational 1-form is a twisted 1-form given
by the expression

w = (dl + l)fl . df2 — (dz + 1)f2 df1 € HO(Q]an (dl + do + 2)),

where f; € H?(Opn (d; +1)) for i = 1,2 and fi, f> have no common factors. Regarding w as a morphism
TP"™ — Opn(dy + di + 2), we consider the kernel sheaf K, := kerw. We show in Section [ that the
natural 1-1 correspondence (f1, f2) <> w between regular sequences of length 2 and rational 1-forms is
such that K, = T,(1), see Lemma [0.1]

This fact has two important consequences. First, we can invoke a result from the general theory of
codimension one distributions on P3, presented in [4], to obtain simple criteria to establish when T,
is slope-(semi)stable, see Corollary 021
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Second, we provide a negative answer to a problem posed by Calvo-Andrade, Cerveau, Giraldo, and
Lins Neto, see [3, Problem 2]; namely, these authors asked whether the tangent sheaf of a codimension
one foliation must split as a sum of line bundles whenever it is locally free. While Theorem [D] implies
that this claim is true for rational foliations of type (2,2), Theorem [E] says that for each k > 0 there
are rational foliations of type (k + 3,k + 3) on P3 whose tangent sheaf is a slope-stable locally free
sheaf.

Acknowledgments. We thank Eduardo Esteves for pointing us out to the results of [I], Cleto
Miranda Neto for useful discussions, and Alan Muniz for revising a preliminary version of the pa-
per, as well as writing an Appendix that elucidates the relation between the new theory here pro-
posed and the theory of holomorphic foliations on projective spaces. This research is part of the
CAPES/COFECUB project Moduli spaces in algebraic geometry and applications, Capes reference
number 88887.191919/2018-00. D.F. is partially supported by EIPHI Graduate School ANR-17-EURE-
0002 and ANR Fano-HK ANR-20-CE40-0023. M. J. is partially supported by the CNPQ grant number
305601/2022-9 and the FAPESP Thematic Project 2018/21391-1. The authors also acknowledge the fi-
nancial support from Coordenagao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES)
- Finance Code 001 and ANR BRIDGES ANR-21-CE40-0017.

We warmly thank the referee of the first version of the manuscript for pointing out several classical
references and results that greatly helped improve this paper.

2. BASIC DEFINITIONS AND EXAMPLES

Let k be a field of characteristic 0, n € IN and put R = k[zg,...,2,]. In this section, we will give
some preliminary properties of logarithmic tangent sheaves associated with complete intersections.
Many properties remain valid for x of characteristic different from 2.

2.1. General framework. Let o := {f1,..., f} be an algebraically independent sequence of homo-
geneous polynomials in R, with d; = deg(f;) —1 for i € {1,...,k}. Consider the associated subscheme
X = V(o) € P" and set Vo for the associated Jacobian matrix. We write ¢; the partial derivative
% for j€{0,...,n} and Vf = (0vf,...,0nf) the gradient of a homogeneous polynomial f € R.

We put 7, for the associated logarithmic tangent sheaf as defined in the Introduction, namely T, is
the kernel of Vo. In addition, we define the sheaves M, := im(Vo) and Q, := coker(Vo). The sheaf
M, is torsion-free, it can be thought of as the natural extension to IP" of the equisingular normal sheaf
of X = V(o); furthermore, the sheaf T, is reflexive because it is the kernel of a morphism between
locally free sheaves. We have the fundamental exact sequences:

(1) 0— T, — 05 Y40, —0,  0— My — @, 0pn(d;) — Qy — 0,

The sheaf T, can be viewed as the sheaf of syzygies of the Jacobian matrix Vo. Indeed, a syzygy
of degree a of Vo is a morphism v : Opn(—a) — 07+ such that Vo o v = 0. Write Syz, (Vo) for
the vector space of syzygies of degree a for the matrix Vo. Note that every syzygy of degree a for Vo
induces a section in H%(T,(a)). Conversely, every non-trivial section in H°(T,(a)) induces a syzygy
of degree a for Vo, thus we obtain an isomorphism of vector spaces

(2) H®(T5(a)) ~ Syz, (Vo).

We define the Jacobian scheme =, as the degeneracy locus of Vo,

Z :=V</I€\VU>.

This is the subscheme of P™ defined by the common zeros of the k x k& minors of Vo. The reduced
structure (2, )yea coincides with the support of the sheaf Q,. Note that (24 )req may contain a hyper-
surface.

More precisely, the image of the exterior power morphism:
n+1

k
(3) /\VO’:O?ES’C )_’Oan(dl-f—'--—i—dk);

is of the form Jyw, (dy + --- + d — 1), where | := ¢1(Q,) is the degree of the divisorial part =,, and
W, < P™ is a subscheme of codimension at least 2, possibly not pure. Let us illustrate this discussion
with an explicit example.
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Example 2.1. Let f = zgx1 + 2223 and g = xox12223, and note that neither f and g have common
factors, nor do Vf and Vg; however, one can check that (2, ),eq contains a hypersurface.
Indeed, we have that:

v . m o 3 s
7 T1T2T3  ToT2x3 TOT1T3 ToT1Tz )

The reduced structure of curve C' = V(f, g) is the union of the four lines V(z;,z;) with ¢ = 0,1 and
j =2,3. Two of the 2 x 2 minors of Vo vanish identically, and we have that

2
/\VU = (,Tol'l - 1'21'3) . (O LT3 T1T2 T1X3 oI O)

It follows that (=, )req consists of the quadric V(xoz1 — x2x3), so that | = ¢1(Q,) = 2 in this case, plus
two lines V(zo,x1) and V(xg, z3); W, is the union of these two skew lines.

Lemma 2.2. Let o be an algebraically independent sequence. Then:

i) o is locally free if and only if Q, has no subsheaf of codimension = 3;
it) if o is locally free, 25 has no irreducible component of codimension = 3.

Note that (Z4)red may have no irreducible component of codimension at least 3 even when Q,
admits a subsheaf of codimension at least 3, see Section 8l This means that the converse of item (ii)
above does not hold in general.

Proof. Taking duals of () we obtain €zt (T,,Opn) = 0 and, for j < n — 1:
Eath, (To, Opn) ~ Extht (M, Opn) ~ Exthi?(Q,, Opn).

The sheaf T, is locally free if and only if Eatd 2 (T5, Opn) = 0 for j > 1, which is equivalent to
requiring that €zt (Qy, Opn) = 0 for j > 3. This gives the equivalence in the first claim.

If (25 )red has an irreducible component Y of codimension j > 3, then, since (Z,);cq is the support
of Q,, it follows that Q, has a non-trivial subsheaf V — Q, supported on Y, hence codimV = j. The
previous item then implies that T, is not locally free. O

In particular, we observe that every algebraically independent sequence o on k[xg, x1, 23] is locally
free. Furthermore, as we pointed out in the introduction, every algebraically independent sequence of
length n in &[zo,...,z,] is free, since T, = Opn (e) for some e € Z.

2.2. Algebraically independent sequences and distributions. Recall that a codimension r dis-
tribution on PP™ is a short exact sequence of the form

D 0 — Ty —> TP" — Ny —> 0

where Ng is a torsion-free sheaf of rank r and Ty is a reflexive sheaf of rank n — r, respectively called
the normal and tangent sheaves of 2. We refer to [4, Section 2.1] for further details on the general
theory of distributions.

Let us point out how distributions are related to algebraically independent sequences. First, thinking
of the Koszul complex attached to o we consider ¢ = ((d1+1)f1, ..., (dg+1) fx)" and the Koszul syzygy
sheaf 8, := coker(d), so:

k
(4) 0— O]Pn (*1) g @ O]Pn (dz) g 80’ — 0.
i=1
Let 17 : Opn(—1) —> 022! be the Euler morphism, namely 1 = (zg,...,x,)". The Euler relation

gives -V fi=(d;+1)f; for all i € {1,...,k}. This allows us to construct the following commutative
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diagram:
0
|
+1 Vo k
(5) 0— Ta’ —_— O%’:} —— @izl O]P" (dz)

| | l

0—T, —TP"(-1) ——= 8§,

| i

0 0

Here we used that s is of characteristic zero, or rather that the characteristic of x does not divide
di +1forallie{l,..., k}.

Note that the image of & is contained in M, and set N, for the cokernel of &, corestricted to M, .
The previous diagram gives:

Opn

Qv

0
l

1) == Op~(-1)
J

T
(6) 0—7, ogt —Z =M, 0
| | l
0—TJ, — TP"(-1) No 0

Furthermore, we have a second diagram featuring the cokernel sheaf Q,:

—_~<0

0
!
Opn (—1) == Opn(-1)
|7

(7) 0 o @i‘c:loIP" (dz) —Q, —0
H
0 s S\LU Q, —=0

;

It follows that the bottom line in diagram in display (6 defines, for k > 2, a codimension k — 1
distribution 9, on P™, given by the exact sequence

(8) Dy : 0 — T5(1) — TP" — N, (1) — 0.
Summing up, we have proved the following statement.

Lemma 2.3. Every algebraically independent sequence o of length k on n + 1 wvariables induces a
codimension k — 1 distribution 9, on P™ such that Tg, = Ty (1).

It is shown in Proposition in the Appendix that the distributions &, constructed above are
integrable, and coincide with the rational foliations introduced by Cukierman, Pereira, and Vainsencher
in [6].

However, not every codimension k& — 1 distribution on IP" comes from an algebraically independent
sequence via the construction above. For instance, given a codimension k — 1 distribution 2 on P",
the monomorphism T¢ < TP™ may not factor through Opn (1)®7*1.
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2.3. Logarithmic tangent sheaf and deformations. Let us point out the relationship between
our sheaf and classical sheaves of tangent vector fields, in connection with locally trivial deformations
of embeddings.

2.3.1. Tangent vector fields along a complete intersection. Given a regular sequence o, the subscheme
X = V(o) = P" is a complete intersection whose ideal sheaf Jx is generated by ¥ : ®F_, Opn (—d;) —
Ix(1). In addition, we have the equisingular normal sheaf N%/Pn, see [21], § 3.4.4], which is defined as
the quotient sheaf TIP™|x/TX, and therefore satisfies the following exact sequence

0= TX — TP"|x — N pn — 0;

here, TX denotes the Zariski tangent sheaf of X. Note also that N 3( /P is a subsheaf of the normal
bundle N /pn =~ (—szl Ox(d; + 1), so:

k
%o = @ Ox(d; +1);

=1

the quotient of this monomorphism is denoted by T’y, see [2I} § 1.1.3]; it is supported at the singular
locus of X. For further reference, we write its defining exact sequence:

k
(9) 0 — Ny /pn = @ Ox(di +1) > T — 0.
i=1

The sheaf of vector fields on P™ tangent to X, denoted by Tpn{(X), is defined as the kernel of the
composed epimorphism TP™ — TP"|x — N’ /P yielding the exact sequence

(10) 0— TplX)—> TP" — ;</]P" — 0.

The main motivation for introducing Tpn(X) is given by [2I, Proposition 3.4.17]; namely,
HY(Tpn(X)) and H?(Tp.(X)) are the tangent space and the obstruction space of the semi-universal
space of locally trivial deformations of the embedding X < P™. Here we show that T, (1) is a subsheaf
of Tpn(X), and, in addition, we describe, to a certain extent, the quotient sheaf Tpn(X)/T,(1).

Since the forms fi,..., fi generate the homogeneous ideal of X in P™, we may view ¢ = ((d1 +
1)f1,...,(dg + 1)fr)" as a morphism Opn — @le Ix(d; +1). We define a torsion-free sheaf V, =
coker(g) fitting into:

k
0 — Opn H@Jx(di+1)—>vgﬁ>0.
1=1

Note that, when & = 1, we have V, = 0, as Ix(d; + 1) ~ Op~ in this case, so:
To(1) ~ TpalX), for k= 1.

For k > 2 the relationship between the two sheaves T, (1) and Tpn(X) is expressed by the following
lemma.

Lemma 2.4. We have an exact sequence:
(11) 0— T,(1) - TpnlX) >V, — Q,(1) - Ty — 0.

Proof. We use the Koszul syzygy sheaf §, of Subsection to write the following exact sequence
relating 8, and V,:
k

0—>Vo = 8:(1) > P Ox(d; +1) — 0.
i=1
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We get a commutative diagram:

0 0
0 Opn i ®§:1 jx(di + 1)
l o J
®(n+1) 1 \Vol) Kk
0—=T5(1) —= Opn (1) ="@i1 Opn(d; +1)

! | ¢

0 — Tpn(X) TP —= > @, Ox(d; + 1)
0 0

where w is given by the composition TP" — N/ o (—szl Ox(d; +1). The exact sequence
in display (L)) is then obtained via the snake lemma, since V, := coker(¢), Q, := coker(Vo) and
T% := coker(w). O

2.3.2. Tangent vector fields along hypersurfaces. We look at the relationship between T, and the
tangent vector field to one of the hypersurfaces defining o.

Lemma 2.5. We have:
k
(12) T, =70
j=1

Further, for each j € {1,...,k}, set Z; = Sing (V(fj)) Then there is an exact sequence:

(13) O i Tg I ‘.Tf]. i @ OIP" (dl) i Qg I OZj (dj) i O
€{l,..., kN\{7}

Proof. For any j € {1,...,n}, we have:
Ty, = ker (v £ 0204 g, (dj)).

Therefore, since T, is defined as kernel of the matrix obtained by stacking V(f1),...,V(fk), we get
(2. Next, for any j € {1,...,k}, we have the following commutative diagram:

0 0
0 Jo Ty Dictr,...1p 5y Opn (di)
(14) 0—=T, —= 08t Y7 . @k Opn(d;)
Vfi
Iz;(dj) ———— Opn(d;)

Since Z; is the Jacobian scheme of f;, the completion of (I4)) via the snake lemma leads to (I3)). O

These observations will play an important role in the proof of Theorem B1] below.
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2.4. Compressibility. Next, we introduce the following definition.

Definition 2.6. We say that an algebraically independent sequence o is compressible if, up to a linear
coordinate change, there is a variable that occurs in none of the forms f1,..., fx. An algebraically
independent sequence that is not compressible is called incompressible.

Lemma 2.7. An algebraically independent sequence o is compressible if and only if H°(T,) # 0.

Proof. The condition H%(T,,) # 0 does not depend on the given choice of a system of coordinates. If
none of the forms f1,..., fr depends on a given variable, then all partial derivatives of f1,..., fir with
respect to this variable are zero. This means that Vo contains a column containing only 0; thus, the
kernel sheaf T, contains a copy of Opx.

Conversely, assume H(T,) # 0. For all (i,5) € IN? with 1 <i < k and 0 < j < n, we set:

afi
fi,j = 0Ij e R.
Since the sheaf T, satisfies H?(T,) # 0, there is a non-zero vector (b, ...,b,) € k! such that:

bofio+ -+ 4+ bnfin =0, for all 1 <i < k.

Then we define new coordinates (x, ..., ) by choosing an invertible matrix (a; ;) of size n + 1 with
the condition ajo = b; for all 0 < j < n and putting:

n
xj = Z aj oy, for all 0 < j < n.
=0

Then, for all for all 1 < i < k, we have:

(9f1 > airj =
- fi.zib.fi.:(),
/ ;7 J] JJ.]
0x = oxy, =
Therefore, in the new coordinates (xj, ..., ), none of the forms appearing in o depends on z(. O

The compressibility of o = {f1,..., fx} is defined as the number of independent variables that
can be removed from the polynomials f;, in a suitable coordinate system. In other words, o has
compressibility m if and only if h°(T,) = m; note that 0 < m < n—1. We set 7 := n —m; it indicates
the minimal number of variables where ¢ is defined.

Lemma 2.8. If o is a compressible algebraically independent sequence in R, then there is an
incompressible sequence & in K[xg,...,xs] and a f-dimensional linear space L < P™ such that

T, = O%ﬁniﬁ) @ & where &, ~ Ts.

Proof. Assume that o = (fi,..., fx) is compressible, so that m := h%(T,) > 0; set # := n — h9(T,).

We get a monomorphism O%ﬁl — T, which we compose with T, — O%{lnﬂ); one can then find an
epimorphism O%ﬁnﬂ) —» O%ﬁ” such that the following composition

Of" — T, — ORI - o

is the identity morphism; it follows that T, = Ogﬁ"iﬁ) @ E, where the sheaf € fits in the exact sequence
(15) 0—&— O A op, (d—1)%F

As we have seen in the proof of Lemma ([2.7), there are new coordinates (xj, : - -+ : x},) such that the
variables x(, ..., z},_; do not appear in the polynomials f; € o.

This means that the first m columns of the Jacobian matrix consist only of zeros and that the
matrix g in display ([IE) is precisely the submatrix of trivial columns of Vo.

In addition, o can be regarded as a sequence in k[z], ,...,2], which we rename 6. Setting
L=V(xp, - ,a,,_1), we have that p|r, = Vs, thus &|p ~ Ts. O

As an immediate consequence, we have:

Corollary 2.9. The logarithmic tangent sheaf of a compressible algebraically independent sequence of
length k < n — 1 is never slope-stable.
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Recall that a coherent subsheaf F of a coherent sheaf & is saturated if €/F is torsion-free. The
following technical observation will be useful later on.

Lemma 2.10. If o is an incompressible algebraically independent sequence, then every saturated sub-
sheaf X < T, satisfies ¢c1(K) < 0. In particular, when k < n and ¢1(T,) = —1, T, is slope-stable if
and only if o is incompressible.

Proof. Any saturated non-zero rank-r subsheaf X of T, is also a saturated subsheaf of OP@QH, which
is a slope polystable sheaf. It follows that ¢;(X) < 0, and if ¢1(X) = 0, then [I4] Corollary 1.6.11]
implies that K = O%ﬂ, so o is compressible. This proves that ¢;(X) < —1 when o is incompressible.
For k < n, Corollary 2.9 says that T, is unstable as soon as o is compressible. Conversely, let o be
incompressible with ¢ (T,) = —1 and consider a rank-r subsheaf X of T,, with » < n — k. Then we
just proved that ¢;(X) < —1 so:
C1 (K) < —_1 - -1 '
r r n+1—k
This implies that T, is slope-stable. 0

Example 2.11. Here is an example of a free regular sequence that is not strongly free. Consider the
following regular sequences in R = k[xq, 1, T2, 3]

o = (xox1,g) and o = (onhxgl"l +9);

where g is a polynomial of degree 3 depending only on z2 and z3; assume that d2g and ds3g have no
common factors, so that Vg has no syzygies of degree < 2.
Clearly, I, = I,». We argue that o is free, while ¢’ is not. Indeed, their Jacobian matrices are given

by:
[ x1 w O 0 B 1 0 O 0
Vo = ( 0 0 0Ja9 039 ) and Vo = < 2rox1  x§ 029 O3g >

Note that Vo has two independent syzygies, given by
V= (7:1707'%17 05 O) and V2 = (05 07 8395 7829)
of degrees 1 and 2, respectively. Therefore, we have a monomorphism
v O]ps(—l) @ OIP3 (—2) — Ta’
whose cokernel, being a subsheaf of J1,(1) ® Io(2) with L = V(zg,z1) and C = V(dag, d3g), must be
torsion-free. It follows that v must be an isomorphism, thus T, ~ Ops(—1) @ Ops(—2).

To see that T,. does not split as a sum of line bundles, note that v is also a syzygy for V,/,
thus h°(7,/(2)) > 0. On the other hand, since V, has no syzygy of degree < 1, we have that
hO(T, (1)) = 0. In addition, the minors appearing in A* V4 have no common factor, thus ¢;(Qq/) = 0
and ¢1(Ty) = —c1(Myr) = —3. Thus if T,» = Ops(a) ® Ops(b) with a < b, then a + b = —3, and
a,b < —2, which is impossible.

In fact, note that (,/) . consists of the line V(zo, 1) together with the following 0-dimensional
schemes:

red

W(xoan.gaab’g) and V(I1;02gaa3g)7

each of length equal to 4. Therefore, (2, )req contains at least two irreducible components of codimen-
sion 3; the second item of Lemma 2.2 implies that T, is not locally free.

Example 2.12. We show that the regular sequence o = (z¢,23) in R = k[z¢, 71, 22, 73] is a strongly
free sequence consisting of polynomials of different degrees. This example shows that, in general,
det(T,) is not fixed and may change with the choice of generators for I,.

Any algebraically independent sequence ¢’ such that I, = I,» must be of the form o’ = (ax, ol +
Bz3%) for some linear form [ € H%(Ops(1)) and «, 8 € k*. Setting | = azg + bxy + cxe + dxs, the
Jacobian matrix for ¢’ is given by

o, _( @ 0 0 0
o=\ 2ax¢ bry cxy dro+ 2Bz )

If ¢ # 0, then
v = (0,—¢,b,0) and vo = (0,0, dxo + 28xs, —cxp)



12 D. FAENZI, M. JARDIM, AND J. VALLES

are independent syzygies of degrees 0 and 1, respectively. Following the argument in Example 22111 so
we can conclude that T, = Ops @ Ops(—1).
When ¢ = 0 and b # 0 then

v1 = (0,0,1,0) and vo = (0, dzo + 26x3,0, —bxo)

are independent syzygies of degree 0 and 1, respectively, so again we conclude that T,» = Opa@Ops(—1).
Finally, if b = ¢ = 0, then v; = (0,0,1,0) and v5 = (0,1,0,0) are independent syzygies of degree 0,
thus T, = Ofl?f and o has compressibility 2.
It is important to observe that even though T,/ always splits as a sum of line bundles, the splitting
type is not always the same.

The following lemma settles the case of families of maximal compressibility.

Lemma 2.13. Let o be an algebraically independent sequence of homogeneous polynomials of degree
(dv+1,...,di + 1), with k <n. Then the following conditions are equivalent:

i) c1(T5) = 0,
ZZ) T, ~ O%(n-ﬁ-l—k)
iii) o has a singular divisor of degree dy + -+ - + di,
i) there is a choice of linear coordinates of P™ such that o depends only on (xq,...,Tx—1).

Proof. We have [ii)| = Conversely, assuming [i)] again by [I4] Corollary 1.6.11] we get Lemma
gives|ii)| < [iv)] The degree d of the singular divisor of o equals ¢1(Q,) so:

(16) a(To) =d— ) di.

Hence, [i)| implies Conversely, assuming [iii)] we get ¢1(T5) > 0 and since ¢1(T,) < 0, we get O

2.5. Webs. Fix integers d > 0 and k > 1 and let o = (f1,..., fr) be an algebraically independent
sequence of forms of degree d+1 in R = k[xg, ..., x,]; we call o a k-web in P"; a 2-web is usually called
a pencil. A k-web is regular if there is (21, ..., zx) € k¥ such that the hypersurface V(Zle z; i) is non-
singular; a k-web that is not regular is called irregular. Note that regular k-webs are incompressible.

In this section, we establish some basic properties of logarithmic tangent sheaves associated with
k-webs, which will be useful later on.

2.5.1. Freeness of webs. Here is the first fundamental fact.
Lemma 2.14. Let o be a k-web. If o is free, then it is strongly free.

Proof. Let o’ = (f{,..., fi) be another algebraically independent sequence such that I, = I,; one
can check that there is a matrix P € GLy(x) such that

fi bil
S ETAN
Ir Ik
It follows that V,» = PV, thus in fact T, ~ T,, from which the desired statement follows immediately.

O

A particular case of the previous result leads to the simplest example of a strongly free algebraically
independent sequence.

Example 2.15. Take a regular sequence o = (f1,..., fi) such that each f; is a linear polynomial; note
that V(o) is a linear subspace of codimension k. The Jacobian matrix is a constant matrix of maximal
rank, inducing a surjective morphism OP@Q“ — Or@f. It follows that T, = OP@QH*’“, M, = Or@f, and
Q, =0.
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2.5.2. Webs versus algebraically independent sequences. Let us point out how to associate a web to
any algebraically independent sequence, keeping the logarithmic sheaf unchanged. Let o = (f1,. .., fx)
be an algebraically independent sequence, with deg(f;) = d; + 1, for some dy +1,...,dx + 1 € IN. Let
e be the least common multiple of dy + 1,...,d, + 1. Forie {1,...,k}, put £; = e/(d; + 1). Set:

= (1 £,
Note that 7 is a web of degree e.
Lemma 2.16. We have:
T =75

Proof. Forie {1,...,k}, set g; = ffi, so that 7 = (¢1,...,gx). By the chain rule, for eachi € {1,...,k}
we have:

V(gi) = Lif {7V (i)

In other words, considering the morphism defined by the diagonal matrix:
k
P=diag(t1 f{ G fE ) @ Opa(dy) — Opn(e)®F,
i=1

we get that:
V,=PoVo.

Since k is of characteristic zero, P is injective, so T, = ker(V,) = ker(Vo) = T,. O

We complete this section with a characterization of the degeneracy locus of k-webs as the set of
points that are singular for some hypersurface of the web.

Lemma 2.17. Let o be a k-web. The reduced degeneracy locus (2, )rea of the Jacobian matriz Vo
coincides with the union of the singular loci of the singular hypersurfaces contained in the web.

Proof. Set 0 = (f1,..., fr). A point x € P™ belongs to (Z4)red if and only if the gradients of f; are
linearly dependent, that is, there is (z1,...,2x) € k" T1\{0} such that:

i=1

But this is the same as saying that x lies in the singular locus of V(Zf;l zifi) O

3. BASIC MATERIAL ON PENCILS OF QUADRICS

In this section and up to[d « is an algebraically closed of characteristic different from 2. We consider
pencils of quadrics, namely algebraically independent families o of two homogeneous polynomials fi, fo
of degree 2 on P"™. We develop here the basic material needed for Sections up to [ as well, including
a short mention of Segre symbols.

The classification of regular pencils of quadrics was given by Weierstrass in [24] and interpreted
geometrically by Segre [I8| [19]. Weierstrass completed the work of Weierstrass by studying irregular
pencils, see [8]. Segre again gave a geometric interpretation in [20]. For a modern treatment, the
reader may consult for instance [I1], Chapter XII], [I5] Section 10.6], [13, §XIII.10] or the more recent
paper [10].

In the whole section, we focus on algebraically independent sequences o = (f1, f2) such that
deg(f1) = deg(f2) = 2, to which we can associate the pencil of quadrics Q) := V(z1f1 + ngg),
where A = [21 : 2] € P'. Given a quadric hypersurface @ in P", we denote by rk(Q) the rank of
the Hessian matrix of an equation of @), that is, the rank of a quadratic form associated with Q). We
set cork(Q) = n + 1 — rk(Q). When non-empty, the singular locus of @ is a linear subspace of P" of
dimension cork(Q) — 1. The quadric @ is a double plane if and only if rk(Q) = 1.
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3.1. The classification of pencils of quadrics. Considering the polarization (or Hessian) matrix
of the quadrics in the pencil o we obtain a pencil of symmetric matrices of size n + 1:

po : Op1(—1)@+D O%l("ﬂ).
Conversely, from a pencil of symmetric matrices of size n + 1, we recover a pencil of quadrics on P™.
Definition 3.1. Given a pencil of quadrics o and A € P! we set 7()\) = cork(Q,). We put
ri:=min {r(\) [ A e P'}.

We call 1 the generic corank of o. We say that o (or p,) is regular if 1 = n+ 1 and that o is irregular
otherwise. We say that o is completely irregular if r1 = r¢.

3.1.1. The classification of pencils of symmetric matrices. Let o be a pencil of quadrics in P" and put
m for the compressibility of o. In view of the classification of pencils of quadrics (cf. [II, Chapter
XII]), there exist integers p < n, 1 < c¢1 < -+ < ¢, —m, a regular pencil p, of size p + 1 and a suitable
system of linear coordinates of P™ such that p, can be written in block diagonal form

(17) Po = diag(ﬁ(q),- o 7C(CT1_m)7ﬁU70m)7

where 0,, is the zero matrix of size m and, for any integer ¢ > 1,

0= (S

z1 0 0
29 21 0
()= 1|0 Z9 0
: oz
0 -+ 0 2
Here, we allow p = —1, in which case p, does not occur. For any integer ¢ € IN we let V. be the

irreducible representation SLa(k) of weight ¢, so Vp is the trivial representation of rank 1, V; is the
standard representation of rank 2, while V, = S°V; has rank ¢ + 1. By convention we set V_; = 0.
Then 7(c¢) and ((c¢) can be rewritten is SLa(k)-equivariant form:

05 Vi1 ®0pi(—1) 2L V@ Op1 — Opi(c) — 0,

(18) 0= Opi(—c—1) > Vo1 ®Vo) @ Op1(—1) 2% (Vili ® Vo) ® Opi, — Opi(c) — 0.

and one has:
im(¢(c)) ~ Op1 (—1)®° @ OFF.

Definition 3.2. The pencil of quadrics associated with p, is called the regular part of . We put
T —m

v = Zci, u=v+p+1.
i=1

Recall that here p + 1 is the size of p,. We call (u,v) the splitting type of o. Of course u > v. Also:
im(py) ~ Op1 (—1)®* @ OFY.

We call (c1, ..., ¢ —m) the degree vector of o. We observe that p, has size u — v. Looking at the size
of the block decomposition ([T, successively 2¢1 + 1,...,2¢,,—m + 1,p+ 1, m, we get:

T —m
(19) n+1=2Zci+T1+p+1=u+v+r1.

i=1

Note that the regular part of a pencil of quadrics may be empty: this happens for u = v. We will

call these pencils completely irregular and treat them in detail a bit further on. Note also that the
regular part of an irregular pencil may fail to be a pencil, when ¢ is incompressible this happens for

u = v + 1. By convention, a pencil of symmetric matrices of size 0 (the empty pencil) and a non-zero
pencil of symmetric matrices of size 1 are regular.
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Lemma 3.3. An incompressible pencil of quadrics satisfies r1 < "T“

Proof. An incompressible pencil satisfies m = 0 and, since ¢; > 1 for i € {1,...,m} we get v =
ity ¢ =rq. Therefore we have n+1=u+v+ry =2v+r > 3r1. O

3.1.2. Segre symbols. The Segre symbol is the key invariant of regular pencils. Indeed, the content
of the Segre-Weierstrass theorem is that the set of singular quadrics of a regular pencil together with
its Segre symbol classifies the regular pencil up to homography of P! and P". Again we refer to [13]
§XTIIT.10] or [I0]. We give a short account of this theory here.

Let o be an incompressible pencil of quadrics. Following the notation introduced above, let (u,v)
be the splitting type of o, so that its generic corank 7y satisfies n+1 = u+v+7r. Set C, := coker(py)
and write the long exact sequence:

(20) 0 — ker(p,) = Op1 (=1)@ D 98+ ¢ 0.

The cokernel sheaf C, decomposes as C, ~ Ci @ C, where C; is its torsion part and Ci is its
torsion-free part. One has:

(21) Co ~ coker(py ), RO (coker(py)) = u — v.
Let {\1,...,A¢} = P! be the support of the torsion sheaf ;. We have:

£

Cy ~ (‘D(et)Aj,

j=1

where (Cy)x, is the localization at A; of C, which in turn can be written in the following way:

Sj
®pj,i
(Con, ~ DO,
1=1 J

J

Here, we denoted by A§aj’i) the subscheme defined by the ideal (gj“) where g; is a linear form

vanishing at \; for each j € {1,...,¢}. Up to choosing linear coordinates in P! so that none of the
subschemes Aq,...,A; is at o0 = (1:0), we may write A\; € k and g; = 21 — \jzo for je {1,...,¢}.
For all j e {1,...,¢}, the block of p, presenting (Cy)y, is itself in block diagonal form, with blocks
of sizes aj1,...,a;s,, repeated pj1,...,p; s, times, where the block of size a € IN* takes the form
O O e 0 z9 zZ1 — )\jZQ
0 s 0 Z9 zZ1 — )\ng 0
. 0 .
0 zZ2 Z1 — )\jZQ 0
) zZ1 — )\jZQ 0
zZ1 — )\jZQ 0
The integers a,; are arranged in the Segre symbol. We write, for each j € {1,...,¢}:
Ej = (ajyl, 7R RN ¢ P ajﬁsj), with a1 > -+ > Ajs;-
- -~ -
Pj1 Pi.s,

The Segre symbol ¥ for a pencil of quadrics o is defined to be the multi-set [Xq,...,%,]. We
will use exponential notation for parenthesized repeated entries; for instance, the Segre symbol
[(1,1,1),(3,3,1),2,2] in exponential notation reads [13,(32,1),2,2].

Note that, as we are dealing with potentially irregular pencils o, we always refer to the Segre pencil
of the regular part ¢ of 0. In case ¢ is completely irregular, its Segre symbol is ¢§ by convention. Note
that, in contrast to the behavior for regular pencils, the Segre symbol of an irregular pencil may be of
the form [17], for some integer p.

We introduce a filtration of the torsion part C; of the cokernel of p, for future use. To this purpose,
in order to simplify the notation we work at a single point \ so we tacitly assume ¢ = 1 and we suppress
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j from the indices. The cokernel of this matrix is the structure sheaf of Oy, where A(®) is the a-tuple
point of P! which we may take to be defined by (2{). Therefore, we have:

S
~ ®pi
Gy ~ @ OA(%)'
1=1

For each i € {1,...,s}, we consider the injection A@) = X@s)  Concatenating the surjections
Oyas) = Oyay) Wwe get an epimorphism:

S
®pi
Gy — @ 0o
=1

For ke {1,...,s}, put g, = Zle p;. From the above epimorphism, we get the exact sequence:
s—1

®pi Dgs
0— (‘D owi—as) -G — Oms) — 0.

i=1
Iterating this procedure we obtain a natural filtration:

0=D0cpWc...c DG = ¢,

where, for all k € {1,..., s}, we have (with the convention as41 = 0):
k
k ®pi k) ._ k k—=1) _ &
D) — _@1@)\&7%“), e . pl )/'D( ) — O)\gf;f%ﬂy

3.2. The Jacobian scheme of a pencil of quadrics. Here we sketch the description of the Jacobian
scheme of a pencil of quadrics, with special attention to the case of irregular pencils, by giving an outline
of a construction, (essentially due to C. Segre, [20]) of a rational normal scroll swept by vertices of
quadric cones in the pencil. We give here essentially a set-theoretic description, as the scheme-theoretic
description one only be needed later on. We start with the following simple observation.

Lemma 3.4. Let o be an incompressible pencil of quadrics and let \, jp € P! be distinct points such that
Qx and Q,, are singular. Then the singular loci of @y and @, are disjoint linear spaces of dimension
cork(Qx) — 1 and cork(Q,,) — 1.

Proof. The singular loci of ) and @, are defined by linear equations and the corank of @ and @,
is precisely the number of independent equations. In addition, these two linear spaces are disjoint,
as the coordinates of a point of P™ lying in the singular locus of two distinct quadrics f1, fo of the
pencil would annihilate the derivatives of f; and fa, so such derivatives would fail to span H°(Opx (1)).
Thus we could choose coordinates so that one of the variables x, ..., x, occurs neither in f; nor in
f2. However, this is excluded by the hypothesis that ¢ is incompressible. O

If the divisorial part of the Jacobian scheme of a pencil of quadrics ¢ is non-empty then such part
may have degree 1 or 2. The following lemma gives an account of this extremal case.

Lemma 3.5. Let o be a pencil of quadrics with a singular divisor of degree 1 € {1,2}. Then

i) | =2 if and only if, in suitable coordinates of P™, we have either o = (23, 23%) or o = (2%, xow1).
it) 1 =1 if and only if o contains one and only one double hyperplane or there is a choice of linear
coordinates of P™, such that o = (rox1,xox2).

Proof. Let us prove According to Lemma [ZT3] we have ¢;(T,) = 0 if and only I = 2, if and only,
in suitable coordinates, o depends only on xg and x1. In such coordinates, the Segre symbols is either
[1,1] or [2] and theses cases correspond respectively to (23, x%) and (23, roz1).

Let us move to According to (@), ! = 1 if and only if Z, is a simple hyperplane. If o contains
no double hyperplane, then 7o < n—1 and =, is the union of linear spaces of dimension at most n — 2,
parametrized by singular quadrics in the pencil. Hence there must be infinitely many such spaces (i.e.
o is irregular) and they cannot be all of dimension < n —2,ie. r1 = n—1. Hence ro =r; =n—1
and o is completely irregular, with compressibility m = n — 1. Hence, by (Id), u =v =¢; = 1 and o
takes the form (xox1,zox2) in suitable coordinates. O
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3.2.1. The Jacobian scheme of an irreqular pencil. Assume now that ¢ is an incompressible irregular
pencil and seek a set-theoretic description of degeneracy scheme Z,. The torsion-free part Cis defines
a projective bundle Y = P (Cy¢) and, since the vector bundle Cy; is very ample, Y = P(Cy¢) embeds via
the linear system of the tautological relatively ample divisor h as a rational normal scroll of degree v,
spanning a linear space L < IP™ of dimension n — u.

Lemma 3.6. Let o be an incompressible pencil of quadrics. Then Z, satisfies:

(22) Eolea=Y v () P
AeSupp(€y)

where the linear subspaces {P™™ =1 | X € Supp(Cy)} are disjoint. In particular:
dim(Z,) = max(rg — 1,71), r=n+1-—u—w.

We develop the proof of this lemma, essentially known to Segre, for the sake of completeness; we
take advantage to introduce some notation.

Proof. We look at the projectivization of the vector bundle Ci¢ and of the coherent sheaves Ci, C,. The
epimorphisms 05"V ¢, 08" @, and 02" . €, induce embeddings P(C,) < P xP",
P(€;) < P! xP" and Y < P! x P". Similarly, the epimorphism O$? — Q(—1) induces an embedding
P(Q,(—1)) = P! x P". The two subschemes P(C,) and P(Q,(—1)) of P! x P" are defined by the

same bihomogeneous equations. Indeed, denoting by A = (21 : 2z2) and @ = (z¢ : ... : x,) the points of
P! and P™ and recalling the notation f; ; = agx@)v we have:
J

P(Q(—1)) =P(€y) = {((x,\) e P' x P™ | fij21 + foj22 = 0,¥j =0,...,n},
which in turn gives a Kozsul complex (in the obvious notation):
(23) = Opyepn (=1, = 1)) 5 Op1 pu — Ope,) — 0.

We get thus a correspondence:

(

P(C,)
(24) y \ﬂ
P! P

where the map ¢ : P(€,) — P! is generically a P"~!-bundle and ¢ : P(€,) — =, < P" is an
isomorphism at the points where Q, has rank 1.

At each point A of the support of the torsion part C; we have a skyscraper sheaf supported at A, whose
rank we denote by 7(\). The surjection (’)]P@l(nﬂ) — O(;BT(A) induces an embedding P"M -1 c 2, c P,
We noticed in Lemma B4l that the linear spaces appearing as singular loci of distinct points of Supp(Cy)

are disjoint. This achieves the proof. O

3.2.2. Completely irreqular pencils. Recall that the incompressible pencil o is completely irregular if
has no regular part, which is to say, if u = v. This is equivalent to the condition €; = 0, which in turn
is tantamount to rg = ry.

We take a closer look at the Jacobian scheme in this case. Denote by F the divisor class of a
fibre of Y — P!, so Oy (F) ~ ¢*(Op1(1)), in the notation of the diagram in display (24)); write also
H = c¢1(¢*(0Opn(1))). Note that ¢,(Oy(F)) ~ Q, and that the Koszul complex (23] is exact at
Op1ypn. Tensoring it with Op1,pn(1,0) and applying 14, we get an exact sequence:

08 (—1) - 092 — Oy (F) — 0.
The rightmost morphism above agrees with the Jacobian matrix, so we have an exact sequence:

(25) 0— T, — 03D ¥ 95, (1)8% - Oy (H + F) — 0.
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Example 3.7. Let n = 5. Regular pencils give C, = Cy, a finite-length scheme with h°(€,) = 6. For
irregular pencils, we have the following possibilities.

r1 | (u,v) | A°(€y) | Ces | Compressibility | Completely irregular
1] (5,0 5 Op1 1 no
1| (4,1) 3 Op1 (1) 0 no
1| (3,2) 1 Op1(2) 0 no
2 | (4,0) 4 o%7 2 no
2| (3,1) 2 Op1 @ Op1 (1) 1 no
2| (2,2 0 Op1(1)®2 0 yes
2| (2,2) 0 Op1 @ Op1(2) 1 yes
3| (3,0 3 0%y 3 no
30 (2,1) 1 0% @ 0p1 (1) 2 no
4 | (2,0) 2 oLy 4 no
4 | (1,1) 0 0% @ Op1 (1) 3 yes

Observe that there is only one incompressible, completely irregular pencil of quadrics in P°.

However, the lowest dimension in which incompressible, completely irregular pencils occur is n = 3,
the only such pencil being given by (x122, zox2). Note that this pencil is not a complete intersection.
The next case is for n = 4, given by (123 + Tox4, xoTs + T124).

Lemma 3.8. Let o be an incompressible completely irreqular pencil. Then there is an action of SLa(k)
on P™ for which the exact sequence in display (28] is equivariant.

Proof. Let ¢c; < --- < ¢, be the degree vector of o. Let the group SLz(k) act by homographies on P!
regarded as the base of the pencil. Since the regular part p, vanishes, p is the bloc-diagonal matrix

diag(C(C1), ceey g(CTl))'

Since each block of p, is SLa(k)-equivariant, so are p, and o itself. Hence the Jacobian matrix of o is
also SLa(k)-equivariant and this induces an SLa(k)-action on its kernel and cokernel sheaves. 0

4. STABILITY FOR PENCILS OF QUADRICS

In this section k is algebraically closed of characteristic different from 2. Our goal is to present
the proof of Theorem [Al The first case is equivalent to ¢1(T,) = —1 and, when n > 3, stability of
Ts is equivalent to incompressibility by Lemma The second and third cases are equivalent to
¢1(75) = 0 and in turn to the fact that T, ~ O%,(zn_l) by Lemma 213

This discussion proves the first two items [ and 2] of Theorem [Al The next step is to analyze
pencils of quadrics containing no singular hyperplanes. Lemma 2.7] implies that compressible pencils
of quadrics having no singular hyperplane have slope-unstable logarithmic sheaves, thus proving the
third item of Theorem [Al

We can finally address incompressible pencils of quadrics o = (f1, f2) containing no singular hyper-
planes. The result depends on the maximal corank of the quadrics @, where for each A = (21 : z5) € P!
we write Q) = V(21 f1 + 22f2). To be precise, we prove the following result.

Theorem 4.1. Let n = 3 and let o be an incompressible pencil of quadrics in P™ which contains no
singular hyperplane. Put ro = max(cork(Qy) | A € P1).
i) If 2ro <n + 1, then T, is slope-stable.
it) If 2ro = n + 1, then T, is strictly slope-semistable.
1) If 2ro > n + 1, then T, is slope-unstable.

Since o contains no singular hyperplane, we have codim(Q,) = 2 so the slope of T, is:
2
T,) = .
wTo) = 37—

The proof of Theorem [4.] will be divided into three parts. We start by establishing items [ii)| and
in Section L1l For the proof of item [i)] we first consider regular pencils in Section 2] leaving the case
of irregular pencils for Section
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4.1. Koszul subsheaves. As a preliminary step towards the proof of items [ii)| and of Theorem
T we study the sheaves, that we call Koszul subsheaves, appearing in the Koszul complex of a linear
space. We set R, for the first Koszul syzygy sheaf of a linear subspace M < P™ of codimension r > 1,
namely the sheaf fitting into the following short exact sequence:

0— Rar — 081 (=1) - Iy — 0.
Lemma 4.2. The sheaf Ry is slope-stable.

Proof. Note that @(Rp(1)) = —1/(r—1). Moreover, by the argument in the proof of Lemma 210, any
nonzero saturated subsheaf F < Ry (1) must have ¢; (F) < —1, since h°(Rps(1)) = 0. If F destabilizes
Rar(1), then providing a contradiction, as:

c1(J) > %1 SO a(F) > —% > —1.

O

4.1.1. Koszul subsheaves from singular quadrics. A linear subspace of =, is called maximal if it is not
strictly contained in another linear subspace of =,. The following technical lemma is quite useful.

Lemma 4.3. Let 0 be an incompressible pencil of quadrics, 0 = 3 be an integer and L < =, be a
mazximal linear subspace of projective dimension o — 1. Then there is a linear subspace M < P" of
codimension o and a subscheme W < M such that T, fits into

(26) 0— R (1) = To = Re(1) = Twym (1) — 0.

Proof. Since the pencil ¢ is incompressible, the linear forms appearing in the Jacobian matrix of o span
H°(Opn (1)), hence the sheaf Q, has rank 1 at each point of its support, in particular, this happens at
each point of L, so Q| is a line bundle on L, namely there is e € Z such that Q,|;, ~ Or(e). Since
O (1)%2 surjects onto Op(e) and p = 3, we conclude that e = 1.

The surjection Q, — O (1) allows to write the following commutative exact diagram:

0—= M, —= Opn(1)®2 —=Q, —=0

; i l
0—J5(1) —= Opn(1) —=0r(1) —0

J J

0 0

Put F and § for the kernel and cokernel of the induced morphism M, — I (1), respectively; in
addition, let Q' denote the kernel of the epimorphism Q, — Or(1). The snake lemma provides the
following exact sequence

0> F > Opa(l) > 9 — G0,

thus there is a subscheme W < P" such that F ~ Jy, (1) and

Supp(9) < Supp(Q') < Supp(Qs) = (Eo)red-

Since M, is the image of the the Jacobian matrix O%ﬁnﬂ) — Opa(1)®%) we get a morphism

O%ﬁnﬂ) — J,(1), with cokernel G. Therefore, either this morphism is surjective, or § is supported on
a linear space strictly containing L. However, this second possibility is excluded because L is maximal.
Summing up, we obtain an epimorphism M, — J(1). Since L is cut by n + 1 — g equations, the

induced epimorphism OP@,EHH) — Jp(1) factors through a morphism ¢ : O]%B,(znﬂ_g) — Jr(1), and we
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get a second diagram:

022 — 2 Iy (1)

| |

0—T, —— O§£n+l) —— M, —=0

]

0—= Rp(1) — 029 3, (1) —0
0 0
The snake lemma then yields the exact sequence

0 — ker(¢) — T, — Rr(1) — coker(yp) — 0.

Note that the im(yp) coincides with the ideal sheaf of a linear subspace M < P™ of codimension p
containing W, twisted by Opn(1); its cokernel is the ideal of W in M, also twisted by Opn(1). We,
therefore, obtain the exact sequence in display (26)). O

4.1.2. Destabilizing Kozsul subsheaves. Now we can prove items and of Theorem 1l Indeed,
we set 9 = ro and consider a quadric @y in the pencil o having cork(@Q,) = ro. The assumption
ro = (n +1)/2 forces ro = 3 or (n,rg) = (3,2). The latter case follows from the full classification of
pencils of quadrics in P? and their logarithmic tangent sheaves provided in Subsection [l Hence we
can assume ro = 3, so the linear space L < P™ of dimension ryp — 1 appearing as the singular locus
of @, satisfies the hypotheses of Lemma [£3] thus T, contains the Koszul subsheaf R;(1) which has
slope 1/(1 — rg). The condition 79 > (n + 1)/2 implies:

(R (1)) = — 2 ().

= >
1—17p 1—n
Finally, for item we use the exact sequence in display (26), which yields:
(28) 0> Ry(1) > T, > E—0,

where € is the kernel of Ry (1) — Jy/ar(1). Since M has codimension 79 > 2, the sheaves € and Ry, (1)
share the same slope, namely 1/(1—r). This implies that any subsheaf X of € with p(X) = p(€) would
destabilize Ry, (1); since, by Lemma 2] Ry (1) is slope-stable, we conclude that & is also slope-stable.
When 9 = (n + 1)/2, then Ry (1) also has slope equal to 1/(1 — rg). Therefore, the exact sequence
in display (28)) shows that T is strictly slope-semistable; in addition, since Ry is slope-stable, we can
also conclude that Ry (1) and € are the factors of the Jordan—Holder filtration of T,.

4.2. Proof of stability for regular pencils. Let o be a regular pencil of quadrics containing no
double hyperplane so that there are only finitely many points A € P! such that Q, is singular and at
each such point the singular locus of @ is a linear space of dimension cork(Q,) — 1. A regular pencil
is incompressible so these spaces are disjoint by Lemma B4 so (E,)red is the union of finitely linear
spaces of dimension at most ro — 1.

In order to prove [i)| we assume, by contradiction, that T has a saturated destabilizing subsheaf X
of rank p, with 1 < p <n—2 with (A?X)”" ~ Opn(—e). Since o is incompressible, Lemma 2210
implies that e > 0. The condition that X destabilizes T amounts to:

(n—1)e < 2p.

Since p < n — 2, this gives e = 1. Also, we get p > (n —1)/2.

Choose a sufficiently general linear subspace M < P™ of dimension n—rg. Since dim(M)+dim(Z,) =
n— 1, we may assume that M is disjoint from the degeneracy locus =, and that M meets transversely
the locus where T/X is not locally free. The second assumption implies that Tory (T/K, Op) = 0, so
we get a subsheaf K|y < T|pr which still destabilizes T|ps. The first assumption yields Q,|y = 0 =
Tor' (M,, Oas), so the restricted Jacobian matrix gives an exact sequence:

(29) 0— T|ar — 09" - 092(1) — 0.
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The sheaf T|ys is locally free and, setting ¢ =n — 1 — p we get:

(A7)0 = (A7) -D.

Since K|ps is a subsheaf of T|as, we obtain a monomorphism

On(-1) > (AKI) ™ = (AT)™ = (A7)

which in turn gives HO(( ATV |M> (—1)> # 0. We need to prove that this is absurd.

In order to check this, we dualize the exact sequence in display ([29]) and take exterior powers to get
a long exact sequence:

n41 q
0= (g — DB = 04y (=)D o 0507 ) o (A7) (-1) 0.

All of the terms in the sequence above, except for the rightmost one, are copies of Ops(—t) for some
integer ¢ with 1 <t < ¢+ 1. In the range p > (n —1)/2, we haveq=n—1—-p<(n—1)/2s0q¢+1 <
(n +1)/2. Now, the assumption ro < (n + 1)/2 guarantees (n+1)/2 <n —rg+ 1 = dim(M) + 1, thus
q < dim(M). Therefore H*(Op(—t)) =0 for all 1 <t < g+ 1 and hence H0<</\q T |M) (71)) = 0.

This is the contradiction we were looking for, thus proving
This finishes the proof of Theorem [Z.1] for regular pencils.

4.3. Proof of stability for irregular pencils of quadrics. In order to prove Theorem [A] it only
remains for us to prove item for irregular incompressible pencils ¢ containing no double hyperplane.

By hypothesis, we have 2rg < n+1. As in Subsection[d.2] we assume by contradiction that T admits
a saturated subsheaf K of rank p and again we get p > (n — 1)/2 and (A" K)VY ~ Opn(—1).

Next, observe that, if 1y < rq, then by LemmaB.6l we have dim(Z,) < 9 — 1. In this case, the proof
of [i)| given in Subsection goes through as again a sufficiently general linear subspace M < P" of
dimension n — ry does not meet =,, while the rest of the argument is still valid for irregular pencils.

Therefore, we may assume until the end of the subsection that rq = r1, which is to say, that the
pencil is completely irregular, so u = v, €, = Cy and dim(Z,) = ro.

Next, we develop a lemma that will be used to check the indecomposability of T, for a completely
irregular pencil . We note that there is an SLa(k)-action on Oy (H + f), namely the action by
homographies on the basis of the scroll Y. Also, the SLa(k)-action on P™ induces the isomorphism of
SLa(k)-modules:

1
(30) HO(P", 0pn (1)) = D (Ve,1 ® Ve,).
i=1

The following lemma says that, if o is a completely irregular pencil of quadrics, then the logarithmic
sheaf T, is simple.

Lemma 4.4. Let o be a completely irreqular incompressible pencil of quadrics with uw = 2. Then
Endpn (T,) ~ k.

Proof. We use the exact sequence in display ([25]). We first use its rightmost part, namely:

(31) 0— M, = Opn(1)®? - Oy (H + F) — 0.

Since Oy is a line bundle on the smooth irreducible variety Y, we have Endx (Oy) ~ k. Since the
morphism OP2 — Oy (F) induces an isomorphism on global sections and H?(Oy (F)) = 0 for p > 0,
we get H*(M,(—1)) = 0. Also, Ext},. (Oy (F + h),Opn(1)) = 0 for p = 0,1 by Serre duality since
dim(Y) =n + 1 —2u < n — 1. Therefore applying Hompn (—, M,) and Hompr (Oy (H + F), —) to the
exact sequence in display (31I) we get:

Endpn (M,) =~ Extp. (Oy (F + h),M,) ~ Endpn (Oy) ~ k.

Also, note that Serre duality gives Extp, (Oy (F + h),0pn) =0for p=1,2 as dim(Y) =n+1—2u <
n — 2. We deduce that Extp., (M, Opr) =0 for p =0, 1.
Next, we write the exact sequence:

(32) 0— T, — 05" 5 M, 0.
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Applying Hompn (M,, —) to B2) and using that Ext}., (M, Opr) = 0 for p = 0,1, we get:
Extpn(Ms,To) =~ Endpn (M) ~ .

Finally, we apply Hompn (—,T,) to [B2) and use that, since o is incompressible, we have H°(T,) =
H'(T,) = 0. This concludes the proof, since

Endpn (T,) ~ Extp, (M, Ty) ~ k.

O

Having established this lemma, let us continue the proof of Theorem Il This time, with a slight
difference with respect to the proof of item [i)| given in Subsection 2] we choose a general linear
subspace M < IP" of dimension n — ry — 1. In particular, we may assume that M does not meet =,
and that the p*! exterior power of K|ys < T|as gives a non-zero element of HO(A? TV |5 (—1)), with
q =n — 1 — p; this equality ¢ = n — 1 — p comes from duality of the sheaf T, which is of rank n — 1.

If n is odd, we write n = 2ng + 1 and 2rg < n + 1 gives 19 < ng, while p = (n — 1)/2 = ng gives
q = 2ng —p < ng. Since dim(M) = 2ng — ro = ng we get ¢ < dim(M) unless dim(M) = ng. If
q < dim(M), again the argument given in Subsection remains valid, so we may assume, without
loss of generality, that dim(M) = ng. It then follows that ny = dim(M) = 2ng — 19, thus ng = ro;
since 1o = n + 1 — 2u, ng is even, say ng = 2n1, and v = n; + 1. Summing up, if n is odd, then:

(33) n=4u—3, dm(M)=p=qg=ro=2u—-1), u=2.

Similarly, if n = 2ng, then we get that 7o < no < p and thus ¢ < ngp — 1 < dim(M), so we may assume
that dim(M) = ng — 1. It follows that ng = ro = n + 1 — 2u so ng is odd; setting ng = 2ny + 1, we
obtain w = nj + 1. Summarizing, if n is even, then:

(34) n=4u—2, dm(M)=q¢=2(u—-1), ro=p=2u—1, u=2.

In any case, the sheaves X and £ = T/X are slope-stable.

Having established these numerical constraints, we proceed with the next step of the proof, which
requires looking at the exact sequence in display (25). Working in the linear span L = P"T1~% < P»
of Y, we write an exact commutative diagram

~=<—0

1) ==17y,,(1)®*

S
~
~

o
O =<— m@éeieo

<

Or( )®2—>Oy(H+F)—>O

)92 —= Oy (H + F) —0

-

0— Oy(H — F) — Oy /(

>

O =<—

Here, the sheaf My, defined by the middle row, can be thought of as the normal sheaf associated with
the pencil of quadrics restricted to the smaller space L. Using the leftmost column of the previous
diagram and the fact that the morphism Opn(1)9? — Oy (H + F) in the exact sequence in display
28) factors through O (1)9? — Oy (H + F), we get an exact sequence:

0— Ippn (1) > M, — My — 0.
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Using this exact sequence and the one in display (25) we get a second exact commutative diagram:

0

|

O
—~ =0

0— R (1) —— 082" —— 1 /pn (1) —0
\L @(%Hl) \L

0 T Opn M, 0
l / |

0 G o§£n+172u) My, 0
| | |
0 0 0

Here the sheaf G, defined with the bottom row, has ¢1(G) = 0 and rk(G) = n + 1 — 2u, while Rz (1) is
the Koszul syzygy of L which we already proved to be stable of slope 1/(1 — u).

In view of the leftmost column of the previous diagram and of the slope-semistability of Ry, (1)®2,
the inclusion X < T must descend to an inclusion K < §. We get thus two injections with isomorphic
cokernel:

(35) X — G, R ()% — L.

Denote by P this common cokernel sheaf, so P ~ G/K ~ £/Rp(1)92. Then, note that independently
on whether n is even or odd, we get:

tk(X) =p=n+1-2u=rk(9).

Therefore, since (A" XK)VY ~ Opn(—1), we get a hyperplane H < P™ as support P. Note that
the hyperplane H is determined uniquely by 7. Indeed, if X’ — T is an embedding of any saturated
destabilizing subsheaf of T, then the induced morphism X’ — £ is either zero or an isomorphism,
since K’ and £ are stable of the same slope. If X' — £ is zero then X’ — T factors through X so it
determines the same hyperplane H. If X’ — £ is an isomorphism, then T is decomposable, which is
absurd by Lemma [£4]

Now, recall from Lemma that T, is equivariant for a natural SLs(k)-action on P™. So the
hyperplane H must be fixed by this action, in other words, it must correspond to a trivial summand
Vo in the decomposition in display (30]).

Set t for the number of indices i € {1,...,n + 1 — 2u} such that ¢; = 1, so:

n+1—2u
(36) u=t+ > ¢;=2n-2u—t+1)+t
i=t+1

If t = 3, then we can equip Y (and consequently T, ) with a further SLs(x)-action by letting SLa (k)
operate as V;_1 ®0Op:1 (1) on the summands of C, of the form Op:(1). Again we obtain that H°(Op. (1))
contains no copy of V. In all these cases the SLs(k)-fixed hyperplane H cannot exist and we conclude
that T, is stable.

Finally if ¢ < 2 then using (B6]), depending on whether n is odd or even, we get from B3]) or ([B4)
that v < 2 or w < 1, which leaves the only case n = 5, u = 2, ¢; = co = 1. This last case corresponds
to the pencil of quadrics o = (2125 + x3x4, Tawy + xox5). For this explicit pencil, direct computation

shows that HO((/\2 To) v(—1)> = 0 so that T, is stable.

Remark 4.5. One may check that GIT-semistability of o implies slope-semistability of T,. Indeed,
[IL Theorem 3.1] says that GIT-semistability of o amounts to o being regular with €, supported at
A1, ..., A¢ with the condition that for all j € {1,...,¢}, A; has multiplicity at most (n + 1)/2 as a root
of det(py). In terms of the Segre symbol (see the introduction or the next paragraph), this means that
S ajipi < (n+1)/2. This implies Y57 p;; < (n + 1)/2, which amounts to r()\;) < (n + 1)/2,
so T, is slope-semistable, as 19 = max{>);”, p;; | j € {1,...,£}}. However, the converse implication
fails as one can see reverting the argument or considering that there are irregular pencils ¢ having a
slope-semistable sheaf T.
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5. PROJECTIVE DIMENSION FOR PENCILS OF QUADRICS

Also in this section, x is an algebraically closed field of characteristic different from 2. Let o be an
incompressible pencil of quadrics and adopt the notation from the previous section. Note that p;; <n
for all indices (4, 7). The splitting type (u,v) satisfies:

L S5
(37) Z Z QjiPji = ho((‘ft) =Uu—"v,

j=li=1

according to the exact sequence in display (2I)).

5.1. Ext sheaves. The main result of this section provides necessary and sufficient conditions in terms
of ¥ for the Ext sheaves &zt (To, Opn) to be non-trivial.

Theorem 5.1. For a pencil of quadrics o with Segre symbol X and for ¢ > 0, we have Extd, (Ty, Opn) #
0 if and only if there are j e {1,....4} and k€ {1,...,s;} such that:

(38) q+pj,1+...+pj7k=nfr171,
orry >0and g+ry =n— 2.

Proof. We prove the theorem under the assumption that ¢ is incompressible, see the end of the proof
for compressible pencils. Since the question is local and T, is free of rank n—1 locally around any point
outside =, it is enough to prove the claim on charts containing a single primary component of =,.
In view of Lemma [3.6] these components are supported either at disjoint linear subspaces associated
with distinct points in the support of Gy, or at the rational normal scroll Y. Note that the points of
the support of Gy correspond to the parenthesized pieces of the Segre symbol. Also, the proof at the
points of Y is similar if the support of C; contains one point or many. So we may assume, without loss
of generality, that £ = 1 and simplify the notation to ¥ = (a}*,...,a2*) with a; > --- > a5 > 0.

As we did in the proof of item [i)| of Theorem ET] (see Section 2)), we observe that the sheaf Q, is
a line bundle supported at =,. Therefore, given ¢ > 0, we have Emtth(Qg, Opn) # 0 if and only if
Extti?(0=,,0pn) # 0, so this in turn is equivalent to Ext%, (T, Opn) # 0.

Let us analyze =, more in detail and recall the notation of Subsection B.2ZJl To make the proof
more transparent, we carry it out first under the assumption that ¢ is regular, hence p = p,, 11 = 0,
(u,v) = (n+ 1,0), C¢ = 0 and G = C,. For any k € {1,...,s}, projectivizing the surjection
DE) — %) we get a closed embedding P(C*)) < P (D*)) of schemes of the same dimension, with
a residual subscheme of P(C*)) in P(D*)) which is isomorphic to P(D*~1)) and has thus strictly
smaller dimension — by convention, P (D)) = . Note that, for each k € {1,..., s}, the exact sequence

0= JpEew)p@m) = Oppw) = Opew) =0
induces an exact sequence :
0 — HO(Ip(ew)p(pwy) = H(Oppuy) = H*(Op(em)) = 0.

Thus, since Jp (e p(ney is supported at P(D*~1), we have an isomorphism H°(Jp e0)/p () =
H®(Op (pe-1)y), which in turn implies that Jp ew)/p ) is isomorphic to Op pe-1)).

Recalling the correspondence (24]), we send this filtration to P™ and define, for each k € {1,..., s}
the subschemes ZF) = (P (D®)) xp1 P(Cy)) < P and T®) = (P (€*) xp1 P(C,)) < P™. Since
1 is an embedding on the fibres of ¢, this gives T*) < Z(*) for each k € {1,...,s} and finally a
stratification:

(39) 0=0z0 <0=z0) €+ < 0z;-1) < Oz) = 0=, with :
(40) O=r)/Ozth-1) = Oy,
for all each k € {1,...,s}, with 21 = T, Each component Y*) is the projectivization of a trivial

bundle of rank ¢ over a subscheme of length aj in P'. As such, it is equidimensional and Cohen—
Macaulay of codimension n — g + 1 and therefore satisfies:

q+2 )0 ifqg+2#n—q,+1,
(41) Eatipn”(Orw, Opn) = { wymn—+1), ifqg+2=n—qy+1.

So this sheaf is non-zero if and only if ¢ =n —p; — -+ — pr — 1, which in turn agrees with (38]).
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We apply €zt (—,Opn) to the filtration [9). To compute this we use Q) and induction on
k€ {0,...,s}. Since for all k € {1,...,s} the sheaves ([#I]) are line bundles supported on subschemes
sharing no common component, the boundary morphisms induced by applying Exzt%, (—, Op-) to ([B9)
are all zero. We deduce that Ext%5? (0=, , Opn) # 0 if and only if there is k € {1,...,s} such that B

is satisfied. This concludes the proof when o is regular.

Now let us assume that o is irregular. Restricting G to each of the subschemes A(@) ... A(@2) e
obtain the sheaves:
(42) DO = DO @ C(—arsr),  CW = DO DD _ Bastry)

with the filtration:
(43) Cit(—a1) =DO c DD ... c DB = ¢,

Again, for any k € {1,...,s}, we get an embedding P(C*)) — P(D®) of schemes of the same
dimension. The residual subscheme is P(D*~1) has strictly smaller dimension — this time P (D) =
Y. The component Y of Z, is a rational normal scroll over P'. We denote by F the divisor class of a
fiber of the scroll map Y — P!,

Using the diagram 24) we define, for each k € {1,...,s} the subschemes Z*) = (P (D®)) xp:
P(C,) < P" and T® = P @®) xp1 P(C,)) < P". We get T® < Z® . Note that
Y (0*(Op1(1))) ~ Oy (F) and that F|yu = 0. Hence, in view of ([2) we obtain for each k € {1,..., s}
an exact sequence:

(44) 0 — Ozge-n) (—arF) = Ozuy = Ogy — 0.

With our convention, ¥ = 20 = 7O g0 for k = 1 the leftmost term of the above sequence is
Oé(o) (—alF) ~ Oy(—alF).

We have obtained a stratification of =, that allows us to compute the desired Ext sheaves. Indeed, to
compute Ext5H? (0=, , Opn) for ¢ > 0 we apply Eat%, (—, Opn) to @) and use induction on k € {0, .. ., s}
together with twists by Oy (tF') for suitable t € Z. For k = 0 we observe that, since Y < P" is smooth
of codimension n — 7y, for any t € Z we have Exth:?(Oy (tF), Opn) # 0 if and only if ¢ = n —r; — 2.
For k > 1, T® is the projectivization of a trivial bundle of rank ¢ + r1 over a subscheme of length
ay, in P!, so:

(45) Ext?Pf(OT(k),OIpn) #0 ifandonly if g =n —ry — qx — 1,

and this sheaf is wqw(n + 1) if ¢ = n — 11 — g — 1. Again, since these sheaves are line bundles
on T(O), e Y() and since these subschemes have no common component, we have the vanishing of
all the boundary morphisms of the long exact sequence obtained by applying €t (—, Opr) to ([@).
Therefore, Sxt%tz((‘)gd,(‘)pn) #0ifand only if g =n —r; —py — - — pp — 1 for some k € {1,...,s}

or ¢ =n —r; — 2. This concludes the proof if ¢ is incompressible.

Finally, if o has compressibility m with 1 < m < n, then we set 7 = n —m as in Lemma 2.8 and
work with the incompressible pencil of quadrics & in P associated with 0. We obtained already a
stratification of 25 by Cohen-Macaulay closed subschemes of P™ which are projective bundles over
subschemes of P!, or the scroll Y. The equations of these subschemes, viewed in P™ define cones over
such subschemes, which are still Cohen—Macaulay of the same codimension. Therefore, for all ¢ > 0,
we have Extl, (T5, Opn) # 0 if and only if Ext},, (Ts, Opa) # 0. This concludes the proof. 0

Let us give a couple of explicit examples to show the stratification appearing in the proof of the
theorem.

Example 5.2. Consider a regular pencil with Segre symbol [(63, 3%, 23)], so that £ = 1, s = 3, and
(a1,a2,a3) = (6,3,2), (p1,p2,p3) = (3,4,3). We have a torsion sheaf C, = coker(p) with h°(C,) =
18+124+6=36=n+1,s0n =35 andp=p?3®p?4®p?3. We have:

Co =D® = 0P ® 0%, @0,

The Jacobian subscheme =, = Z(®) is set-theoretically a linear subspace of P3° of dimension 3 +

443—1=9. We have C) = ¢ = 0F). The scheme =, contains Y = 1), (p*(C®)) which is a
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double structure over P? = P3°. We have:

D = OC,J\B(?:L) ® O,\mv e = O(,J\B(Z)v
Note that YT = ¢y (p*(P(€?))) and 2 = b (p*(P(D?))) have dimension 6. The residual
subscheme of T®) in ”(3) 2, is 2(®). This is set-theoretically a IP® and contains T which is a

reduced P®. We have:

DO — M) = 0®3 |

The residual subscheme of T in 22 is 21 = T This is a triple structure on P2, For ¢ > 0, we
have Extl. (T, Opn) # 0 if and only ¢ € {24,27,31}.

Example 5.3. An incompressible pencil with r; = 3, (¢1,¢2,¢3) = (1,2,2) and Segre symbol ¥ =
[(3%,1%), (45,32,23)], hence with (u,v) = (47,5), lives in P54, Tts Jacobian scheme consists of a rational
normal scroll Y of dimension 3 and degree 5 spanning a P7 and of two linear spaces (21 )red and (22)red
of dimension 5 and 9 meeting Y along two disjoint projective planes appearing as fibers of the scroll.
The subscheme (=) contains a simple P5 with a double line as residual subscheme. On the other hand
the subscheme (Z3) contains a double P?, whose residual subscheme still contains a simple P® with a
simple P* as residual subscheme.

We have ¢ = 2 and Exth,(T5,0pn) # 0 if and only ¢ = 54 —2—ry or g =54 —1—7r1 —p1g
orq=54—1—-r1—p11—pi2orq=2>5t—-1—-r —pagorq=25t—1—1r1 —py1 —pa2or
q="54—1—r; —pa1 — p22— p23 which gives q € {40,43, 44,45, 48,49}.

From the proof of the previous theorem, we extract some precise information on the primary com-
ponents of =,. Assume o is an incompressible pencil of quadrics having Segre symbol ¥ and degree
vector ¢, with:

. p’.,S‘
E=[El,...,2g], Ej=(a§fl’1,...,ajjsj]),
c=(c1y...,¢n),
for some integers r1,¢,51,...,50, {(aji,p5:) | J € {1,...,0},i € {1,...,s;} with a;1 > --- > a;, for
all j e {1,...,¢} and 1 < ¢; < --- < ¢,. Recall the convention a;; = 0 for i > s; and for each

jef{l,... .} set gjr —1= Zlepjﬂ- -1
Corollary 5.4. Let o be an incompressible pencil of quadrics.

i) If o is regular, then the Jacobian scheme Z, has primary components:
(k) :
T, forje{l,....0} and ke {1,...,s;},
where the components T§k) are projective spaces of dimension q;j . —1 over subschemes of length
aj; — ajr+1 of P. We have:
$ k K
=N, TWATS =g iy
it) If o is irregqular, then the Jacobian scheme Z, consists of a smooth scroll Y of dimension ry
and degree v = Y.* | ¢; and of the primary components:

o (k )
Tg-), forje{l,....0} and ke {1,...,s;},

where the components Tgk) are projective spaces of dimension r1 + g5, — 1 over subschemes of
length aj; — ajk+1 of Pt. Also:

=

RO=)=1  TVATE =g i

Finally, setting = for the residual scheme of Y in E,, we have:

hO(Oé) = Z Qj.1-

Jj=1



LOGARITHMIC SHEAVES OF COMPLETE INTERSECTIONS 27

Proof. We gave in Lemma [3.6] a set-theoretic description of the Jacobian scheme Z, which shows that
=, consists of ¢ pairwise disjoint linear spaces, together with the scroll Y in case ¢ is irregular, and in
this case we also noticed that Y has dimension r; and degree v. Also, in the proof of Theorem B.1] we
gave the structure of each primary component supported at any of the linear spaces mentioned above.

Taking the union over all such spaces we get precisely the set {T;k) |je{l,....00 ke {l,....s}},
or {Y;k) | je{l,....0}, ke {l,...,s;}} depending on whether ¢ is regular or not. Note that in the

proof of Theorem [5.1] we also had the component Y, but this is just the scroll Y which is already
accounted for.
To compute hY(Oz, ), note that taking h° of the structure sheaf is an additive operation on disjoint

primary components, which is invariant under taking projective bundles and takes value a at A§a) c P!
for any a € IN*. So for regular pencils, we get:

‘ £ s ‘
DI WLCHIED 3P TN I st
jz j=1k=1 J=1

For irregular pencils, the Jacobian scheme is connected as ¥ meets all the components {ng) | j €
{1,...,0}, k € {1,...,5;}}, hence we have h°(Oz,) = 1. Finally, the primary components of = are

precisely the {’fgk | je{l,.... 0, ke {l,...,s;}}, so the last formula follows as in the regular
case. O

5.2. Applications to projective dimension. Theorem [5.1] allows us to compute the projective
dimension pdim(7T,) of the logarithmic tangent sheaf associated with a pencil of quadrics, namely, the
minimal length of a locally free resolution of 7.
Proposition 5.5. Let o be an incompressible pencil of quadrics.

i) Assume o is irregular. Then pdim(T,) =n —r; — 2.

ii) Assume o is regular and put p = min{p;1 | j € {1,...,€}}. Then:

pdim(T,) =n—p—1.

Proof. By Theorem B} we can compute for which values of ¢ > 1 one has €t} (T5, Opn) # 0. On
the other hand, we have:

pdim(7,) = max{q € IN | Ext%,. (T,, Opn) # 0}.

Fixing j € {1,...,¢} and letting k vary in {1,...,s;} the maximal value for n—ri —p; 1 —---—p;jr—1
is attained by choosing k = 1. Such value is thus n — 1 — pj1 — 1. Letting j vary in {1,...,¢}, the
maximal value of n —7ry —p;1 —1is n—r; —p—1. The maximum between n —r; —p—1land n—r; —2
is n —ry — 2 because p = 1. This gives the result O

Example 5.6. A pencil o as in Example 5.2 has pdim(7,) = 31. For Example[5.3] we get pdim(T,) =
49.

Example 5.7. The completely irregular pencil o = (2125 + 2324, Tax4 + xox5) showing up at the end
of the proof of Theorem Il has n = 5,u = v = r; = 2. So for ¢ > 0 we have &xth, (Ty, Opn) # 0 if
and only if ¢ = 1. We get pdim(T,) = 1.

Corollary 5.8. A regular pencil of quadrics is locally free if and only if n € {1,2} or its Segre symbol
s [(1,1),(1,1)] or [(2,2)].

Proof. A regular pencil o is locally free if and only if all the integers ¢ satisfying (B8] are non-positive.
This is always the case for n < 2 and holds true for the Segre symbols [(1,1),(1,1)] or [(2,2)] so one
implication is proved.

Conversely, assume n > 3 and o locally free. Set a = min{a;. | je {1,...,£}}. Forallje {1,...,¢},
take k = 1 and define ¢ by (B8). The inequality ¢ < 0 gives p;1 = n — 1 which implies, in view of

B7), that:
¢
n+1>= Z(ajlnlJrZa“p“).

=2
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This gives n(al — 1) < al + 1 and therefore either a = ¢ = 1, or af = 2 and n = 3. In the former case
s1 =1 so 1) gives p1,1 = n+ 1, which is impossible. In the latter, either (a,f) = (1,2) and the Segre
symbol is [1%,1%] = [(1,1),(1,1)] or (a,?) = (2,1) and the Segre symbol is [2%] = [(2,2)]. g

In the same spirit, we have, more generally, the following.

Corollary 5.9. Let o be an incompressible pencil of quadrics. Then:
i) If o is regular, then pdim(T,) = 253,

2
i) If o is irregular, then pdim(T,) > 227,

3

Proof. Assume o is irregular. Then by Lemma B3] we get:

1 2n—-7
pdim(Tg)=n—r1—2>n—2—n+ ot
3 3
Next, suppose ¢ is regular. Again put ¢ = min{a;1 | j € {1,...,0}}, p = min{p;1 | j € {1,...,¢}}
and use (B7) to get n + 1 = lap. By Corollary (G.3]), we obtain:

n+1=fla(n — pdim(T,) — 1).

Rearranging the terms, this yields:

1
pdim(T,) =n — nrloy
la
We saw in the previous proof that al > 2 so this gives pdim(7T,) > 252, O

Remark 5.10. The previous bounds are sharp. Indeed, if ¢ is a completely irregular incompressible
pencil, then 3r1 = n + 1 so pdim(7T,) = 253,
Also, if ¢ is a regular pencil with n > 3 odd, say n + 1 = 2m, then we may take o to have Segre

symbol [(1™), (1™)] or [(2™)] and we get pdim(T,) = 253

Example 5.11. Let us list the possible cases for irregular pencils of quadrics in P3. We give the
possible Segre symbols of the regular part.

1 | (u,v) | ho(et) | Cet | Compressible | Segre
1] (3,0) 3 Op1 yes [1,1,1]
1] (3,0) 3 Op1 yes [2,1]

1] (3,0) 3 Op1 yes [3]

11 (3,0 3 Op1 yes [1%,1]
1] (3,0) 3 Op1 yes [(2,1)]
1] (2,1) 1 Op1(1) no [1]

2 | (2,0) 2 0%7 yes [1,1]

2 | (2,0) 2 o7 yes [2]

2| (1,1) 0 Op1 @ Op1 (1) yes (D]

The pencil with the empty Segre symbol is completely irregular. We see that only one case gives
an incompressible pencil. This one has pdim(7T,) = 1.

5.3. Graded projective dimension. Let n > 2. We call graded projective dimension of a torsion-free
sheaf € on P" :

gpdim(&) = max{g € {0,...,n — 1} | Extp. (&, Opn )y # 0}.

Here, Extf,., (€, Opn )y is a shortcut for @rez Exth, (€, Opn (t)). The graded projective dimension is the
length of a minimal graded free resolution of the module of global sections of &.

Theorem 5.12. Let o be a pencil of quadrics in IP™.
i) Assume o is regular. Then:
epdim(T,) =n — 2,
unless the Segre symbol ¥ of o [17,19] for some p = q = 1, or [(29,17)] for some p = 0 and
q = 1, in which case:

gpdim(T,) =n—qg— 1.
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it) Assume o is irregular of generic corank r1. Then:
epdim(T,) =n —1,
unless o has degree vector (1,...,1), in which case:
gpdim(T,) =n—ry — 2.

We underline that the graded projective dimension of T, depends on the Segre symbol only if o
is regular; otherwise, gpdim(T,) only depends on whether or not the degree vector ¢ = (¢1,...,¢,)
contains a value strictly greater than 1.

Proof. First of all, we observe that, without loss of generality, we can assume that the pencil o is
incompressible. Indeed, if o has compressibility m > 0, then we may work in a projective space of
dimension 1. = n—m whose coordinates do occur in the quadrics of o. The minimal resolution obtained
over the coordinate ring of this space is a minimal resolution of T,/ OSI?L” and thus computes gpdim (T, ).

Next we note that according to the proof of Theorem ] the sheaf Q,(—1) of an incompressible
pencil ¢ is isomorphic to Oz, (F), where F is the class of a fiber of the scroll map Y — P!. The divisor
F is trivial on the components {f’gm [jed{l,....¢}, ke{l,...,s;}}. Seta= Zle a;1. By Corollary
B4 we get:

(46) R%(Q(~1)) = a, if o is regular.
Also, if o is irregular, denoting again by = the residual scheme of Y in =5, we get an exact sequence:
(47) 0— Oy(F) - Q(—~1) - 0z — 0.

In order to prove the result, we will need two more ingredients, namely two equivalent definitions
of the graded projective dimension. For the first one, for any coherent sheaf €& on P™ and ¢ € IN, put
HI(E) = @y HI(E(1)). Set:

qo = min{q € N* | H}(T,) # 0}.
We have, by Serre duality:
gpdim(Ts) =1 — qo.

The second one is worked out in the framework of graded modules over the polynomial ring R =
k[xo,...,7,]. Consider the matrix Vo as a map of graded modules R"*' — R(1)? and define the
R-modules Q,, M, and T, as the cokernel, image, and kernel of this map, so that sheafifying the
graded modules @Q,, M, and T, we get back Q,, M, and T,. We write down the exact sequence of
graded R-modules:

07T, >R Y% R(1)2 > Q, — 0.
The Auslander—-Buchsbaum formula gives:
gpdim(7T,) = n + 1 — depth(Ty).
We compute the depth of T}, by the relation:
depth(7T,) = min{qg € N | Ext%(x, T,) # 0},

where £ is the residual field, namely x = R/(xo, ..., 21).

Having set up all this, we are in a position to prove So assume o is regular. First we compute
gpdim(T,) when ¥ = [17,19] or ¥ = [(29,1P)]. f ¥ = [1P,19] withp > ¢ > 1 then p+q =n+1
and the generators (f, g) of o can be chosen to be f = af + -~ + a7, and g = x} + --- + 25. Set
L =V(zg,...,xp—1) and M = V(z,,...,x,). Looking at Vo, we see that:

To =R (1) @R (1),
where Ry, and Rj; are the Koszul syzygies of L and M, see 4121 Now gpdim(R.(1)) = p—2 =
q— 2 = gpdim(Rps (1)), so:
gpdim(T,) =p—2=n—q— 1.
Next, we deal with ¥ = [(29,1P)], for ¢ > 1 and p = 0. Note that p+2g=n+1,son—qg—1=>g.
When p = 0 we have Q,(—1) ~ O~yq), where T is a projective space P~ over a length-2 subscheme
of P!, while for p > 0 we have a filtration:

O I O'r(l) I Qg(*l) I O'r(2) I 0,
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where Y is a reduced P"~? and Y is a reduced P?~! < P"~4. In both cases, since the coordinate
rings of the subschemes T(*) are graded Cohen-Macaulay rings, we have gpdim (O ) = codim(T*)).
Therefore gpdim(T,) + 2 is the maximum of the gpdim (O~ ) for different values of k. Since n—qg—1 =
q, in both cases we obtain the equality:

gpdim(T,) =n—q— 1.

Let us show that, unless ¥ = [17,19] or ¥ = [(2%,17)], we have H?(T,(—1)) # 0, which implies
gpdim(T,) = n — 2. Tt suffices to show H*(M,(—1)) # 0, which in turn holds true if h%(Q,(—1)) > 2.
But by (@8], we have h%(Q,(—1)) > 2 unless £/ =2 and 81 = s =a11 =ag; = 1, or £ =1, 51 € {1,2},
a1,1 = 2. Since these two cases correspond to the Segre symbols ¥ = [17,17] for some p,q > 1 or
¥ = [(29,1P)] for some g = 1,p = 0, we get gpdim(T,) = n — 2 except in these cases.

Now we prove that, for regular pencils, we have gpdim(T,) < n — 2. It suffices to show that the
module @), contains no copy of the residual field x. Indeed, otherwise there would be a non-zero
element of @, represented by (h, k) € R?, whose annihilator contains the maximal ideal (zo,...,x,).
Up to switching the factors, we may assume h # 0. Also, since the pencil ¢ is regular, we may choose
the generators (f,g) of the pencil to be both associated with smooth quadrics. Also, we may select
coordinates o, ..., z, of P" so that 2f = 2% + --- + 22.

Then, for the pair (h, k) € R} with h # 0, there must be a matrix (a; j)o<i,j<n, With a; ; € R for all
0 < 4,5 < n such that:

a5 (Vo — w=(2 om0 )

an,0 e Gn,n

where o = (f,g) and we wrote g; = dg/dz;, for all i € {0,...,n}. We used here 2f = 22 + .-+ + 2.
Note that, by the symmetric role of f and g, we may assume h # 0. Hence, [{8]) implies that the
matrix A = (ai j)o<i,j<n 1S h, 41 and is thus invertible in k(xo,...,z,). Hence, we may rewrite (48]

in k(xg,...,o,) as:
h x DRI x
" A*l _ 0 n )

Therefore Vo should have generic rank 1, which is impossible by the Euler relation since f, g are not
proportional.

Summing up, we have proved Hompg(k,Q,) = 0. Therefore, applying Ext}(x, —) to the above
sequence we get Ext%,(x,T,) = 0 for ¢ < 2. Hence depth(7,) > 3 and finally gpdim(T,) < n — 2. This
concludes the proof for regular pencils.

It remains to carry out the proof if o is irregular. In view of the filtration ([@Z) and since the
coordinate rings of the primary components of = are graded Cohen-Macaulay rings, we get:

gpdim(Oz) = codim(Z) < codim(Y) = n — 7.

Now, if ¢; = 1 for all ¢ € {1,...,71}, the sheaf Oy (F) has a minimal Buchsbaum-Rim resolution
of length equal to codim(Y’). This is obtained by the Buchsbaum-Rim resolution of Oy (F) in the
linear span L = P"~! < P™ of Y seen as the cokernel of a matrix of linear forms of size 2 x v over
L, combined with the Koszul complex of L in P"; we refer to [7, Theorem A2.10, Exercise A2.19] for
Buchsbaum-Rim complexes and matrices associated with scrolls.

We deduce gpdim(Oy (F)) = codim(Y'), which in turn yields:

gpdim(T,) = max(gpdim(Oz), gpdim(Oy (F)) =2 =n —r; — 2.
This proves the last part of

To conclude the proof, let us assume that there is ¢ € {1,...,71} such that ¢; > 2 and show that
gpdim(T,) = n— 1. It is enough to show that H'(T,) # 0. Note that H°(T,) = 0 by incompressibility
of o, hence:

M Ty) = 2(n+1) —h%Qy) — (n+1)=n+1-h%Q,),
so it suffices to check h°(Q,) < n + 1.
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To show this inequality we recall the notation (u,v) for the splitting type of o and take cohomology
of @) twisted by Opn(1). Since the linear span of the residual subscheme = of Y in =, is P(H%(C;))
and since h*(Oy (F + H)) = 0 for k > 0 and h%(Oy (tF + H)) = v + try, for all ¢ > 0, we obtain:

hY(Q,) = h°(Oy (F + H)) + h°(04(1)) =

= Zl:(ci +2)+ K% (C) = (v +2r) + (u —v).

=1

We are reduced to show u + 2r; < n + 1 and, since n + 1 = u + v + 71, this amounts to v > r;. But
the inequality v = >}/ ¢; > 71 takes place precisely if there is i € {1,...,71} such that ¢; > 2, so the
non-vanishing H(T,) # 0 is established. The proof of the theorem is achieved. O

Example 5.13. Let o be a regular pencil of quadrics with ry = 1. Then the module of global sections
T, of T, has the Buchsbaum—Rim type resolution:

n+1

0Ty R(-2)(3) e ovo e R(—1 — 901 o R—n)nt 0,

with j € {1,...,n — 1}. This resolution is minimal and linear of length n — 2.
For a regular pencil of quadrics, the Buchsbaum—Rim complex in the above display is exact if and
only if dim(Q,) = 0. This happens if and only if ry = 1.

6. PENCILS OF QUADRICS IN DIMENSION 3

We can arrive at a full classification for pencils of quadrics in P over an algebraically closed field
k of characteristic different from 2. The result is the following.

Theorem 6.1. Let o be a pencil of quadrics in P3. Then the following holds.

i) The pencil o is free if and only if it is locally free. This happens:
a) If o has Segre symbol [(1,1),(1,1)], in which case Ty ~ Ops(—1)92;
b) If o has Segre symbol [(2,2)], in which case T, ~ Ops(—1)P?;
¢) If o is irreqular and incompressible, in which case Ty ~ Ops(—1)2;
d) If o is compressible, in which case T, ~ Ops @ Ops(e — 2), where e € {0, 1,2} is the total
degree of the singular divisors of o.
it) In all other cases o is reqular, pdim(T,) = 1 and the sheafified minimal graded free resolution
of Ty reads:
a) If ro = 1:

0 — Ops(—3)%? - Ops(—2)®* - T, - 0.
b) If ro = 2 and the Segre symbol is not [(1,1),(1,1)] or [(2,2)]:
0 — Ops(—3) = Ops(—2)®* @ Ops (1) — T, — 0.
The proof of the theorem is by inspection of the different Segre symbols. It follows from the analysis

appearing in the next subsubsections.

6.1. Regular pencils. Let us write the table of possible Segre symbols of regular pencils, together
with the description of =, arising from the previous sections.
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Segre | V4 || Eo | 70 | Chern | stable | pdim
[1,1,1,1] | 4 4 simple points 1] (=2,3,4) s 1
[2,1,1] |3 double point & 2 simple points 1] (-2,3,4) S 1

[2,2] 2 2 double points 1] (=2,3,4) s 1

[3,1] 2 triple point & simple point 1] (-2,3,4) S 1

[4] 3 quadruple point 1] (-2,3,4) S 1
[1%,1,1] |2 line & 2 simple points 2 |(-2,2,2) SsS 1
[17,2] |2 line & double point 2 | (-2,2,2) | sss 1

line Y® &

[(2,1),1] | 2 simple point T & 2| (-2,2,2) | sss 1
simple point
line T® &

3,1 1 2 —2,2,2 1
[(3,1)] double point T (=2,2,2) | sss
[1%,17] ]2 2 disjoint lines 2 | (=2,1,0) | free 0

[2%] 1 double line YW 2 [ (=2,1,0) | free 0
[1°,1] 2 plane & simple point 31 (-1,1,1) S

lane T® &

2,1%)] |1 P 3| (=1,1,1 1

[(2,19] simple point T (-1,1,1) S

In the column labeled stable, we wrote s or sss according to whether 7, is stable or strictly semistable
(in the sense of the slope), and free when T, is split. In the description of Z,, we let the subschemes

T*) show up when a primary component of Z, has a non-trivial filtration as in the proof of Theorem
Bl In the column labelled Chern we write the triple (¢1(T5), c2(Ts), c3(Ts)).

Some comments are in order.
i) When o is free (and regular), we have T, ~ Ops(—1)®2.
ii) When ry = 1, the sheaf Q, has resolution of type Buchsbaum—Rim that induces a sheafified
minimal graded free resolution:

0 — Ops(—3)%? - Ops(—2)®* - T, - 0.

This gives the Chern classes of T, when ry = 1.

iii) When ro = 2, there are lines M,L < P3, not necessarily distinct, with L < Z,, and a
finite length subscheme W < M, such that T, fits into (26]). Note that, since ro = 2, there
is a quadric in the pencil, say f2, which is a rank-2 quadric in the coordinates xg,z1, up to
homography. So, setting L = V(z0, 21) and composing the Jacobian matrix with the projection
0P (1) — Ops(1) onto the second factor and with the obvious quotient Ops(1) — O (1) we
obtain explicitly the morphism Q, — O (1) required to get ([26]), so Lemma [£3] holds also for
(n,0) = (3,2).

We have Ry ~ R, ~ Ops(—2) and the length of W is either 2 or 0, according to whether
pdim(T,) is 1 or 0. So T, is polystable in the free case, otherwise, it is strictly slope semistable
and Gieseker-unstable.

In the latter case, we have Jy /s ~ Opr(—2) and the morphism Rz, (1) — Ty ar(1) of ([Z8) is
the natural surjection Ops(—1) — Opr(—1). Therefore the term G2 appearing in the sequence
[2]) fits into:

0— O]P%(*3) g O]P%(*2)®2 g 92 — 0.
Then we have a sheafified minimal graded free resolution of 7T, of the form:
0 — Ops(—3) = Ops(—2)P2 P Ops(—1) - T, — 0.

This gives the Chern classes of T, when rg = 2.
iv) Stability of T, for ro = 3 follows from Proposition 2100
v) One can put two quadrics of ¢ in normal form. This is done in [I0].

6.2. Irregular pencils. We gave in Example [5.11] the list of numerical invariants of irregular pencils
in IP3. We observed that there is only one irregular incompressible pencil in IP3. Note that in any case
the number of points in the support of C; is at most 3, so irregular pencils have a normal form (fi, f2)
which is completely determined up to SLa(k)-action as SLa (k) is 3-transitive on P*. Note that we can
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assume that this support is contained in {(1:0),(0:1),(1:1)}. We are going to see that, for irregular
pencils of quadrics ¢ in P3, the sheaf T, is always free. For details on this, see Theorem [[.11

6.2.1. Irregular incompressible pencils. The unique irregular incompressible pencil on P3 has r = 1
so according to Proposition 5.5 we have T, locally free.

The splitting type of o is (2,1) and the regular part of o vanishes at a single point A € P! which
gives a single quadric of corank 2 in the pencil, so 7o = 2. This gives a component =(!) ¢ =, which
is a reduced line. The component Y of Z, is a line which meets =) at A. In the normalized form
appearing in the proof of Theorem Bl we have A = (0: 1) and the matrix p reads:

4 0 00
» 0 00
0 0 0z

The associated pencil is (zox2, 2z0x1 + %) and, up to dividing by 2, the Jacobian matrix reads:

X9 0 i) 0
Tr1 X 0 T3

The kernel of this matrix is T, ~ Ops(—1)®2, the syzygy map being:

o 0
—I1 —I3
—xI2 0

0 Zo

6.2.2. Compressible pencils. Assume o is compressible. Then the sheaf T, contains a copy of the trivial
sheaf Ops which is thus a direct summand of T,. Therefore T,/Ops is a reflexive sheaf of rank one
and thus isomorphic to Ops(—c1(T,)). For compressible pencils, we get the following.

i) If o has no singular divisor T, ~ Ops @ Ops(—2).
ii) If o has a singular plane, then T, ~ Ops @ Ops(—1), cf. fii)| of Lemma B35
iii) If o has a singular divisor of degree 2, then T, ~ Ops @ Ops, cf. item [i)| of Lemma Bl

7. LOCALLY FREE PENCILS OF QUADRICS

Let us conclude the analysis of freeness and local freeness of pencils of quadrics over an algebraically
closed field k of characteristic different from 2 on P with n > 2. In the next table, the column labeled
> displays the Segre symbol of the regular part of o. In the column labeled exponents we write the
sequence of degrees of the line bundles which are direct summands of T, for instance, the sequence
(0n=3,—12) means that T, ~ O%ﬁnig) ® Opn (—1)®2. Recall from Section that 7 = n — h%(T,).
When n = 2 one should not consider the first three lines.

Theorem 7.1. Let n > 2. A pencil of quadrics o is free if and only if o is locally free. This happens
if and only if, up to homography, o = (f1, f2) is:

fi ] fo | exponents |n| ro | n [(wov)] I
r3 + 23 T3+ g 03,15 [3[n—-2|n-3](40) | [1%17]
23+ 23 | woxy +ax2ws | (0"73,-12) |3 |n—2|n—-3|(4,0) | [2?]

zoxe | 2momy +x3 | (0"73,-1%) |3 |n—1|n—-2](2,1) [1]
w3 +a23 | a2 — a3 0" 2 -2)[2][n—-1]n-2](3,0)[[1,1,1]
(49) zd + 23 ToT1 (0m2-2) |2 |n—1|n-2](3,0) | [21]
ToT1 2z0rg + 23 | (0"72,-2) |2 |n—1|n—-2](3,0) [3]
z3 2zoz1 +25 | (02 -1) [2] n [n—2](3,0)][(21)]

3 zd + 2} O0m=2-1) | 2] n |n—2](30) | [1%1]

ToT2 ToT1 (0m=2,-1) |2 |{n—1|n—1|(1,1) (%)

a3 x3 (on=1) 1 n |n—11(20)| [1,1]

x3 ToT1 (on=1) 1 n |n—11(20) [2]
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Proof. Let o be a locally free pencil of quadrics. Following the notation of Section 28] set m for the
compressibility of o and 7 = n — m. By Lemma 2.8 the sheaf T, decomposes as OP@? @ €&, thus &
must be locally free. In addition, the associated incompressible pencil ¢ is also locally free, since T
coincides with the restriction of € to some n-dimensional linear space.

If & is regular, then Corollary (.8 says that 7 < 2 or 2 = 3 and & has Segre symbol [12,12] or [22].
In the latter case the normal form of the quadrics of & obtained as in the proof of Theorem [5.1]is the
one displayed in the first two lines of the table in display ([@d). Since o depends only on xg, ..., zx,
this is actually the normal form of the quadrics of o.

On the other hand, if & is irregular, then, since & is locally free, setting 7, for the generic rank of
&, we must have 7y > n — 2 by Corollary Combining this with Lemma B3] gives 7 + 1 > 31 — 6
which implies 7 < 3. If i = 3, we are in the situation of Subsection [6.2.] and we obtain the third line
of the above table. In all these cases we have seen already that o is free with the desired exponents.

It remains to treat the cases n < 2. Let us assume n = 2. Since & is incompressible, T5 is a reflexive
sheaf of rank 1 with determinant equal to e — 2 where e the total degree of the singular divisors of 4.
Note that e € {0, 1} as & is incompressible.

If 6 is irregular (and incompressible), then #; = ¢; = 1 (with obvious notation) so & is completely
irregular and we get the third line from the bottom.

Still with n = 3, assuming now & regular, we get e = 0 if and only if rg = n—1 and this corresponds
to the Segre symbols [1,1,1], [2,1] and [3], while e = 1 takes place when 1o = n and the Segre symbol
is [(2,1)], [1%,1].

These Segre symbols are associated with unique pencils up to homography since ps defines at most
3 distinct points in support of €, and PGLa (k) acts transitively on triplets of points of P*.

Finally, assume n = 1, so that T, ~ Opn. Then there are only two possible Segre symbols, whose
normal forms give the pencils (2%, 23) and (zox1, #3). Note that this is case [})] of Lemma B35 O

8. LOCALLY FREE PENCILS OF HIGHER DEGREE

In this section, k is any field of characteristic 0. In contrast with the case of pencils of quadrics seen
in the previous section, we will now show that there are locally free pencils of higher degree that are
not free.

Before stepping into the general case, let us take a look at the case of pencils of cubics in detail.

Over the complex projective space IP3, there are, according to [2], two non-normal cubic surfaces
up to homography. In the homogeneous variables (zo, ..., z3), the equations of these surfaces are:

f= x? + x%xz + x%xg, , g = I? + x%xz + xor1T3.
Both surfaces are singular along the line L = V(z(,21). The Jacobian matrix of the pencil of cubics
o = (f,g) reads:
Vo — 2x0x2 3x% + 22173 a:g x%
2z072 + 1173 333 4+ wox3 w3 wox1)

The sheaf Q, has rank two over L and admits no zero-dimensional subsheaf. The first part of Lemma
implies that T, is locally free.
However, the scheme-theoretic locus where Q, has rank two has an embedded point at p = (0: 0 :

1:0). In fact, the Jacobian scheme =, has 4 primary components P, ..., Py described by the next
table.
Dimension | degree | radical ideal
1 5 (xo, .Il)
1 1 (.Il ) .Ig)
1 1 (,TO — X1, ,Tg)
0 20 (LL'Q,LL'l,,Tg).

Note that (£, )req consists of the union of the 3 lines V(xg,z1), V(z1,23) and V(z¢ — 21, x3); the first
one appears with a multiple structure of degree 5.

In this example, T,(2) has ¢1(7,(2)) = 0 and c2(T,(2)) = 1, ¢3(T,(2)) = 0. Also, we have
H°(T,(2)) = 0. Therefore T,(2) is a null correlation bundle.

This example is generalized to degree k + 3, for any k£ > 0, in our next result.
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Theorem 8.1. For any k = 0, define the pencil o = (f,g) as

k+2 | k43 k42 k1 _ k1
f=mxoxi™" + a5 + a5 w3, g = x2w3(25 xyT).

Then we have T, ~ N(—k — 2), where N is a null correlation bundle.
Proof. Set f = xoxh 2 4 25T 4+ 28205 and g = zow3 (2 — 2%). Observe that, in the algebraic closure
of k, the divisor V(g) is an arrangement of planes consisting of k + 2 planes Hy, ..., Hg o passing

through the line L = V(x1,x2) together with an extra plane H not containing L, namely the plane
V(x3). This arrangement is free, more precisely, we have :

Ty =~ Ops @ Ops(—1) D Ops(—k —1).

Factoring out the trivial summand Ops of T, we write explicitly the syzygy ¢ : Ops (—1)@®Ops(—k—
1) — O%” , independently on whether & is closed or not:

T $§+1
¢ = T2 ahwy

*(k + 2) T3 7,@116,@3
The the Jacobian matrix Vo : O%ﬁ N O®2(k + 2) reads:
Vo — x’f+2 (k + 2)$0$]f+1 (k + 3)I§+2 + (k + 2)$§+1:173 x]2g+2
0  (k+1)akwoxs ¥y — (k + 2)akt k+1 k+2

Note that this matrix has a vanishing entry at the bottom left corner and that the vanishing of this
entry corresponds to the trivial summand of J,;. Therefore, projecting onto the last three factors of
O%;l and onto the second factor of 0%3 (k + 2) we get a commutative diagram, which is essentially a
particular case of the diagram in display (I3]):

Ops —= Ops (k} + 2)

| l

(50) 0 T, 0% Y2 0%2(k + 2)

i | l

0 —> Ops(—1) @ Opa(—k — 1) —= OB % Ops (k + 2)

The top arrow defines a surface D < P? of degree k + 2, whose equation must sit in the top left
corner of Vo. In other words, D = V(z¥%2) is the (k 4 2)-tuple structure over the plane V(z;).

Also, we observe that the image of V is Jg/ps(k + 2), where the curve C' is the scheme-theoretic
singular locus of V(g) and is defined by the 3 minors of order 2 of ¢. Incidentally, over the algebraic
closure of k, the curve C' consists of k 4+ 2 reduced lines L1,...,Ligyo, with L; = H n H; for all
i € {l,...,k + 2}, together with a (k + 1)-tuple complete intersection structure over L of degree
(k +1)? defined by V(akzy, ™ — (k + 2)2 ).

The rightmost column of dlagram BE0) gives a surjection M, — o /]PS(k + 2), whose kernel is a
torsion-free sheaf of rank 1, isomorphic to Jp/ps (k + 2), where the subscheme B < D < P3 is defined
in P? by the homogeneous polynomials h of the form h = agfo+ - - -+ a3 f3 with a; € R = k[zo, ..., 73]
and satisfying a1g1 + as2g2 + asgs = 0, where we put f; = 0f/0x; and g; = dg/dx;, for i € {0,1,2,3}.
Since ¢ accounts for all relations of the homogeneous ideal of C, the homogeneous ideal of B is thus
generated by (fo, fip11 + fap21 + f3ds.1, fid1,2 + faa2 + f3¢32) and the matrix of these generators
5 k+2

(k+ 2)170:171f+2 + (k + 3)azh*3
(k + 2)zozh T ab ™ 4 (k + 3)akab ™ + (k + 1) ahah e,
Therefore, the homogeneous ideal Ig,p of Bin D = V(x M2 s
(51) (2572, (k + 2)zoai M af ™ + (k + Dayal as).
We have an exact sequence:

OHJB/IPS(kJrQ)"MUHjc/lps(k+2)4>0,
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and thus, from the leftmost column of diagram (&0):
0— (.TU - O]ps(—l)(-BOIPS(—k - 1) g jB/D(k + 2) — 0.

The morphism Ops(—1) — Ip,p(k + 2) is given by the generator 25%3 of the ideal of B in D as in
(&I). Tt defines a curve section A of D of degree k + 3 which contains B. We get an exact sequence:

0—Jgmps(—k—1) = Ops(—=1—k) = Iga(k+2) >0,

where the curve E — P? is defined by the sequence and is cut in D as the residual scheme of B with

respect to the complete intersection A = V(252 25™). From the diagram (50), using the snake

lemma we also get:
(52) 0 — Ops(—k — 3) — Ty — Ipps(—1 — k) — 0.
We compute the equations of E from (&) as (IB/D : (x§+3)) and get:

E =V (21, 2120, 23, (k + 2)zoz1 — (k + 1)22m3) .

Therefore, the curve E is a double structure of arithmetic genus —1 over the line L. We conclude from
(2) that T, (k + 2) is a null correlation bundle. O

Remark 8.2. By the previous theorem, for any degree k+ 3 there is a pencil o which is locally free but
not free. Also, we have gpdim(7,) = 2. More precisely, the sheafified minimal graded free resolution
of T, reads:

0 — Ops(—k —5) — Ops(—k — 4)®* - Ops(—k — 3)® - T, — 0.

This is in contrast with the case of pencils of quadrics, where local freeness is equivalent to freeness
and where gpdim(T,) < n — 2.

9. ALGEBRAICALLY INDEPENDENT SEQUENCES OF LENGTH 2 AND RATIONAL FOLIATIONS

We complete this paper by looking at arbitrary algebraically independent sequences of length 2 and
showing how these are related to rational 1-forms, which we now introduce. Part of the material about
foliations, in particular in relation to k-webs with k& > 3, is discussed in Appendix A below.

Let f1 and f2 be homogeneous polynomials in k[, . .., z,] with no common factors of degree d; + 1
and dy + 1, respectively; remark that o := (f1, f2) is an algebraically independent sequence. Let also
a and b be relatively prime integers such that (d; + 1)b = (d2 + 1)a. The 1-form

w=af; -dfs —bfy-dfi € H'(Qbn(dy + da + 2))
is called a rational 1-form of type (di + 1,ds + 1).
Regarding w as an element of Hompn (TP™, Opn(d + 2)), we set K, := ker(w). Since w vanishes
along the complete intersection scheme C' := V (o), the image of the morphism w : TP"™ — Opn (d + 2)

is actually contained in the ideal sheaf Jo(d + 2). Applying the functor Hompn (Opn (1)®"+1 —) to the
resolution of Jo(d + 2)

0 —> Opn —5 Opn(dy + 1) ® Opn (dy + 1) —> I (d + 2) — 0,
where 7= ((d1 + 1)f1 (d2 + 1)f2)", we check that the composed morphism
Opn (1)@ = TP™ - Jo(d + 2)
lifts to a unique morphism g : Opn (1)®" 1 — Opn (dy + 1) @ Opn (dz + 1), since

HOmIPn (OIPn (1)®n+1, OIPn) = EXt]IPn (OIPn (1)®n+1, OIPn) =0.
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Therefore we obtain the commutative diagram:

0 0
O]Pn O]Pn
I ﬁ
(53) 0 —> Koy —> Opn (1)@ L Opn(dy 4+ 1) ® Opn (dy + 1)
0 K, TP t Jo(d+2)
0 0

This proves that X, ~ ker(u). We argue that p = Vo, thus in fact X, ~ T,(1). Indeed, note that

n

w= Z (pf10if2 — qf20i f1) - dx,

i=0
which means that the entries of the morphism a : Opn (1)®"+1 — Opn (d + 2) given by the composition
Opn (1) = TP — Jo(d + 2) <> Opn(d + 2)

are precisely «; = p- f10;f2 — q - f20;f1. Since, on the other hand, o = (—qfa pf1) o u, we conclude
that u = Vo, as desired.

Conversely, given an algebraically independent o = (f1, f2) with deg(f;) = d; + 1, we follow the proof
of Lemma in Section and consider the associated codimension 1 distribution &, as presented
in display (B]); in the case at hand, this simplifies to (setting d = dy + da)

(54) 0—> T,(1) — TP™ -5 Ip_(d — 1 +2) —> 0,

where I';, < P" is a (possibly not pure) 2-codimensional subscheme of P, and I = ¢;(Q,); this
is precisely the codimension one distribution associated with the (possibly non-saturated) twisted
rational 1-form

w=(dy +1)f1-dfs — (do + 1) fa2 - dfs € Hompn (TP™,Ip(d — 1 4 2)) = H(Qpn (d + 2)).
Moreover, the bottom line of the diagram in display () yields the following description for the singular
scheme I', of w:

(55) 0—Ip,(d=1+1) —TJc(d+1) — Q, — 0.
In particular, we have that
deg(T'y) = deg(Qy) + deg(C) = deg(Qy) + (d1 + 1)(d2 + 1).

Summarizing, we have established a natural 1-1 correspondence between algebraically independent
sequences of length 2 and rational codimension one foliations as follows.

Lemma 9.1. There exists a 1-1 correspondence between algebraically independent sequences o =
(f1, f2) on R and rational codimension one foliations 2 on P™ of type (deg(f1),deg(f2)) such that
Ts(1) = T4 and Sing(2) =T,.

The previous statement has the following two important applications when n = 3. First, as an
immediate consequence of 4, Theorem 6.3], we obtain the following stability result for logarithmic
sheaves associated with algebraically independent sequences of length 2 on P3.

Corollary 9.2. Let o = (f1, f2) be an algebraically independent sequence in k[xg, 21,22, x3] and let
d; := deg(f;) — 1; assume that dy + do > 0 and ¢1(Q,) = 0.
(1) If dy + dg is even, then
o ifdeg(Q,) < (d3 +d% —dy — dy — 2)/2, then T, is slope-stable;
o if deg(Q,) < (d3 + d3 + dy + d2)/2, then T, is slope-semistable;
(2) If di + dy is odd and deg(Q,) < (d? + d3 —1)/2, then T, is slope-stable.

In particular, if the Jacobian scheme is 0-dimensional, then T, is slope-stable.
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We remark that the previous result is not sharp, and it is not hard to find examples of algebraically
independent sequences with slope-stable logarithmic sheaves whose degrees do not satisfy the numerical
inequalities above. Indeed, if o corresponds to a pencil of quadrics, so that di = dy = 1, with
dim G, = 0, then Corollary 0.2 only implies that T, is slope-semistable; however, as we have seen in
Section [6.1] T, is actually slope-stable in this case. Note that the case d; = do = 1 is the only one for
which the right-hand sides of the inequalities are not positive.

In addition, the higher degree pencils provided in Theorem [B] yield yet another set of examples
showing that the converse of Corollary [0.2] does not hold.

Finally, as a second application, we give a negative answer to a problem posed by Calvo-Andrade,
Cerveau, Giraldo, and Lins Neto, see [3, Problem 2]. To be precise, these authors asked whether
the tangent sheaf of a codimension one foliation on P? splits as a sum of line bundles whenever it is
locally free. Indeed, in light of the proof of Lemma [0 the pencils presented in Theorem [R1] provide
examples, for each k > 0, of rational foliations of type (k + 3,k + 3) on P2 whose tangent sheaves are
slope-stable locally free sheaves.

APPENDIX A. ALGEBRAICALLY INDEPENDENT SEQUENCES AND FOLIATIONS (BY ALAN MUNIZ)

The aim of this appendix is to elucidate the relation between logarithmic tangent sheaves and
foliations. Precisely, we show that the distribution introduced in Subsection 2.2]is integrable and even
more, it is algebraically integrable, i.e., its leaves are contained in the fibers of a rational map. In
particular, Proposition [A.2] below generalizes Lemma

Fix an algebraically independent sequence o = (fi, ..., fr) with deg f; = d;+1. We assume, without
loss of generality, that each f; is reduced. Define the integers e; = lem(dy + 1,...,dx + 1)/(d; + 1) for
i€{l,...,k}. Then we consider the rational map

é: P ——5 PP x— (fi ()0 fif (2)),

which is dominant since o is an algebraically independent sequence. The connected components of its
fibers define a codimension k& — 1 foliation on P™ that we denote by F,.

In terms of sheaves, F, is given locally by the vector fields tangent to the fibers of ¢. To be precise,
on the affine open subset V; = {f; # 0} we have

s g
(b: €50 pej0 0y e
fi fj fj

and a vector field v defined on some open subset U < Vj is tangent to JF, if

(56) v f_] =Lvde€j =0
5 5
for every i, here 1, denotes the contraction morphism. This is equivalent to &, being defined by the
homogeneous (k — 1)-form w satisfying
(57) gw =t (dft A -+ A dfy)

where € = Zj :Cj% is the Euler radial vector field, and g is the greatest common divisor of the
J
coefficients of the differential form on the right-hand side. Indeed, on V; we have

c {Cej ey ek
j 1 k
gwly, = ——————d — | A Ad -
S e T W ;)

where c € Zi~g. If v ( fl; ) = 0 then t,w = 0. Conversely,
(58) O=Lw=FZ(fl)i+1v I d I A-end I A-ond i
= 1)\ Iy )

J
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kej e;
where F' = % Thus U(j:%j) = 0, for every i, on U\A, where A is the degeneracy locus

97, J
of the Jacobian matrix of ¢. Since we are in characteristic 0, U\A is nonempty and open, hence

v(; e;) = 0 everywhere on U.
T3

Remark A.1. When g = 1, a foliation as above is called a rational foliation, see [6]. This is a
generalization of the codimension one rational foliations given by pencils of hypersurfaces.

We also remark that g may be non-constant. For instance, take f1 = zjx3 — %x% and fo =
1273 — xoT 123 + %xzf The foliation associated with (f1, f2) is the so called exceptional foliation on P3,

see [0l Example 6].

Next we are interested in computing the tangent sheaf TF, of F,, showing that it coincides with
T5(1) where T, is the logarithmic tangent sheaf associated with o. In particular, we show that the
distributions D, constructed in Subsection are actually integrable.

Proposition A.2. Let T, be logarithmic tangent sheaf associated with o. Then T,(1) is isomorphic
to the tangent sheaf TF, of Fo.

Proof. Since T,(1) and TF, are both reflexive, we only need to show they are isomorphic away from
a codimension 2 set. Let X = V(f1,..., fx) be the algebraic set defined by o. Then P"\X = |J,V;
where V; = {f; # 0}, and we only need to show T,(1)|y; ~ TF,|v, for every I.

Let U = Vi n {zg # 0} and fix the natural local coordinates by setting zo = 1. On {zy # 0}, hence
on U, the projection OF*!(1)|y — TP"|y is given by

= 0
v=(ag,...,an Z — apx;) e

— J

Denote by 7 the restriction of the projection above to T,(1)|y = 0P (1)|;. We will show that 7

establishes the desired isomorphism, on U.
It follows that v € T,(1)|y if and only if [v] = 7(v) satisfies, for every i € {1,...,k},
def afz
fz = Z a(){EJ (E» 7&0((11' + 1).](‘1,

j=1 J

here f; = f;|uv by abuse of notation. In general, we have

(59) [v] (f{ > _ I <ez—[v]<fz-> e [v](m) |

l l

fi fi

For v e T,(1)|u we get [v] (;—:) = 0 and, by definition, [v] € TF,|y. That is, im7 < TTF,|v.
1

Conversely, for [v] = 377, gja%j € T3, |y we have that [v] ( ﬂ:l> = 0 for every i. Then (B9)) implies

L

that there exists (a unique) go € Opn |y such that
[v](fi) = —(di + 1)gofi, for every i =1,... k.

We have then a well defined local section v = (go, g1 + goZ1,- - gn + GoZn) € To(1)|v.
Therefore m: T,(1)|v — TF,|v is an isomorphism. Repeating this construction for other choices of
the open set U, yields an isomorphism T, (1)|pn\x =~ TF,|pn\ x hence T, (1) ~ T'F,.
O

In view of our present discussion, we remark on the behavior of algebraically independent sequences
related to the associated foliations. From o = (f1,..., fx) we can define a k-web (fi*,..., f*), as
in Subsection There, it was introduced the notion of compressibility which is equwalent, due to
Lemma 27 to H(T,) # 0. On the other hand, H%(T,) = H°(TF(—1)), due to Proposition [A2] and
this is equivalent to F, being a linear pullback foliation. Then, alternatively, Lemma 2.7] follows from

the following result.

Lemma A.3. Let F be a codimension k foliation on P™. Then h%(TF(—1)) =: r > 0 if and only if
there exists w: P™ --» P~ linear and a integrable k-form 1 on P™~" such that w = 7*n defines F.

We suspect that this fact is well-known but we include a proof due to the lack of a precise reference.
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Proof. Let w be a homogeneous k-form defining F. If F is a linear pullback w = 7*n, where 7: P™ --»
P? is linear. Then up to linear change in coordinates we assume that w(zg : -+ @,) = (X0 : -+ 1 Tq)
so that w does not depend on the variables x4 1, ..., z,. Hence the vector fields % e HY(TP"(-1)),
j=q+1,...,n, define elements of H*(TF(—-1)).

Conversely, let v € H)(TF(—1)) ¢ H(TP"(—1)). Then we claim that the integrability condition
and codim(Sing F) > 2 together imply that the Lie derivative vanishes:

Low = tydw + d(t,w) = 0.

On the other hand, up to the change in coordinates, we may assume that {ﬁ, ceey % is a basis

for HO(TF(—1)). It is straightforward to verify that £,w = 0 with v = (7% if and only if w does not
J

depend on the variable x;. Therefore w is a linear pullback via the map given by (zg : -+ : @y,) —

(o i+t Tp_y).

Now we have to prove our claim. Let w be an integrable homogeneous k-form, i.e., for every constant
multivector field y € A" k"1 we have
(tyw) A w = (Lyw) A dw =0,

and suppose further that w does not vanish in codimension one. Assume that t,w = 0, then L,w = t,dw
and, due to integrability,
(tyw) A Lyw = 1y ((tyw) A dw) =0

for every y. Now let u = u; A -+ A ug € /\k k" *1 be such that t,w =: f, # 0, it must exist since
w # 0. Define y; = (—1)7"tuy A-+- Aj A+ A uy and the 1-forms n; = 1y, w so that vy,1; = tuw = fu.
Applying de Rham—Saito division lemma [I6] over the localization k[xo,...,z,]},, we see that there
exists a polynomial g, such that
va:7gu m /\"'Ank=g—uw
futkt u

for some r = 0. Since codim(Singw) = 2, there exists another v’ € /\k k" *1 also decomposable, such

that ged(fu, fur) = 1. From the above equation, we define a rational function
Ju o Gu’

G = R € k[xo,.. ., Tnlf, O E[T0, ... T0]y, S K(To,s ..., 20)
It follows from the algebraic Hartogs’s Lemma [23] p. 320] and ged(fy, fur) = 1 that
Klxo,. .., xn]f, O K[To, .. 2]y, = KlTo, ... 2]
hence G is a polynomial. Finally, computing degrees on both sides of the equation £,w = Gw shows
that G = 0. |
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