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Abstract15

Global climate is changing as a result of anthropogenic warming, leading to higher daily excursions16

of temperature in cities. Such elevated temperatures have great implications on human thermal comfort17

and heat stress, which should be closely monitored. Current methods for heat exposure assessments18

(surveys, microclimate measurements, and laboratory experiments), however, present several limitations:19

measurements are scattered in time and space and data gathered on outdoor thermal stress and comfort20

often does not include physiological and behavioral parameters. To address these shortcomings, Project21

Coolbit aims to introduce a human-centric approach to thermal comfort assessments. In this study, we22

propose and evaluate the use of wrist-mounted wearable devices to monitor environmental and physiological23

responses that span a wide range of spatial and temporal distributions. We introduce an integrated24

wearable weather station that records a) microclimate parameters (such as air temperature and humidity),25

b) physiological parameters (heart rate, skin temperature and humidity), and c) subjective feedback. The26

feasibility of this methodology to assess thermal comfort and heat stress is then evaluated using two27

sets of experiments: controlled-environment physiological data collection, and outdoor environmental data28

collection. We find that using the data obtained through the wrist-mounted wearables, core temperature29

can be predicted non-invasively with 95 percent of target attainment (PTA) within ±0.27◦C. Additionally,30

a direct connection between the air temperature at the wrist (Ta,w) and the perceived activity level (PAV) of31

individuals was drawn. We observe that with increased Ta,w, the desire for physical activity is significantly32

reduced, reaching ”Transition only” PAV level at 36◦C. These assessments reveal that the wearable33

methodology provides a comprehensive and accurate representation of human heat exposure, which can be34

∗Corresponding author. n.nazarian@unsw.edu.au. #2045 Red Centre West Wing (H13), UNSW Sydney, NSW 2052 Australia.
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extended in real-time to cover a large spatial distribution in a given city and quantify the impact of heat35

exposure on human life.36

1 Introduction37

Heat exposure directly impacts our wellbeing, productivity, and cognitive performance [1, 2] and presents an38

increasing concern to human health in the face of global climate change [3, 4]. Urban areas are particularly39

vulnerable to the impacts of heat, as they concentrate large numbers of vulnerable people (such as young40

children, elderly, and those with existing physical and mental health conditions [5]) in settings where ambient41

temperatures are often higher than suburban and rural areas (Urban Heat Island effect [6]). The combined42

effect is detrimental to the health of urban residents. Heat mortality is referred to as “private and silent43

deaths” and even in developed countries such as Australia and the United States, heatwaves are reported to44

kill more than any other natural disaster [5, 7, 8]. Therefore, it is paramount that we deeply understand and45

closely monitor not only the climatic factors but also the personalized responses of the population to assess46

the impact of urban heat exposure on human health and wellbeing.47

Currently, measurements for thermal comfort and heat stress are done through two main methods: 1) mea-48

surements of microclimate and physiological parameters, commonly in fixed locations or laboratory settings,49

and 2) surveys of human sensation in response to thermal environments [9–14]. Although the information50

gathered contributes significantly to our knowledge of thermal comfort, several limitations persist:51

1. Measurements are scattered in time and space. The spatial and temporal distributions of thermal52

environment and comfort in the city are not readily available through the experiments and have been53

mainly achieved by numerical modeling [15–19].54

2. Data gathered on thermal comfort often do not include the “human factor,” i.e. physiological and55

behavioral parameters corresponding to the thermal comfort of individuals, despite the fact that the56

response and vulnerability to thermal environments vary greatly between individuals [20–22].57

3. Data gathered on heat stress often do not represent realistic conditions in urban environments and are58

not obtained in real-time. For instance, the majority of temperature-mortality/-morbidity relations are59

drawn based on temperatures recorded at fixed monitoring stations [23], which may not resemble what60

people experience as they go about their lives in the city.61

Project Coolbit is motivated by the challenges and limitations of existing methods. Innovative methods of62

obtaining data are needed to a) span larger spatial and temporal distributions in cities, b) obtain real-time,63

unsupervised, and non-intrusive data on thermal comfort and heat stress in the built environment, and c)64

provide human-centric assessments, such that we extend previous approaches to thermal comfort and heat65

stress.66

These objectives can be achieved through crowd-sourced monitoring as opposed to centralized experimenta-67

tions. Crowdsourcing or ubiquitous sensing (i.e. obtaining data by using a distributed number of sensors)68

has recently become feasible due to the rapidly growing number of affordable internet-enabled sensing de-69

vices [24]. Among these, wearable technologies represent a range of opportunities for comfort and health70

assessments. These devices enable us to generate a significant amount of data about people’s immediate en-71
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vironments, add behavioral and physiological components [25, 26], and approach thermal comfort and heat72

stress as “human-centric” as opposed to “one-size-fits-all”. Additionally, wearables travel with the individu-73

als in realistic exposure scenarios and, therefore, data collected by wearables combined with GPS data can74

provide a spatiotemporal distribution of environmental parameters and individual’s exposure. However, to75

date, there is no wearable sensing (neither commercial nor in academic use) available nor tested that can76

combine all the parameters relevant to thermal comfort and heat stress. Accordingly, we propose and test a77

methodology based on wearable devices here, which can ultimately enable a comprehensive yet unsupervised78

and non-invasive assessment of thermal comfort and heat stress in the built environment.79

The current generation of wearables monitors such physiological parameters as heart rate, which helps under-80

stand various aspects of human wellbeing and health including sleep quality. However, to assess thermal stress81

and comfort, the measurements should be extended. Human skin is the mediator between the environment82

and human body and, therefore, skin temperature and conductance play a major role in thermoregulatory83

processes involved in thermal comfort and heat stress [27, 28]. Sim et al. [28] showed that wrist skin tem-84

peratures can be used to predict whole-body thermal sensation. Additionally, several studies have used heart85

rate data to indicate thermal stress in the built environment. A study by Buller et al. 2013 introduced a86

non-invasive and continuous method of estimating the human core temperature, the main factor in determin-87

ing heat stress, from sequential heart rate observations. They showed that out of 52,000 observations, 95%88

of all core temperature estimates fell within ±0.63◦C of measurements. This, in addition to the advancement89

of ubiquitous sensing in the built environment, has opened new doors to use wearables for thermal exposure90

assessments. Nonetheless, this is an emerging field and there are only a handful of studies that investigate91

wearable solutions [16, 25, 26, 30]. Among these, Nakayoshi et al. [25] represents a comprehensive measure-92

ment of thermal comfort, monitoring four relevant environmental parameters in the proximity of the human93

body as well as physiological responses (heart rate and skin temperature) and subjective feedback, and found94

a correlation between skin temperature and thermal comfort index in a semi-controlled testing environment.95

The wearable system involved five sensing units worn by the participants on multiple locations: hat, belt,96

hand, and forehead skin, and carried in a small sash. Although comprehensive for research purposes, this97

methodology cannot be employed in unsupervised settings and is considered impractical for implementation98

in real-life applications. Wrist-mounted wearables can address such concerns regarding scalability in realistic99

applications, particularly as smartwatches have recently dominated the wearable tech worldwide [31]. How-100

ever, the challenges of using wearables as sensing methodologies are still numerous and, to date, reliability of101

wrist-mounted wearable data collection under dynamic use are not fully assessed. There is an urgent need to102

quantitatively assess the performance of wearables for heat exposure monitoring, which motivates the present103

study. Here, we propose an Integrated Wearable Weather Station for unsupervised assessment of urban heat104

impact on individuals (Sec 2.1), and further discuss experiments that rigorously assess the feasibility of this105

methodology for various heat exposure evaluations in the built environment (Sec. 2.2). In Secs. 3.1 and106

3.2, we evaluate the prediction of body core temperature (as the main predictor of heat stress) and thermal107

comfort sensation using collected data and lastly, we discuss the implication of these findings as well as future108

research that can extend this methodology for real-time and unsupervised evaluation of urban heat impacts109

on human life in Sec. 4.110
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2 Methodology111

2.1 Integrated Wearable Weather Station: Human-Centric Assessment of Ther-112

mal Comfort and Heat Stress113

Innovative methods of obtaining data are needed to assess dynamic exposure to thermal environments in114

cities in a human-centric way. However, the assessment of thermal exposure is notoriously complex as it115

requires consideration of three critical components: a) environmental factors, b) physiological thermoregulation116

mechanisms of the human body, and c) subjective psychological perceptions and behavioral patterns as well117

as cultural and climatic backgrounds of individuals. Accordingly, the integration of all these components into118

one sensing unit hasn’t been accomplished so far.119

Unprecedented potentials are now emerging through the rise of Internet-of-Things sensing and wearable tech-120

nologies for fitness, performance, and health tracking. Various wearable sensors have enabled continuous121

and real-time monitoring of physiological parameters over the last few years, with limited attention given122

to thermal exposure assessments [32–34]. Smart devices further provide interfaces for continuous interaction123

with users and data collection regarding behavioral patterns of human activities. Tapping on these emerg-124

ing potentials, we propose wrist-mounted smart wearable devices as a novel approach to obtaining dynamic125

(spatially and temporally variable) data on thermal exposure. Integrated Wearable Weather Stations (Fig.126

1) proposed here aim to record 1) microclimate parameters (such as air temperature and humidity) in the127

immediate environment of individuals, 2) physiological responses to heat (including heart rate, skin tempera-128

ture and humidity), and 3) human activity and subjective feedback with regards to the thermal environment.129

Combined, this methodology aims to provide a comprehensive, integrated, and personalized assessment that130

improves our understanding of personal thermal comfort and heat stress in cities.131

Figure 1: Schematic of an Integrated Wearable Weather Station for personalized assessment of urban heat exposure. In this

format, three components of heat exposure are captured: 1) environmental parameters (such as air temperature, humidity, or

radiation) are recorded on the outside of the strap (right image), 2) physiological response to heat exposure (including skin

temperature and humidity) is captured based on sensors placed on the inner strap (left image), and 3) the smartwatch app is

used to monitor activity level, location, and individuals’ momentary assessment of heat exposure (center).

As the first example of a wearable weather station for heat exposure assessments, we employed Fitbit smart-132

watches [35] worn on the wrist that are equipped with the PurePulse (photoplethysmography) technology for133
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heart rate monitoring [36, 36, 37]. The Fitbit smartwatches are then equipped with two coin-sized iButton134

environmental sensors (i.e. wireless data logger in the form of a 1.3 cm radius stainless steel button [38]),135

which are placed at the inner and outer face of the watch strap to collect temperature and humidity of air and136

skin. The iButton Hygrochron temperature/humidity data loggers (DS1923) are attached to the Fitbit devices137

with a 3D printed harness (Fig. 2) and measure the air/skin temperature and humidity ranging between -20138

to 85◦C and 0 to 100% with ±0.5◦C and ±0.6% accuracy, respectively. The use of the smartwatch app for139

obtaining subjective feedback was also assessed in a separate study (preliminary work presented by Jayathissa140

et al. [39]). The feasibility of such integrated sensing for inferring the personalized heat exposure in the built141

environment is assessed in Sec. 2.2.

Figure 2: Fitbit Ionic and sensor attachments deployed here

for monitoring of a) temperature and humidity of air in the

proximity of human body, b) heart rate, skin temperature, and

humidity at wrist, and c) activity level and momentary feed-

back. Two iButton sensors [38] are placed on the watch strap

using a 3D printed harness. The Fitbit acitivity trackers used

have a 3-axis accelerometer to track the wearer’s motion pat-

terns (e.g. those that indicate walking, swimming or cycling)

to approximate the number of steps taken, calories burned,

floor climbed, and length of time performing exercises. The

PurePulse (photoplethysmography) technology for heart rate

monitoring [36, 36, 37] uses LED lights installed at the back

of the instrument to detect blood volume changes that are due

to capillary expansion and contractions, and has been shown

to tracks heart rate well when compared to three-lead electro-

cardiography [37]. The design and use of the smartwatch app

will be further discussed in future studies.

142

2.2 Experimental Campaigns: Assessing the Robustness of Data Collection using143

Wrist-mounted Devices144

Detailed measurements are carried out and compared with conventional sensing methods to investigate the145

accuracy of physiological and environmental data collected by wearables. We conducted two sets of experi-146

ments: 1) controlled-environment experiments in a climate chamber, and 2) semi-controlled experiments in a147

range of indoor-outdoor built environments. In the first experiment, the environmental conditions were kept148

unchanged while the metabolic rate was varied based on activity level, while the second experiment focused149

on the changes in the heat exposure and thermal comfort based on microclimate characteristics. The detailed150

setup and specification of each experiment are discussed here. Ethics approval for conducting human subject151

research was received from NUS Institutional Review Boards (Reference code N-18-071).152

2.2.1 Controlled-Environment Test in the Climate Chamber153

We conducted controlled-environment experiments in a climate chamber (Fig. 3) at the Department of Phys-154

iology of the National University of Singapore. These experiments aim to collect physiological responses to155
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heat (such as heart rate and skin temperature and humidity at the wrist) and further evaluate the relationship156

between wearable data and the body core temperature as the main indicator for heat strain [29].

Figure 3: Controlled-environment experiment at NUS De-

partment of Physiology. A participant is walking on a tread-

mill while wearing the wrist-mounted sensor arrangement

(Fig. 2), chest-wrapped heart rate monitoring (Polar A300),

and iButton sensors for recording skin temperature at vari-

ous body parts. The environmental parameters in the climate

chamber as well as ratings of thermal sensation (ASHRAE’s 7-

point scale) and RPE are continuously monitored throughout

the experiment. Data from the ingested telemetric capsules

were collected by the wireless data-recording devices and the

body core temperature is monitored closely such that the ex-

periment is ceased if the threshold of 40◦C is reached.

157

For the assessment of body core temperature, participants were asked to ingest VitalSense telemetric capsules158

[40] 8 to 10 hours prior to the trial. For continuous monitoring of skin temperature (Tsk), four iButtons were159

placed at four right-hand sides of each participant’s body (chest, upper arm, thigh, and calf) which, in addition160

to the iButton attached to the Fitbit strap, provide the distribution and mean skin temperature of participants161

throughout the experiment [41]. Heart rate is continuously monitored by the watch, as well as the chest strap162

heart rate monitoring device. Fifteen participants (seven female and eight male) were recruited between the163

age of 18-45. To have a representative group, the participants were evenly distributed among three categories:164

1) Singaporean (or those from a similar tropical climate), 2) acclimatized expatriates (> 3years stay), and165

non-acclimatized expatriates (0-6 months stay). During the experimental trial, participants went through a166

low to moderate exercise on a treadmill (Fig. 3) in a moderate environment resembling outdoor conditions167

in Singapore (Ta = 27 − 29 ◦C, RH = 70 − 80%). The experiment consisted of three stages and the exercise168

intensity was specified using Rating of Perceived Exertion (RPE, Borg [42]). Borg’s RPE scale ranges from 6169

to 20, resembling “very light” to “extremely hard” and is subjective. In our experiment, the three stages of170

activity (each 15-minutes) corresponded to RPE of 8-9, 10-11 and 12-13 to induce “fairly light,” “moderate,”171

and “somewhat hard” efforts in individuals, respectively. Accordingly, although generally healthy adults were172

targeted, there was no required threshold level of fitness. The run/walk exercise on the treadmill in this173

experiment resulted in a change in the metabolic rate and therefore body core temperature, which is needed174

for assessment of this methodology in a range of daily human activities.175

2.2.2 Semi-Controlled Environment Test in the Built Environment176

We further conducted environmental monitoring campaigns to evaluate and compare the wrist-mounted sensor177

data with microclimate measurements at fixed locations and calibrate the subjective individual thermal sen-178

sation with objective environmental measurements. Semi-controlled environment tests were performed where179

participants walked through a predefined path (covering different built environment characteristics - Fig. 4),180

while passing through a network of sensors and answering thermal comfort surveys (Fig. 5).181

Fifteen sessions were organized over six days in October - November (inter-monsoon period), distributed182
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Figure 4: Map and photos of sensor network in the semi-controlled experiment. Left: map of the studied area at NUS UTown

Campus with location of sensors and survey stations identified. Right: different characteristics of built environment selected

for the experiment. Five survey stations were selected among an indoor (air-conditioned) environment, a semi-covered outdoor

environment, covered outdoor locations (distinguished by a presence or lack thereof of ceiling fan), and fully exposed locations

with different sky view factors.

over different hours of the day with approximately 40% conducted at noon and 20% each in the morning,183

afternoon, and evening. Sixty-two participants (with 48.2% female representation) were recruited for this184

study with age distribution of 19-48. Before the experiment, participants arrived at an indoor site and185

answered a questionnaire with regards to their personal profile (such as age, gender, and income level) as186

well as general preference towards the thermal environment. The project team then noted the participants’187

height, weight, and clothing level for the calculation of thermal comfort indices. Through this process, we188

also ensured that all participants have been in the same indoor environment for at least 30 minutes and have189

reached a physiologically stable condition before the start of the experiments. The profile of the participant190

group covered a body height range of 1.5-1.95m (mean 1.71m), weight of 42-102kg (mean 72kg), BMI of 18-32191

(mean 23), and clothing insulation (iclo) of 0.34-0.44 (mean 0.36). Participants were then directed outdoors192

and asked to walk on a predefined path for approximately 40-50 minutes while wearing the modified wearable193

devices (Fig. 2). The path was chosen to cover a range of different built environment characteristics, including194

an indoor environment, a semi-covered outdoor environment, covered outdoor locations (distinguished by a195

presence or lack thereof of a ceiling fan), and fully exposed locations with different sky view factors. Along this196

path, participants passed two sets of fixed environmental sensors: 1) temperature and relative humidity sensors197

(Hobo MX2302 data logger) and 2) WBGT Heat Stress tracker (Kestrel 5400) to collect a comprehensive set198

of environmental data. The participants were then asked to answer the questionnaire at five pre-selected199

locations (i.e. survey stations equipped with environmental sensors). The survey asks participants to rank200

their thermal comfort satisfaction, sensation, and preference during the experiment using ASHRAE’s 7-point201

7

Page 7 of 21 AUTHOR SUBMITTED MANUSCRIPT - ERL-109222.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

Kohler


Kohler


Kohler




sensation and satisfaction scales as well as 3-point scale preference votes for various microclimate parameters202

(temperature, humidity, wind speed, and radiation). Additionally, we continuously monitored participants’203

heart rate, skin temperature, skin humidity, air temperature and humidity at wrist, location, and walking204

speed during this experiment.205

Figure 5: From left: sensor calibration in indoor laboratory; Hobo MX2302 temperature and humidity logger installed on

site with a radiation shield; Kestrel 5400 Heat Stress Tracker at survey stations; and participants answering survey questions

while wearing modified wearable devices. We ensured that the participants have been in Singapore for the week preceding the

experiment (i.e. no overseas travels to hotter or colder climates that can affect their thermal sensation) and are well-rested to

undertake a walk on flat terrain (40-50 minutes duration). Fixed environmental sensors are placed at the height of wearables at

wrist (1.1 − 1.2 m).

3 Results206

3.1 Physiological Data Collection and Prediction of Body Core Temperature207

Here, we evaluate the physiological data collection using wearable sensors and their correlation with heat208

strain (indicated by body core temperature). First, we compared the skin temperature obtained at the wrist209

with temperature distribution at different body locations as well as air temperature (Fig. 6). Chest and thigh210

exhibit the highest skin temperature (∼ 31−37◦C), but also resemble body areas that were mostly covered by211

participants. Skin temperature at the wrist (Ts,w) shows the lowest median and minimum value compared to212

other body parts, while being consistently higher than the air temperature at wrist in the studied conditions.213

We observe that although the variability in ambient air temperature (Ta) is very small (∼ 28−30◦C), air214

temperature at the wrist (Ta,w) varies significantly during the experiment (∼ 26−34◦C). This variation is due215

to the sensor being placed at the proximity of the human body that acts as a heat source. This indicates that216

air temperature at the wrist, alone, cannot determine the ambient air temperature in the built environment217

as it exhibits the combined effect of environmental conditions (Ta) and physiological responses (Ts). However,218

it is worth noting that it may be feasible to predict ambient air temperature using air and skin temperature219

at the wrist considering the heat exchange between human skin surface and thermal environment [43, 44].220

Additionally, we compared wrist skin temperature with mean skin temperature [41] for each participant (Fig.221

6 - right) and found a linear relationship for all participants. The majority of participants, however, showed222

lower wrist temperature compared to mean skin temperature, as temperatures at body extremities are usually223

lower. Nonetheless, we observed that wrist (skin and air) temperatures (Ta,w and Ts,w) better describe the224

thermal comfort sensation of individuals (Sec. 3.2) and therefore these parameters are used for further analyses.225

Further monitoring relative humidity at the wrist (RHw), we observe that for some participants, RHw reaches226
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saturation during the experiments (in both controlled and semi-controlled settings). Although this value may227

be higher than RH reported in other body parts due to the rubber wristband, we note that the onset of228

sweating in different individuals (a critical determinant for the physiological strain and acclimatization) is229

captured using the wearables which can be the subject for future research on personalized heat exposure.230

Figure 6: Left: Boxplots of observed skin temperature (1-min average) at five body areas (chest, thigh, calf, arm, and wrist)

compared with air temperature measurements (near-wrist and ambient). Right: Distribution of skin temperature at wrist

compared to mean body skin temperature for each individuals [41, 45]. Each ID represents a unique participant in the controlled-

environment experiment and the 1:1 relationship is represented by a dashed line.

We further compared the wrist-mounted heart rate data with highly accurate measurements obtained from231

chest strap sensors (Fig. 7 - left) as well as body core temperature obtained from telemetric capsules (Fig. 7232

- right). The comparison is in agreement with previous studies that deemed Fitbit satisfactory for heart rate233

monitoring [36]. We observed that 83% of heart rate data falls within the desired ±5 bpm accuracy level, with234

significantly smaller error observed for HR > 120 that is particularly of interest for heat strain assessments.235

Additionally, it is found that a significant majority of the error is attributed to two participants. After236

evaluating temperature measurements at the wrist for these participants (not shown), we find that this error237

has been introduced due to the way the smartwatches were worn during the experiment. This is particularly238

important for future deployments and motivates means to ensure that wearables are worn correctly. An239

example of such interventions can be a smartwatch function that monitors the wearable pressure on the wrist240

and triggers an alarm on the smartwatch in response.241

Lastly, we focused on non-invasive prediction of body core temperature (Tc) using physiological and environ-242

mental data by the wrist-mounted sensors. We observed that core temperature is positively correlated with243

heart rate data (Fig. 7), which is in close agreement with the reported role of metabolic rate on heat strain [46].244

However, given i) potential errors in heart rate monitoring using Fitbit watches (Fig. 7-left) and ii) moderate245

performance in Tc prediction when only heart rate data are used [47, 48], we revisited the core temperature246

predictions using sequential air and skin temperature at wrist (Ta,w and Ts,w). A Kalman filter (also known as247

linear quadratic estimation [49]) was employed to estimate core temperature (Tc) using the variables obtained248

from wearable sensors. The KF model (further explained in Appendix A) is used extensively for Tc estimation249

using non-invasive measurements, mainly heart rate [47, 50–52].250
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Figure 7: Left: Comparison of heart rate data (1-min average) obtained from Fitbit wearables (Fig. 2) with high-accuracy

chest strap sensors (Polar A300). The 1:1 relationship is represented by a dashed line. Right: Distribution of observed core

temperature as a function of heart rate. Each ID represents a unique participant in the controlled-environment experiment.

Figure 8: Left: schematic of various physiological and environmental parameters used to predict body core temperature, including

heart rate, wrist skin temperature (Ta,w) and wrist air temperature (Ts,w). Skin humidity (RHw) was also considered in the

prediction algorithm but did not increase the accuracy of results. Right: prediction of body core temperature (30-sec average)

for different genders (red: male, black: female) using a Kalman filter compared with measurements in the climate chamber.

Figure 8 shows the schematic of physiological measurements for the core temperature prediction, as well251

as the comparison between estimated and observed Tc data. Compared to using HR as the only indicator252

(R2 = 0.52, not shown), core temperature estimation is significantly improved when sequential skin and air253

temperature observations at wrist are used as input parameters (R2 = 0.81). Figure 9 shows the distribution254

of error and level of agreement with observations for predicted Tc. We find that 95% of the predicted core255
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temperature falls within 0.27◦C of the measured data, which is among the best performances observed in the256

literature [47, 48, 52]. The mean bias and mean absolute error (MAE) are 0.008 and 0.1 ◦C, respectively,257

with a maximum error of no more than 0.44◦C. For male participants, we observe that a prediction tends to258

underestimate Tc, which is due to lower core temperature during the experiment as the training data. Lastly,259

we observe that minimum of 12-13 participants are needed to train the prediction algorithm with percentage260

of target attainment rate of higher than 80% (when target set as 0.3◦C) and MAE lower than 0.25 ◦C. Overall,261

this analysis demonstrates the ability of wrist-mounted sensing for non-invasive prediction of core temperature262

and further inferring heat strain [47] and can be extended to include a larger sample size and testing with263

different population groups.264

Figure 9: Distribution of error for predicted core temperature using a Kalman filter and sequential observed data for heart rate,

air temperature, and skin temperature at wrist. Left: Bland–Altman plot of agreement between observed and predicted core

temperature. 95% confidence interval is met at the target temperature error of 0.27◦C. The dashed yellow line represents the

bias of prediction. Right: Normalized histogram of percentage error for all training data shown based on different gender.

3.2 Prediction and Impacts of Thermal Sensation Vote265

Comparing participants’ thermal sensation with local microclimate parameters (such as WBGT obtained266

from fixed monitoring stations) yielded similar results to findings of Yang et al. [53] and Heng and Chow [54],267

indicating a linear relationship between thermal comfort indices and aggregated thermal sensation vote. Here,268

we extend the analysis to compare thermal sensation and satisfaction votes, TSV and TCV respectively, with269

data obtained from wearable devices such as skin and air temperature at the wrist (Fig. 10). We observe that270

thermal sensation vote (Fig. 10 - right, ranging from “Very Cold” to “Very Hot”) exhibits a positive correlation271

with the air and skin temperature at wrist and a stronger correlation compared to ambient air temperature.272

For thermal comfort vote (Fig. 10 - left, ranging from “Extremely Satisfied” to “Extremely Dissatisfied”),273

the median and distribution of air temperature measured at the wrist exhibit the most significant correlation274

with thermal satisfaction, which indicates the ability of Ta,w for predicting comfort. Additionally, Fig. 10275

shows that as TSV moves towards hotter sensations or TCV moves to higher dissatisfaction, the difference276

between temperatures at the wrist and ambient air temperature decreases. This difference dominates the rate277

of sensible heat transfer from the skin, which is critically important for human comfort and satisfaction [55].278
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Figure 10: Boxplots of wrist skin temperature (red), wrist air temperature (green) and ambient air temperature (grey) cate-

gorized by Thermal Comfort Vote and Thermal Sensation Vote of participants. The boxplots are overlaid with scattered data

points in each vote category. Data points represent 726 responses collected from 62 participants over 15 sessions.

Next, to analyze and predict the respondents’ thermal sensation and comfort, we binned the data based on279

wrist air temperature (Ta,w) into 0.5 ◦C intervals [14] and calculated the mean TSV and TCV in each bin280

(Fig. 11). We observe that the correlation between heart rate and TSV is weak, but skin temperature and281

particularly air temperature at the wrist are linearly correlated with thermal sensation. Combining measured282

relative humidity with air temperature obtained at the wrist [56] improved the accuracy of thermal comfort283

prediction (yielding R2 = 0.74 - not shown) and TSV is predicted with MAE=0.3 for this dataset. However,284

although such prediction provides a valuable assessment of collective comfort sensation and can help to assess285

the impact of urban characteristics on collective dwellers’ comfort, the predictive ability of such regression286

models for individualized response remains at ∼ 35 − 40%, in line with a range of thermal comfort indices287

assessed in previous studies [57]. This further motivates the development of personal comfort models [58]288

based on long-term data collection and consideration of behavioral and subjective factors, which is a focus in289

future developments of Project Coolbit.290

To extend our assessment regarding the relationship between thermal sensation and satisfaction and the291

consequent impact on human life, we show the correlations between Thermal Comfort Vote, Thermal Sensation292

Vote, and Perceived Activity Vote (PAV) obtained in our experiments (Fig. 12). PAV is introduced here to293

assess the impact of the thermal environment on human activity and lifestyle, which is a critical factor indirectly294

contributing to heat-related health outcomes. For example, an uncomfortable thermal environment can result295

in less desire to perform physical activity, which further contributes to health challenges such as obesity, mental296

health, and high blood cholesterol and pressure level. Identifying such links between the thermal environment297

and activity level is, therefore, considered as one of the motivations and advantages of using activity-tracker298

wearables in this study. Assessing the perceived activity vote enables us to not only analyze and predict299

thermal comfort but also quantify the implications on health and wellbeing in the built environment.300

In Fig. 12 (left), we observe that for the climate of Singapore, TSV corresponding to ‘cool”, “Slightly Cool”,301
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Figure 11: Distribution of thermal sensation vote as a function of wearable data (binned based on wrist air temperature).

Pearson regression coefficient and errorbars (indicating the standard deviation of TSV for the binned data) are also presented for

each variable. The temperature-humidity index is adopted from Steadman [59] to combine air temperature and relative humidity

monitored at the wrist.

“Neutral” and “Slightly Warm” can lead to satisfaction of the thermal environment. This is in line with302

previous studies that demonstrated that a) “Neutral temperature” does not necessarily indicate thermal303

comfort and satisfaction [14] and b) Singapore residents tend to have a higher tolerance to colder indoor304

conditions, especially considering the high humidity level outdoors. More importantly, by comparing the305

Perceived Activity Vote with TSV (Fig. 12 - right), we find that the desire to do an activity is significantly306

affected by the thermal environment. Participants may be willing to do an extended activity in cold thermal307

sensations but a warm condition directly translated to shortened or lack of activity in our experiments.308

Moreover, using the binned data (Fig. 13), we can draw a direct connection between the air temperature309

at the wrist and perceived activity level: with increased Ta,w, the desire for physical activity is significantly310

reduced, reaching “Transition only” PAV level at 36◦C. This is the first quantification of thermal comfort311

impact on human activity and demonstrates the ability of this methodology to not only predict the overall312

thermal comfort, but further contribute to quantification of the indirect impact on health through the loss of313

activity and change in lifestyle.314
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Figure 12: Bar charts of thermal comfort votes (TCV) as varied by thermal sensation vote (TSV) and Perceived activity vote

(PAV). Results are obtained based on 720 responses of 62 participants in indoor/outdoor environments with a range of activities

and built environment characteristics. For PAV, participants are asked to rank the level of activity that they perceive suitable

based on the thermal environment. For example, ”Extended/intense” activity vote indicates that participants are comfortable

to perform intense activities or stay for an extended period in this thermal environment while ”No activity” indicates that

participants find this thermal condition extremely uncomfortable or unhealthy for any activity.

Figure 13: Distribution of perceived activity vote as a function of air temperature at wrist obtained from wearable sensors.

4 Conclusions and Future Work315

Heat exposure has a wide range of adverse effects on the human body and is considered a public health hazard316

[5, 60]. Additionally, thermal discomfort in urban spaces has been associated with loss in productivity, cognitive317

performance, and wellbeing of individuals [1]. However, despite decades of climatological, epidemiological, and318

physiological research on this topic, little is known about actual thermal conditions people experience as they319
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go about their daily lives [61]. The personalized and real-time assessment of urban heat exposure, which320

further provides comprehensive assessments of impacts on human life, is yet to be achieved.321

Such knowledge gaps and methodological limitations motivated the present study. Here, we proposed wearable322

sensing for human-centric heat exposure assessments, such that we connect humans with their immediate323

environment. We introduced an integrated personalized methodology, i.e. wearable weather stations, that324

in one wrist-mounted sensing unit can record environmental parameters, physiological responses, and human325

activities and feedback. We then addressed the feasibility of this methodology using two sets of experiments:326

1) controlled-environment experiments in a climate chamber focused on physiological responses and 2) semi-327

controlled experiments in the built environment focused on thermal comfort. The objectives were to answer328

two questions: 1) can this wearable sensing predict heat strain? and b) what information regarding thermal329

sensation can be derived using personalized monitoring?330

We demonstrated that body core temperature (Tc) can be predicted non-invasively with high accuracy: using331

data from 15 participants, Tc was predicted using heart rate, skin temperature, and air temperature at wrist332

(obtained from wearable devices) and 95% of predicted results fell within 0.27◦C of measurements obtained333

from telemetric capsules. This is among the best performances seen in the literature and presents the most334

viable option as smartwatches are easily worn and carried on the wrist at all times. However, it should be noted335

that due to the limited number of participants in this study (15 in total), it was not statistically meaningful to336

train the data using a segment of the sample size for testing and more importantly, a relatively homogeneous337

participant profile is considered here. Accordingly, it is critical that measurements and testings are extended338

to increase the number of participants with diverse profiles (such as age, gender, BMI, acclimatization status,339

fitness, and health conditions). We further plan to extend the measurements to higher Tc and HR ranges340

in collaboration With the NUS Department of Physiology and by studying healthy adults that can complete341

maximum physical activity tests in experimental settings.342

Using environmental and physiological data obtained from the watch, we were also able to predict the overall343

sensation of participant groups. However, when regression models are applied to individualized responses,344

only ∼ 35 − 40% of responses are accurately predicted which is similar to previous thermal comfort models345

[57]. This is due to the subjective nature of thermal comfort that includes individual preferences based on346

behavioral, cultural, and climatic backgrounds. To account for these, we aim to extend the data collection347

period and employ machine learning techniques that incorporate individualized behavioral patterns to train348

personal comfort models [58]. More importantly, we demonstrated that this methodology can quantify the349

indirect impact of heat on health through the change in physical activity level and lifestyle. To the best of350

our knowledge, this is the first study that quantified the impact of urban heat on activity level, which opens351

new doors for heat-health assessments. We plan to extend this study to quantify the impacts of more realistic352

thermal environments on perceived and actual activity levels of individuals.353

This study represents the first methodology to monitor personal heat exposure in a non-intrusive yet quanti-354

tative way, which enables us to better determine the links between climatic variables and human health and355

wellbeing, design effective mitigation and adaptation strategies, and prepare emergency responses to extreme356

conditions. Such knowledge can ultimately transform the way we understand and design for optimized ex-357

posure. However, we note the deployment of wearable sensors is done for a limited number of participants358

so far. To fully realize the impact of this methodology, the sensor array needs to be further developed and359
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extended in real-time and realistic conditions in the built environment, which presents a challenge regarding360

sensor cost and effective communication of data. Additionally, to translate this understanding to establishing361

climate-resilient cities, large scale deployments are needed to cover large spatial and temporal distributions in362

cities.363

Appendix A - Fundamentals of Kalman Filter used for Core Tem-364

perature Prediction365

The Kalman filter is known for its capability of estimating unknown variables from indirect measurements

that contain statistical noise and other inaccuracies. The KF model is comprised of a state-transition and an

observation model, and the noise allied to each model. All the KF parameters were learned from the dataset

gained in this study via linear regression. The state-transition model illustrates how the hidden variable TC,t

transferred from the previous time point status TC,t−1, which can be defined as:

TC,t = A× TC,t−1 + A0 + wt (1)

wt ∼ N(0, Qt) (2)

Where A and A0 are the weights learned by the linear regression of TC,t against TC,t−1 with the 15 seconds366

time step. w is the transition model noise with a zero mean normal Gaussian distribution with covariance Q.367

In this case, Q is the standard deviation of minute difference of Tc.368

The observation model was defined as a linear model of observed variables against the hidden variable TC,t.369

Here we used heart rate (HRt), skin temperature at wrist (Tsw,t), and air temperature at wrist (Taw,t) as370

inputs. The observation models of these two models can be represented as follows:371


HRt

Tsw,t

Taw,t

 = H × TC,t + H0 + vt (3)

vt ∼ N(0, Rt) (4)

Where H and H0 are the weight matrix learned by linear regression of Tc against HR , Tsw, and Taw. v372

is the observation model noise with a zero mean normal Gaussian distribution with covariance R. R is the373

covariance matrix of 15 second difference of HR, Tsw, and Taw.374

In our analysis, at each new 15 seconds time step (t), the KF provided a new estimate of TC,t and its error

variance PC,t based on the observed HRt, Tsw,t and Taw,t by iteratively calculating Eqs. 1 - 6. First, a

preliminary estimated TC,t was computed using Eqs. 1 - 2. The associated error variance was calculated as

Pt
T = A× Pt−1 ×AT + Qt (5)

where the initial Pt was set as 0 and the superscript T means the transposed matrix. The Kalman gain Kt

was then estimated by

Pt = Pt
THT (HPt

THT + Rt)
−1 (6)
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The final estimate of TC,t was calculated with the preliminary estimate (TC,t−1), the error between the observed

variables (HRt, Tsw,t, and Taw,t) and the estimated ones using the TC,t−1:

TC,t = TT
C,t + Kt(


HRt

Tsw,t

Taw,t

− (H × TT
C,t) + H0) (7)

Finally, the current core temperature estimate error variance is computed as

Pt = (1 −KtH)Pt
T . (8)
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