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LOGARITHMIC SHEAVES OF COMPLETE INTERSECTIONS

DANIELE FAENZI, MARCOS JARDIM, AND JEAN VALLÈS

Abstract. We define logarithmic tangent sheaves associated with complete
intersections in connection with Jacobian syzygies and distributions. We anal-
yse the notions of local freeness, freeness and stability of these sheaves.

We carry out a complete study of logarithmic sheaves associated with pen-
cils of quadrics and compute their projective dimension from the classical
invariants such as the Segre symbol and new invariants (splitting type and
degree vector) designed for the classification of irregular pencils. This leads to
a complete classification of free (equivalently, locally free) pencils of quadrics.

Finally we produce examples of locally free, non free pencils of surfaces
in P3 of arbitrary degree k ě 3, answering (in the negative) a question of
Calvo-Andrade, Cerveau, Giraldo and Lins Neto about codimension foliations
on P3.
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1. Introduction

Let κ be an algebraically closed field of characteristic zero and consider a regular
sequence σ “ pf1, . . . , fkq of homogeneous polynomials fi P R “ κrx0, . . . , xns of
degree di ` 1, for some 0 ď d1 ď ¨ ¨ ¨ ď dk and k ď n. Let Iσ :“ pf1, . . . , fkq denote
the ideal generated by the sequence σ, and V pσq be the associated scheme-theoretic
complete intersection in P

n. Consider the Jacobian matrix of σ, namely:

Jσ :“

¨

˚

˝

∇f1
...

∇fk

˛

‹

‚
.

This can be viewed as a morphism of sheaves:

Jσ : O
‘n`1
Pn ÝÑ ‘k

i“1OPnpdiq.

The main focus of this paper concerns the sheaf:

Tσ :“ kerpJσq.

We call Tσ the logarithmic tangent sheaf associated to σ. This nomenclature for
Tσ is motivated by the following observation. Set X “ V pσq and recall that the
Zariski tangent sheaf TX and the sheaf T1

X supported at SingpXq fit into:

0 Ñ TX Ñ TPn|X Ñ
k
à

i“1

OXpdi ` 1q Ñ T1
X Ñ 0.

The sheaf TPnxXy of vector fields on P
n tangent to X is the kernel of the natural

morphism TPn Ñ
Àk

i“1 OXpdi ` 1q, see [10, Chapter 3]. It turns out that Tσp1q is
a subsheaf of rank n ´ k ` 1 of TPnxXy. More precisely (see Lemma 2.4), writing

Vσ “
Àk

i“1 IXpdi ` 1q{OPn and denoting by Qσ the cokernel of Jσ, we have:

0 Ñ Tσp1q Ñ TPnxXy Ñ Vσ Ñ Qσp1q Ñ T1
X Ñ 0.

When the sequence σ consists of a single polynomial f (so that k “ 1q, then
Vσ “ 0 so Tσp1q » TPnxXy is precisely the logarithmic tangent sheaf associated to
the divisor V pfq, see for instance [11] or the celebrated [9].

Note that, for k ě 2, the sheaf TPnxXy cannot be locally free. On the other
hand, as we shall see, Tσ may be locally free or even completely decomposable.
Hence we propose the following three definitions, whose goal is to generalize the
usual concept of a free divisor introduced in [9].

Definition. A regular sequence σ is said to be:

(1) locally free if the associated logarithmic tangent sheaf Tσ is locally free.
(2) free if the logarithmic tangent sheaf Tσ splits as a sum of line bundles.
(3) strongly free if every sequence σ1 such that Iσ1 “ Iσ is free.
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Clearly, every free regular sequence of length k “ 1 is also strongly free. On
the other extreme case, we observe that if σ is a regular sequence of length k “ n,
then Tσ “ OPnpeq for some negative integer e, since every rank 1 reflexive sheaf on
P
n is a line bundle. Therefore, every regular sequence σ in κrx0, . . . , xns of length
n is strongly free. We provide explicit examples of free and strongly free regular
sequences of length 2 in κrx0, x1, x2, x3s, see Example 2.7 and Example 2.8 below.

Regarding the middle range 1 ă k ă n, recall that it is notoriously hard to
construct indecomposable locally free sheaves of rank r on P

n when 2 ď r ď n´ 2.
In fact, only two examples are known, the Horrocks–Mumford rank 2 bundle on P

4

and Horrocks’ rank 3 parent bundle on P
5. Furthermore, Hartshorne’s conjecture

predicts that every locally free sheaf of rank r on P
n with 3r ă n splits as a sum

of line bundles, which would imply that locally free regular sequences of length k
in κrx0, . . . , xns are free whenever 3k ą 2n` 3.

With these facts in mind, it seems natural to investigate regular sequences of
length 2 in R “ κrx0, . . . , xns. Following two directions usually pursued in the lit-
erature concerning logarithmic sheaves for hypersurfaces, our goal is to find criteria
to determine when, on the one hand, a regular sequence σ “ pf1, f2q is (locally)
free, and, on the other hand, when the associated logarithmic tangent sheaf Tσ is
slope-stable.

We start in Section 2 by setting up basic definitions and examples. Most im-
portantly, we provide criteria to determine when a regular sequence in R is locally
free (see Lemma 2.2), as well as examples of free regular sequences that are not
strongly free (Example 2.7), and of a strongly free regular sequence (Example 2.8).
In Section 2.2 we show that regular sequences of length k induces codimension k´1
distributions on P

n, see Lemma 2.3. Yet another important notion in this paper is
the compressibility of a k-web σ (that is, a regular sequence of length k consisting
only of forms of equal degree): σ is said to be compressible if there is a variable
that occurs in none of the forms contained in σ; a regular sequence that is not
compressible is said to be incompressible (see Definition 2.12).

Sections 3 through 6 are dedicated to a thorough study of regular sequences of
consisting of 2 polynomials of degree 2, also referred to as pencils of quadrics.

First, recall that the slope of a torsion-free sheaf F of rank p ą 0 on P
n of

determinant
`
Źp

F
˘__

» OPnpeq is defined as µpF q “ e{p. The sheaf F is said to
be slope-(semi)stable if any proper subsheaf K of E has slope µpKq ă pďq µpEq;
F is slope-polystable if it is the direct sum of slope-stable sheaves with the same
slope, and F is slope-unstable if it is not slope-semistable. The following result is
proved in Section 3.

Theorem A. Let σ be a pencil of quadrics in P
n and let r0 be the maximal corank

of the Hessian matrix for each quadric of the pencil.

(1) If σ contains two double hyperplanes, then Tσ “ O
‘pn´1q
Pn .

(2) If σ contains only one double hyperplane, then Tσ is slope-stable if and only
if σ is incompressible.

(3) If σ is compressible and contains no double hyperplanes, then Tσ is slope-
unstable.

(4) If σ is incompressible and contains no double hyperplanes, then
i) Tσ is slope-stable when 2r0 ă n` 1;
ii) Tσ is strictly slope-semistable when 2r0 “ n ` 1;
iii) Tσ is slope-unstable when 2r0 ą n` 1.
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The upshot is that, for the most interesting case (namely that of incompressible
pencils without double hyperplanes), stability depends only of the maximal corank
r0 of the quadrics in the pencil. By [1], semistability of a pencil of quadrics in the
sense of geometric invariant theory is equivalent to the fact that the discriminant
of the pencils is non-zero (i.e. the pencil is regular) and has no root of multiplicity
greater than pn`1q{2. So there are many GIT-unstable pencils σ whose logarithmic
sheaf Tσ is still slope-semistable or even slope-stable see Remark 3.14.

Next, we look at freeness and local freeness of pencils of quadrics and, more
generally, at projective dimension of Tσ, both in the local and in the graded senses.
This turns out to depend on more subtle invariants of the pencil. To review them,
note that the pencil of quadrics defined by σ gives a symmetric matrix ρσ of linear
forms on P

1, whose generic corank r1 is the corank of the Hessian matrix of a
generic quadric in the pencil. Note that r1 “ 0 if and only if σ contains smooth
quadrics, we call σ regular in this case and irregular otherwise. When σ is irregular,
there are integers c1 ď ¨ ¨ ¨ ď cr1 such that the torsion free part of Cσ “ cokerpρσq is
Àr1

i“1 OP1pciq. We call c “ pc1, . . . , cr1q the degree vector of σ. If Λ “ tλ1, . . . , λℓu Ă
P
1 is the support of the torsion part Ct of Cσ, then, for each j P t1, . . . , ℓu, denoting

by λ
paq
j the a-tuple structure over λj , the localization at λj of Ct is

Àsj
i“1 O

‘pj,i

λ
paj,iq

j

,

for some sj and paj,i, pj,i | i P t1, . . . , sjuq. These data are arranged into the Segre
symbol Σ “ rΣ1, . . . ,Σℓs, defined for all j P t1, . . . , ℓu by:

Σj “ paj,1, . . . , aj,1
loooooomoooooon

pj,1

, . . . , aj,sj , . . . , aj,sj
looooooomooooooon

pj,sj

q, with aj,1 ą ¨ ¨ ¨ ą aj,sj .

It turns out that the data pr1,Λ,Σq completely characterize an incompressible pencil
of quadrics up to homography, thus generalizing a classical result attributed to Segre
and Weierstrass for the case of regular pencils, see Section 4.1 for further details.

With these data, we describe the scheme-theoretic structure of the Jacobian
scheme, when σ is regular, as a union of nilpotent structures on pairwise disjoint
linear spaces whose dimension and degree of nilpotency depend on Σ and whose
position depends on Λ. If σ is irregular, the Jacobian scheme contains an additional
component which is a rational normal scroll of dimension r1 and degree c1`¨ ¨ ¨`cr1
that connects all the linear spaces, with a prescribed intersection along each space.

The upshot is that these invariants also characterize the projective and global
projective dimensions of Tσ, as it is described in the following two results, proved
in Section 4.2 and Section 4.3, respectively

Theorem B. Let σ have Segre symbol Σ. For q ą 0, Extq
PnpTσ,OPnq ‰ 0 if and

only if there are j P t1, . . . , ℓu and k P t1, . . . , sju such that:

q ` pj,1 ` . . .` pj,k “ n´ r1 ´ 1,

or r1 ą 0 and q ` r1 “ n ´ 2. In particular we have:

i) if σ is regular and p “ mintpj,1 | j P t1, . . . , ℓuu, then pdimpTσq “ n´p´1;
ii) if σ is irregular, then pdimpTσq “ n´ r1 ´ 2.

We have a rather different situation for the graded projective dimension
gpdimpTσq – namely, the projective dimension of the module of global sections
of Tσ. This is summarized in the following result.
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Theorem C. For a regular pencil of quadrics σ in P
n we have gpdimpTσq “ n´ 2

except if σ has Segre symbol r1p, 1qs for p ě q ě 1 or rp2q, 1pqs with q ě 1. In both
these cases gpdimpTσq “ n´ q ´ 1.

For an irregular pencil of quadrics σ of generic corank r1 we have gpdimpTσq “
n´1 except if σ has degree vector p1, . . . , 1q, in which case gpdimpTσq “ n´ r1 ´2.

With this in mind, after a careful analysis of pencils of quadrics in P
3, performed

in Section 5, we come to the conclusion that freeness and local freeness are equiv-
alent conditions for pencils of quadrics in P

n and we completely classify pencils
satisfying such condition.

Theorem D. A pencil of quadrics σ in P
n, n ě 3, is free if and only if Tσ is locally

free. More precisely, the only free pencils of quadrics are displayed in Table 52.

By contrast, we provide in Section 7 a series of examples of locally free pen-
cils of degree k ě 3 that are not free. This indicates that potentially interesting
vector bundles may arise as logarithmic sheaves associated to regular sequences of
higher degree having deep singularities. To understand our following result, recall
that a null correlation bundle is defined as the cokernel of a non vanishing mor-
phism OP3p´1q Ñ Ω1

P3p1q; every slope-stable rank 2 locally free sheaf N on P
3 with

c1pNq “ 0 and c2pNq “ 1 arises in this way.

Theorem E. Fix k ě 0, and consider the pencil σ “ pf, gq of degree k ` 3 with:

f “ x0x
k`2
1 ` xk`3

2 ` xk`2
2 x3 and g “ x2x3pxk`1

2 ´ xk`1
1 q.

Then Tσ » Np´k ´ 2q, where N is a null correlation bundle.

We complete this paper with an application of our results to the study of rational
codimension one foliations on P

n, see Section 8. To be precise, recall that a rational
1-form is a twisted 1-form given by the expression

ω “ pd1 ` 1qf1 ¨ df2 ´ pd2 ` 1qf2 ¨ df1 P H0pΩ1
Pnpd1 ` d2 ` 2qq,

where fi P H0pOPnpdi ` 1qq for i “ 1, 2 and f1, f2 have no common factors. Re-
garding ω as a morphism TPn Ñ OPnpd1 ` d1 ` 2q, we consider the kernel sheaf
Kω :“ kerω. We show in Section 8 that the natural 1-1 correspondence pf1, f2q Ø ω

between regular sequences of length 2 and rational 1-forms is such that Kω “ Tσp1q,
see Lemma 8.1.

This fact has two important consequences. First, we can invoke a result from the
general theory of codimension one distributions on P

3, presented in [4], to obtain
simple criteria to establish when Tσ is slope-(semi)stable, see Corollary 8.2.

Second, we provide a negative answer to a problem posed by Calvo-Andrade,
Cerveau, Giraldo and Lins Neto, see [3, Problem 2]; namely, these authors asked
whether the tangent sheaf of a codimension one foliation must split as a sum of line
bundles whenever it is locally free. While Theorem D implies that this claim is true
for rational foliations of type p2, 2q, Theorem E says that for each k ě 0 there are
rational foliations of type pk ` 3, k` 3q on P

3 whose tangent sheaf is a slope-stable
locally free sheaf.

All things considered, we believe that the results presented in this paper point to
a rich, interesting general theory of (local/strong) freeness for complete intersection
subschemes that in some sense parallels the widely known theory of freeness for
divisors in P

n.
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2. Basic definitions and examples

Let κ be a field of characteristic 0, n P N and put R “ κrx0, . . . , xns. In this
section we will give some preliminary properties of logarithmic tangent sheaves
associated with complete intersections. Many properties remain valid for κ of char-
acteristic different from 2.

2.1. General framework. Let σ :“ pf1, . . . , fkq be a regular sequence of R. Con-
sider the associated complete intersection variety X “ V pσq and set Jσ for the
associated Jacobian matrix. Let us denote by Bi the partial derivative B

Bxi
and

∇f “ pB0f, . . . , Bnfq the gradient of a homogeneous polynomial f P R.
We put Tσ for the associated logarithmic tangent sheaf as defined in the introduc-

tion, namely Tσ is the kernel of Jσ. In addition, we define the sheavesMσ :“ impJσq
and Qσ :“ cokerpJσq. The sheaf Mσ is torsion free, it can be thought of as the nat-
ural extension to P

n of the equisingular normal sheaf of X “ V pσq and that Tσ is
reflexive. We have the fundamental exact sequences:

(1) 0 ÝÑ Tσ ÝÑ O
‘n`1
Pn

JσÝÑ Mσ ÝÑ 0

(2) 0 ÝÑ Mσ ÝÑ ‘k
i“1OPnpdiq ÝÑ Qσ ÝÑ 0

We define the Jacobian scheme Ξσ as the degeneracy locus of Jσ,

Ξσ :“ V

˜

k
ľ

Jσ

¸

.

This is the subscheme of Pn defined by the common zeros of the k ˆ k minors of
Jσ. The reduced structure pΞσqred coincides with the support of the sheaf Qσ. Note
that pΞσqred may contain a hypersurface.

More precisely, the image of the exterior power morphism:

(3)
k
ľ

Jσ : O
‘pn`1

k q
Pn Ñ OP3pd1 ` ¨ ¨ ¨ ` dkq;

is of the form IWσ
pd1 ` ¨ ¨ ¨ ` dk ´ lq, where l :“ c1pQσq is the degree of the hyper-

surface contained in Ξσ, and Wσ Ă P
n is a subscheme of codimension at least 2,

possibly not pure. Let us illustrate this discussion with an explicit example.

Example 2.1. Let f “ x0x1 ` x2x3 and g “ x0x1x2x3, so that:

Jσ :“

ˆ

x1 x0 x3 x2
x1x2x3 x0x2x3 x0x1x3 x0x1x2

˙

.
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The curve C “ V pf, gq is the union of the four lines V pxi, xjq with i “ 0, 1 and
j “ 2, 3. Two of the 2 ˆ 2 minors of Jσ vanish identically, and we have that

2
ľ

Jσ “ px0x1 ´ x2x3q ¨ p0 x0x3 x1x2 x1x3 x0x2 0q.

It follows that Ξσ consists of the quadric V px0x1 ´x2x3q, so that l “ c1pQσq “ 2 in
this case, plus two lines V px0, x1q and V px2, x3q. So Wσ is the union of these two
skew lines. Note that neither f and g have common factors, nor do ∇f and ∇g.

Lemma 2.2. Let σ be a regular sequence. Then:

i) σ is locally free if and only if Qσ has no subsheaf of codimension ě 3;
ii) if σ is locally free, Ξσ has no irreducible component of codimension ě 3.

Note that pΞσqred may have no irreducible component of codimension at least
3 even when Qσ admits a subsheaf of codimension at least 3, see Section 7. This
means that the converse of item (ii) above does not hold in general.

Proof. Taking duals of (1) and (2) we obtain Extn´1
Pn pTσ,OPnq “ 0 and, for j ď n´1:

Ext j
PnpTσ,OPnq » Extj`1

Pn pMσ,OPnq » Extj`2
Pn pQσ,OPnq.

The sheaf Tσ is locally free if and only if Ext j
PnpTσ,OPnq “ 0 for j ě 1, which is

equivalent to requiring that Extj
PnpQσ,OPnq “ 0 for j ě 3. This gives the equiva-

lence in the first claim.
If pΞσqred has an irreducible component Y of codimension j ě 3, then, since

pΞσqred is the support of Qσ, it follows that Qσ has a non trivial subsheaf V ãÑ Qσ

supported on Y , hence codimV “ j. The previous item then implies that Tσ is not
locally free. �

2.2. Regular sequences and distributions. Recall that a codimension r distri-
bution on P

n is a short exact sequence of the form

D : 0 ÝÑ TD ÝÑ TPn ÝÑ ND ÝÑ 0

where ND is a torsion free sheaf of rank r and TD is a reflexive sheaf of rank n´ r,
respectively called the normal and tangent sheaves of D . We refer to [4, Section
2.1] for further details on the general theory of distributions.

Let us point out how distributions are related to regular sequences. First, think-
ing of the Koszul complex attached to σ we consider σ̃ “ ppd1`1qf1, . . . , pdk`1qfkqt

and the Koszul syzygy sheaf Sσ :“ cokerpσ̃q, so:

(4) 0 Ñ OPnp´1q Ñ
k
à

i“1

OPnpdiq Ñ Sσ Ñ 0.

Let η : OPnp´1q ÝÑ O
‘n`1
Pn be the Euler morphism, namely η “ px0, . . . , xnqt.

The Euler relation gives η ¨ ∇fi “ pdi ` 1qfi for all i P t1, . . . , ku. This allows us to
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construct the following commutative diagram:

0

��

0

��

OPnp´1q

η
��

OPnp´1q

σ̃
��

0 // Tσ // O
‘n`1
Pn

Jσ
//

��

Àk
i“1 OPnpdiq

��

0 // Tσ // TPnp´1q //

��

Sσ

��

0 0

(5)

Here we used that κ is of characteristic zero, or rather that the characteristic of κ
does not divide di ` 1 for all i P t1, . . . , ku.

Note that the image of σ̃ is contained in Mσ and set Nσ for the cokernel of σ̃,
corestricted to Mσ. The previous diagram gives:

0

��

0

��

OPnp´1q

η
��

OPnp´1q

σ̃
��

0 // Tσ // O
‘n`1
Pn

Jσ
//

��

Mσ

��

// 0

0 // Tσ // TPnp´1q //

��

Nσ

��

// 0

0 0

(6)

Furthermore, we have a second diagram featuring the cokernel sheaf Qσ:

0

��

0

��

OPnp´1q

��

OPnp´1q

σ̃
��

0 // Mσ
//

��

‘k
i“1OPnpdiq //

��

Qσ // 0

0 // Nσ //

��

Sσ //

��

Qσ // 0

0 0

(7)

It follows that the bottom line in diagram in display (6) defines, for k ě 2, a
codimension k ´ 1 distribution Dσ on P

n, given by the exact sequence

(8) Dσ : 0 ÝÑ Tσp1q ÝÑ TPn ÝÑ Nσp1q ÝÑ 0.

Summing up, we have proved the following statement.
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Lemma 2.3. Every regular sequence σ of length k on n ` 1 variables induces a
codimension k ´ 1 distribution Dσ on P

n such that TDσ
“ Tσp1q.

However, not every codimension k ´ 1 distribution on P
n comes from a regular

sequence via the construction above. For instance, given a codimension k ´ 1
distribution D on P

n, the monomorphism TD ãÑ TPn may not factor through
OPnp´1q‘n`1.

2.3. Logarithmic tangent sheaf and deformations. Let us point out the re-
lationship between our sheaf and classical sheaves of tangent vector fields, in con-
nection with locally trivial deformations of embeddings.

2.3.1. Tangent vector fields along a complete intersection. Given the regular se-
quence σ we have a complete intersection X “ V pσq Ă P

n, whose ideal sheaf IX
is generated by σ̃_ : ‘k

i“1OPnp´diq Ñ IXp1q. In addition, we have the equisingu-
lar normal sheaf N 1

X{Pn , see [10, § 3.4.4], which is defined as the quotient sheaf

TPn|X{TX , and therefore satisfies the following exact sequence

0 Ñ TX Ñ TPn|X Ñ N 1
X{Pn Ñ 0;

here, TX denotes the Zariski tangent sheaf ofX . Note also thatN 1
X{Pn is a subsheaf

of the normal bundle NX{Pn »
Àk

i“1 OXpdi ` 1q, so:

N 1
X{Pn ãÑ

k
à

i“1

OXpdi ` 1q;

the quotient of this monomorphism is denoted by T1
X , see [10, § 1.1.3]; it is sup-

ported at the singular locus of X . For further reference, we write its defining exact
sequence:

(9) 0 Ñ N 1
X{Pn Ñ

k
à

i“1

OXpdi ` 1q Ñ T1
X Ñ 0.

The sheaf of vector fields on P
n tangent to X , denoted by TPnxXy, is defined

as the kernel of the composed epimorphism TPn ։ TPn|X ։ N 1
X{Pn , yielding the

exact sequence

(10) 0 Ñ TPnxXy Ñ TPn Ñ N 1
X{Pn Ñ 0.

The main motivation for introducing TPnxXy is given by [10, Proposition 3.4.17];
namely, H1pTPnxXyq and H2pTPnxXyq are the tangent space and the obstruction
space of the semiuniversal space of locally trivial deformations of the embedding
X ãÑ P

n. Here we show that Tσp1q is a subsheaf of TPnxXy and, to a certain extent,
describe the quotient TPnxXy{Tσp1q.

Since the forms f1, . . . , fk generate the homogeneous ideal of X in P
n, we may

view σ̃ “ ppd1 ` 1qf1, . . . , pdk ` 1qfkqt as a morphism OPn Ñ
Àk

i“1 IXpdi ` 1q. We
define a torsion free sheaf Vσ “ cokerpσ̃q fitting into:

0 Ñ OPn Ñ
k
à

i“1

IXpdi ` 1q Ñ Vσ Ñ 0.

Note that, when k “ 1, we have Vσ “ 0, as IXpd1 ` 1q » OPn in this case, so:

Tσp1q » TPnxXy, for k “ 1.
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For k ě 2 the relationship between the two sheaves Tσp1q and TPnxXy is ex-
pressed by the following lemma.

Lemma 2.4. We have an exact sequence:

(11) 0 Ñ Tσp1q Ñ TPnxXy Ñ Vσ Ñ Qσp1q Ñ T1
X Ñ 0.

Proof. We use the Koszul syzygy sheaf Sσ of Subsection 2.2 to write the following
exact sequence relating Sσ and Vσ:

0 Ñ Vσ Ñ Sσp1q Ñ
k
à

i“1

OXpdi ` 1q Ñ 0.

We get a commutative diagram:

0

��

0

��

0

��

// OPn
σ̃

//

η
��

Àk
i“1 IXpdi ` 1q

��

0 // Tσp1q

��

// O
‘pn`1q
Pn p1q

��

Jσ
//
Àk

i“1 OPnpdi ` 1q

��

0 // TPnxXy // TPn
̟

//

��

Àk
i“1 OXpdi ` 1q

��

0 0

where ̟ is given by the composition TPn ։ N 1
X{Pn ãÑ

Àk
i“1 OXpdi`1q. The exact

sequence in display (11) is then obtained via the snake lemma, since Vσ :“ cokerpσ̃q,
Qσ :“ cokerpJσq and T 1

X :“ cokerp̟q. �

2.3.2. Tangent vector fields along hypersurfaces. We look at the relationship be-
tween Tσ and the tangent vector field to one of the hypersurfaces defining σ.

Lemma 2.5. We have:

(12) Tσ “
k
č

j“1

Tfj .

Further, for each j P t1, . . . , ku, set Zj “ Sing
`

V pfjq
˘

. Then there is an exact
sequence:

(13) 0 Ñ Tσ Ñ Tfj Ñ
à

iPt1,...,kuztju

OPnpdiq Ñ Qσ Ñ OZj
pdjq Ñ 0.

Proof. For any j P t1, . . . , nu, we have:

Tfj “ ker
´

∇fj : O
‘pn`1q
Pn Ñ OPnpdjq

¯

.
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Therefore, since Tσ is defined as kernel of the matrix obtained by stacking
∇pf1q, . . . ,∇pfkq, we get (12). Next, for any j P t1, . . . , ku, we have the follow-
ing commutative diagram:

0

��

0

��

0 // Tσ // Tfj

��

//
À

iPt1,...,kuztju OPnpdiq

��

0 // Tσ // O
‘n`1
Pn

Jσ
//

∇fi

��

Àk
i“1 OPnpdiq

��

IZj
pdjq //

��

OPnpdjq

��

0 0

(14)

Since Zj is the Jacobian scheme of fj , the completion of this diagram via the
snake lemma leads to (13). �

These observations will play an important role in the proof of Theorem 7.1 below.

2.4. Syzygies and global sections. Let us point out the relationship between
the Jacobian syzygies and the global sections of Tσ. Let ν : OPnp´aq Ñ O

‘n`1
Pn be

a sygyzy of degree a for the Jacobian matrix Jσ of a regular sequence σ, that is,
Jσ ˝ ν “ 0; assume that the entries of ν have no common factors of positive degree,
so that Nν :“ cokerpνq is a torsion free sheaf. We have the commutative diagram:

0

��

0

��

OPnp´aq

��

OPnp´aq

ν
��

0 // Tσ //

��

O
‘pn`1q
Pn

Jσ
//

��

Mσ
// 0

0 // Mσ,ν
//

��

Nν //

��

Mσ
// 0

0 0

(15)

It follows that every syzygy of degree a for Jσ induces a section in H0pTσpaqq.
Conversely, every non trivial section in H0pTσpaqq induces a syzygy of degree a for
Jσ, thus we obtain an isomorphism of vector spaces

(16) H0pTσpaqq » SyzapJσq,

where SyzapJσq is the vector space of syzygies of degree a for the matrix Jσ.

Example 2.6. Let us consider the case n “ k “ 1 as a toy model for the theory
we are proposing; Take g P H0pOP1pd ` 1qq and the associated morphism

Jg “ ∇g : O‘2
P1 Ñ OP1pdq;
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If B0g and B1g have no common factors, then Jg is surjective and Tg “ OP1p´dq.
The observation (16) implies that ∇g has no syzygies of degree less than d.

More generally, if B0g and B1g have a common factor of degree e (for instance, if
g “ x20x

2
1, then x0x1 is a common factor for B0g and B1g), then Mg » OP1pd ´ eq,

and Tg » OP1p´d` eq.

Example 2.7. Here is an example of a free regular sequence that is not strongly
free. Consider the following regular sequences in R “ κrx0, x1, x2, x3s

σ :“ px0x1, gq and σ1 :“ px0x1, x
2
0x1 ` gq;

where g is a polynomial of degree 3 depending only on x2 and x3. Assume that B2g
and B3g have no common factors, so that, as it was observed in Example 2.6 above,
∇g has no syzygies of degree ă 2.

Clearly, Iσ “ Iσ1 . We argue that σ is free, while σ1 is not. Indeed, their Jacobian
matrices are given by:

Jσ “

ˆ

x1 x0 0 0
0 0 B2g B3g

˙

and Jσ1 “

ˆ

x1 x0 0 0
2x0x1 x20 B2g B3g

˙

.

Note that Jσ has two independent syzygies, given by

ν1 “ p´x0, x1, 0, 0q and ν2 “ p0, 0, B3g,´B2gq

of degrees 1 and 2, respectively. Therefore, we have a monomorphism

ν : OP3p´1q ‘ OP3p´2q ãÑ Tσ

whose cokernel, being a subsheaf of ILp1q ‘ ICp2q with L “ V px0, x1q and C “
V pB2g, B3gq, must be torsion free. It follows that ν must be an isomorphism, thus
Tσ » OP3p´1q ‘ OP3p´2q.

To see that Tσ1 does not split as a sum of line bundles, note that ν2 is also a
syzygy for Jσ1 , thus h0pTσ1 p2qq ą 0. On the other hand, since Jσ1 has no syzygy
of degree ď 1, we have that h0pTσ1 p1qq “ 0. In addition, the minors appearing in
Ź2

Jσ1 have no common factor, thus c1pQσ1 q “ 0 and c1pTσ1 q “ ´c1pMσ1 q “ ´3.
Thus if Tσ1 “ OP3paq ‘ OP3pbq with a ď b, then a ` b “ ´3, and a, b ď ´2, which
is impossible.

In fact, note that Ξσ1 consists of the line V px0, x1q together with the following
0-dimensional schemes:

V px0, B2g, B3gq and V px1, B2g, B3gq,

each of length equal to 4. Therefore, pΞσ1 qred contains at least two irreducible
components of codimension 3; the second item of Lemma 2.2 implies that Tσ1 is not
locally free.

Example 2.8. We show that the regular sequence σ “ px0, x
2
3q in R “

κrx0, x1, x2, x3s is a strongly free sequence consisting of polynomials of differ-
ent degrees. Any regular sequence σ1 such that Iσ “ Iσ1 must be of the form
σ1 “ pαx0, x0l ` βx23q for some linear form h P H0pOP3p1qq and α, β P κ˚. Setting
h “ ax0 ` bx1 ` cx2 ` dx3, that Jacobian matrix for σ1 is given by

Jσ1 “

ˆ

α 0 0 0
2ax0 bx0 cx0 dx0 ` 2βx3

˙

.

If c ‰ 0, then

ν1 “ p0,´c, b, 0q and ν2 “ p0, 0, dx0 ` 2βx3,´cx0q
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are independent syzygies of degree 0 and 1, respectively. Following the argument
in Example 2.7, so we can conclude that Tσ1 “ OP3 ‘ OP3p´1q.

When c “ 0 and b ‰ 0 then

ν1 “ p0, 0, 1, 0q and ν2 “ p0, dx0 ` 2βx3, 0,´bx0q

are independent syzygies of degree 0 and 1, respectively, so again we conclude that
Tσ1 “ OP3 ‘ OP3p´1q.

Finally, if b “ c “ 0, then ν1 “ p0, 0, 1, 0q and ν2 “ p0, 1, 0, 0q are independent
syzygies of degree 0, thus Tσ1 “ O

‘2
P3 .

It is worth noticing that, in general, detpTσq is not fixed and may change with
the choice of generators for Iσ.

2.5. Webs. Fix integers d ě 0 and k ě 1 and let σ “ pf1, . . . , fkq be a regular
sequence of forms of degree d ` 1 in R “ κrx0, . . . , xns; we call σ a k-web in P

n; a
2-web is usually called a pencil. In this section, we establish some basic properties
of logarithmic tangent sheaves associated to k-webs, which will be useful later on.

2.5.1. Freeness of webs. Here is the first fundamental fact.

Lemma 2.9. Let σ be a k-web. If σ is free, then it is strongly free.

Proof. Let σ1 “ pf 1
1, . . . , f

1
kq be another regular sequence such that Iσ1 “ Iσ ; one

can check that there is a matrix P P GLkpκq such that
¨

˚

˝

f 1
1

...

f 1
k

˛

‹

‚
“ P

¨

˚

˝

f1
...

fk

˛

‹

‚
.

It follows that Jσ1 “ PJσ, thus in fact Tσ1 » Tσ, from which the desired statement
follows immediately. �

A particular case of the previous result leads to the simplest example of a strongly
free regular sequence.

Example 2.10. Take a regular sequence σ “ pf1, . . . , fkq such that each fi is
a linear polynomial; note that V pσq is a linear subspace of codimension k. The
Jacobian matrix is then a constant matrix of maximal rank, inducing a surjective
morphism O

‘n`1
Pn Ñ O

‘k
Pn . It follows that Tσ “ O

‘n`1´k
Pn , Mσ “ O

‘k
Pn , and Qσ “ 0.

2.5.2. Webs versus regular sequence. Let us point out how to associate a web to any
regular sequence, keeping the logarithmic sheaf unchanged. Let σ “ pf1, . . . , fkq
be a regular sequence, with degpfiq “ di ` 1, for some d1 ` 1, . . . , dk ` 1 P N.
Let e be the least common multiple of d1 ` 1, . . . , dk ` 1. For i P t1, . . . , ku, put
ℓi “ e{pdi ` 1q. Set:

τ “ pf ℓ11 , . . . , f
ℓk
k q.

Note that τ is a web of degree e.

Lemma 2.11. We have:

Tτ “ Tσ.
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Proof. For i P t1, . . . , ku, set gi “ f ℓii , so that τ “ pg1, . . . , gkq. By the chain rule,
for each i P t1, . . . , ku we have:

∇pgiq “ ℓif
ℓi´1
i ∇pfiq.

In other words, considering the morphism defined by the diagonal matrix:

P “ diagpℓ1f
ℓ1´1
1 , . . . , ℓkf

ℓk´1
k q :

k
à

i“1

OPnpdiq Ñ OPnpeq‘k,

we get that:

Jτ “ P ˝ Jσ.

Since κ is of characteristic zero, P is injective, so Tτ “ kerpJτ q “ kerpJσq “ Tσ. �

2.5.3. Compressibility of webs. Next, we introduce the following definitions.

Definition 2.12. We say that the k-web σ is:

(1) regular if there is pz1, . . . , zkq P κk such that the hypersurface V p
řk
i“1 zifiq

is non singular;
(2) compressible if, up to a linear coordinate change, there is a variable that

occurs in none of the forms f1, . . . , fk.

A k-web that is not regular is called irregular ; a k-web that is not compressible is
called incompressible.

Note that regular k-webs are incompressible. Furthermore, as it was observed in
the proof of Lemma 2.9 above, if σ is a k-web, then the logarithmic tangent sheaf
Tσ is independent from the choice of generators of the ideal Iσ generated by σ.

Lemma 2.13. A k-web σ is compressible if and only if H0pTσq ‰ 0.

Proof. The condition H0pTσq ‰ 0 does not depend on the given choice of a system
of coordinates, and if none of the forms f1, . . . , fk depends on a given variable,
then all partial derivatives of f1, . . . , fk with respect to this variable are zero. This
means that Jσ contains a column containing only 0 and thus the kernel sheaf Tσ
contains a copy of OPn .

Conversely, assumeH0pTσq ‰ 0. For all pi, jq P N
2 with 1 ď i ď k and 0 ď j ď n,

we set:

fi,j “
Bfi
Bxj

P R.

Since the sheaf Tσ satisfies H0pTσq ‰ 0, there is a non-zero vector pb0, . . . , bnq P
κn`1 such that:

b0fi,0 ` ¨ ¨ ¨ ` bnfi,n “ 0, for all 1 ď i ď k.

Then we define new coordinates px1
0, . . . , x

1
nq by choosing an invertible matrix pai,jq

of size n ` 1 with the condition aj,0 “ bj for all 0 ď j ď n and putting :

xj “
n
ÿ

ℓ“0

aj,ℓx
1
ℓ, for all 0 ď j ď n.

Then, for all for all 1 ď i ď k, we have:

Bfi
Bx1

0

“
n
ÿ

j“0

Bxj
Bx1

0

fi,j “
n
ÿ

j“0

bjfi,j “ 0.



LOGARITHMIC SHEAVES OF COMPLETE INTERSECTIONS 15

Therefore, in the new coordinates px1
0, . . . , x

1
nq, none of the forms appearing in σ

depends on x1
0. �

The compressibility of a k-web σ “ pf1, . . . , fkq is defined as the number of
independent variables that can be removed from the polynomials fi, in a suitable
coordinate system. In other words, σ has compressibility m if and only if h0pTσq “
m; note that 0 ď m ď n´ 1. We set n̂ :“ n´ m; it indicates the minimal number
of variables where the web is defined.

Lemma 2.14. If σ is a compressible k-web in R, then there is an incompressible
k-web σ̂ in κrx0, . . . , xn̂s and a n̂-dimensional linear space L Ă P

n such that Tσ “

O
‘pn´n̂q
Pn ‘ E where E|L » Tσ̂.

Proof. Assume that σ “ pf1, . . . , fkq is compressible, so that m :“ h0pTσq ą 0;
set n̂ :“ n ´ h0pTσq. We get a monomorphism O

‘m
Pn ãÑ Tσ so that the following

composition

O
‘m
Pn ãÑ Tσ ãÑ O

‘pn`1q
Pn ։ O

‘m
Pn

is the identity morphism; it follows that Tσ “ O
‘pn´n̂q
Pn ‘ E, where the sheaf E fits

in the exact sequence

(17) 0 Ñ E Ñ O
‘pn̂`1q
Pn

µ
Ñ OPnpd ´ 1q‘k .

As we have seen in the proof of Lemma (2.13), there are new coordinates px1
0 : ¨ ¨ ¨ :

x1
nq such that the variables x1

0, . . . , x
1
m´1 do not appear in the polynomials fi P σ.

This means that the firstm columns of the Jacobian matrix consist only of zeros,
and that the matrix µ in display (17) is precisely the submatrix of trivial columns
of Jσ.

In addition, the k-web σ can be regarded as a k-web in κrx1
m`1, . . . , x

1
n̂s, which we

rename σ̂. Setting L “ V px1
0, ¨ ¨ ¨ , x1

m´1q, we have that µ|L “ Jσ̂, thus E|L » Tσ̂. �

As an immediate consequence, we have:

Corollary 2.15. The logarithmic tangent sheaf of a compressible k-web is never
slope-stable.

Recall that a coherent subsheaf F of a coherent sheaf E is saturated if E{F is
torsion free. The following technical observation will be useful later on.

Lemma 2.16. If σ is an incompressible k-web, then every saturated subsheaf K Ă
Tσ satisfies c1pKq ă 0.

Proof. Any saturated subsheaf K of Tσ is also a saturated subsheaf of O‘n`1
Pn , which

is a slope polystable sheaf. It follows that c1pKq ď 0, and if c1pKq “ 0, then [8,
Corollary 1.6.11] implies that K “ O

‘m
Pn , so σ is compressible. �

We complete this section with a characterization of the degeneracy locus of k-
webs as the set of points which are singular for some hypersurface of the web.

Lemma 2.17. Let σ be a k-web. The reduced degeneracy locus pΞσqred of the
Jacobian matrix Jσ coincides with the union of the singular loci of the singular
hypersurfaces contained in the web.
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Proof. Set σ “ pf1, . . . , fkq. A point x P P
n belongs to pΞσqred if and only if the

gradients of fi are linearly dependent, that is, there is pz1, . . . , zkq P κn`1zt0u such
that:

∇

˜

k
ÿ

i“1

fi

¸

pxq “
k
ÿ

i“1

zi∇fipxq “ 0.

But this is the same as saying that x lies in the singular locus of V p
řk
i“1 zifiq. �

3. Stability for pencils of quadrics

In this section κ is algebraically closed of characteristic different from 2. Given
a quadric hypersurface Q in P

n, we denote by rkpQq the rank of the Hessian matrix
of an equation of Q, that is, the rank of a quadratic form associated with Q. We
set corkpQq “ n ` 1 ´ rkpQq. When non empty, the singular locus of Q is a linear
subspace of Pn of dimension corkpQq ´ 1. The quadric Q is a double plane if and
only if rkpQq “ 1.

In this section, we focus on regular sequences σ “ pf1, f2q such that degpf1q “
degpf2q “ 2, to which we can associate the pencil of quadrics Qλ :“ V

`

z1f1`z2f2
˘

,

where λ “ rz1 : z2s P P
1. Let

r0 :“ max
 

corkpQλq | λ P P
1
(

.

Our goal is to present the proof of Theorem A as follows. We will start by consid-
ering the easiest case, namely pencils that contain at least one double hyperplane,
and prove the first two items of Theorem A in Section 3.1. The third item is an
immediate consequence of Lemma 2.13; the most involved part of Theorem A is
the last item, and its proof will take the bulk of Section 3.2.

3.1. Stability of pencils with a double hyperplane. If Qλ contains two double
hyperplanes, then we can take f1 “ x20 and f2 “ x21, so that

Jσ “

ˆ

2x0 0 0 ¨ ¨ ¨ 0
0 2x1 0 ¨ ¨ ¨ 0

˙

.

It is then easy to see that Tσ “ O
‘pn´1q
Pn , as desired.

Assume now that Qλ contains only one double plane. We can take f1 “ x20 and
put g “ f2, so that

Jσ “

ˆ

2x0 0 ¨ ¨ ¨ 0
g0 g1 ¨ ¨ ¨ gn

˙

,

with gi “ Bg{Bxi, for i P t0, . . . , nu. The hypothesis that Qλ contains only one
double plane implies that at least two of the partial derivatives gi are non trivial
for i P t1, . . . , nu. Since

2
ľ

Jσ “ 2x0 ¨ pg1 ¨ ¨ ¨ gnq,

it follows that Ξσ “ V px0q Y V pg1, . . . , gnq, thus c1pTσq “ ´1.

Lemma 3.1. Let σ be a pencil of quadrics containing only one double plane. Then
Tσ is slope-stable if and only if σ is incompressible.

Proof. If σ is compressible, then h0pTσq ‰ 0 by Lemma 2.13, thus Tσ cannot be
slope-stable since µpTσq “ ´1{pn´ 1q.
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Conversely, assume that Tσ is not slope-stable, and let K ãÑ Tσ be a destabilizing
subsheaf; set r “ rkpKq. If c1pKq ď ´1, then

´1

n´ 1
ď
c1pKq

r
ď

´1

r
ðñ r ě n´ 1,

which is a contradiction. It follows that c1pKq “ 0, and Lemma 2.16 implies that
σ must be compressible. �

3.2. The stability criterion for pencils of quadrics. If a pencil of quadrics
σ contains no double hyperplanes, then c1pTσq “ ´2. Lemma 2.13 then implies
that compressible pencils of quadrics containing no double hyperplanes have slope-
unstable logarithmic sheaves, thus proving the third item of Theorem A.

We can finally address incompressible pencils of quadrics σ “ pf1, f2q containing
no double hyperplanes. The result depends on the maximal corank of the quadrics
Qλ, where for each λ “ pz1 : z2q P P

1 we write Qλ “ V pz1f1 ` z2f2q. To be precise,
we prove the following result.

Theorem 3.2. Let n ě 3 and let σ be an incompressible pencil of quadrics in P
n

containing no double hyperplane. Put r0 “ maxpcorkpQλq | λ P P
1q.

i) If 2r0 ă n ` 1, then Tσ is slope-stable.
ii) If 2r0 “ n ` 1, then Tσ is strictly slope-semistable.
iii) If 2r0 ą n ` 1, then Tσ is slope-unstable.

Since σ contains no double plane, we have codimpQσq ě 2 so the slope of Tσ is:

µpTσq “
2

1 ´ n
.

The proof of Theorem 3.2 will be divided in three parts. We start by establishing
items ii) and iii) in Section 3.3. For the proof of item i), we first consider regular
pencils in Section 3.4, leaving the case of irregular pencils for Section 3.6. We start
with the following observation.

Lemma 3.3. Let σ be an incompressible pencil of quadrics and let λ, µ P P
1 be

distinct points such that Qλ and Qµ are singular. Then the singular loci of Qλ and
Qµ are disjoint linear spaces of dimension corkpQλq ´ 1 and corkpQµq ´ 1.

Proof. The singular locy of Qλ and Qµ are defined by linear equations and the
corank of Qλ and Qµ is precisely the number of independent equations. In addition,
these two linear spaces are disjoint, as the coordinates of a point of Pn lying in
the singular locus of two distinct quadrics f1, f2 of the pencil would annihilate the
derivatives of f1 and f2, so such derivatives would fail to span H0pOPnp1qq. Thus we
could choose coordinates so that one of the variables x0, . . . , xn occurs neither in f1
nor in f2. However, this is excluded by the hypothesis that σ is incompressible. �

3.3. Koszul subsheaves. As a preliminary step towards the proof of items ii)
and iii), let RM be the first Koszul syzygy sheaf of a linear subspace M Ă P

n of
codimension r ą 1, namely the sheaf fitting into the following short exact sequence:

0 Ñ RM Ñ O
‘r
Pn p´1q Ñ IM Ñ 0.

We claim that RM is slope-stable. Indeed, note that µpRM p1qq “ ´1{pr ´ 1q;
moreover, any saturated subsheaf F ãÑ RM p1q must, by the argument in the proof
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of Lemma 2.16, have c1pFq ď ´1, since h0pRM p1qq “ 0. If F destabilizes RM p1q,
then

c1pFq

rkpFq
ą

´1

r ´ 1
ùñ c1pFq ą ´

rkpFq

r ´ 1
ą ´1,

providing a contradiction.

3.3.1. Koszul subsheaves from singular quadrics. A linear subspace of Ξσ is called
maximal if it is not strictly contained in another linear subspace of Ξσ. The fol-
lowing technical lemma is quite useful.

Lemma 3.4. Let σ be a incompressible pencil, ̺ ě 3 be an integer and L Ă Ξσ
be a maximal linear subspace of dimension ̺ ´ 1. Then there is a linear subspace
M Ă P

n of codimension ̺ and a subscheme W Ă M such that Tσ fits into

(18) 0 Ñ RM p1q Ñ Tσ Ñ RLp1q Ñ IW {M p1q Ñ 0.

Proof. Since the pencil σ is incompressible, the linear forms appearing in the Jaco-
bian matrix of σ span H0pOPnp1qq, hence the sheaf Qσ has rank 1 at each point of
its support, in particular this happens at each point of L, so Qσ|L is a line bundle
on L, namely there is e P Z such that Qσ|L » OLpeq. Since OLp1q‘2 surjects onto
OLpeq and ̺ ě 3, we conclude that e “ 1.

The surjection Qσ Ñ OLp1q allows to write the following commutative exact
diagram:

0 // Mσ

��

// OPnp1q‘2 //

��

Qσ

��

// 0

0 // ILp1q // OPnp1q

��

// OLp1q //

��

0

0 0

Put F and G for the kernel and cokernel of the induced morphism Mσ Ñ ILp1q,
respectively; in addition, let Q1 denote the kernel of the epimorphism Qσ ։ OLp1q.
The snake lemma provides the following exact sequence

0 Ñ F Ñ OPnp1q Ñ Q
1 Ñ G Ñ 0,

thus there is a subscheme W Ă P
n such that F » IW p1q and

SupppGq Ă SupppQ1q Ă SupppQσq “ pΞσqred.

Since Mσ is the image of the the Jacobian matrix O
‘pn`1q
Pn Ñ OPnp1q‘2, we get

a morphism O
‘pn`1q
Pn Ñ ILp1q, with cokernel G. Therefore, either this morphism is

surjective, or G is supported on a linear space strictly containing L. However, this
second possibility is excluded because L is maximal.

Summing up, we obtain an epimorphism Mσ ։ ILp1q. Since L is cut by n`1´̺

equations, the induced epimorphism O
‘pn`1q
Pn ։ ILp1q factors through O

‘pn`1´̺q
Pn Ñ
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ILp1q, and we get a second diagram:

O
‘̺
Pn

��

// IW p1q

��

0 // T

��

// O
‘pn`1q
Pn

//

��

Mσ

��

// 0

0 // RLp1q // O
‘pn`1´̺q
Pn

��

// ILp1q //

��

0

0 0

(19)

Note that the image of the morphism O
‘̺
Pn Ñ IW p1q is the ideal sheaf of a linear

subspace M Ă P
n of codimension ̺ containing W , twisted by OP3p1q; its cokernel

is the ideal of W in M , also twisted by OP3p1q. The snake lemma then yields the
exact sequence (18). �

3.3.2. Destabilizing Kozsul subsheaves. Now we can prove items ii) and iii). Indeed,
we set ̺ “ r0 and consider a quadric Qλ in the pencil σ having corkpQλq “ r0. The
assumption r0 ě pn ` 1q{2 forces r0 ě 3 or pn, r0q “ p3, 2q. The latter case follows
from the full classification of pencils of quadrics in P

3 and their logarithmic tangent
sheaves provided in Subsection 5. Hence we can assume r0 ě 3, so the linear space
L Ă P

n of dimension r0 ´ 1 appearing as the singular locus of Qλ satisfies the
hypotheses of Lemma 3.4, thus Tσ contains the Koszul subsheaf RM p1q which has
slope 1{p1 ´ r0q. The condition r0 ą pn` 1q{2 implies:

µpRM p1qq “
1

1 ´ r0
ą

2

1 ´ n
“ µpTq.

Finally, for item ii), we use the exact sequence in display (18), which yields:

(20) 0 Ñ RM p1q Ñ Tσ Ñ E Ñ 0,

where E is the kernel of RLp1q ։ IW {M p1q. Since M has codimension r0 ě 2, the
sheaves E and RLp1q share the same slope, namely 1{p1 ´ r0q. This implies that
any destabilizing subsheaf of E would also destabilize RLp1q, thus E is slope-stable.
But if r0 “ pn` 1q{2, then RLp1q also has slope equal to 1{p1´ r0q. Therefore, the
exact sequence in display (20) shows that T is strictly slope-semistable; in addition,
RM p1q and E are the factors of the Jordan–Holder filtration of Tσ.

3.4. Proof of stability for regular pencils. Let σ be a regular pencil of quadrics
containing no double hyperplane, so that there are only finitely many points λ P P

1

such that Qλ is singular and at each such point the singular locus of Qλ is a
linear space of dimension corkpQλq ´ 1. A regular pencil is incompressible so these
spaces are disjoint by Lemma 3.3, so pΞσqred is the union of finitely linear spaces
of dimension at most r0 ´ 1.

In order to prove i) we assume, by contradiction, that T has a saturated desta-

bilizing subsheaf K of rank p, with 1 ď p ď n ´ 2 with
`
Źp

K
˘__

» OPnp´eq.
Since σ is incompressible, Lemma 2.16 implies that e ą 0. The condition that K

destabilizes T amounts to:
pn ´ 1qe ď 2p.

Since p ď n´ 2, this gives e “ 1. Also, we get p ě pn´ 1q{2.
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Choose a sufficiently general linear subspace M Ă P
n of dimension n´ r0. Since

dimpMq `dimpΞσq “ n´1, we may assume thatM is disjoint from the degeneracy
locus Ξσ and that M meets transversely the locus where T{K is not locally free.
The second assumption implies that Tor1pT{K,OM q “ 0, so we get a subsheaf
K|M ãÑ T|M which still destabilizes T|M . The first assumption yields Qσ|M “ 0 “
Tor1pMσ,OM q, so the restricted Jacobian matrix gives an exact sequence:

(21) 0 Ñ T|M Ñ O
‘pn`1q
M Ñ O

‘2
M p1q Ñ 0.

The sheaf T|M is locally free and, setting q “ n´ 1 ´ p we get:

´

p
ľ

T|M

¯

p1q »
´

q
ľ

T_|M

¯

p´1q.

Since K|M is a subsheaf of T|M , we obtain a monomorphism

OM p´1q »
`

p
ľ

K|M
˘__

ãÑ
`

p
ľ

T|M
˘__

»
`

p
ľ

T|M
˘

which in turn gives H0
´´

Źq
T_|M

¯

p´1q
¯

‰ 0. We need to prove that this is

absurd.
In order to check this, we dualize the exact sequence in display (21) and take

exterior powers to get a long exact sequence:

0 Ñ OM p´q ´ 1q‘pq`1q Ñ OM p´qq‘qpn`1q Ñ ¨ ¨ ¨ Ñ
´

q
ľ

T
_|M

¯

p´1q Ñ 0.

All of the terms in the sequence above, except for the rightmost one, are copies
of OM p´tq for some integer t with 1 ď t ď q`1. In the range p ě pn´1q{2, we have
q “ n´ 1´ p ď pn´ 1q{2 so q` 1 ď pn` 1q{2. Now, the assumption r0 ă pn` 1q{2
guarantees pn ` 1q{2 ă n ´ r0 ` 1 “ dimpMq ` 1, thus q ă dimpMq. Therefore

H˚pOM p´tqq “ 0 for all 1 ď t ď q ` 1 and hence H0
´´

Źq
T_|M

¯

p´1q
¯

“ 0. This

is the contradiction we were looking for, thus proving i).
This finishes the proof of Theorem 3.2 for regular pencils.

3.5. Irregular pencils of quadrics. The goal of this section is to set up some
basic analysis of irregular pencils that is necessary for the proof of item i) for
irregular pencils of quadrics. In particular, we study in detail a special kind of
pencil that we call completely irregular, which is actually the only kind of irregular
pencils where the proof given in Subsection 3.4 fails.

3.5.1. The regular part of an irregular pencil. Considering the polarization (or Hes-
sian) matrix of the quadrics in the pencil σ we obtain a pencil of symmetric matrices
of size n ` 1:

ρσ : OP1p´1q‘pn`1q Ñ O
‘pn`1q
P1 .

Definition 3.5. The splitting type of a pencil of quadrics σ is the unique pair of
integers pu, vq, such that

impρσq » OP1p´1q‘u ‘ O
‘v
P1 .

Note that σ is regular if and only if ρσ is injective, if and only the splitting type
of σ is pn ` 1, 0q. In addition, if σ is incompressible, then cokerpρσq contains no



LOGARITHMIC SHEAVES OF COMPLETE INTERSECTIONS 21

trivial direct summand. Set r1 :“ min
 

corkpQλq | λ P P
1
(

. We call r1 the generic

corank of P1. We have:

r1 “ n` 1 ´ rkpρσq “ n` 1 ´ u´ v.

Set K :“ kerpρσq, F :“ impρσq, Cσ :“ cokerpρσq and write the long exact se-
quence:

(22) 0 Ñ K Ñ OP1p´1q‘pn`1q Ñ O
‘pn`1q
P1 Ñ Cσ Ñ 0.

The cokernel sheaf Cσ decomposes as Cσ » Ctf ‘ Ct, where Ct is its torsion part
and Ctf is its torsion free part.

Lemma 3.6. If σ has splitting type pu, vq then u ě v and there is a regular pencil
of symmetric matrices ρ̄σ with size u´ v satisfying cokerpρ̄σq » Ct.

Proof. Using that ρσ is symmetric and that Ct is zero-dimensional, we get:

Ctf » C
__
σ » K

_p´1q, Ct » Ext1
P1pCσ,OP1p´1qq.

Therefore, dualizing the above sequence we get:

0 Ñ C
_
σ p´1q Ñ OP1p´1q‘pn`1q α

Ñ F
_p´1q Ñ Ct Ñ 0,

0 Ñ F_p´1q
β

Ñ O
‘pn`1q
P1 Ñ K_p´1q Ñ 0.

(23)

Again by the symmetry of ρσ, the following composition of morphisms

OP1p´1q‘pn`1q α
Ñ F_p´1q

β
Ñ O

‘pn`1q
P1

coincides with ρσ, thus the image of the morphism α in display (23) is precisely F.
We get an injective twisted endomorphism ρσ of the vector bundle F and an exact
sequence:

0 Ñ F
ρσÝÑ F_p´1q Ñ Ct Ñ 0.

This endomorphism is also symmetric. Let us rewrite this in terms of the splitting
type:

0 Ñ OP1p´1q‘u ‘ O
‘v
P1

ρσÝÑ OP1p´1q‘v ‘ O
‘u
P1 Ñ Ct Ñ 0.

The morphism O
‘v
P1 Ñ O

‘u
P1 extracted from ρ̄σ is thus injective. Therefore its

transpose OP1p´1q‘u Ñ OP1p´1q‘v is surjective – in particular we must have v ď u.
These constant maps of maximal rank can be expunged from ρ̄σ so that ρσ reduces
to a symmetric morphism, still denoted by ρσ, which takes the form:

ρσ : OP1p´1q‘pu´vq
ãÑ O

‘pu´vq
P1 .

The torsion part Ct is a sheaf of length h0pCtq “ u´ v which is supported at the
points λ P P

1 such that corkpQλq ą r1. We obtain the exact sequence:

(24) 0 Ñ OP1p´1q‘pu´vq ρσÝÑ O
‘pu´vq
P1 Ñ Ct Ñ 0.

�

Definition 3.7. The pencil of quadrics associated with the pencil of matrices ρ̄σ
given by the previous lemma is called the regular part of σ.
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Note that the regular part of a pencil of quadrics may be empty: this happens
for u “ v. We will shall call these pencils completely irregular and treat them in
detail a bit further on. Note also that the regular part of an irregular pencil may
fail to be a pencil, namely when u “ v ` 1. By convention, a pencil of symmetric
matrices of size 0 (the empty pencil) and a non-zero pencil of symmetric matrices
of size 1 are regular.

3.5.2. Recovering the pencil. The torsion-free part Ctf of Cσ decomposes as a sum
of ample line bundles. Namely, there are integers c1, . . . , cr1 such that:

Ctf »
r1
à

i“1

OP1pciq, 1 ď c1 ď ¨ ¨ ¨ ď cr1 ,

r1
ÿ

i“1

ci “ v.

We call c “ pc1, . . . , cr1q the degree vector of σ. The following result allows to
recover a pencil from its regular part and the degree vector.

Proposition 3.8. Let n1 P N and let ρ be a regular pencil of symmetric matrix of
size n1. Fix integers r1 and 1 ď c1 ď ¨ ¨ ¨ ď cr1 . Then, up homography, there is a
unique incompressible pencil σ such that Cσ » Ct ‘ Ctf with:

(25) Ctf »
r1
à

i“1

OP1pciq, Ct » cokerpρq, ρ̄σ “ ρ.

Proof. According to the previous subsection, we put:

(26) v “
r1
ÿ

i“1

ci, u “ n1 ` v, n “ r1 ` u` v ´ 1.

For all m P N
˚ we consider the exact sequence:

(27) 0 Ñ OP1p´1q‘m τmÝÝÑ O
‘pm`1q
P1 Ñ OP1pmq Ñ 0,

given by the mth symmetric power of the Euler sequence on P
1. The matrix τm is

unique up to a coordinate change on the source and target and up to homography
of P1.

We consider the block-diagonal matrix formed by the morphisms τci for all i P
t1, . . . , r1u. In view of the definition of v this gives:

r1
à

i“1

τci : OP1p´1q‘v Ñ O
‘pv`r1q
P1 .

Stacking this morphism together with its transpose and with ρ, in view of our
definition of n we get a symmetric matrix pencil of the form:

(28)
r1
à

i“1

pτci ‘ τ tciq ‘ ρ : OP1p´1q‘pn`1q Ñ O
‘pn`1q
P1 .

We obtain a pencil of quadrics σ on P
n. By construction σ is incompressible and

satisfies the conditions in display (25).
About uniqueness of σ, we argue as follows. First note that, under the assump-

tion of incompressibility, the dimension n and the splitting type pu, vq are deter-
mined by r1, c1, . . . , cr1 through the equalities in display (26). Next, we observe
that for any pencil σ satisfying (25), the direct sum decomposition of Cσ gives:

0 Ñ
O

‘pu´vq
P1 p´1q

‘
O

‘v
P1 p´1q

Ñ
O

‘pu´vq
P1

‘

O
‘pv`r1q
P1

Ñ
Ct

‘
Ctf

Ñ 0.
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This is a block-diagonal matrix pencil having a block O
‘pu´vq
P1 p´1q Ñ O

‘pu´vq
P1

which is ρ and a block O
‘v
P1 p´1q Ñ O

‘pv`r1q
P1 obtained by concatenating minimal

presentation matrices of OP1pc1q, . . . ,OP1pcr1q. In other words, this second block is
τc1 ‘ ¨ ¨ ¨ ‘ τcr1 . Up to choosing coordinates of Pn adapted to this decomposition,
the above pencil appears in a block decomposition of ρσ and by symmetry of ρσ
the residual block must be τ tc1 ‘ ¨ ¨ ¨ ‘ τ tcr1

. So σ is obtained as in (28). �

3.5.3. The Jacobian scheme of an irregular pencil. We continue with the assump-
tion that σ is an incompressible irregular pencil and seek a set-theoretic description
of degeneracy scheme Ξσ.

The torsion free part Ctf defines a projective bundle Y “ PpCtfq and, since
the vector bundle Ctf is very ample, Y “ PpCtfq embeds via the linear system of
the tautological relatively ample divisor h as a rational normal scroll of degree v,
spanning a linear space L Ă P

n of dimension n ´ u.

Lemma 3.9. Let σ be an incompressible pencil of quadrics. Then Ξσ satisfies:

(29) pΞσqred “ Y Y
ď

λPSupppCtq

P
rλ´1,

where the linear subspaces tPrλ´1 | λ P SupppCtqu are disjoint. In particular:

dimpΞσq “ maxpr0 ´ 1, r1q, r1 “ n ` 1 ´ u´ v.

Proof. We look at the projectivization of the vector bundle Ctf and of the coherent

sheaves Ct, Cσ The epimorphisms O
‘pn`1q
P1 ։ Cσ, O

‘pn`1q
P1 ։ Ct, and O

‘pn`1q
P1 ։ Ctf

induce embeddings PpCσq ãÑ P
1ˆP

n, PpCtq ãÑ P
1ˆP

n and Y ãÑ P
1ˆP

n. Similarly,
the epimorphism O

‘2
Pn ։ Qp´1q induces an embedding PpQσp´1qq ãÑ P

1 ˆ P
n.

The two subschemes PpCσq and PpQσp´1qq of P1 ˆ P
n are defined by the same

bihomogeneous equations. Indeed, denoting by λ “ pz1 : z2q and x “ px0 : . . . : xnq

the points of P1 and P
n and recalling the notation fi,j “ Bfipxq

Bxj
, we have:

PpQσp´1qq “ PpCσq “ tppx, λq P P
1 ˆ P

n | f1,jz1 ` f2,jz2 “ 0,@j “ 0, . . . , nu,

which in turn gives a Kozsul complex (in the obvious notation):

(30) ¨ ¨ ¨ Ñ OP1ˆPnp´1,´1q‘pn`1q Ñ OP1ˆPn Ñ OPpCσq Ñ 0.

We get thus a correspondence:

PpCσq
ϕ

{{①①
①①
①① ψ

##●
●●

●●
●

P
1

P
n

(31)

where the map ϕ : PpCσq Ñ P
1 is generically a P

r1´1-bundle and ψ : PpCσq Ñ
Ξσ Ă P

n is an isomorphism at the points where Qσ has rank 1.
At each point λ of the support of the torsion part Ct we have a skyscraper sheaf

supported at λ, whose rank we denote by rλ. The surjection O
‘pn`1q
P1 Ñ O

‘rλ
λ

induces an embedding P
rλ´1 Ă Ξσ Ă P

n. We noticed in Lemma 3.3 that the linear
spaces appearing as singular loci of distinct points of SupppCtq are disjoint. This
achieves the proof. �

In addition, we will also use the following statement later on.

Lemma 3.10. An incompressible pencil of quadrics satisfies r1 ď n`1
3

.
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Proof. We assume that σ is an incompressible pencil of quadrics. Recall that σ has
a splitting type pu, vq with u ě v. Since σ is incompressible, the integers c1, . . . , cr1
appearing in the degree vector are strictly positive, hence:

v “
r1
ÿ

i“1

ci ě r1.

Therefore we have n` 1 “ r1 ` u` v ě r1 ` 2v ě 3r1. �

3.5.4. Completely irregular pencils. We say that the incompressible pencil σ is com-
pletely irregular if has no regular part, which is to say, if u “ v. This is equivalent
to the condition Ct “ 0, which in turn is tantamount to r0 “ r1.

We take a closer look at the degeneration scheme in this case. Denote by F the
divisor class of a fibre of Y Ñ P

1, so OY pF q » ϕ˚pOP1p1qq, in the notation of the di-
agram in display (31); write also H “ c1pψ˚pOPnp1qqq. Note that ψ˚pOY pF qq » Qσ

and that the Koszul complex (30) is exact at OP1ˆPn . Tensoring it with OP1ˆPnp1, 0q
and applying ψ˚, we get an exact sequence:

O
‘pn`1q
Pn p´1q Ñ O

‘2
Pn Ñ OY pF q Ñ 0.

The rightmost morphism above agrees with the Jacobian matrix, so we have an
exact sequence:

(32) 0 Ñ Tσ Ñ O
‘pn`1q
Pn

JσÑ OPnp1q‘2 Ñ OY pH ` F q Ñ 0.

Example 3.11. Let us list all the possible splitting types pu, vq for n “ 5 together
with the data of the scroll, compressibility and so forth. Regular pencils give
Cσ “ Ct, a finite-length scheme with h0pCσq “ 6. For irregular pencils we have the
following possibilities.

r1 pu, vq h0pCtq Ctf m Completely irregular

1 p5, 0q 5 OP1 yes no

1 p4, 1q 3 OP1p1q no no

1 p3, 2q 1 OP1p2q no no

2 p4, 0q 4 O
‘2

P1
yes no

2 p3, 1q 2 OP1 ‘ OP1p1q yes no

2 p2, 2q 0 OP1p1q‘2 no yes

2 p2, 2q 0 OP1 ‘ OP1p2q yes yes

3 p3, 0q 3 O
‘3

P1
yes no

3 p2, 1q 1 O
‘2

P1
‘ OP1p1q yes no

4 p2, 0q 2 O
‘4

P1
yes no

4 p1, 1q 0 O
‘3

P1
‘ OP1p1q yes yes

5 p1, 0q 1 O
‘5

P1
yes no

Observe that there is only one incompressible, completely irregular pencil of
quadrics in P

5; moreover, n “ 5 is the lowest dimension in which such pencils
can occur.

Lemma 3.12. Let σ be an incompressible completely irregular pencil. Then there
is an action of SL2 “ SL2pκq on P

n for which the exact sequence in display (32) is
equivariant.

Proof. Let the group SL2 act by homographies on P
1 regarded as the base of the

pencil. For any integer m P N we let Vm be the irreducible representation SL2 of
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weight m, so V0 is the trivial representation of rank 1, V1 is the standard represen-
tation of rank 2, while Vm “ SmV1 has rank m` 1. By convention we set V´1 “ 0.
For all m P N

˚ we rewrite (27) as in SL2-equivariant form:

0 Ñ Vm´1 b OP1p´1q
τmÝÝÑ Vm b OP1 Ñ OP1pmq Ñ 0.

Given an incompressible, completely irregular pencil σ, the matrix pencil σ is
formed by stacking the morphisms τci with their transpose for all i P t1, . . . , n `
1 ´ 2uu whereby obtaining a symmetric block matrix. Thus we rewrite the exact
sequence in display (22) in equivariant form:

0 Ñ
n`1´2u
à

i“1

OP1p´1 ´ ciq Ñ
n`1´2u
à

i“1

pVci´1 ‘ Vciq b OP1p´1q
ρ

ÝÑ

ρ
ÝÑ

n`1´2u
à

i“1

pVci´1 ‘ Vciq b OP1 Ñ
n`1´2u
à

i“1

OP1pciq Ñ 0.

Since the matrix pencil ρ is SL2-equivariant, so is the pencil σ obtained by ρ. Hence
the Jacobian matrix of σ is also SL2-equivariant and this induces an SL2-action on
its kernel and cokernel sheaves. Since the pencil σ is determined by the degree
vector pc1, . . . , cn`1´2uq by Proposition 3.8, we get that this construction holds for
any incompressible completely irreducible pencil. �

Note that the SL2-action on OY pH ` fq is simply the action by homographies
on the basis of the scroll Y . Also, the SL2-action on P

n induces the isomorphism
of SL2-modules:

(33) H0pPn,OPnp1qq “
n`1´2u
à

i“1

pVci´1 ‘ Vciq.

The following lemma says that, if σ is a completely irregular pencil of quadrics,
then the logarithmic sheaf Tσ is simple.

Lemma 3.13. Let σ be a completely irregular incompressible pencil of quadrics
with u ě 2. Then EndPnpTσq » κ.

Proof. We use the exact sequence in display (32). We first use its rightmost part,
namely:

(34) 0 Ñ Mσ Ñ OPnp1q‘2 Ñ OY pH ` F q Ñ 0.

Since OY is a line bundle on the smooth irreducible variety Y , we have
EndXpOY q » κ. Since the morphism O

‘2
Pn Ñ OY pF q induces an isomorphism

on global sections and HppOY pF qq “ 0 for p ą 0, we get H˚pMσp´1qq “ 0.
Also, Extp

PnpOY pF ` hq,OPnp1qq “ 0 for p “ 0, 1 by Serre duality since dimpY q “
n` 1´ 2uă n´ 1. Therefore applying HomPnp´,Mσq and HomPnpOY pH `F q,´q
to the exact sequence in display (34) we get:

EndPnpMσq » Ext1
PnpOY pF ` hq,Mσq » EndPnpOY q » κ.

Also, note that Serre duality gives Extp
PnpOY pF ` hq,OPnq “ 0 for p “ 1, 2 as

dimpY q “ n` 1 ´ 2u ă n´ 2. We deduce that Extp
PnpMσ,OPnq “ 0 for p “ 0, 1.

Next, we write the exact sequence:

(35) 0 Ñ Tσ Ñ O
‘pn`1q
Pn Ñ Mσ Ñ 0.
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Applying HomPnpMσ,´q to (35) and using that Extp
PnpMσ,OPnq “ 0 for p “ 0, 1,

we get:

Ext1
PnpMσ,Tσq » EndPnpMσq » κ.

Finally, we apply HomPnp´,Tσq to (35) and use that, since σ is incompressible, we
have H0pTσq “ H1pTσq “ 0. This concludes the proof, since:

EndPnpTσq » Ext1
PnpMσ,Tσq » κ.

�

3.6. Proof of stability for irregular pencils of quadrics. It only remains for
us to prove item i) for irregular incompressible pencils σ containing no double
hyperplane.

By hypothesis, we have 2r0 ă n ` 1. As in Subsection 3.4, we assume by
contradiction that T admits a saturated subsheaf K of rank p and again we get
p ě pn ´ 1q{2 and p

Źp
Kq__ » OPnp´1q.

Next, observe that, if r1 ă r0, then by Lemma 3.9 we have dimpΞσq ď r0 ´ 1. In
this case, the proof of i) given in Subsection 3.4 goes through as again a sufficiently
general linear subspace M Ă P

n of dimension n ´ r0 does not meet Ξσ, while the
rest of the argument is still valid for irregular pencils.

Therefore, we may assume until the end of the subsection that r0 “ r1, which is
to say, that the pencil is completely irregular, so u “ v, Cσ “ Ctf and dimpΞσq “ r0.

This time, with a slight difference with respect to the proof of item i) given in
Subsection 3.4, we choose a general linear subspace M Ă P

n of dimension n ´
r0 ´ 1. In particular, we may assume that M does not meet Ξσ and that the pth

exterior power of K|M ãÑ T|M gives a non-zero element of H0p
Źq

T_|M p´1qq, with
q “ n ´ 1 ´ p; this equality q “ n´ 1 ´ p comes from duality of the sheaf T, which
is of rank n ´ 1.

If n is odd, we write n “ 2n0 ` 1 and 2r0 ă n ` 1 gives r0 ď n0, while p ě
pn ´ 1q{2 “ n0 gives q “ 2n0 ´ p ď n0. Since dimpMq “ 2n0 ´ r0 ě n0 we get
q ă dimpMq unless dimpMq “ n0. If q ă dimpMq, again the argument given in
Subsection 3.4 remains valid, so we may assume, without loss of generality, that
dimpMq “ n0. It then follows that n0 “ dimpMq “ 2n0 ´ r0, thus n0 “ r0; since
r0 “ n ` 1 ´ 2u, n0 is even, say n0 “ 2n1, and u “ n1 ` 1. Summing up, if n is
odd, then:

(36) n “ 4u´ 3, dimpMq “ p “ q “ r0 “ 2pu´ 1q, u ě 2.

Similarly, if n “ 2n0, then we get that r0 ď n0 ď p and thus q ď n0 ´ 1 ď dimpMq,
so we may assume that dimpMq “ n0 ´ 1. It follows that n0 “ r0 “ n ` 1 ´ 2u so
n0 is odd; setting n0 “ 2n1 ` 1, we obtain u “ n1 ` 1. Summarizing, if n is even,
then:

(37) n “ 4u´ 2, dimpMq “ q “ 2pu´ 1q, r0 “ p “ 2u´ 1, u ě 2.

In any case, the sheaves K and L “ T{K are slope-stable.
Having established these numerical constraints, we proceed with the next step

of the proof, which requires looking at the exact sequence in display (32). Working
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in the linear span L “ P
n`1´u Ă P

n of Y , we write an exact commutative diagram

0

��

0

��

IY {Lp1q‘2

��

IY {Lp1q‘2

��

0 // ML
//

��

OLp1q‘2 //

��

OY pH ` F q // 0

0 // OY ph ´ F q

��

// OY phq‘2

��

// OY pH ` F q // 0

0 0

Here, the sheafML, defined by the middle row, can be though of as the normal sheaf
associated to the pencil of quadrics restricted to the smaller space L. Using the
leftmost column of the previous diagram and the fact that the morphism OLp1q‘2 Ñ
OY pH`F q in the exact sequence in display (32) factors through OLp1q‘2 Ñ OY pH`
F q, we get an exact sequence:

0 Ñ IL{Pnp1q‘2 Ñ Mσ Ñ ML Ñ 0.

Using this exact sequence and the one in display (32) we get a second exact com-
mutative diagram:

0

��

0

��

0

��

0 // RLp1q‘2

��

// O
‘2u
Pn

//

��

IL{Pnp1q‘2n

��

// 0

0 // T //

��

O
‘pn`1q
Pn

//

��

Mσ

��

// 0

0 // G

��

// O
‘pn`1´2uq
Pn

��

// ML
//

��

0

0 0 0

Here the sheaf G, defined with the bottom row, has c1pGq “ 0 and rkpGq “ n`1´2u,
while RLp1q is the Koszul syzygy of L which we already proved to be stable of slope
1{p1 ´ uq.

In view of the leftmost column of the previous diagram and of the slope-
semistability of RLp1q‘2, the inclusionK ãÑ T must descend to an inclusionK ãÑ G.
We get thus two injections with isomorphic cokernel:

(38) K ãÑ G, RLp1q‘2
ãÑ L.

Denote by P this common cokernel sheaf, so P » G{K » L{RLp1q‘2. Then, note
that independently on whether n is even or odd, we get:

rkpKq “ p “ n` 1 ´ 2u “ rkpGq.

Therefore, since p
Źp

Kq__ » OPnp´1q, we get a hyperplane H Ă P
n as support

P. Note that the hyperplane H is determined uniquely by T. Indeed, if K1
ãÑ T

is an embedding of any saturated destabilizing subsheaf of T, then the induced
morphism K1 Ñ L is either zero or an isomorphism, since K1 and L are stable of
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the same slope. If K1 Ñ L is zero then K1 Ñ T factors through K so it determines
the same hyperplane H . If K1 Ñ L is an isomorphism, then T is decomposable,
which is absurd by Lemma 3.13.

Now, recall from Lemma 3.12 that Tσ is equivariant for a natural SL2-action on
P
n. So the hyperplane H must be fixed by this action, in other words, it must

correspond to a trivial summand V0 in the decomposition in display (33).
Set t for the number of indices i P t1, . . . , n` 1 ´ 2uu such that ci “ 1, so:

(39) u “ t`
n`1´2u
ÿ

i“t`1

ci ě 2pn´ 2u´ t` 1q ` t.

If t ě 3, then we can equip Y (and consequently Tσ) with a further SL2-action
by letting SL2 operate as Vt´1 bOP1p1q on the summands of Cσ of the form OP1p1q.
Again we obtain that H0pOPnp1qq contains no copy of V0. In all these cases the
SL2-fixed hyperplane H cannot exist and we conclude that Tσ is stable.

Finally if t ď 2 then using (39), depending on whether n is odd or even, we
get from (36) or (37) that u ď 2 or u ď 1, which leaves the only case n “ 5,
u “ 2, c1 “ c2 “ 1. This last case corresponds to the pencil of quadrics σ “
px1x5 ` x3x4, x2x4 ` x0x5q. For this explicit pencil, direct computation shows that

H0
´

`
Ź2

Tσ
˘_

p´1q
¯

“ 0 so that Tσ is stable.

Remark 3.14. One may check that GIT-semistability of σ implies slope-
semistability of Tσ. Indeed, [1, Theorem 3.1] says that GIT-semistability of σ
amounts to σ being regular with Cσ supported at λ1, . . . , λℓ with the condition that
for all j P t1, . . . , ℓu, λj has multiplicity at most pn ` 1q{2 as a root of detpρσq. In
terms of the Segre symbol (see the introduction or the next paragraph), this means
that

řsj
i“1 aj,ipj,i ď pn`1q{2. This implies

řsj
i“1 pj,i ď pn`1q{2, which amounts to

rλj
ď pn ` 1q{2, so Tσ is slope-semistable, as r0 “ maxt

řsj
i“1 pj,i | j P t1, . . . , ℓuu.

However, the converse implication fails as one can see reverting the argument or
considering that there are irregular pencils σ having a slope-semistable sheaf Tσ.

4. Projective dimension for pencils of quadrics

Also in this section, κ is an algebraically closed field of characteristic different
from 2.

4.1. Segre symbols. Let σ be a pencil of quadrics. Following the notation in-
troduced in Section 3.5.1, let pu, vq be the splitting type of σ, so that its generic
corank r1 satisfies n` 1 “ u ` v ` r1. Let tλ1, . . . , λℓu Ă P

1 be the support of the
torsion sheaf Ct. Its localization at λj of Ct can be written in the following way:

pCtqλj
»

sj
à

i“1

O
‘pj,i

λ
paj,iq

j

.

Here, we denoted by λ
paj,iq
j the subscheme defined by the ideal pg

aj,i
j q where gj is a

linear form vanishing at λj for each j P t1, . . . , ℓu.
The integers aj,i can then be arranged into the so called Segre symbol. We write,

for each j P t1, . . . , ℓu:

Σj “ paj,1, . . . , aj,1
loooooomoooooon

pj,1

, . . . , aj,sj , . . . , aj,sj
looooooomooooooon

pj,sj

q, with aj,1 ą ¨ ¨ ¨ ą aj,sj .
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The Segre symbol Σ for a pencil of quadrics σ is defined to be the multi-set
rΣ1, . . . ,Σℓs. We will use exponential notation for repeated entries; for instance,
the Segre symbol rp1, 1, 1q, p3, 3, 1q, 2s in exponential notation reads r13, p32, 1q, 2s.

Note that, as we are dealing with potentially irregular pencils σ, we always refer
to the Segre pencil of the regular part σ̄ of σ. In case σ is completely irregular, its
Segre symbol is H by convention. Note that, in contrast to the behavior for regular
pencils, the Segre symbol of an irregular pencil may be of the form r1ps, for some
integer p.

The Segre symbol is a the key invariant of regular pencils. Indeed, the content
of the Segre-Weierstrass theorem is that the set of singular quadrics of a regular
pencil together with its Segre symbol classifies the regular pencil up to homography
of P1 and P

n. For a reference of this theorem going back to Corrado Segre’s thesis,
the reader may look at the classical textbook [7, §XIII.10] or at the more recent
paper [6]. This classical result is extended to irregular pencils as follows.

Proposition 4.1. Given ℓ, r1 P N and integers 1 ď c1 ď . . . ď cr1 , fix distinct
points tλ1, . . . , λℓu Ă P

1, and a multiset Σ “ rΣ1, . . . ,Σℓs. Then there is an incom-
pressible pencil of quadrics σ, unique up to homography, such that:

Ctf »
r1
à

i“1

OP1pciq, SupppCtq “ tλ1, . . . , λℓu, Σpρ̄σq “ Σ.

Proof. In view of the Segre-Weierstrass theorem, there is a regular pencil, and thus
a regular symmetric pencil of matrices, uniquely defined by the datum of the set-
theoretic support of Ct together with the Segre symbol. Therefore the result follows
from Proposition 3.8. �

Note that pj,i ď n for all indices pi, jq. The splitting type pu, vq satisfies:

(40)
ℓ
ÿ

j“1

sj
ÿ

i“1

aj,ipj,i “ h0pCtq “ u´ v,

according to the exact sequence in display (24).

4.2. Ext sheaves. The main result of this section provides necessary and sufficient
conditions in terms of Σ for the Ext sheaves Extq

PnpTσ,OPnq to be non trivial.

Theorem 4.2. For a pencil of quadrics σ with Segre symbol Σ and for q ą 0, we
have Extq

PnpTσ,OPnq ‰ 0 if and only if there are j P t1, . . . , ℓu and k P t1, . . . , sju
such that:

(41) q ` pj,1 ` . . .` pj,k “ n´ r1 ´ 1,

or r1 ą 0 and q ` r1 “ n ´ 2.

Proof. We prove the theorem under the assumption that σ is incompressible, see
the end of the proof for compressible pencils. Since the question is local and Tσ is
free of rank n ´ 1 locally around any point outside Ξσ, it is enough to prove the
claim on charts containing a single primary component of Ξσ. In view of Lemma
3.9, these components are supported either at disjoint linear subspaces associated
with distinct points in the support of Ct, or at the rational normal scroll Y . Note
that the points of the support of Ct correspond to the parenthesized pieces of the
Segre symbol. Also, the proof at the points of Y is similar if the support of Ct
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contains one point or many. So we may assume, without loss of generality, that
ℓ “ 1 and simplify the notation to Σ “ pap11 , . . . , a

ps
s q with a1 ą ¨ ¨ ¨ ą as ą 0.

As we did in the proof of item i) of Theorem 3.2 (see Section 3.4), we observe
that the sheaf Qσ is a line bundle supported at Ξσ. Therefore, given q ą 0, we
have Extq`2

Pn pQσ,OPnq ‰ 0 if and only if Extq`2
Pn pOΞσ

,OPnq ‰ 0, so this in turn is
equivalent to Extq

PnpTσ,OPnq ‰ 0.
Let us analyze Ξσ more in detail and recall the notation of Subsection 3.5.3.

Since we are working under the assumption ℓ “ 1 the sheaf Ct, if nonzero, is
supported at a single point of P1 and we may fix coordinates so that this point is
λ “ p0 : 1q. In such coordinates and up to the action of GLn`1pκq, the pencil of
matrices ρ “ ρ̄σ of the regular part of σ is a block-diagonal matrix with blocks of
sizes a1, . . . , as, repeated p1, . . . , ps times, where a block of size a P N

˚ takes the
form (below, pz1, z2q is a basis for H0pOP1p1qq):

ρa “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0 z2 z1
0 ¨ ¨ ¨ 0 z2 z1 0
...

... . .
.

. .
.

0
...

0 z2 z1 0 . .
.

. .
.

z2 z1 0 . .
.

. .
.

z1 0 ¨ ¨ ¨ . .
.

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The cokernel of this matrix is the structure sheaf of Oλpaq , where λpaq is the
a-tuple point of P1 defined by the ideal pza1 q. Therefore, we have:

Ct »
s
à

i“1

O
‘pi
λpaiq .

For each i P t1, . . . , su, we consider the injection λpaiq Ă λpasq. Concatenating
the surjections Oλpasq Ñ Oλpaiq we get an epimorphism:

Ct ։

s
à

i“1

O
‘pi
λpasq .

For k P t1, . . . , su, put qk “
řk
i“1 pi. From the above epimorphism we get the exact

sequence:

0 Ñ
s´1
à

i“1

O
‘pi
λpai´asq Ñ Ct Ñ O

‘qs
λpasq Ñ 0.

Iterating this procedure we obtain a natural filtration:

0 “ D
p0q Ă D

p1q Ă ¨ ¨ ¨ Ă D
psq “ Ct,

where, for all k P t1, . . . , su, we have (with the convention as`1 “ 0):

Dpkq “
k
à

i“1

O
‘pi

λ
pai´ak`1

q , Cpkq :“ Dpkq{Dpk´1q “ O
‘qk

λ
pak´ak`1

q .

To make the proof more transparent, we carry it out first under the assumption
that σ is regular, hence ρ “ ρσ, r1 “ 0, pu, vq “ pn ` 1, 0q, Ctf “ 0 and Ct “ Cσ.
For any k P t1, . . . , su, projectivizing the surjection Dpkq

։ Cpkq we get a closed
embedding PpCpkqq ãÑ PpDpkqq of schemes of the same dimension, with a residual

subscheme of PpCpkqq in PpDpkqq which is isomorphic to PpDpk´1qq and has thus
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strictly smaller dimension – by convention, PpDp0qq “ H. Note that, for each
k P t1, . . . , su, the exact sequence

0 Ñ IPpCpkqq{PpDpkqq Ñ OPpDpkqq Ñ OPpCpkqq Ñ 0

induces an exact sequence :

0 Ñ H0pIPpCpkqq{PpDpkqqq Ñ H0pOPpDpkqqq Ñ H0pOPpCpkqqq Ñ 0.

Thus, since IPpCpkqq{PpDpkqq is supported at PpDpk´1qq, we have an isomorphism

H0pIPpCpkqq{PpDpkqqq » H0pOPpDpk´1qqq, which in turn implies that IPpCpkqq{PpDpkqq is
isomorphic to OPpDpk´1qq.

Recalling the correspondence (31), we send this filtration to P
n and define, for

each k P t1, . . . , su the subschemes Ξpkq “ ψpPpDpkqq ˆP1 PpCσqq Ă P
n and Υpkq “

ψpPpCpkqq ˆP1 PpCσqq Ă P
n. Since ψ is an embedding on the fibres of ϕ, this gives

Υpkq Ă Ξpkq for each k P t1, . . . , su and finally a stratification:

0 “ OΞp0q Ă OΞp1q Ă ¨ ¨ ¨ Ă OΞps´1q Ă OΞpsq “ OΞσ
, with :(42)

OΞpkq {OΞpk´1q » OΥpkq ,(43)

for all each k P t1, . . . , su, with Ξp1q “ Υp1q. Each component Υpkq is the projec-
tivization of a trivial bundle of rank qk over a subscheme of length ak in P

1. As
such, it is equidimensional and Cohen–Macaulay of codimension n ´ qk ` 1 and
therefore satisfies:

(44) Extq`2
Pn pOΥpkq ,OPnq »

"

0, if q ` 2 ‰ n´ qk ` 1,
ωΥpkq pn ` 1q, if q ` 2 “ n´ qk ` 1.

So this sheaf is non zero if and only if q “ n´p1 ´ ¨ ¨ ¨´pk´1, which in turn agrees
with (41).

We apply Ext˚
Pnp´,OPnq to the filtration (42). To compute this we use (43) and

induction on k P t0, . . . , su. Since for all k P t1, . . . , su the sheaves (44) are line
bundles supported on subschemes sharing no common component, the boundary
morphisms induced by applying Ext˚

Pnp´,OPnq to (42) are all zero. We deduce that

Extq`2
Pn pOΞσ

,OPnq ‰ 0 if and only if there is k P t1, . . . , su such that (41) is satisfied.
This concludes the proof when σ is regular.

Now let us assume that σ is irregular. Restricting Ctf to each of the subschemes
λpa1q, . . . , λpasq, we obtain the sheaves:

(45) D̂pkq “ Dpkq ‘ Ctfp´ak`1q, Ĉpkq “ D̂pkq{D̂pk´1q “ O
‘pqk`r1q

λ
pak´ak`1

q ,

with the filtration:

(46) Ctfp´a1q “ D̂p0q Ă D̂p1q Ă ¨ ¨ ¨ Ă D̂psq “ Cσ.

Again, for any k P t1, . . . , su, we get an embedding PpĈpkqq ãÑ PpD̂pkqq of schemes

of the same dimension. The residual subscheme is PpD̂pk´1qq and has strictly smaller

dimension – this time PpD̂p0qq “ Y . The component Y of Ξσ is a rational normal
scroll over P1. We denote by F the divisor class of a fibre of the scroll map Y Ñ P

1.
Using the diagram (31) we define, for each k P t1, . . . , su the subschemes Ξ̂pkq “

ψpPpD̂pkqq ˆP1 PpCσqq Ă P
n and Υ̂pkq “ ψpPpĈpkqq ˆP1 PpCσqq Ă P

n. We get

Υ̂pkq Ă Ξ̂pkq. Note that ψ˚pϕ˚pOP1p1qqq » OY pF q and that F |Υpkq “ 0. Hence, in
view of (45) we obtain for each k P t1, . . . , su an exact sequence:

(47) 0 Ñ O
Ξ̂pk´1q p´akF q Ñ O

Ξ̂pkq Ñ O
Υ̂pkq Ñ 0.
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With our convention, Y “ Ξ̂p0q “ Υ̂p0q so for k “ 1 the leftmost term of the
above sequence is O

Ξ̂p0q p´a1F q » OY p´a1F q.
We have obtained a stratification of Ξσ that allows to compute the desired Ext

sheaves. Indeed, to compute Extq`2
Pn pOΞσ

,OPnq for q ą 0 we apply Ext˚
Pnp´,OPnq to

(47) and use induction on k P t0, . . . , su together with twists by OY ptF q for suitable
t P Z. For k “ 0 we observe that, since Y Ă P

n is smooth of codimension n´r1, for
any t P Z we have Extq`2

Pn pOY ptF q,OPnq ‰ 0 if and only if q “ n´ r1 ´2. For k ě 1,

Υ̂pkq is the projectivization of a trivial bundle of rank qk ` r1 over a subscheme of
length ak in P

1, so:

(48) Extq`2
Pn pO

Υ̂pkq ,OPnq ‰ 0 if and only if q “ n´ r1 ´ qk ´ 1,

and this sheaf is ω
Υ̂pkq pn`1q if q “ n´r1´qk´1. Again, since these sheaves are line

bundles on Υ̂p0q, . . . , Υ̂psq and since these subschemes have no common component,
we have the vanishing of all the boundary morphisms of the long exact sequence
obtained by applying Ext˚

Pnp´,OPnq to (47). Therefore, Extq`2
Pn pOΞσ

,OPnq ‰ 0 if
and only if q “ n´ r1 ´ p1 ´ ¨ ¨ ¨ ´ pk ´ 1 for some k P t1, . . . , su or q “ n´ r1 ´ 2.
This concludes the proof if σ is incompressible.

Finally, if σ has compressibility m with 1 ď m ď n, then we set n̂ “ n ´ m

as in Lemma 2.14 and work with the incompressible pencil of quadrics σ̂ in P
n̂

associated with σ. We obtained already a stratification of Ξσ̂ Cohen–Macaulay
closed subschemes of Pn̂ which are projective bundles over subschemes of P1, or the
scroll Y . The equations of these subschemes, viewed in P

n define cones over such
subschemes, which are still Cohen–Macaulay of the same codimension. Therefore,
for all q ą 0, we have Extq

PnpTσ,OPnq ‰ 0 if and only if Extq
Pn̂pTσ̂,OPn̂q ‰ 0. This

concludes the proof. �

Let us give a couple of explicit examples to show the stratification appearing in
the proof of the theorem.

Example 4.3. Consider a regular pencil with Segre symbol rp63, 34, 23qs, so that
ℓ “ 1, s “ 3, and pa1, a2, a3q “ p6, 3, 2q, pp1, p2, p3q “ p3, 4, 3q. We have a torsion
sheaf Cσ “ cokerpρq with h0pCσq “ 18 ` 12 ` 6 “ 36 “ n ` 1, so n “ 35 and
ρ “ ρ‘3

6 ‘ ρ‘4
4 ‘ ρ‘3

2 . We have:

Cσ “ Dp3q “ O
‘3

λp6q ‘ O
‘4

λp3q ‘ O
‘3

λp2q .

The Jacobian subscheme Ξσ “ Ξp3q is set-theoretically a linear subspace of P35

of dimension 3 ` 4 ` 3 ´ 1 “ 9. We have Cpsq “ Cp3q “ O
‘10

λp2q . The scheme Ξσ
contains Υp3q “ ψ˚pϕ˚pCp3qqq which is a double structure over P9 Ă P

35. We have:

Dp2q “ O
‘3

λp4q ‘ O
‘4

λp1q , Cp2q “ O
‘7

λp1q ,

Note that Υp2q “ ψ˚pϕ˚pPpCp2qqqq and Ξp2q “ ψ˚pϕ˚pPpDp2qqqq have dimension
6. The residual subscheme of Υp3q in Ξp3q “ Ξσ is Ξp2q. This is set-theoretically a
P
6 and contains Υp2q which is a reduced P

6. We have:

D
p1q “ C

p1q “ O
‘3

λp3q .

The residual subscheme of Υp2q in Ξp2q is Ξp1q “ Υp1q. This is a triple structure on
P
2. For q ą 0, we have Extq

PnpTσ,OPnq ‰ 0 if and only q P t24, 27, 31u.
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Example 4.4. An incompressible pencil with r1 “ 3, pc1, c2, c3q “ p1, 2, 2q and
Segre symbol Σ “ rp32, 14q, p45, 32, 23qs, hence with pu, vq “ p47, 5q, lives in P

54. Its
Jacobian scheme consists of a rational normal scroll Y of dimension 3 and degree
5 spanning a P

7 and of two linear spaces pΞ1qred and pΞ2qred of dimension 5 and 9
meeting Y along two disjoint projective planes appearing as fibres of the scroll. The
subscheme pΞ1q contains a simple P

5 with a double line as residual subscheme. On
the other hand the subscheme pΞ2q contains a double P9, whose residual subscheme
still contains a simple P

6 with a simple P
4 as residual subscheme.

We have ℓ “ 2 and Extq
PnpTσ,OPnq ‰ 0 if and only q “ 54 ´ 2 ´ r1 or q “

54 ´ 1 ´ r1 ´ p1,1 or q “ 54 ´ 1 ´ r1 ´ p1,1 ´ p1,2 or q “ 54 ´ 1 ´ r1 ´ p2,1 or
q “ 54 ´ 1 ´ r1 ´ p2,1 ´ p2,2 or q “ 54 ´ 1 ´ r1 ´ p2,1 ´ p2,2 ´ p2,3 which gives
q P t40, 43, 44, 45, 48, 49u.

From the proof of the previous theorem, we extract some precise information on
the primary components of Ξσ. Assume σ is an incompressible pencil of quadrics
having Segre symbol Σ and degree vector c, with:

Σ “ rΣ1, . . . ,Σℓs, Σj “ pa
pj,1
j,1 , . . . , a

pj,sj
j,sj

q,

c “ pc1, . . . , cr1q,

for some integers r1, ℓ, s1, . . . , sℓ, tpaj,i, pj,iq | j P t1, . . . , ℓu, i P t1, . . . , sju with
aj,1 ą ¨ ¨ ¨ ą aj,sj for all j P t1, . . . , ℓu and c1 ď ¨ ¨ ¨ ď cr1 . Recall the convention

aj,i “ 0 for i ą sj and for each j P t1, . . . , ℓu set qj,k ´ 1 “
řk
i“1 pj,i ´ 1.

Corollary 4.5. Let σ be an incompressible pencil of quadrics.

i) If σ is regular, then the Jacobian scheme Ξσ has primary components:

Υ
pkq
j , for j P t1, . . . , ℓu and k P t1, . . . , sju,

where the components Υ
pkq
j are projective spaces of dimension qj,k ´ 1 over

subschemes of length aj,i ´ aj,k`1 of P1. We have:

h0pOΞσ
q “

ℓ
ÿ

j“1

aj,1, Υ
pkq
j X Υ

pk1q
j1 “ H, if j ‰ j1.

ii) If σ is irregular, then the Jacobian scheme Ξσ consists of a smooth scroll
Y of dimension r1 and degree v “

řr1
i“1 ci and of the primary components:

Υ̂
pkq
j , for j P t1, . . . , ℓu and k P t1, . . . , sju,

where the components Υ̂
pkq
j are projective spaces of dimension r1 ` qj,k ´ 1

over subschemes of length aj,i ´ aj,k`1 of P1. Also:

h0pOΞσ
q “ 1, Υ̂

pkq
j X Υ̂

pk1q
j1 “ H, if j ‰ j1.

Finally, setting Ξ̂ for the residual scheme of Y in Ξσ, we have:

h0pO
Ξ̂

q “
ℓ
ÿ

j“1

aj,1.

Proof. We gave in Lemma 3.9 a set-theoretic description of the Jacobian scheme Ξσ
which shows that Ξσ consists of ℓ pairwise disjoint linear spaces, together with the
scroll Y in case σ is irregular, and in this case we also noticed that Y has dimension
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r1 and degree v. Also, in the proof of Theorem 4.2 we gave the structure of each
primary component supported at any of the linear spaces mentioned above. Taking

the union over all such spaces we get precisely the set tΥ
pkq
j | j P t1, . . . , ℓu, k P

t1, . . . , sjuu, or tΥ̂
pkq
j | j P t1, . . . , ℓu, k P t1, . . . , sjuu depending on whether σ is

regular or not. Note that in the proof of Theorem 4.2 we also had the component
Υ̂p0q, but this is just the scroll Y which is already accounted for.

To compute h0pOΞσ
q, note that taking h0 of the structure sheaf is an additive

operation on disjoint primary components, which is invariant under taking projec-

tive bundles and takes value a at λ
paq
j Ă P

1 for any a P N
˚. So for regular pencils

we get:

h0pOΞσ
q “

ℓ
ÿ

j“1

sj
ÿ

k“1

h0pOΥk
j
q “

ℓ
ÿ

j“1

sj
ÿ

k“1

paj,i ´ aj,k`1q “
ℓ
ÿ

j“1

aj,1.

For irregular pencils, the Jacobian scheme is connected as Y meets all the compo-

nents tΥ̂
pkq
j | j P t1, . . . , ℓu, k P t1, . . . , sjuu, hence we have h0pOΞσ

q “ 1. Finally,

the primary components of Ξ̂ are precisely the tΥ̂
pkq
j | j P t1, . . . , ℓu, k P t1, . . . , sjuu,

so the last formula follows as in the regular case. �

4.3. Applications to projective dimension. Theorem 4.2 allows to compute
the projective dimension pdimpTσq of the logarithmic tangent sheaf associated to
a pencil o quadrics, namely, the minimal length of a locally free resolution of Tσ.

Proposition 4.6. Let σ be an incompressible pencil of quadrics.

i) Assume σ is irregular. Then pdimpTσq “ n´ r1 ´ 2.
ii) Assume σ is regular and put p “ mintpj,1 | j P t1, . . . , ℓuu. Then:

pdimpTσq “ n´ p ´ 1.

Proof. By Theorem 4.2, we can compute for which values of q ě 1 one has
Extq

PnpTσ,OPnq ‰ 0. On the other hand, we have:

pdimpTσq “ maxtq P N | Extq
PnpTσ,OPnq ‰ 0u.

Fixing j P t1, . . . , ℓu and letting k vary in t1, . . . , sju the maximal value for
n ´ r1 ´ pj,1 ´ ¨ ¨ ¨ ´ pj,k ´ 1 is attained by choosing k “ 1. Such value is thus
n´ r1 ´ pj,1 ´ 1. Letting j vary in t1, . . . , ℓu, the maximal value of n´ r1 ´ pj,1 ´ 1
is n´ r1 ´ p´ 1. The maximum between n´ r1 ´ p´ 1 and n´ r1 ´ 2 is n´ r1 ´ 2
because p ě 1. This gives the result. �

Example 4.7. A pencil σ as in Example 4.3 has pdimpTσq “ 31. For Example
4.4, we get pdimpTσq “ 49.

Example 4.8. The completely irregular pencil σ “ px1x5 ` x3x4, x2x4 ` x0x5q
showing up at the end of the proof of Theorem 3.2 has n “ 5, u “ v “ r1 “ 2. So
for q ą 0 we have Extq

PnpTσ,OPnq ‰ 0 if and only if q “ 1. We get pdimpTσq “ 1.

Corollary 4.9. A regular pencil of quadrics is locally free if and only if n P t1, 2u
or its Segre symbol is rp1, 1q, p1, 1qs or rp2, 2qs.

Proof. A regular pencil σ is locally free if and only if all the integers q satisfying
(41) are non positive. This is always the case for n ď 2 and holds true for the Segre
symbols rp1, 1q, p1, 1qs or rp2, 2qs so one implication is proved.
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Conversely, assume n ě 3 and σ locally free. Set a “ mintaj,1 | j P t1, . . . , ℓuu.
For all j P t1, . . . , ℓu, take k “ 1 and define q by (41). The inequality q ď 0 gives
pj,1 ě n ´ 1, which implies, in view of (40), that:

n` 1 ě
ℓ
ÿ

j“1

˜

aj,1pn ´ 1q `

sj
ÿ

i“2

aj,ipj,i

¸

.

This gives npaℓ´ 1q ď aℓ` 1 and therefore either a “ ℓ “ 1, or aℓ “ 2 and n “ 3.
In the former case s1 “ 1 so (40) gives p1,1 “ n ` 1, which is impossible. In the
latter, either pa, ℓq “ p1, 2q and the Segre symbol is rp12q, p12qs “ rp1, 1q, p1, 1qs or
pa, ℓq “ p2, 1q and the Segre symbol is rp22qs “ rp2, 2qs. �

In the same spirit we have, more generally, the following.

Corollary 4.10. Let σ be an incompressible pencil of quadrics. Then:

i) If σ is regular, then pdimpTσq ě n´3
2

.

ii) If σ is irregular, then pdimpTσq ě 2n´7
3

.

Proof. Assume σ is irregular. Then by Lemma 3.10 we get:

pdimpTσq “ n ´ r1 ´ 2 ě n´ 2 ´
n ` 1

3
“

2n´ 7

3
.

Next, suppose σ is regular. Again put a “ mintaj,1 | j P t1, . . . , ℓuu, p “
mintpj,1 | j P t1, . . . , ℓuu and use (40) to get n ` 1 ě ℓap. By Corollary (4.6), we
obtain:

n` 1 ě ℓapn´ pdimpTσq ´ 1q.

Rearranging the terms, this yields:

pdimpTσq ě n´
n` 1

ℓa
´ 1.

We saw in the previous proof that aℓ ě 2 so this gives pdimpTσq ě n´3
2

. �

Remark 4.11. The previous bounds are sharp. Indeed, if σ is a completely irreg-
ular incompressible pencil, then 3r1 “ n ` 1 so pdimpTσq “ n´3

2
.

Also, if σ is a regular pencil with n ě 3 odd, say n` 1 “ 2m, then we may take
σ to have Segre symbol rp1mq, p1mqs or rp2mqs and we get pdimpTσq “ n´3

2
.

Example 4.12. Let us list all the possible cases for irregular pencils of quadrics
in P

3. We give the possible Segre symbols of the regular part.

r1 pu, vq h0pCtq Ctf Compressible Segre

1 p3, 0q 3 OP1 yes r1, 1, 1s
1 p3, 0q 3 OP1 yes r2, 1s
1 p3, 0q 3 OP1 yes r3s
1 p3, 0q 3 OP1 yes r12, 1s
1 p3, 0q 3 OP1 yes rp2, 1qs

1 p2, 1q 1 OP1p1q no r1s

2 p2, 0q 2 O
‘2

P1
yes r1, 1s

2 p2, 0q 2 O
‘2

P1
yes r2s

2 p1, 1q 0 OP1 ‘ OP1p1q yes rHs

The pencil with empty Segre symbol is completely irregular. We see that only
one case gives an incompressible pencil. This one has pdimpTσq “ 1.
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4.4. Graded projective dimension. Let n ě 2. We call graded projective di-
mension of a torsion free sheaf E on P

n :

gpdimpEq “ maxtq P t0, . . . , n ´ 1u | Extq
PnpE,OPnq˚ ‰ 0u.

Here, Extq
PnpE,OPnq˚ is a shortcut for ‘tPZ Ext

q
PnpE,OPnptqq. The graded projective

dimension is the length of a sheafified minimal graded free resolution of the module
of global sections of E.

Theorem 4.13. Let σ be a pencil of quadrics in P
n.

i) Assume σ is regular. Then:

gpdimpTσq “ n´ 2,

unless the Segre symbol Σ of σ r1p, 1qs for some p ě q ě 1, or rp2q, 1pqs for
some p ě 0 and q ě 1, in which case:

gpdimpTσq “ n´ q ´ 1.

ii) Assume σ is irregular of generic corank r1. Then:

gpdimpTσq “ n´ 1,

unless σ has degree vector p1, . . . , 1q, in which case:

gpdimpTσq “ n ´ r1 ´ 2.

We underline that the graded projective dimension of Tσ depends on the Segre
symbol only if σ is regular; otherwise, gpdimpTσq only depends on whether or not
the degree vector c “ pc1, . . . , cr1q contains a value strictly greater than 1.

Proof. First of all we observe that, without loss of generality, we can assume that
the pencil σ is incompressible. Indeed, if σ has compressibility m ą 0, then we may
work in a projective space of dimension n̂ “ n ´ m whose coordinates do occur in
the quadrics of σ. The minimal resolution obtained over the coordinate ring of this
space is a minimal resolution of Tσ{O‘m

Pn and thus computes gpdimpTσq.

Next we note that, according to the proof of Theorem 3.2, the sheaf Qσp´1q
of an incompressible pencil σ is isomorphic to OΞσ

pF q, where F is the class of
a fibre of the scroll map Y Ñ P

1. The divisor F is trivial on the components

tΥ̂
pkq
j | j P t1, . . . , ℓu, k P t1, . . . , sjuu. Set a “

řℓ
j“1 aj,1. By Corollary 4.5, we get:

(49) h0pQp´1qq “ a, if σ is regular.

Also, if σ is irregular, denoting again by Ξ̂ the residual scheme of Y in Ξσ, we get
an exact sequence:

(50) 0 Ñ OY pF q Ñ Qp´1q Ñ O
Ξ̂

Ñ 0.

In order to prove the result, we will need two more ingredients, namely two
equivalent definitions of the graded projective dimension. For the first one, for any
coherent sheaf E on P

n and q P N, put Hq
˚pEq “

À

tPZH
qpEptqq. Set:

q0 “ mintq P N
˚ | Hq

˚pTσq ‰ 0u.

We have, by Serre duality:

gpdimpTσq “ n´ q0.

The second one is worked out in the framework of graded modules over the
polynomial ring R “ κrx0, . . . , xns. Consider the matrix Jσ as a map of graded
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modules Rn`1 Ñ Rp1q2 and define the R-modules Qσ, Mσ and Tσ as the cokernel,
image and kernel of this map, so that sheafifying the graded modules Qσ, Mσ and
Tσ we get back Qσ, Mσ and Tσ. We write down the exact sequence of graded
R-modules:

0 Ñ Tσ Ñ Rn`1 JσÝÝÑ Rp1q2 Ñ Qσ Ñ 0.

The Auslander–Buchsbaum formula gives:

gpdimpTσq “ n` 1 ´ depthpTσq.

We compute the depth of Tσ by the relation:

depthpTσq “ mintq P N | ExtqRpκ, Tσq ‰ 0u,

where κ is the residual field, namely κ “ R{px0, . . . , x1q.

Having set up all this, we are in position to prove i). So assume σ is regular.
First we compute gpdimpTσq when Σ “ r1p, 1qs or Σ “ rp2q, 1pqs. If Σ “ r1p, 1qs
with p ě q ě 1 then p ` q “ n ` 1 and the generators pf, gq of σ can be chosen
to be f “ x20 ` ¨ ¨ ¨ ` x2p´1 and g “ x2p ` ¨ ¨ ¨ ` x2n. Set L “ V px0, . . . , xp´1q and
M “ V pxp, . . . , xnq. Looking at Jσ, we see that:

Tσ » RLp1q ‘ RM p1q,

where RL and RM are the Koszul syzygies of L and M , see §3.3.2. Now
gpdimpRLp1qq “ p´ 2 ě q ´ 2 “ gpdimpRM p1qq, so:

gpdimpTσq “ p´ 2 “ n´ q ´ 1.

Next, we deal with Σ “ rp2q, 1pqs, for q ě 1 and p ě 0. Note that p ` 2q “ n ` 1,
so n´ q ´ 1 ě q. When p “ 0 we have Qσp´1q » OΥp1q , where Υp1q is a projective
space P

n´q over a length-2 subscheme of P1, while for p ą 0 we have a filtration:

0 Ñ OΥp1q Ñ Qσp´1q Ñ OΥp2q Ñ 0,

where Υp1q is a reduced P
n´q and Υp2q is a reduced P

q´1 Ă P
n´q. In both cases,

since the coordinate rings of the subschemes Υpkq are graded Cohen–Macaulay rings,
we have gpdimpOΥpkq q “ codimpΥpkqq. Therefore gpdimpTσq ` 2 is the maximum
of the gpdimpOΥpkq q for different values of k. Since n´ q ´ 1 ě q, in both cases we
obtain the equality:

gpdimpTσq “ n´ q ´ 1.

Let us show that, unless Σ “ r1p, 1qs or Σ “ rp2q, 1pqs, we have H2pTσp´1qq ‰ 0,
which implies gpdimpTσq ě n ´ 2. It suffices to show H1pMσp´1qq ‰ 0, which in
turn holds true if h0pQσp´1qq ą 2. But by (49), we have h0pQσp´1qq ą 2 unless
ℓ “ 2 and s1 “ s2 “ a1,1 “ a2,1 “ 1, or ℓ “ 1, s1 P t1, 2u, a1,1 “ 2. Since
these two cases correspond to the Segre symbols Σ “ r1p, 1qs for some p, q ě 1 or
Σ “ rp2q, 1pqs for some q ě 1, p ě 0, we get gpdimpTσq ě n ´ 2 except in these
cases.

Now we prove that, for regular pencils, we have gpdimpTσq ď n ´ 2. It suffices
to show that the module Qσ contains no copy of the residual field κ. Indeed,
otherwise there would be a non-zero element of Qσ, represented by ph, kq P Rp1q2,
whose annihilator contains the maximal ideal px0, . . . , xnq. Up to switching the
factors, we may assume h ‰ 0. Also, since the pencil σ is regular, we may choose
the generators pf, gq of the pencil to be both associated to smooth quadrics. Also,
we may select coordinates x0, . . . , xn of Pn so that 2f “ x20 ` ¨ ¨ ¨ ` x2n.
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Then, for the pair ph, kq P Rp1q2 with h ‰ 0, there must be a matrix pai,jq0ďi,jďn,
with ai,j P R for all 0 ď i, j ď n such that:

(51)

ˆ

h

k

˙

`

x0 ¨ ¨ ¨ xn
˘

“

ˆ

x0 ¨ ¨ ¨ xn
g0 ¨ ¨ ¨ gn

˙

¨

˚

˝

a0,0 ¨ ¨ ¨ a0,n
...

...

an,0 ¨ ¨ ¨ an,n

˛

‹

‚
,

where σ “ pf, gq and we wrote gi “ Bg{Bxi, for all i P t0, . . . , nu. We used here
2f “ x20 ` ¨ ¨ ¨ ` x2n. Note that, by the symmetric role of f and g, we may assume
h ‰ 0. Hence, (51) implies that the matrix A “ pai,jq0ďi,jďn is hIn`1 and is thus
invertible in κpx0, . . . , xnq. Hence, we may rewrite (51) in κpx0, . . . , xnq as:

ˆ

h

k

˙

`

x0 ¨ ¨ ¨ xn
˘

A´1 “

ˆ

x0 ¨ ¨ ¨ xn
g0 ¨ ¨ ¨ gn

˙

.

Therefore Jσ should have generic rank 1, which is impossible by the Euler relation
since f, g are not proportional.

Summing up, we have proved HomRpκ,Qσq “ 0. Therefore, applying Ext˚
Rpκ,´q

to the above sequence we get ExtqRpκ, Tσq “ 0 for q ď 2. Hence depthpTσq ě 3 and
finally gpdimpTσq ď n´ 2. This concludes the proof for regular pencils.

It remains to carry out the proof if σ is irregular. In view of the filtration (50)

and since the coordinate rings of the primary components of Ξ̂ are graded Cohen–
Macaulay rings, we get:

gpdimpO
Ξ̂

q “ codimpΞ̂q ď codimpY q “ n´ r1.

Now, if ci “ 1 for all i P t1, . . . , r1u, the sheaf OY pF q has a minimal Buchsbaum–
Rim resolution of length equal to codimpY q. This is obtained by the Buchsbaum–
Rim resolution of OY pF q in the linear span L “ P

v´1 Ă P
n of Y seen as cokernel

of a matrix of linear forms of size 2ˆ v over L, combined with the Koszul complex
of L in P

n; we refer to [5, Theorem A2.10, Exercice A2.19] for Buchsbaum–Rim
complexes and matrices associated with scrolls.

We deduce gpdimpOY pF qq “ codimpY q, which in turn yields:

gpdimpTσq “ maxpgpdimpO
Ξ̂

q, gpdimpOY pF qq ´ 2 “ n ´ r1 ´ 2.

This proves the last part of ii).

To conclude the proof, let us assume that there is i P t1, . . . , r1u such that ci ě 2
and show that gpdimpTσq “ n ´ 1. It is enough to show that H1pTσq ‰ 0. Note
that H0pTσq “ 0 by incompressibility of σ, hence:

h1pTσq ě 2pn` 1q ´ h0pQσq ´ pn ` 1q ě n` 1 ´ h0pQσq,

so it suffices to check h0pQσq ă n` 1.
To show this inequality we recall the notation pu, vq for the splitting type of

σ and take cohomology of (50) twisted by OPnp1q. Since the linear span of the

residual subscheme Ξ̂ of Y in Ξσ is PpH0pCtqq and since hkpOY pF ` Hqq “ 0 for
k ą 0 and h0pOY ptF `Hqq “ v ` tr1, for all t ě 0, we obtain:

h0pQσq “ h0pOY pF `Hqq ` h0pO
Ξ̂

p1qq “

“
r1
ÿ

i“1

pci ` 2q ` h0pCtq “ pv ` 2r1q ` pu´ vq.
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We are reduced to show u` 2r1 ă n` 1 and, since n` 1 “ u` v` r1, this amounts
to v ą r1. But the inequality v “

řr1
i“1 ci ą r1 takes place precisely if there is

i P t1, . . . , r1u such that ci ě 2, so the non-vanishing H1pTσq ‰ 0 is established.
The proof of the theorem is achieved. �

Example 4.14. Let σ be a regular pencil of quadrics with r0 “ 1. Then the
module of global sections Tσ of Tσ has the Buchsbaum–Rim type resolution:

0 Ð Tσ Ð Rp´2qpn`1

3 q Ð ¨ ¨ ¨ Ð Rp´1 ´ jqjp
n`1

j`2q Ð ¨ ¨ ¨ Ð Rp´nqn´1 Ð 0,

with j P t1, . . . , n´ 1u. This resolution is minimal and linear of length n´ 2.
For a regular pencil of quadrics, the Buchsbaum–Rim complex in the above

display is exact if and only if dimpQσq “ 0. This happens if and only if r0 “ 1.

5. Pencils of quadrics in dimension 3

We can arrive at a full classification for pencils of quadrics in P
3 over an alge-

braically closed field κ of characteristic different from 2. The result is the following.

Theorem 5.1. Let σ be a pencil of quadrics in P
3. Then the following holds.

i) The pencil σ is free if and only if it is locally free. This happens:
a) If σ has Segre symbol rp1, 1q, p1, 1qs, in which case Tσ » OP3p´1q‘2;
b) If σ has Segre symbol rp2, 2qs, in which case Tσ » OP3p´1q‘2;
c) If σ is irregular and incompressible, in which case Tσ » OP3p´1q‘2;
d) If σ is compressible, in which case Tσ » OP3 ‘ OP3pe ´ 2q, where

e P t0, 1, 2u is the number of double planes in the pencil.
ii) In all other cases σ is regular, pdimpTσq “ 1 and the sheafified minimal

graded free resolution of Tσ reads:
a) If r0 “ 1:

0 Ñ OP3p´3q‘2 Ñ OP3p´2q‘4 Ñ Tσ Ñ 0.

b) If r0 “ 2 and the Segre symbol is not rp1, 1q, p1, 1qs or rp2, 2qs:

0 Ñ OP3p´3q‘2 Ñ OP3p´2q‘2 ‘ OP3p´1q Ñ Tσ Ñ 0.

The proof of the theorem is by inspection of the different Segre symbols. It
follows from the analysis appearing in the next subsubsections.



40 D. FAENZI, M. JARDIM, AND J. VALLÈS

5.1. Regular pencils. Let us write the table of possible Segre symbols of regular
pencils, together with the description of Ξσ arising from the previous sections.

Segre ℓ Ξσ r0 Chern stable pdim

r1, 1, 1, 1s 4 4 simple points 1 p´2, 3, 4q s 1

r2, 1, 1s 3 double point & 2 simple points 1 p´2, 3, 4q s 1

r2, 2s 2 2 double points 1 p´2, 3, 4q s 1

r3, 1s 2 triple point & simple point 1 p´2, 3, 4q s 1

r4s 3 quadruple point 1 p´2, 3, 4q s 1

rp12q, 1, 1s 2 line & 2 simple points 2 p´2, 2, 2q sss 1

rp12q, 2s 2 line & double point 2 p´2, 2, 2q sss 1

rp2, 1q, 1s 2

line Υp2q &

simple point Υp1q &

simple point

2 p´2, 2, 2q sss 1

rp3, 1qs 1
line Υp2q &

double point Υp1q 2 p´2, 2, 2q sss 1

rp12q, p12qs 2 2 disjoint lines 2 p´2, 1, 0q free 0

rp22qs 1 double line Υp1q 2 p´2, 1, 0q free 0

rp13q, 1s 2 plane & simple point 3 p´1, 1, 1q s 1

rp2, 12qs 1
plane Υp2q &

simple point Υp1q 3 p´1, 1, 1q s 1

In the column labelled stable, we wrote s or sss according to whether Tσ is stable
or strictly semi stable (in the sense of the slope), and free when Tσ is split. In the
description of Ξσ we let the subschemes Υpkq show up when a primary component
of Ξσ has a non trivial filtration as in the proof of Theorem 4.2. In the column
labelled Chern we write the triple pc1pTσq, c2pTσq, c3pTσqq.

Some comments are in order.

i) When σ is free, we have Tσ » OP3p´1q‘2.
ii) When r0 “ 1, the sheaf Qσ has a Buchsbaum–Rim resolution that induces

a sheafified minimal graded free resolution:

0 Ñ OP3p´3q‘2 Ñ OP3p´2q‘4 Ñ Tσ Ñ 0.

This gives the Chern classes of Tσ when r0 “ 1.
iii) When r0 “ 2, there are lines M,L Ă P

3, not necessarily distinct, with
L Ă Ξσ, and a finite length subscheme W Ă M , such that Tσ fits into (18).
Note that, since r0 “ 2, there is a quadric in the pencil, say f2, which is
a rank-2 quadric in the coordinates x0, x1, up to homography. So, setting
L “ V px0, x1q and composing the Jacobian matrix with the projection
O

‘2
P3 p1q Ñ OP3p1q onto the second factor and with the obvious quotient

OP3p1q Ñ OLp1q we obtain explicitly the morphism Qσ Ñ OLp1q required
to get (18), so Lemma 3.4 holds also for pn, ̺q “ p3, 2q.

We have RM » RL » OP3p´2q and the length of W is either 2 or 0,
according to whether pdimpTσq is 1 or 0. So Tσ is polystable in the free
case, otherwise it is strictly slope semistable and Gieseker-unstable.

In the latter case, we have IW {M » OM p´2q and the morphism RLp1q Ñ
IW {M p1q of (18) is the natural surjection OP3p´1q Ñ OM p´1q. Therefore
the term G2 appearing in the sequence (20) fits into:

0 Ñ OP3p´3q Ñ OP3p´2q‘2 Ñ G2 Ñ 0.
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Then we have a sheafified minimal graded free resolution of Tσ of the form:

0 Ñ OP3p´3q Ñ OP3p´2q‘2 ‘ OP3p´1q Ñ Tσ Ñ 0.

This gives the Chern classes of Tσ when r0 “ 2.
iv) Stability of Tσ for r0 “ 3 follows from Proposition 3.1.
v) One can put two quadrics of σ in normal form. This is done in [6].

5.2. Irregular pencils. We gave in Example 4.12 the list of numerical invariants of
irregular pencils in P

3. We observed that there is only one irregular incompressible
pencil in P

3. Note that in any case the number of points in the support of Ct

is at most 3, so irregular pencils have a normal form pf1, f2q which is completely
determined up to SL2-action as SL2 is 3-transitive on P

1. Note that we can assume
that this support is contained in tp1 : 0q, p0 : 1q, p1 : ´1qu. The column labelled m
displays the compressibility of the pencil.

We are going to see that, for irregular pencils of quadrics σ in P
3, the sheaf Tσ is

always free, with exponents as in the following table. The pair pa, bq in the column
exponents indicates that Tσ » OP3paq ‘ OP3pbq.

r1 pu, vq exponents m Segre f1 f2

1 p3, 0q p0,´2q 1 r1, 1, 1s x2
0 ` x2

2 x2
1 ` x2

2

1 p3, 0q p0,´2q 1 r2, 1s x0x1 x2
0 ` x2

2

1 p3, 0q p0,´2q 1 r3s 2x0x2 ` x2
1 x0x1

1 p3, 0q p0,´1q 1 rp2, 1qs 2x0x1 ` x2
2 x2

0

1 p3, 0q p0,´1q 1 r12, 1s x2
0 x2

1 ` x2
2

1 p2, 1q p´1,´1q 0 r1s x0x2 2x0x1 ` x2
3

2 p2, 0q p0, 0q 2 r1, 1s x2
0 x2

1

2 p2, 0q p0, 0q 2 r2s x2
0 x0x1

2 p1, 1q p0,´1q 1 rHs x0x2 x0x1

5.2.1. Irregular incompressible pencils. The unique irregular incompressible pencil
on P

3 has r1 “ 1 so according to Proposition 4.6 we have Tσ locally free.
The splitting type of σ is p2, 1q and the regular part of σ vanishes at a single

point λ P P
1 which gives a single quadric of corank 2 in the pencil, so r0 “ 2. This

gives a component Ξp1q Ă Ξσ which is a reduced line. The component Y of Ξσ
is a line which meets Ξp1q at λ. In the normalized form appearing in the proof of
Theorem 4.2, we have λ “ p0 : 1q and the matrix ρ reads:

¨

˚

˚

˝

0 z1 z2 0
z1 0 0 0
z2 0 0 0
0 0 0 z1

˛

‹

‹

‚

.

The associated pencil is p2x0x2, 2x0x1`x23q and, up to dividing by 2, the Jacobian
matrix reads:

ˆ

x2 0 x0 0
x1 x0 0 x3

˙

The kernel of this matrix is Tσ » OP3p´1q‘2, the syzygy map being:
¨

˚

˚

˝

x0 0
´x1 ´x3
´x2 0
0 x0

˛

‹

‹

‚

.
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5.2.2. Compressible pencils. Assume σ is compressible. Then the sheaf Tσ contains
a copy of the trivial sheaf OP3 which is thus a direct summand of Tσ. Therefore
Tσ{OP3 is a reflexive sheaf of rank one and thus isomorphic to OP3p´c1pTσqq. For
compressible pencils, we get the following.

i) If σ contains no double plane, then Tσ » OP3 ‘ OP3p´2q.
ii) If σ contains precisely one double plane, then Tσ » OP3 ‘ OP3p´1q.
iii) If σ contains two double planes, then Tσ » OP3 ‘ OP3 .

6. Locally free pencils of quadrics

Let us conclude the analysis of freeness and local freeness of pencils of quadrics
over an algebraically closed field κ of characteristic different from 2. In the next
table, the column labelled Σ displays the Segre symbol of the regular part of σ. In
the column labelled exponents we write the sequence of degrees of the line bundles
which are direct summands of Tσ, for instance the sequence p0n´3,´12q means that

Tσ » O
‘pn´3q
Pn ‘ OPnp´1q‘2. Recall from Section 2.5 that n̂ “ n ´ h0pTσq. When

n “ 2 one should not consider the first three lines.

Theorem 6.1. Let n ě 2. A pencil of quadrics σ is free if and only if σ is locally
free. This happens if and only if, up to homography, σ “ pf1, f2q is:

(52)

f1 f2 exponents n̂ r0 r1 Σ

x0x1 x2x3 p0n´3,´12q 3 n ´ 2 n´ 3 rp12q, p12qs
x0x1 ` x2x3 x20 ` x21 p0n´3,´12q 3 n ´ 2 n´ 3 rp22qs

x0x2 x0x1 ` x23 p0n´3,´12q 3 n ´ 1 n´ 2 r1s

x20 ` x22 x21 ` x22 p0n´2,´2q 2 n ´ 1 n´ 2 r1, 1, 1s
x0x1 x20 ` x22 p0n´2,´2q 2 n ´ 1 n´ 2 r2, 1s

2x0x2 ` x21 x0x1 p0n´2,´2q 2 n ´ 1 n´ 2 r3s
2x0x1 ` x22 x20 p0n´2,´1q 2 n n´ 2 rp2, 1qs

x20 x21 ` x22 p0n´2,´1q 2 n n´ 2 r12, 1s

x20 x21 p0n´1q 1 n n´ 1 r1, 1s
x20 x0x1 p0n´1q 1 n n´ 1 r2s

Proof. Let σ be a locally free pencil of quadrics. Following the notation of Section
2.5, set m for the compressibility of σ and n̂ “ n ´ m. By Lemma 2.14, the sheaf
Tσ decomposes as O‘m

Pn ‘E, thus E must be locally free. In addition, the associated
incompressible pencil σ̂ is also locally free, since Tσ̂ coincides with the restriction
of E to some n̂-dimensional linear space.

If σ̂ is regular, then Corollary 4.9 says that n̂ ď 2 or n̂ “ 3 and σ̂ has Segre
symbol r12, 12s or r22s. In the latter case the normal form of the quadrics of σ̂
obtained as in the proof of Theorem 4.2 is the one displayed in the first two lines
of the table in display (52). Since σ depends only on x0, . . . , xn̂, this is actually the
normal form of the quadrics of σ.

On the other hand, if σ̂ is irregular, then, since σ̂ is locally free, setting r̂1 for
the generic rank of σ̂, we must have r̂1 ě n̂ ´ 2 by Corollary 4.6. Combining this
with Lemma 3.10 gives n̂` 1 ě 3n̂´ 6 which implies n̂ ď 3. If n̂ “ 3, we are in the
situation of Subsection 5.2.1 and we obtain the third line of the above table.

It remains to treat the cases n̂ ď 2. Let us assume n̂ “ 2. Since σ̂ is incom-
pressible, Tσ̂ is a reflexive sheaf of rank 1 with determinant equal to e ´ 2 where
e is the number of double lines in σ̂. Note that e P t0, 1u as σ̂ is incompressible.
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Also, e “ 0 if and only if r0 “ n ´ 1 and this corresponds to the Segre symbols
r1, 1, 1s, r2, 1s and r3s, while e “ 1 takes place when r0 “ n and the Segre symbol
is rp2, 1qs or rp1, 1q, 1s. These Segre symbols are associated to unique pencils up to
homography since ρσ̂ defines at most 3 distinct points in support of Ct and PGL2pκq
acts transitively on triplets of points of P1.

Finally, assume n̂ “ 1, so that Tσ » OPn . Then there are only two possible Segre
symbols, whose normal forms give the pencils px20, x

2
1q and px0x1, x

2
0q. �

7. Locally free pencils of higher degree

In this section, κ is any field of characteristic 0. In contrast with the case of
pencils of quadrics seen in the previous section, we will now show that there are
locally free pencils of higher degree that are not free.

Before stepping into the general case, let us take a look at the case of pencils of
cubics in detail.

Over the complex projective space P3, there are, according to [2], two non-normal
cubic surfaces up to homography. In the homogeneous variables px0, . . . , x3q, the
equations of these surfaces are:

f “ x31 ` x20x2 ` x21x3, , g “ x31 ` x20x2 ` x0x1x3.

Both surfaces are singular along the line L “ V px0, x1q. The Jacobian matrix of
the pencil of cubics σ “ pf, gq reads:

Jσ “

ˆ

2x0x2 3x21 ` 2x1x3 x20 x21
2x0x2 ` x1x3 3x21 ` x0x3 x20 x0x1

˙

.

The sheaf Qσ has rank two over L and admits no zero-dimensional subsheaf. The
first part of Lemma 2.2 implies that Tσ is locally free.

However, the scheme-theoretic locus where Qσ has rank two has an embedded
point at p “ p0 : 0 : 1 : 0q. In fact, the Jacobian scheme Ξσ has 4 primary
components P1, . . . , P4 described by the next table.

Dimension degree radical ideal

1 5 px0, x1q
1 1 px1, x3q
1 1 px0 ´ x1, x3q
0 20 px0, x1, x3q.

Note that pΞσqred consists of the union of the 3 lines V px0, x1q, V px1, x3q and
V px0 ´ x1, x3q; the first one appears with multiple structure of degree 5.

In this example, Tσp2q has c1pTσp2qq “ 0 and c2pTσp2qq “ 1, c3pTσp2qq “ 0.
Also, we have H0pTσp2qq “ 0. Therefore Tσp2q is a null correlation bundle.

This example is generalized to degree k ` 3, for any k ě 0, in our next result.

Theorem 7.1. For any k ě 0, define the pencil σ “ pf, gq as:

f “ x0x
k`2
1 ` xk`3

2 ` xk`2
2 x3, g “ x2x3pxk`1

2 ´ xk`1
1 q.

Then we have Tσ » Np´k ´ 2q, where N is a null correlation bundle.

Proof. Set f “ x0x
k`2
1 ` xk`3

2 ` xk`2
2 x3 and g “ x2x3pxk2 ´ xk1q. Observe that, in

the algebraic closure of κ, the divisor V pgq is an arrangement of planes consisting
of k ` 2 planes H1, . . . , Hk`2 passing through the line L “ V px1, x2q together with
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an extra plane H not containing L, namely the plane V px3q. This arrangement is
free, more precisely, we have :

Tg » OP3 ‘ OP3p´1q ‘ OP3p´k ´ 1q.

Factoring out the trivial summand OP3 of Tg, we write explicitly the syzygy

φ : OP3p´1q ‘ OP3p´k ´ 1q Ñ O
‘3
P3 , independently on whether κ is closed or not:

φ “

¨

˝

x1 xk`1
2

x2 xk1x2
´pk ` 2qx3 ´xk1x3

˛

‚.

The the Jacobian matrix Jσ : O‘4
P3 Ñ O

‘2
P3 pk ` 2q reads:

Jσ “

ˆ

xk`2
1 pk ` 2qx0x

k`1
1 pk ` 3qxk`2

2 ` pk ` 2qxk`1
2 x3 xk`2

2

0 pk ` 1qxk1x2x3 xk`1
1 x3 ´ pk ` 2qxk`1

2 x3 xk`1
1 x2 ´ xk`2

2

˙

.

Note that this matrix has a vanishing entry at the bottom left corner and that
the vanishing of this entry corresponds to the trivial summand of Tg. Therefore,

projecting onto the last three factors of O‘4
P3 and onto the second factor of O‘2

P3 pk`2q
we get a commutative diagram, which is essentially a particular case of the diagram
in display (13):

OP3

��

// OP3pk ` 2q

��

0 // Tσ //

��

O
‘4
P3

��

Jσ
// O

‘2
P3 pk ` 2q

��

0 // OP3p´1q ‘ OP3p´k ´ 1q // O
‘3
P3

Jg
// OP3pk ` 2q

(53)

The top arrow defines a surface D Ă P
3 of degree k ` 2, whose equation must

sit in the top left corner of Jσ. In other words, D “ V pxk`2
1 q is the pk ` 2q-tuple

structure over the plane V px1q.
Also, we observe that the image of Jg is IC{P3pk ` 2q, where the curve C is the

scheme-theoretic singular locus of V pgq and is defined by the 3 minors of order 2
of φ. Incidentally, over the algebraic closure of κ, the curve C consists of k ` 2
reduced lines L1, . . . , Lk`2, with Li “ H X Hi for all i P t1, . . . , k ` 2u, together
with a pk`1q-tuple complete intersection structure over L of degree pk`1q2 defined
by V pxk0x1, x

k`1
0 ´ pk ` 2qxk`1

1 q.
The rightmost column of diagram (53) gives a surjection Mσ Ñ IC{P3pk ` 2q,

whose kernel is a torsion free sheaf of rank 1, isomorphic to IB{P3pk ` 2q, where

the subscheme B Ă D Ă P
3 is defined in P

3 by the homogeneous polynomials
h of the form h “ a0f0 ` ¨ ¨ ¨ ` a3f3 with ai P R “ κrx0, . . . , x3s and satisfying
a1g1`a2g2`a3g3 “ 0, where we put fi “ Bf{Bxi and gi “ Bg{Bxi, for i P t0, 1, 2, 3u.
Since φ accounts for all relations of the homogeneous ideal of C, the homogeneous
ideal of B is thus generated by pf0, f1φ1,1 `f2φ2,1 `f3φ3,1, f1φ1,2 `f2φ2,2 `f3φ3,2q
and the matrix of these generators is:

¨

˝

xk`2
1

pk ` 2qx0x
k`2
1 ` pk ` 3qxk`3

2

pk ` 2qx0x
k`1
1 xk`1

2 ` pk ` 3qxk1x
k`3
2 ` pk ` 1qxk1x

k`2
2 x3

˛

‚.
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Therefore, the homogeneous ideal IB{D of B in D “ V pxk`2
1 q is :

(54)
`

xk`3
2 , pk ` 2qx0x

k`1
1 xk`1

2 ` pk ` 1qxk1x
k`2
2 x3

˘

.

We have an exact sequence:

0 Ñ IB{P3pk ` 2q Ñ Mσ Ñ IC{P3pk ` 2q Ñ 0,

and thus, from the leftmost column of diagram (53):

0 Ñ Tσ Ñ OP3p´1q ‘ OP3p´k ´ 1q Ñ IB{Dpk ` 2q Ñ 0.

The morphism OP3p´1q Ñ IB{Dpk ` 2q is given by the generator xk`3
2 of the

ideal of B in D as in (54). It defines a curve section A of D of degree k ` 3 which
contains B. We get an exact sequence:

0 Ñ IE{P3p´k ´ 1q Ñ OP3p´1 ´ kq Ñ IB{Apk ` 2q Ñ 0,

where the curve E Ă P
3 is defined by the sequence and is cut in D as the residual

scheme of B with respect to the complete intersection A “ V pxk`2
1 , xk`3

2 q. From
the diagram (53), using the snake lemma we also get:

(55) 0 Ñ OP3p´k ´ 3q Ñ Tσ Ñ IE{P3p´1 ´ kq Ñ 0.

We compute the equations of E from (54) as
`

IB{D : pxk`3
2 q

˘

and get:

E “ V
`

x21, x1x2, x
2
2, pk ` 2qx0x1 ´ pk ` 1qx2x3

˘

.

Therefore, the curve E is a double structure of arithmetic genus ´1 over the line
L. We conclude from (55) that Tσpk ` 2q is a null correlation bundle. �

Remark 7.2. By the previous theorem, for any degree k ` 3 there is a pencil σ
which is locally free but not free. Also, we have gpdimpTσq “ 2. More precisely,
the sheafified minimal graded free resolution of Tσ reads:

0 Ñ OP3p´k ´ 5q Ñ OP3p´k ´ 4q‘4 Ñ OP3p´k ´ 3q‘5 Ñ Tσ Ñ 0.

This is in contrast with the case of pencils of quadrics, where local freeness is
equivalent to freeness and where gpdimpTσq ď n´ 2.

8. Regular sequences of length 2 and rational foliations

We complete this paper by looking at arbitrary regular sequences of length 2
and showing how these are related to rational 1-forms, which we now introduce.

Let ω P H0pΩ1
Pnpd ` 2qq be a rational 1-form of type pd1 ` 1, d2 ` 1q, where

0 ď d1 ď d2, given by

ω “ af1 ¨ df2 ´ bf2 ¨ df1,

where f1 and f2 are homogeneous polynomials with no common factors of degree
d1 ` 1 and d2 ` 1, respectively, with d1 ` d2 “ d, and a and b are relatively prime
integers such that pd1 ` 1qb “ pd2 ` 1qa. Remark that σ :“ pf1, f2q is a regular
sequence in R “ κrx0, . . . , xns.

Regarding ω as an element of HomPnpTPn,OPnpd ` 2qq, we set Kω :“ kerpωq.
Since ω vanishes along the complete intersection scheme C :“ V pσq, the image of
the morphism ω : TPn Ñ OPnpd`2q is actually contained in the ideal sheaf ICpd`2q.
Applying the functor HomPnpOPnp1q‘n`1,´q to the resolution of ICpd ` 2q

0 ÝÑ OPn
η̃

ÝÑ OPnpd1 ` 1q ‘ OPnpd2 ` 1q ÝÑ ICpd ` 2q ÝÑ 0,
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where η̃ “ ppd1 ` 1qf1 pd2 ` 1qf2qt, we check that the composed morphism

OPnp1q‘n`1
։ TPn Ñ ICpd ` 2q

lifts to a unique morphism µ : OPnp1q‘n`1 Ñ OPnpd1 ` 1q ‘ OPnpd2 ` 1q, since

HomPnpOPnp1q‘n`1,OPnq “ Ext1
PnpOPnp1q‘n`1,OPnq “ 0.

Therefore we obtain the commutative diagram:

0

��

0

��

OPn

η

��

OPn

η̃

��

0 // Kω
// OPnp1q‘n`1 µ

//

��

OPnpd1 ` 1q ‘ OPnpd2 ` 1q

��

0 // Kω
// TPn

ω
//

��

ICpd ` 2q

��

0 0

(56)

This proves that Kω » kerpµq. We argue that µ “ Jσ, thus in fact Kω » Tσp1q.
Indeed, note that

ω “
n
ÿ

i“0

ppf1Bif2 ´ qf2Bif1q ¨ dxi,

which means that the entries of the morphism α : OPnp1q‘n`1 Ñ OPnpd ` 2q given
by the composition

OPnp1q‘n`1
։ TPn Ñ ICpd ` 2q ãÑ OPnpd ` 2q

are precisely αi “ p¨f1Bif2´q¨f2Bif1. Since, on the other hand, α “ p´qf2 pf1q˝µ,
we conclude that µ “ Jσ, as desired.

Conversely, given a regular sequence σ “ pf1, f2q with degpfiq “ di`1, we follow
the proof of Lemma 2.3 in Section 2.2 and consider the associated codimension 1
distribution Dσ as presented in display (8); in the case at hand, this simplifies to
(setting d “ d1 ` d2)

(57) 0 ÝÑ Tσp1q ÝÑ TPn
ω

ÝÑ IΓσ
pd ´ l ` 2q ÝÑ 0,

where Γσ Ă P
n is a (possibly not pure) 2-codimensional subscheme of P

n, and
l “ c1pQσq; this is precisely the codimension one distribution associated to the
(possibly non saturated) twisted rational 1-form

ω “ pd1 `1qf1 ¨df2 ´ pd2 `1qf2 ¨df1 P HomPnpTPn, IΓpd´ l`2qq Ă H0pΩ1
Pnpd`2qq.

Moreover, the bottom line of the diagram in display (7) yields the following de-
scription for the singular scheme Γσ of ω:

(58) 0 ÝÑ IΓσ
pd´ l ` 1q ÝÑ ICpd ` 1q ÝÑ Qσ ÝÑ 0.

In particular, we have that

degpΓσq “ degpQσq ` degpCq “ degpQσq ` pd1 ` 1qpd2 ` 1q.
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Summarizing, we have established a natural 1-1 correspondence between regular
sequences of length 2 and rational codimension one foliations as follows.

Lemma 8.1. There exists a 1-1 correspondence between regular sequences
σ “ pf1, f2q on R and rational codimension one foliations D on P

n of type
pdegpf1q, degpf2qq such that Tσp1q “ TD and SingpDq “ Γσ.

The previous statement has the following two important applications when n “ 3.
First, as an immediate consequence of [4, Theorem 6.3], we obtain the following
stability result for logarithmic sheaves associated to regular sequences of length 2
on P

3.

Corollary 8.2. Let σ “ pf1, f2q be a regular sequence in κrx0, x1, x2, x3s and let
di :“ degpfiq ´ 1; assume that d1 ` d2 ą 0 and c1pQσq “ 0.

(1) If d1 ` d2 is even, then
‚ if degpQσq ă pd21 ` d22 ´ d1 ´ d2 ´ 2q{2, then Tσ is slope-stable;
‚ if degpQσq ă pd21 ` d22 ` d1 ` d2q{2, then Tσ is slope-semistable;

(2) If d1 ` d2 is odd and degpQσq ă pd21 ` d22 ´ 1q{2, then Tσ is slope-stable.

In particular, if the Jacobian scheme is 0-dimensional, then Tσ is slope-stable.

We remark that the previous result is not sharp, and it is not hard to find
examples of regular sequences with slope-stable logarithmic sheaves whose degrees
do not satisfy the numerical inequalities above. Indeed, if σ corresponds to a pencil
of quadrics, so that d1 “ d2 “ 1, with dimGσ “ 0, then Corollary 8.2 only implies
that Tσ is slope-semistable; however, as we have seen in Section 5.1, Tσ is actually
slope-stable in this case. Note that the case d1 “ d2 “ 1 is the only one for which
the right hand sides of the inequalities is not positive.

In addition, the higher degree pencils provided in Theorem 7.1 yield yet another
set of examples showing that the converse of Corollary 8.2 does not hold.

Finally, as a second application, we give a negative answer to a problem posed by
Calvo-Andrade, Cerveau, Giraldo and Lins Neto, see [3, Problem 2]. To be preceise,
these authors asked whether the tangent sheaf of a codimension one foliation on P

3

splits as a sum of line bundles whenever it is locally free. Indeed, in light of the
proof of Lemma 8.1, the pencils presented in Theorem 7.1 provide examples, for
each k ě 0, of rational foliations of type pk` 3, k` 3q on P

3 whose tangent sheaves
are slope-stable locally free sheaves.
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