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A VERY EASY HIGH-ORDER WELL-BALANCED1

RECONSTRUCTION FOR HYPERBOLIC SYSTEMS WITH SOURCE2

TERMS∗3

CHRISTOPHE BERTHON † , SOLÈNE BULTEAU ‡ , FRANÇOISE FOUCHER∗§ , MEISSA4

M’BAYE∗¶, AND VICTOR MICHEL-DANSAC ‖5

Abstract. When adopting high-order finite-volume schemes based on MUSCL reconstruction6
techniques to approximate the weak solutions of hyperbolic systems with source terms, the preserva-7
tion of the steady states turns out to be very challenging. Indeed, the designed reconstruction must8
preserve the steady states under consideration in order to get the required well-balancedness prop-9
erty. A priori, to capture such a steady state, one needs to solve some strongly nonlinear equations.10
Here, in order to preserve the required well-balancedness property to be satisfied by finite volume11
methods, we design a very easy correction. This correction can be applied to any scheme of order12
greater than or equal to 2, such as a MUSCL-type scheme, and ensures that this scheme exactly13
preserves the steady solutions. The main discrepancy with usual techniques lies in never having to14
invert the nonlinear function governing the steady solutions. Moreover, for under-determined steady15
solutions, several nonlinear functions must be considered simultaneously. Since the derived correc-16
tion only considers the evaluation of the governing nonlinear functions, we are able to deal with17
under-determined stationary systems. Several numerical experiments illustrate the relevance of the18
proposed well-balanced correction.19

Key words. Hyperbolic conservation laws, Balance laws, Well-balanced schemes, High-order20
reconstruction techniques21

AMS subject classifications. 65M08, 65M1222

1. Introduction.23

1.1. General framework. The present work is devoted to the numerical ap-24

proximation of the weak solutions of an evolution law of the form25

(1.1) ∂tw + ∂xf(w) = S(w, x), x ∈ R, t > 0,26

where w : R × R+ → Ω ⊂ RN denotes the unknown vector. The set Ω stands for27

the set of the admissible states and it is assumed to be convex. The flux function28

f : Ω→ Rn and the source term S : Ω×R→ RN are assumed to be smooth enough,29

say C1. For stability reasons, in the present work, the matrix ∇wf(w) is assumed30

to be diagonalizable in R so that the homogeneous system extracted from (1.1) is31

hyperbolic. The PDE system (1.1) is endowed with initial data w(x, t = 0) = w0(x),32

where w0(x) ∈ Ω for all x ∈ R is a given function.33

Because of the source term S(w, x), there exists non-trivial steady solutions gov-34
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erned by35

(1.2)

{
∂xf(w) = S(w, x),

w(x0) = w0,
36

where w0 is a given state in Ω and x0 a given point in R.37

Now, if the above system can be integrated, there exists G : Ω × R → RN such38

that the stationary solutions are governed by39 {
∂xG(w, x) = 0,

w(x0) = w0.
40

In fact, it is not always possible to integrate (1.2). Even then, G is not necessarily41

unique and, in general, it must be restricted according to some invariant domains.42

Usually, the steady solutions are restricted to some particular definition of G. Then,43

we have to deal with a sequence (G`)1≤`≤L with L < +∞ given.44

Equipped with these comments, in this work, we only consider steady solutions45

defined by46

(1.3)

{
∂xG`(w, x) = 0, 1 ≤ ` ≤ L,
w(x0) = Πeq

` (w0),
47

where we have denoted by Πeq(w) the projection of w over the invariant domain under48

consideration.49

1.2. Illustrating models. In order to illustrate the relevance of such a defini-50

tion of the steady states, let us present some examples of particular interest. First,51

let us adopt the well-known shallow water model given by52

(1.4) w =

(
h

q

)
, f(w) =

 q

q2

h
+ g

h2

2

 , S(w, x) =

(
0

−gh∂xz

)
,53

where g > 0 is the gravity constant, z(x) the given smooth topography function, h54

is the water height and q is the water discharge. The smooth steady solutions (see55

[4, 11, 25]) are given by56

(1.5)


∂xq = 0,

∂x

(
q2

2h2
+ g(h+ z)

)
= 0,

57

with w(x0) = w0 for a given w0 in Ω, where the set Ω of admissible states is defined58

as follows:59

(1.6) Ω =
{
t(h, q) ∈ R2; h ≥ 0, q ∈ R

}
.60

As a consequence, we immediately obtain61

(1.7) G(w, x) =

 q

q2

2h2
+ g(h+ z)

 and Πeq(w) = w.62
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A VERY EASY HIGH-ORDER WELL-BALANCED RECONSTRUCTION 3

Now, let us restrict the definition of the steady states just considering the usual63

lake at rest given by q = 0 and ∂x(h+ z) = 0, then we easily get64

(1.8) G(w, x) =

(
0

h+ z

)
and Πeq(w) =

(
h

0

)
.65

The second example we present is given by the shallow water equations with a66

Manning friction source term (see [36, 34, 18]). This model reads67

(1.9) w =

(
h

q

)
, f(w) =

 q

q2

h
+ g

h2

2

 , S(w, x) =

 0

−κq|q|
hη

 ,68

where κ > 0 is the friction coefficient and η 6= 1 is the Manning exponent. The set of69

the admissible states is given by (1.6). After [36], the stationary solutions are given70

as follows:71 
∂xq = 0,

∂x

(
−q2 h

η−1

η − 1
+ g

hη+2

η + 2
+ κxq|q|

)
= 0,

72

with w(x0) = w0 for a given w0 ∈ Ω, so that we immediately obtain73

(1.10) G(w, x) =

 q

−q2 h
η−1

η − 1
+ g

hη+2

η + 2
+ κxq|q|

 and Πeq(w) = w.74

Next, we present a system involving a non-unique definition of G, the Euler model75

with gravity (see [19, 45]). This model reads as follows:76

(1.11) w =

ρ

q

E

 , f(w) =


q

q2

ρ
+ p

(E + p)
q

ρ

 , S(w, x) =

 0

−ρ∂xϕ
−q∂xϕ

 ,77

where ϕ : R→ R stands for a given smooth gravitational potential and p := p(ρ,E −78

1
2
q2

ρ ) denotes the pressure law, with E the total energy. The set of admissible states79

is defined here by80

Ω =

{
t(ρ, q, E) ∈ R3; ρ > 0, q ∈ R, E − 1

2

q2

ρ
> 0

}
.81

Concerning the steady solutions, we are concerned by steady solutions at rest governed82

by (see [19, 45])83

{
q = 0,

∂xp+ ρ∂xϕ = 0,
with w(x0) =

ρ0

0

E0

 .84

Once again, the system to govern the steady state solutions turns out to be under-85

determined and we have to focus on particular families of steady solutions. According86
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to [19, 45], three families of steady states are of prime importance. The first family87

is given by88 
q = 0,

∂xρ = 0,

∂x(p+ ρϕ) = 0,

with w(x0) =

ρ0

0

E0

 ,89

for all ρ0 > 0 and E0 > 0.90

In order to define both second and third families of steady states, we have to91

impose that the function E 7→ p(ρ,E) is invertible and we denote by p−1
E (ρ, .) this92

inverse function so that p−1
E (ρ, p(ρ,E)) = E. Now, the second steady state family93

reads94 
q = 0,

∂x(p− κρ) = 0,

∂x(ϕ+ κlnρ) = 0,

with w(x0) =

 ρ0

0

p−1
E (ρ0, κρ0)

 ,95

where κ > 0 is a given parameter. The last steady state family is defined by96

(1.12)


q = 0,

∂x(p− κργ) = 0,

∂x

(
κγ

γ − 1
ργ−1 + ϕ

)
= 0,

with w(x0) =

 ρ0

0
p−1
E (ρ0, κρ

γ
0)

 ,97

where γ > 1 is a given parameter.98

As a consequence, we get99

(1.13)

G1(w, x) =

 q

ρ

p+ ρϕ

 , G2(w, x) =

 q

p− κρ
ϕ+ κlnρ

 , G3(w, x) =


q

p− κργ
κγ

γ − 1
ργ−1 + ϕ

 ,100

with101

(1.14)

Πeq
1 (w) =

ρ

0

E

 , Πeq
2 (w) =

 ρ

0

p−1
E (ρ, κρ)

 and Πeq
3 (w) =

 ρ

0

p−1
E (ρ, κργ)

 .102

1.3. Main motivations. Now, considering the derivation of numerical schemes103

approximating the solutions of (1.1) and able to accurately, or even exactly, capture104

the steady solutions defined by (1.3) has been an important challenge during the two105

last decades. Numerous techniques have been designed for the shallow water model106

with topography (1.4) supplemented by the lake at rest (1.8). For a non-exhaustive107

bibliography, the reader is referred to [2, 11, 4, 9, 32, 38, 22, 16, 13, 17, 8]. More108

recently, in [5, 6, 36, 35, 37, 42, 44, 25], extensions are given in order to deal with109

moving steady states given by (1.7). In [36, 28, 12], the Manning-type friction source110

term is adopted and suitable discretizations are introduced to capture steady states111

given by (1.10). Regarding the discretization of the Euler model with gravity (1.11),112

the reader is referred to [19, 3, 14, 29, 31, 33, 43, 45, 15] where numerical strategies113

This manuscript is for review purposes only.



A VERY EASY HIGH-ORDER WELL-BALANCED RECONSTRUCTION 5

are developed to capture steady states according to the pairs (G`,Π
eq
` ) defined by114

(1.13) – (1.14).115

In the present work, we are not interested in the derivation of well-balanced116

schemes, namely schemes able to capture steady solutions given by (1.3). Here, our117

purpose concerns the high-order extensions obtained by involving a polynomial re-118

construction procedure. Indeed, as soon as the well-balancedness property must be119

preserved, the reconstruction may involve strong difficulties. In particular, to be well-120

balanced, the usual reconstruction approaches need to invert G`(w, x) with respect121

to w for one given ` as long as the function w 7→ G`(w, x) is invertible. We im-122

mediately understand that dealing simultaneously with distinct functions G`(w, x)123

does not seem reachable. Moreover, imposing that the application w 7→ G`(w, x) is124

invertible is a strong assumption, not satisfied in general by physical models.125

In this work, we present a very easy strategy to force any reconstruction proce-126

dure to preserve the steady solutions given by (1.3) just evaluating the applications127

G`(w, x) according to the projection Πeq
` (w). To address such an issue, the present128

work is organized as follows. In order to set the framework and the main notations,129

in section 2 we introduce the numerical schemes and the usual MUSCL second-order130

strategy [41, 30, 40]. In addition, we present the main issues when enforcing the poly-131

nomial reconstruction to be well-balanced. Section 3 is then devoted to the strategy132

designed here, which ensures that the expected well-balancedness property is satisfied133

by any reconstruction. The proposed improvement comes from a suitable evaluation134

of the pairs (G`,Π
eq
` )1≤`≤L; G` is never inverted. In section 4, we present a high-order135

well-balanced extension. To conclude the paper, section 5 is devoted to several numer-136

ical experiments to illustrate the relevance of the designed high-order reconstruction137

improvement.138

2. Issues of the well-balanced second-order MUSCL schemes. To ap-139

proximate the solutions of (1.1), the space is discretized by introducing a sequence140

of cells (xi− 1
2
, xi+ 1

2
), for all i ∈ Z, with a constant size ∆x. We denote by xi =141

(xi− 1
2

+ xi+ 1
2
)/2 the center of each cell. We set tn+1 = tn + ∆t to discretize the142

time domain with a time step ∆t. In general, ∆t is restricted according to a CFL143

condition.144

At time tn, we denote by wni a constant approximation of the solution of (1.1)145

over the cell (xi− 1
2
, xi+ 1

2
). To evolve this approximation in time, we adopt a finite146

volume scheme of the form147

(2.1) wn+1
i = wni −

∆t

∆x

(
fni+ 1

2
− fni− 1

2

)
+

∆x

2

(
Sni− 1

2
+ Sni+ 1

2

)
,148

where we have set149

fni+ 1
2

= f∆(wni , w
n
i+1) and Sni+ 1

2
= S∆(wni , w

n
i+1, xi, xi+1,∆x).150

In order to get a consistent scheme, the numerical flux function f∆ and the discrete151

source term S∆ are assumed to be Lipschitz-continuous and to verify152

(2.2) f∆(w,w) = f(w) and S∆(w,w, x, x, 0) = S(w, x).153

At this level, the reader is referred to the large literature devoted to the derivation154

of a well-balanced scheme according to the system of interest. Here, we have imposed155

the well-balancedness property according to the definition (1.3) of the steady states.156

As a consequence, we get wn+1
i = wni as long as, for all i in Z, we have157

(2.3) G`(w
n
i , xi) = G`(w

n
i+1, xi+1) and wni = Πeq

` (wni ) with 1 ≤ ` ≤ L.158
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Now, we focus on a second-order extension, see for instance [40, 41, 7]. To address159

such an issue, we have to introduce suitable reconstructed states, denoted by w±
i+ 1

2

,160

on each side of the interface xi+ 1
2
. This reconstruction is said to be second-order161

accurate in space if, for all i ∈ Z, we have162

(2.4) w−
i+ 1

2

= w(xi+ 1
2
, tn) +O(∆x2) and w+

i+ 1
2

= w(xi+ 1
2
, tn) +O(∆x2),163

for some smooth function x 7→ w(x, tn) such that wni = 1
∆x

∫ x
i+1

2
x
i− 1

2

w(x, tn)dx.164

Equipped with this second-order reconstruction, from the first-order scheme (2.1),165

we define a second-order scheme as follows:166

(2.5) wn+1
i = wni −

∆t

∆x

(
f±
i+ 1

2

− f±
i− 1

2

)
+ ∆tS±i ,167

where we have set f±
i+ 1

2

= f∆(w−
i+ 1

2

, w+
i+ 1

2

), and where S±i is a second-order approxi-168

mation of the source term average, i.e.169

(2.6) S±i =
1

∆x

∫ x
i+1

2

x
i− 1

2

S(w(x, tn), x) dx+O(∆x2).170

A classical choice for such second-order accurate schemes is to use the second-order171

midpoint approximation:172

(2.7) S±i = S

(
1

2

(
w+
i− 1

2

+ w−
i+ 1

2

)
, xi

)
.173

It is clear that second-order accuracy is achieved as soon as the reconstructed174

states are defined. At the interface xi+ 1
2
, the reconstructed states read (for instance,175

see [7, 40, 41])176

(2.8)
w−
i+ 1

2

= wni +
1

2
L(wni − wni−1, w

n
i+1 − wni ),

w+
i+ 1

2

= wni+1 −
1

2
L(wni+1 − wni , wni+2 − wni+1),

177

where L : RN × RN → RN are Lipschitz-continuous functions, which satisfy178

L(w,w) = w for all w ∈ RN ,179

∃M > 0 such that ‖L(wL, wR)‖ ≤M max(‖wL‖, ‖wR‖), ∀ wL, wR ∈ RN .180181

A large body of literature is devoted to introduce suitable definition of L (for instance,182

see [30] and references therein).183

Now, by adopting (2.8), the steady states are, in general, not preserved by such a184

reconstruction. Indeed, in order to recover the expected well-balancedness property,185

we require186

(2.9) w−
i+ 1

2

= wni and w+
i+ 1

2

= wni+1 for all i ∈ Z,187

as soon as (wni )i∈Z defines a steady state according to (2.3). Except for linear steady188

states, the steady condition (2.9) is lost. As a consequence, a particular attention189

must be paid on the definition of L to preserves the steady states.190
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A VERY EASY HIGH-ORDER WELL-BALANCED RECONSTRUCTION 7

Currently, the reconstruction on G` instead of w is preferred (see [2, 24]). For a191

fixed `, denoted by `?, we perform the reconstruction as follows:192

G−
i+ 1

2

= G`?(wni , xi)

+
1

2
L
(
G`?(wni , xi)−G`?(wni−1, xi−1), G`?(wni+1, xi+1)−G`?(wni , xi)

)
,

G+
i+ 1

2

= G`?(wni+1, xi+1)

− 1

2
L
(
G`?(wni+1, xi+1)−G`?(wni , xi), G`?(wni+2, xi+2)−G`?(wni+1, xi+1)

)
,

193

The reconstructed states w±
i+ 1

2

at the interface xi+ 1
2

are then defined by194

(2.10)

G`?(w−
i+ 1

2

, xi+ 1
2
) = G−

i+ 1
2

,

G`?(w+
i+ 1

2

, xi+ 1
2
) = G+

i+ 1
2

.
195

We immediately remark that (2.9) holds as soon as (wni )i∈Z defines a steady state196

for G`? according to (2.3). However, the function w 7→ G`?(w, x) must be inverted.197

Such a procedure may be very costly, or even impossible to carry out if G`?(., x) is198

not invertible.199

In fact, in the simpler situation of the lake at rest for the shallow water equation,200

where G is given by (1.8), we have to solve a linear 2 × 2 system. But for a moving201

steady state, i.e. with G defined by (1.7), the uniqueness of the reconstructed states202

w±
i+ 1

2

is no longer ensured. Next, considering (1.10), neither the existence nor the203

uniqueness of w±
i+ 1

2

is ensured.204

Moreover, adopting such a procedure needs to fix `. As a consequence, it is205

not possible to deal with steady states governed by several families G`(w, x) with206

1 ≤ ` ≤ L for L ≥ 2. Such a restriction arises for instance for the Euler equations207

with gravity, where we consider three steady state families.208

To summarize the failure of the usual well-balanced reconstruction technique, the209

reconstructed states, solution of (2.10), may not exist or not be unique. Moreover,210

since we have to solve a nonlinear system, the evaluation of the reconstructed states211

turns out to be computationally expensive. In addition, such a reconstruction tech-212

nique preserves only one steady state family while some systems involve several steady213

state families.214

3. A very easy well-balanced MUSCL reconstruction. The objective is215

now to derive a reconstruction technique able to preserve the steady states but never216

involving an inversion of G`. To address such an issue, we suggest to improve the217

usual reconstruction (2.8) as follows:218

(3.1)
w̃−
i+ 1

2

= wni +
1

2
θni+ 1

2
L(wni − wni−1, w

n
i+1 − wni ),

w̃+
i+ 1

2

= wni+1 −
1

2
θni+ 1

2
L(wni+1 − wni , wni+2 − wni+1),

219

where the correction θn
i+ 1

2

must be an approximation of 1 at least with second-order220

of accuracy which vanishes for pairs (wni , w
n
i+1) satisfying (2.3). We propose the221
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following formulation of θn
i+ 1

2

:222

θni+ 1
2

=
εn
i+ 1

2

εn
i+ 1

2

+

(
∆x

Cn
i+ 1

2

)k , with(3.2)223

εni+ 1
2

=

L∏
`=1

(
‖G`(wni+1, xi+1)−G`(wni , xi)‖

+ ‖wni+1 −Πeq
` (wni+1)‖+ ‖wni −Πeq

` (wni )‖
)
,

(3.3)224

225

where k ≥ 2 must be selected and where Cn
i+ 1

2

6= 0 is any expression independent from226

∆x. We shall suggest an expression of Cn
i+ 1

2

in the numerical experiments. From now227

on, it is worth noting that εn
i+ 1

2

= 0 if and only if the pair (wni , w
n
i+1) defines a local228

steady state, according to (2.3), at the interface xi+ 1
2
.229

Concerning the source term discretization, we adopt the following definition:230

(3.4) S̃±i =
1

2

((
1− θni− 1

2

)
Sni− 1

2
+
(

1− θni+ 1
2

)
Sni+ 1

2

)
+

1

2

(
θni− 1

2
+ θni+ 1

2

)
S±i ,231

where S±i is given by (2.7) and where Sn
i± 1

2

comes from the first-order discretiza-232

tion (2.1). As a consequence, the second-order MUSCL scheme now reads233

(3.5) wn+1
i = wni −

∆t

∆x

(
f±
i+ 1

2

− f±
i− 1

2

)
+ ∆tS̃±i ,234

where we have set235

(3.6) f±
i+ 1

2

= f∆(w̃−
i+ 1

2

, w̃+
i+ 1

2

).236

Before we establish the main properties satisfied by the second-order MUSCL237

scheme (3.5) – (3.6) with the reconstructed states (3.1) and the source term dis-238

cretization (3.4), let us recall the definition of the order of accuracy that is adopted239

here (for instance, see [11]).240

Definition 3.1. For some smooth solution w(x, t) of (1.1), let us consider241

(3.7) wni =
1

∆x

∫ x
i+1

2

x
i− 1

2

w(x, tn) dx.242

Define wn+1
i by (2.5). The scheme (2.5) is said of order τ in time and δ in space if,243

for all i in Z, we have244

(3.8) wn+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

w(x, tn + ∆t) dx− ∆t

∆x

(
Fi+ 1

2
−Fi− 1

2

)
+ ∆tSi,245

where Fi+ 1
2

= O(∆tτ ) +O(∆xδ) and Si = O(∆tτ ) +O(∆xδ).246

Now, arguing the above definition of the order of accuracy, the improved reconstruc-247

tion technique based on θi+ 1
2

is established to yield a second-order accurate and248

well-balanced scheme.249
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Theorem 3.2. The scheme (3.5) – (3.6), with reconstructed states given by (3.1)250

and a source term discretization given by (3.4), satisfies the following properties:251

(i) it is second-order accurate in space for unsteady solutions;252

(ii) it is well-balanced, i.e. it exactly preserves steady solutions: if (wni )i∈Z defines253

a steady state according to (2.3), then wn+1
i = wni for all i in Z;254

(iii) it is robust, i.e. if the original reconstruction (2.8) preserves Ω, then Ω re-255

mains invariant by the improved reconstruction (3.1).256

Proof. We establish properties (i), (ii) and (iii) in order.257

(i) To establish the order of accuracy, let us consider w(x, t) a smooth unsteady258

solution of (1.1). By integration of (1.1) over (xi− 1
2
, xi+ 1

2
) × (tn, tn + ∆t),259

we get260

(3.9)
1

∆x

∫ x
i+1

2

x
i− 1

2

w(x, tn + ∆t) dx− 1

∆x

∫ x
i+1

2

x
i− 1

2

w(x, tn) dx

+
∆t

∆x

(
1

∆t

∫ tn+∆t

tn
f
(
w(xi+ 1

2
, t)
)
dt− 1

∆t

∫ tn+∆t

tn
f
(
w(xi− 1

2
, t)
)
dt

)

= ∆t
1

∆t∆x

∫ tn+∆t

tn

∫ x
i+1

2

x
i− 1

2

S(w(x, t), x) dx dt.

261

With (wni )i∈Z given by (3.7) and (wn+1
i )i∈Z given by (3.5) – (3.6), a straight-262

forward computation gives the expected relation (3.8), where we have set263

Fi+ 1
2

= f±
i+ 1

2

− 1

∆t

∫ ∆t

0

f
(
w(xi+ 1

2
, tn + t)

)
dt,264

Si = S̃±i −
1

∆t∆x

∫ ∆t

0

∫ x
i+1

2

x
i− 1

2

S(w(x, tn + t), x) dx dt,265

266

where f±
i+ 1

2

and S̃±i are respectively given by (3.6) and (3.4).267

We first treat the approximation of the flux function. By definition of θn
i+ 1

2

,268

given by (3.2), as long as εn
i+ 1

2

does not vanish, we have θn
i+ 1

2

= 1 +O(∆xk).269

As a consequence, in the current unsteady context, we get270

w̃−
i+ 1

2

= w−
i+ 1

2

+O(∆xk) and w̃+
i+ 1

2

= w+
i+ 1

2

+O(∆xk),271

where w±
i+ 1

2

are given by (2.8), and with k ≥ 2. Since (2.4) holds for the272

second-order polynomial reconstruction, we immediately obtain273

w̃−
i+ 1

2

= w(xi+ 1
2
, tn) +O(∆x2) and w̃+

i+ 1
2

= w(xi+ 1
2
, tn) +O(∆x2).274

Assuming a Lipschitz-continuous numerical flux function such that the con-275

sistency condition (2.2) holds, we have276

f±
i+ 1

2

= f(w(xi+ 1
2
, tn)) +O(∆x2),277

and we get Fi+ 1
2

= O(∆t) +O(∆x2).278
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Next, we study the accuracy of the source term discretization. By definition279

of the source term reconstruction (3.4), we have280

S̃±i = S±i +O(∆x2),281

and arguing (2.6) immediately yields Si = O(∆x2) +O(∆t).282

Arguing Definition 3.1, the second-order space accuracy is thus established.283

(ii) Concerning the preservation of the steady states, as soon as (wni )i∈Z sat-284

isfy (2.3), we easily get εn
i+ 1

2

= 0 for all i in Z. As a consequence, we285

have θn
i+ 1

2

= 0, which leads to286

w̃−
i+ 1

2

= wni and w̃+
i+ 1

2

= wni+1,287

while S̃±i = 1
2 (Sn

i− 1
2

+Sn
i+ 1

2

). Put in other words, the reconstruction vanishes288

for steady states. Then, the original well-balanced first-order scheme (2.1) is289

recovered and the steady states are preserved.290

(iii) We finally turn to the robustness of the improved reconstructed states w̃±
i+ 1

2

.291

We remark that292

w̃−
i+ 1

2

= (1− θni+ 1
2
)wni + θni+ 1

2
w−
i+ 1

2

and w̃+
i+ 1

2

= (1− θni+ 1
2
)wni+1 + θni+ 1

2
w+
i+ 1

2

,293

where θn
i+ 1

2

, defined by (3.2), belongs to [0, 1], and where w±
i+ 1

2

are given by294

the initial reconstruction (2.8). Since the states wni , wni+1 and w±
i+ 1

2

belong to295

Ω, the states w̃±
i+ 1

2

turn out to be convex combinations of states in Ω. With296

Ω a convex set, we immediately deduce that w̃±
i+ 1

2

are in Ω.297

The proof is thus completed.298

To conclude this section, we emphasize that we have designed a well-balanced299

reconstruction procedure by only evaluating (G`(w
n
i , xi))1≤`≤L and never solving some300

nonlinear equations. Moreover, the introduced procedure simultaneously deals with301

all the involved families of steady states and it is not necessary to give more importance302

to one than to another.303

4. Well-balanced high-order extension. The above well-balanced improve-304

ment for the second-order MUSCL scheme is easily extended to yield a well-balanced305

and high-order accurate scheme. To address such an issue, let us first introduce a306

high-order reconstruction according to existing works, see for instance [20, 21]. With307

w(x, t) a given smooth function, we define wni by adopting (3.7). Now, we consider308

the following polynomial reconstruction of degree d in space:309

(4.1) pnw(x; i) = wni + πwi (x− xi),310

where πwi is a polynomial function of degree d such that, for all x ∈ (xi− 1
2
, xi+ 1

2
), we311

have312

(4.2) pnw(x; i) = w(x, tn) +O(∆xd+1) and
1

∆x

∫ x
i+1

2

x
i− 1

2

pnw(x; i) dx = wni .313

Equipped with this reconstruction of degree d, a scheme of space order δ = d + 1 is314

derived. The reader is referred to [20, 21] where such reconstruction techniques are315

derived.316
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From this high-order reconstruction, we now give the associated high-order well-317

balanced scheme to approximate the weak solutions of (1.1) as follows:318

(4.3) wn+1
i = wni −

∆t

∆x

(
f±
i+ 1

2

− f±
i− 1

2

)
+ ∆tS̄±i ,319

with the numerical flux function given by (3.6), with320

(4.4) w−
i+ 1

2

= (p̃nw)+
i and w+

i+ 1
2

= (p̃nw)−i+1,321

where (p̃nw)+
i is the following well-balanced modification of the high-order polynomial322

reconstruction (4.1) evaluated at the interface point xi± 1
2
:323

(4.5) (p̃nw)±i = wni + θni± 1
2
πwi

(
±∆x

2

)
,324

with θn
i+ 1

2

defined by (3.2) – (3.3). In (3.2), the parameter k must be fixed larger325

than δ = d + 1 in order to preserve the order δ of the polynomial reconstruction.326

Concerning the source term approximation, we start with an approximation of order δ327

of the source term average, as follows:328

(4.6) S±i =
1

∆x

∫ x
i+1

2

x
i− 1

2

S(w(x, tn), x) dx+O(∆xδ).329

In practice, this approximation is nothing but a quadrature formula of order δ, see330

for instance [1]. We then adopt the following well-balanced modification of this ap-331

proximation:332

(4.7) S̄±i =
1

2

((
1− θni− 1

2

)
Sni− 1

2
+
(

1− θni+ 1
2

)
Sni+ 1

2

)
+

1

2

(
θni− 1

2
+ θni+ 1

2

)
S±i .333

At this level, it is worth noting that the δ-order numerical scheme designed here334

is obtained arguing a very easy modification (4.5) and (4.7) of any polynomial recon-335

struction (4.1) of degree d and any source term integration (4.6) of order δ. However,336

this minor correction ensures that the scheme is well-balanced, is of order δ in space,337

and preserves the set of admissible states as soon as the original high-order scheme338

does.339

Theorem 4.1. The scheme (4.3), with the reconstructed states given by (4.4) and340

the source term approximation (4.7), satisfies the following properties:341

(i) it is of order δ = d+ 1 in space for unsteady solutions;342

(ii) it is well-balanced, i.e. it exactly preserves steady solutions: wn+1
i = wni for343

all i ∈ Z if (wni )i∈Z define a steady state according to (2.3);344

(iii) it is robust, i.e. if the original reconstruction (4.1) of degree d preserves Ω,345

then Ω remains invariant by the well-balanced improvement of the reconstruc-346

tion (4.5).347

Proof. We establish properties (i), (ii) and (iii) in order.348

(i) We first establish the order of accuracy, as defined in Definition 3.1. To ad-349

dress such an issue, we consider w(x, t) a smooth unsteady solution of (1.1) so350

that the relation (3.9) holds. Next, with (wni )i∈Z given by (3.7) and (wn+1
i )i∈Z351
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12 C. BERTHON, S. BULTEAU, F. FOUCHER, M. M’BAYE AND V. MICHEL-DANSAC

given by the high-order scheme (4.3), the relation (3.8) holds for352

Fi+ 1
2

= f±
i+ 1

2

− 1

∆t

∫ ∆t

0

f(w(xi+ 1
2
, tn + t)) dt,353

Si = S̄±i −
1

∆t∆x

∫ ∆t

0

∫ x
i+1

2

x
i− 1

2

S(w(x, tn + t), x) dx dt,354

355

where S̄±i is defined by (4.7) and f±
i+ 1

2

by (3.6), with the high-order recon-356

structed states w±
i+ 1

2

given by (4.4).357

Next, we establish the order of accuracy associated with the numerical flux358

function. First, because of the definition (3.2) of θn
i+ 1

2

, as long as εn
i+ 1

2

does359

not vanish, a Taylor expansion yields360

θni+ 1
2

= 1 +O(∆xk), with k ≥ δ = d+ 1.361

As a consequence, in the current unsteady context, by definition of the poly-362

nomial reconstruction according to (4.2), we obtain363

w±
i+ 1

2

= w(xi+ 1
2
, tn) +O(∆xδ).364

Next, from (2.2), we know that the numerical flux function is Lipschitz-365

continuous and consistent. Therefore,366

f∆(w−
i+ 1

2

, w+
i+ 1

2

) = f(w(xi+ 1
2
, tn)) +O(∆xδ),367

and we get Fi+ 1
2

= O(∆t) +O(∆xδ).368

Concerning the order of accuracy of the source term, since (4.7) reduces to369

S̄±i = S±i +O(∆xδ), arguing (4.6) yields370

(4.8) S̄±i =
1

∆x

∫ x
i+1

2

x
i− 1

2

S(w(x, tn), x) dx+O(∆xδ).371

Plugging (4.8) into the definition of Si, we get Si = O(∆t) +O(∆xδ).372

The establishment of the order of accuracy is thus completed.373

(ii) For the proof of the well-balancedness property, let us consider (wni )i∈Z to374

define a steady state according to (2.3). By definition of the correction,375

given by (3.2) – (3.3), we easily obtain θn
i+ 1

2

= 0 for all i in Z so that the376

reconstructed states now read377

w−
i+ 1

2

= wni and w+
i+ 1

2

= wni+1.378

Similarly, regarding the source term reconstruction given by (4.7), we now379

have S̄±i = 1
2 (Sn

i− 1
2

+ Sn
i+ 1

2

). As a consequence, the high-order scheme (4.3)380

coincides with the first-order well-balanced scheme (2.1), and the preservation381

of the steady states immediately follows.382

(iii) To conclude the proof, we now establish that the improvement (4.5) preserves383

the convex set Ω as long as the original polynomial reconstruction (4.1) pre-384

serves Ω. Indeed, we have385

(p̃nw)±i =
(

1− θni± 1
2

)
wni + θni± 1

2
pnw

(
x± ∆x

2
; i

)
.386
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A VERY EASY HIGH-ORDER WELL-BALANCED RECONSTRUCTION 13

Since pnw(x; i) ∈ Ω for all x ∈ (xi− 1
2
, xi+ 1

2
), wni ∈ Ω and θni ∈ [0, 1], we387

immediately get (p̃nw)±i ∈ Ω.388

The proof is thus completed.389

5. Numerical experiments. To assess the performance of the scheme devel-390

oped above, we now perform several numerical experiments. First, we describe in391

subsection 5.1 the setup used to assess both the order of accuracy and the well-392

balancedness property of the schemes under consideration. Then, we apply the high-393

order well-balanced strategy to several systems, namely the shallow water equations394

with topography (1.4) in subsection 5.2, the shallow water equations with friction395

(1.9) in subsection 5.3, and the Euler equations with gravity (1.11) in subsection 5.4.396

5.1. Setup. To justify the relevance of the procedure outlined in Sections 3397

and 4, we wish to compare the results of a given first-order well-balanced scheme to398

the ones produced by its second-order and high-order extensions, with and without399

the well-balancedness correction. For the sake of simplicity, we introduce the following400

notations:401

• the Pd scheme is the scheme of order d + 1 without the well-balancedness402

correction,403

• the PWB
d scheme is the scheme of order d + 1 with the well-balancedness404

correction.405

Note that the P0 and PWB
0 schemes are identical. Furthermore, note that forcing406

θ = 1 on the whole space-time domain in the PWB
d scheme is enough to yield the Pd407

scheme. In this paper, we consider high-order schemes up to a third-order accurate408

P2 scheme. This is enough to justify both the high-order accuracy and the steady409

state preservation.410

To use the Pd scheme, we need to define three elements: the polynomial recon-411

struction from (4.1), the approximation of the source term average from (4.6), and412

the time integration. These elements are summarized in Table 1.413

Table 1
Polynomial reconstruction from (4.1), source term average from (4.6), and time integrator for

the P1 and P2 schemes.

polynomial reconstruction source term average time integration

P1 scheme MUSCL [41] midpoint method SSPRK2 [26, 27]
P2 scheme third-order [39] Simpson’s method SSPRK3 [26, 27]

Moreover, recall that the PWB
d scheme is defined up to the choice of Cn

i+ 1
2

in the414

definition (3.2) of θn
i+ 1

2

. Heuristically, a good choice uses the numerical time derivative415

of the solution. Let us define, for n ≥ 1,416

Cni+ 1
2

= Cθ
1

2

(
‖Wn

i+1‖ − ‖W
n−1
i+1 ‖

∆t
+
‖Wn

i ‖ − ‖W
n−1
i ‖

∆t

)
,417

with Cθ a constant parameter, which can be interpreted as a normalization of the time418

derivative. The choice of Cθ depends on the numerical experiment under consideration419

(unless otherwise mentioned, we take Cθ = 1). We also take C0
i+ 1

2

= 1. Note that,420
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equipped with this definition of Cn
i+ 1

2

, the expression (3.2) of θn
i+ 1

2

reads:421

θni+ 1
2

=
εn
i+ 1

2

(Cn
i+ 1

2

)k

εn
i+ 1

2

(Cn
i+ 1

2

)k + (∆x
Cθ

)k
.422

Therefore, we get θn
i+ 1

2

= 0 if εn
i+ 1

2

= 0 or if Cn
i+ 1

2

= 0. This is justified in each case,423

as follows.424

• If εn
i+ 1

2

= 0, then a steady solution of the equations has been reached, and the425

first-order well-balanced scheme should be used to ensure the preservation of426

this solution. Taking θn
i+ 1

2

= 0 enables this behavior.427

• If Cn
i+ 1

2

= 0, then a local steady solution of the Pd scheme has been reached.428

Regardless of whether εn
i+ 1

2

= 0, we should get θn
i+ 1

2

= 0 in this case, since a429

steady solution for the Pd scheme will not, in general, be a steady solution for430

the equations. Setting θn
i+ 1

2

= 0 for such cases perturbs the steady numerical431

solution and allows it to converge towards the real steady solution.432

We shall perform two experiments for each system, in order to validate both the433

high-order accuracy and the well-balancedness property. These experiments are de-434

tailed below; system-specific parameters (such as the final physical time, for instance)435

will be given in the relevant sections.436

In each experiment, the space domain is (0, 1) and the simulation is run until437

some final time tend. Each experiment relies on the following compactly supported438

C∞ bump function:439

ω(x) =

exp

(
1− 1

1− (4(x− 1/2))2

)
if |x− 1/2| < 1/4,

0 otherwise.

440

In addition, all errors computed in the remainder of the text are L2 errors between441

the approximate solution and the exact or reference solution.442

The first experiment we perform yields a measure of the order of accuracy of443

the schemes, and it is designed to show that the well-balancedness correction does444

not reduce the accuracy for unsteady solutions. To correctly measure the order of445

accuracy, no slope limitation is added to the Pd and PWB
d schemes. Since we do not446

necessarily know an exact solution of the system under consideration, we compute a447

reference solution using a very fine grid made of 20×212 cells. Then, after computing448

the approximate solution on a coarser dyadic grid made of N = 20×2k cells, 0 ≤ k <449

12, the fine solution is projected onto the coarser grid to measure the error between450

the reference solution and its approximation. To ensure that no shock waves form,451

the initial condition is smooth; its expression is given for each system. The initial452

condition is then evolved until the final time tend = 5 · 10−3. Periodic boundary453

conditions are prescribed for this experiment.454

The second experiment assesses the well-balancedness property. To that end, we455

study the dissipation of a perturbation applied to an initially steady solution. Here,456

we add a slope limitation to the Pd and PWB
d schemes, namely the MC limiter from [30]457

for d = 1 and the limiter from [39] for d = 2. The initial condition is a steady solution458

W , computed by solving the nonlinear system (1.3). This steady solution is then459

perturbed using the bump function ω. Namely, each variable in W is multiplied by460

(1 + ω(x)/4). The steady solution is imposed on the boundaries, and the experiment461
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is run until the numerical solution becomes steady; this final time is given for each462

system. We take 50 discretization cells for this experiment.463

5.2. Application: the shallow water equations with topography. The464

first application concerns the shallow water equations with topography (1.4). The465

first-order well-balanced scheme comes from [35, 10]. It contains a parameter C,466

set here to ∞, or rather to the upper bound of the double-precision floating-point467

numbers in practice. In addition, the topography function is set to Z(x) = ω(x) and468

we take g = 9.81.469

5.2.1. Order of accuracy assessment. For this experiment, the initial condi-470

tion is given by h0(x) = 2− Z(x) + cos2(2πx) and q0(x) = sin(2πx).471

In Figure 1, we display the reference solution and the approximations given by the472

P0, P2 and PWB
2 schemes with 40 discretization cells. We observe that the third-order473

schemes are very close to the reference solution, even with such a few cells.474

0 0.5 1

2

2.5

x

h

0 0.5 1

−1

0

1

x

q

reference P0 P2 PWB
2

Fig. 1. Shallow water equations with topography: comparison between the reference and ap-
proximate solutions for the dyadic experiment with 40 discretization cells, at time tend = 5 · 10−3.
Left panel: water height h; right panel: discharge q.

This observation is confirmed in Table 2 and Figure 2, where we report the errors475

on h and q, as well as the orders of accuracy. As expected, the well-balancedness476

procedure does not alter the order of accuracy of the scheme, since the solution pro-477

duced by the PWB
2 scheme is almost the same as the one produced by the P2 scheme478

in this unsteady context. We even observe a slight over-convergence, possibly ex-479

plained by the use of the fourth-order accurate Simpson’s method in the source term480

approximation.481

5.2.2. Well-balancedness property. The initial condition is a perturbation of482

the steady solution implicitly given by (1.5), with q = 1 and q2

2h2 + g(h+ Z) = 2. We483

take Cθ = 9 · 10−3, and the final physical time is tend = 20.484

In Figure 3, we display the initial condition, as well as the approximations given485

by the P0, P2 and PWB
2 schemes at the time t = 2.5 · 10−2. We observe that the486

solutions of the P2 and PWB
2 are quite close, even in this case of a perturbed steady487

solution, and that they are less diffusive than the solution given by the P0 scheme.488

Then, in Figure 4 and Table 3, we report the errors on h and q at the final489

time tend. We observe that the P0, PWB
1 and PWB

2 schemes have all converged towards490

the exact steady solution up to machine precision, while a non-zero error remains for491

the P1 and P2 schemes. These observations validate the proposed well-balancedness492

correction.493
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Table 2
Shallow water equations with topography: errors and orders of accuracy for the dyadic exper-

iment. For the sake of conciseness, only the errors on h are reported in this table; the reader is
referred to Figure 2 for a visualization of the errors on q.

N error, P0 order, P0 error, P2 order, P2 error, PWB
2 order, PWB

2

40 1.04 · 10−2 — 1.12 · 10−3 — 1.12 · 10−3 —
80 5.24 · 10−3 0.99 3.25 · 10−4 1.78 3.26 · 10−4 1.78
160 2.58 · 10−3 1.02 4.06 · 10−5 3.00 4.08 · 10−5 3.00
320 1.29 · 10−3 1.00 2.74 · 10−6 3.89 2.73 · 10−6 3.90
640 6.42 · 10−4 1.00 1.76 · 10−7 3.96 1.76 · 10−7 3.96
1280 3.21 · 10−4 1.00 1.34 · 10−8 3.72 1.36 · 10−8 3.69
2560 1.60 · 10−4 1.00 1.50 · 10−9 3.16 1.54 · 10−9 3.14

40 160 640 2560

10−9

10−5

10−1

1
2
3

1
N

L2 error on h

40 160 640 2560
10−9

10−5

10−1

1
2
3

1
N

L2 error on q

P0 P1 PWB
1 P2 PWB

2

Fig. 2. Shallow water equations with topography: error lines for the dyadic experiment. Left
panel: error on h; right panel: error on q.

0 0.5 1

1.5

2

x

h

0 0.5 1

1

1.5

x

q
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2

Fig. 3. Shallow water equations with topography: comparison between the initial condition and
the approximate solutions at the time t = 2.5 · 10−2, for the perturbed steady state experiment with
50 cells. Left panel: water height h; right panel: discharge q.

5.3. Application: the shallow water equations with Manning friction.494

The next application concerns the shallow water equations with Manning friction,495

governed by (1.9). The first-order well-balanced scheme comes from [36]. It also496

contains a parameter C, also set here to ∞. We take the friction exponent η = 7/3497

according to Manning’s model [34, 18], and we set κ = 1 as well as g = 9.81.498
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Fig. 4. Shallow water equations with topography: errors between the steady solution and the
approximate solutions at the time tend, for the perturbed steady state experiment with 50 cells. Left
panel: error on h; right panel: error on q.

Table 3
Shallow water equations with topography: errors between the steady solution and the approxi-

mate solutions at the time tend, for the perturbed steady state experiment with 50 cells.

h
q

error, P0 error, P1 error, PWB
1 error, P2 error, PWB

2

7.55 · 10−16 1.22 · 10−3 1.40 · 10−15 1.30 · 10−3 1.92 · 10−15

2.15 · 10−15 1.67 · 10−3 3.62 · 10−15 5.43 · 10−3 4.87 · 10−15

5.3.1. Order of accuracy assessment. The initial condition for this experi-499

ment is given by h0(x) = 2 + cos2(2πx) and q0(x) = sin(2πx).500

In Figure 5, we display the reference solution and the approximations given by501

the P0, P2 and PWB
2 schemes with 40 discretization cells. We once again observe that502

the third-order schemes are very close to the reference solution.503

0 0.5 1

2.5

3

x

h

0 0.5 1

−1

0

1

x

q

reference P0 P2 PWB
2

Fig. 5. Shallow water equations with Manning friction: comparison between the reference and
approximate solutions for the dyadic experiment with 40 discretization cells, at time tend = 5 · 10−3.
Left panel: water height h; right panel: discharge q.

We report the errors on h and q, as well as the orders of accuracy, in Table 4 and504

Figure 6. The previous observation is once again confirmed since the Pd and PWB
d505

schemes produce almost exactly the same solution for this experiment.506

5.3.2. Well-balancedness property. The initial condition is a perturbation507

of the steady solution implicitly given by (1.2), with q = 1 and −q2 hη−1

η−1 + g h
η+2

η+2 +508
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Table 4
Shallow water equations with Manning friction: errors and orders of accuracy for the dyadic

experiment. For the sake of conciseness, only the errors on h are reported in this table; the reader
is referred to Figure 6 for a visualization of the errors on q.

N error, P0 order, P0 error, P2 order, P2 error, PWB
2 order, PWB

2

40 1.04 · 10−2 — 2.82 · 10−4 — 2.82 · 10−4 —
80 5.23 · 10−3 1.00 3.64 · 10−5 2.95 3.64 · 10−5 2.95
160 2.57 · 10−3 1.03 4.62 · 10−6 2.98 4.62 · 10−6 2.98
320 1.28 · 10−3 1.00 5.80 · 10−7 2.99 5.80 · 10−7 2.99
640 6.40 · 10−4 1.00 7.28 · 10−8 3.00 7.28 · 10−8 3.00
1280 3.20 · 10−4 1.00 9.11 · 10−9 3.00 9.11 · 10−9 3.00
2560 1.60 · 10−4 1.00 1.14 · 10−9 3.00 1.14 · 10−9 3.00

40 160 640 256010−10

10−6

10−2

1
2
3

1
N

L2 error on h

40 160 640 2560
10−9

10−5

10−1

1
2
3
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N

L2 error on q

P0 P1 PWB
1 P2 PWB

2

Fig. 6. Shallow water equations with Manning friction: error lines for the dyadic experiment.
Left panel: error on h; right panel: error on q.

kq|q|x = 3. The final physical time is tend = 20.509

We display the initial condition, as well as the approximations produced by the510

P0, P2 and PWB
2 schemes at the time t = 2.5 · 10−2, in Figure 7. We observe that511

the solutions of the P2 and PWB
2 are indistinguishable, and that they are less diffusive512

than the solution given by the P0 scheme.513
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Fig. 7. Shallow water equations with Manning friction: comparison between the initial condition
and the approximate solutions at the time t = 2.5 · 10−2, for the perturbed steady state experiment
with 50 cells. Left panel: water height h; right panel: discharge q.

In Figure 8 and Table 5, the errors on h and q at the final time tend are reported.514
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Once again, the P0, PWB
1 and PWB

2 schemes have all converged towards the exact515

steady solution, and the P1 and P2 schemes produce a non-zero error.516
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Fig. 8. Shallow water equations with Manning friction: errors between the steady solution and
the approximate solutions at the time tend, for the perturbed steady state experiment with 50 cells.
Left panel: error on h; right panel: error on q.

Table 5
Shallow water equations with Manning friction: errors between the steady solution and the

approximate solutions at the time tend, for the perturbed steady state experiment with 50 cells.

h
q

error, P0 error, P1 error, PWB
1 error, P2 error, PWB

2

2.43 · 10−15 7.63 · 10−7 3.79 · 10−15 3.24 · 10−9 2.08 · 10−15

1.79 · 10−14 7.53 · 10−8 2.84 · 10−14 2.40 · 10−8 1.51 · 10−14

5.4. Application: the Euler equations with gravity. For the last applica-517

tion, we turn to another system to highlight the genericness of our method. We choose518

the Euler equations with gravity (1.11). The first-order well-balanced scheme is based519

on the strategy from [35, 36, 23]. It is designed to exactly preserve and capture the520

family of steady states given by (1.12). We consider an ideal gas pressure law, where521

the pressure p is given by p = (γ−1)(E− 1
2
q2

ρ ). Furthermore, we take the parameters522

γ = 1.4 and κ = 1. The gravity potential is given by ϕ(x) = ω(x).523

5.4.1. Order of accuracy assessment. For this experiment, we take the initial524

condition ρ0(x) = 2 + cos2(2πx), q0(x) = sin(2πx), E0(x) = 5 + cos2(2πx).525

In Figure 9, we display the reference solution and the approximations given by526

the P0, P2 and PWB
2 schemes with 40 discretization cells. As usual, the third-order527

schemes are very close to the reference solution.528

We also report the errors and the orders of accuracy for ρ, q and E in Table 6529

and Figure 10. The same conclusion as for the shallow water system with topography530

or Manning friction is drawn.531

5.4.2. Well-balancedness property. The initial condition is a perturbation of532

the steady solution implicitly given by (1.12), with q = 0, p−κρ = 1 and κγ ρ
γ−1

γ−1 +ϕ =533

5. The final physical time is tend = 300.534

We display the initial condition, as well as the approximations produced by the535

P0, P2 and PWB
2 schemes at the time t = 1 · 10−1, in Figure 11. The solutions of the536
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Fig. 9. Euler equations with gravity: comparison between the reference and approximate so-
lutions for the dyadic experiment with 40 discretization cells, at time tend = 5 · 10−3. Left panel:
density ρ; middle panel: momentum q; right panel: energy E.

Table 6
Euler equations with gravity: errors and orders of accuracy for the dyadic experiment. For the

sake of conciseness, only the errors on ρ are reported in this table; the reader is referred to Figure 6
for a visualization of the errors on q and E.

N error, P0 order, P0 error, P2 order, P2 error, PWB
2 order, PWB

2

80 4.18 · 10−3 — 2.61 · 10−4 — 2.61 · 10−4 —
160 2.07 · 10−3 1.01 5.59 · 10−5 2.22 5.59 · 10−5 2.22
320 1.03 · 10−3 1.01 1.09 · 10−5 2.36 1.09 · 10−5 2.36
640 5.14 · 10−4 1.00 1.72 · 10−6 2.66 1.72 · 10−6 2.66
1280 2.56 · 10−4 1.00 2.31 · 10−7 2.89 2.31 · 10−7 2.89
2560 1.28 · 10−4 1.00 2.95 · 10−8 2.97 2.95 · 10−8 2.97
5120 6.41 · 10−5 1.00 3.70 · 10−9 2.99 3.70 · 10−9 2.99
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Fig. 10. Euler equations with gravity: error lines for the dyadic experiment. Left panel: error
on ρ; middle panel: error on q; right panel: error on E.

P2 and PWB
2 are once again indistinguishable and less diffusive than the one given by537

the P0 scheme.538

In Figure 12 and Table 7, the errors on ρ, q and E at the final time tend are539

reported. The same conclusions as in the shallow water case are reached.540
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Fig. 11. Euler equations with gravity: comparison between the initial condition and the ap-
proximate solutions at the time t = 1 · 10−1, for the perturbed steady state experiment with 50 cells.
Left panel: density ρ; middle panel: momentum q; right panel: energy E.
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Fig. 12. Euler equations with gravity: errors between the steady solution and the approximate
solutions at the time tend, for the perturbed steady state experiment with 50 cells. Left panel: error
on ρ; middle panel: error on q; right panel: error on E.
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nite Volume Scheme for Euler Equations with Gravity which is Well-Balanced for General550
Equations of State and Grid Systems, Commun. Comput. Phys., 26 (2019), pp. 599–630,551
https://doi.org/10.4208/cicp.oa-2018-0152.552

[4] A. Bermudez and M. E. Vazquez, Upwind methods for hyperbolic conservation laws with553
source terms, Comput. & Fluids, 23 (1994), pp. 1049–1071, http://www.sciencedirect.554

This manuscript is for review purposes only.

https://doi.org/10.2307/1266136
https://doi.org/10.2307/1266136
https://doi.org/10.2307/1266136
http://epubs.siam.org/doi/abs/10.1137/S1064827503431090
http://epubs.siam.org/doi/abs/10.1137/S1064827503431090
http://epubs.siam.org/doi/abs/10.1137/S1064827503431090
https://doi.org/10.4208/cicp.oa-2018-0152
http://www.sciencedirect.com/science/article/pii/0045793094900043
http://www.sciencedirect.com/science/article/pii/0045793094900043
http://www.sciencedirect.com/science/article/pii/0045793094900043


22 C. BERTHON, S. BULTEAU, F. FOUCHER, M. M’BAYE AND V. MICHEL-DANSAC

com/science/article/pii/0045793094900043.555
[5] C. Berthon and C. Chalons, A fully well-balanced, positive and entropy-satisfying godunov-556

type method for the shallow-water equations, Math. Comp., 85 (2016), pp. 1281–1307.557
[6] C. Berthon, C. Chalons, S. Cornet, and G. Sperone, Fully well-balanced, positive and558

simple approximate Riemann solver for shallow water equations, Bull. Braz. Math. Soc.559
(N.S.), 47 (2016), pp. 117–130, https://doi.org/10.1007/s00574-016-0126-1, http://dx.doi.560
org/10.1007/s00574-016-0126-1.561

[7] C. Berthon and V. Desveaux, An entropy preserving MOOD scheme for the Euler equations,562
Int. J. Finite Vol., 11 (2014).563

[8] C. Berthon and F. Foucher, Efficient well-balanced hydrostatic upwind schemes for shallow-564
water equations, J. Comput. Phys., 231 (2012), pp. 4993–5015, http://www.sciencedirect.565
com/science/article/pii/S0021999112001453.566

[9] C. Berthon and F. Marche, A positive preserving high order VFRoe scheme for shallow water567
equations: a class of relaxation schemes, SIAM J. Sci. Comput., 30 (2008), pp. 2587–2612,568
https://doi.org/10.1137/070686147, http://dx.doi.org/10.1137/070686147.569

[10] C. Berthon and V. Michel-Dansac, A simple fully well-balanced and entropy preserv-570
ing scheme for the shallow-water equations, Appl. Math. Lett., 86 (2018), pp. 284–290,571
https://doi.org/10.1016/j.aml.2018.07.013, https://hal.archives-ouvertes.fr/hal-01708991/572
document.573

[11] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and574
well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser Verlag, Basel,575
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