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INTEGRAL REPRESENTATION AND RELAXATION OF LOCAL
FUNCTIONALS ON CHEEGER-SOBOLEV SPACES

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Abstract. We prove an integral representation theorem for local functionals with poly-
nomial growth de�ned on Cheeger-Sobolev spaces. More precisely, we give a version of
the well-known Buttazzo-Dal maso integral representation theorem in the framework of
Cheeger-Sobolev spaces. The integral representation theorem is used to prove a relaxation
theorem.

1. Introduction

Let pX, d, µq be a metric measure space with µ a nontrivial Borel (regular) measure on
X and pX, dq is a separable metric space. Let p Ps1,8r. Cheeger showed in a seminal pa-
per [Che99] that if we assume that µ is doubling and pX, d, µq enjoys a p1, pq-Poincaré
inequality (see Section 2), then X has a measurable di�erentiable structure, i.e. there
exists a countable collection t

`

Xk, γ
k
˘

ukPN of measurable sets Xk and of Lipschitz “co-

ordinate” functions γk :“
´

γk1 , . . . , γ
k
Npkq

¯

: Xk Ñ RNpkq such that µ pXzYkXkq “ 0

and each Lipschitz function f : X Ñ R is di�erentiable in the sense that there exists
Dk
µf P L

8
µ

`

Xk;R
Npkq

˘

such that for µ-a.e. x P Xk,

lim
ρÑ0

sup
yPBρpxq

ˇ

ˇf pyq ´ f pxq ´
@

Dk
µf pxq , γ

k pyq ´ γk pxq
D
ˇ

ˇ

ρ
“ 0.

The Cheeger-Sobolev spaceH1,p
µ pX;Rmq onX , introduced by Cheeger [Che99] (see Sec-

tion 2, De�nition 3), can be de�ned as the completion of Lipschitz functions.
Our goal is to show an integral representation and a relaxation theorem for local func-

tionals with p-growth de�ned on Cheeger-Sobolev spaces H1,p
µ pΩ;Rmq where Ω Ă X is an

open set with �nite measure. More precisely, we want to give a version of the integral rep-
resentation and relaxation results of [BDM85, BFLM02] in the setting of Cheeger-Sobolev
spaces.

The proof of the integral representation of [BDM85] on open sets of Euclidean spaces
splits into several steps, �rst, the integrand is de�ned on linear functions, which allows
easily to write an integral representation on continuous piecewise a�ne functions. Then
it is shown that necessarily the integrand is continuous with respect to the second vari-
able (Carathéodory integrand) by proving the “zig-zag lemma” whose proof uses the lower
semicontinuity property along speci�c construction of continuous piecewise a�ne func-
tions. The conclusion comes by passing to the limit and by using the local approximation
of Sobolev functions by continuous piecewise a�ne functions and the continuity (and the
growth conditions) with respect to the second variable of the integrand. At �rst glance,
there does not seem to be an easy way to adapt this strategy in Cheeger-Sobolev spaces.

Université de Nîmes, Laboratoire MIPA, Site des Carmes, Place Gabriel Péri, 30021 Nîmes, France
E-mail addresses: <omar.anza-hafsa@unimes.fr>, <jean-philippe.mandallena@unimes.fr>.
Key words and phrases. Integral representation, Relaxation, Integral functionals de�ned onCheeger-Sobolev

spaces.
1



Especially, we do not know how to adjust the zig-zag lemma to obtain the continuity of the
integrand. One way is to assume a convexity condition on the functional (see [MPSC20,
MV20]).

The integral representation result of [BFLM02, Theorem 2, pp. 189] shows that the
integrand can be written as limit, when the radius of balls goes to zero, of the average of
minimization Dirichlet problems associated with the functional on small balls. The strat-
egy of the proof, known as the “global relaxation method”, uses mainly an intermediate
representation result of an envelope, similar to the Carathéodory construction in mea-
sure theory (see Subsection 6.3), of local minimization Dirichlet problems associated with
the functional. The advantage of the method is that it avoids the use of approximation
by continuous piecewise a�ne functions. It can therefore be adapted more easily to the
framework of Cheeger-Sobolev spaces, we already got several results by following this path,
see [AHM15, AHM17, AHM18]. We must emphasize that this strategy makes signi�cant
use of the coercivity of the functional, which is not the case of the Buttazzo and Dal Maso’s
integral representation theorem [BDM85].

One motivation, for developing the calculus of variations in the setting of metric mea-
sure spaces, comes from applications to hyperelasticity. In fact, the interest of considering
a general measure is that its support can be interpreted as a hyperelastic structure with its
singularities like for example thin dimensions, corners, junctions, etc. Such mechanical
“singular” objects naturally lead to develop calculus of variations in the setting of metric
measure spaces. (We refer the reader to [BBS97, Zhi02, CJLP02]and [CPS07, Chapter
2, §10] and the references therein). Another motivation is the development of the cal-
culus of variations on “singular” spaces, which are of interest for geometers and physicists,
like Carnot groups, glued spaces, Laakso spaces, Bourdon-Pajot spaces, Gromov-Hausdor�
limit spaces, spaces satisfying generalized Ricci bounds (see [KM16] for more details). In-
deed, all these spaces are examples of doubling metric measure spaces satisfying a Poincaré
inequality on which our integral representation and relaxation results on Cheeger-Sobolev
spaces could be applied.

We assume in the following of the paper that µ is doubling, pX, d, µq enjoys a p1, pq-
Poincaré inequality, pX, dq is a complete separable metric space, and pX, d, µq satis�es the
annular decay property (see De�nition 4).

Throughout the rest of the paperΩ Ă X denotes an open set of �nite measure µ pΩq ă 8.
We denote by O pΩq the class of all open subsets of Ω.
Our �rst result is an integral representation theorem in Cheeger-Sobolev spaces:

Theorem 1. Let F : H1,p
µ pΩ;Rmq ˆO pΩq Ñ r0,8s satisfy

(C1) for every u P H1,p
µ pΩ;Rmq the set function F pu, ¨q is the restriction to O pΩq of a positive

Radon measure;
(C2) F p¨, Oq is local, i.e. F pu,Oq “ F pv,Oq whenever u “ v µ-a.e. in O for all pu, vq P

H1,p
µ pΩ;Rmq

2 and all O P O pΩq;
(C3) F pu` z,Oq “ F pu,Oq for all z P Rm, all u P H1,p

µ pΩ;Rmq and all O P O pΩq;
(C4) there exist c ą 0, b ě 0 and a P L1

µ pΩq such that for every pu,Oq P H
1,p
µ pΩ;Rmq ˆO pΩq

c

ˆ
O

|∇µu pxq|
p dµ pxq ď F pu,Oq ď

ˆ
O

a pxq ` b |∇µu pxq|
p dµ pxq

where ∇µu is the µ-gradient of u.
(C5) for every O P O pΩq the functional F p¨, Oq is Lpµ-lower semicontinuous.

Then there exists a Borel measurable function f : ΩˆMÑ r0,8s such that
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(i) for every O P O pΩq and every u P H1,p
µ pΩ;Rmq

F pu,Oq “

ˆ
O

f px,∇µu pxqq dµ pxq ; (1)

(ii) for every k P N, for µ-a.e. x P ΩXXk and every ξ PM

f px, ξq :“ lim
ρÑ0

inf
ϕPH1,p

µ,0pBρpxq;R
mq

F
`

ξ ¨ γk p¨q ` ϕ,Bρ pxq
˘

µ pBρ pxqq
;

(iii) the function f is H1,p
µ -quasiconvex, i.e. for every ξ PM and for µ-a.e. x P Ω

f px, ξq “ lim
ρÑ0

inf
ϕPH1,p

µ,0pBρpxq;R
mq

 
Bρpxq

f py, ξ `∇µϕ pyqq dµ pyq ;

(iv) for µ-a.e. x P Ω and for every ξ PM we have

c|ξ|p ď f px, ξq ď a pxq ` b|ξ|p

where c ą 0, b ě 0 and a P L1
µ pΩq are given by (C4);

(v) if there exists a Borel measurable function rf : ΩˆMÑ r0,8s such that for everyO P O pΩq
and every u P H1,p

µ pΩ;Rmq

F pu,Oq “

ˆ
O

rf px,∇µu pxqq dµ pxq (2)

then for µ-a.e. x P X and for every ξ PM
rf px, ξq “ f px, ξq .

When the functional is not necessarily Lpµ-lower semicontinuous we need to consider the
Lpµ-lower semicontinuous envelope of F p¨, Oq de�ned by

H1,p
µ pΩ;Rm

q Q u ÞÝÑ F pu,Oq :“ inf

"

lim
nÑ8

F pun, Oq : un Ñ u in Lpµ pΩ;Rm
q

*

.

We have the following relaxation theorem:

Theorem 2. Let F : H1,p
µ pΩ;Rmq ˆO pΩq Ñ r0,8s satisfying (C1) - (C4). Then there exists a

Borel measurable function f : ΩˆMÑ r0,8s such that
(i) for every O P O pΩq and every u P H1,p

µ pΩ;Rmq

F pu,Oq “

ˆ
O

f px,∇µu pxqq dµ pxq ; (3)

(ii) for every k P N, for µ-a.e. x P Xk and for every ξ PM

f px, ξq :“ lim
ρÑ0

inf
ϕPH1,p

µ,0pBρpxq;R
mq

F
`

ξ ¨ γk p¨q ` ϕ,Bρ pxq
˘

µ pBρ pxqq
;

(iii) the function f is H1,p
µ -quasiconvex;

(iv) for µ-a.e. x P Ω and for every ξ PM we have

c|ξ|p ď f px, ξq ď a pxq ` b|ξ|p

where c ą 0, b ě 0 and a P L1
µ pΩq are given by (C4).

The following consequence of the relaxation Theorem 2 is a characterization of the lower
semicontinuity of integral functionals. This is an improvement of the H1,p

µ -quasiconvexity,
a necessary condition (playing the same role as the quasiconvexity concept in the Euclidean
case, see for instance [BM84]) studied in [AHM20] (see Subsection 6.2).
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Corollary 1. Let f : Ω ˆM ÝÑ r0,8s be a Borel measurable function. Assume that there exists
c ą 0, b ě 0 and a P L1

µ pΩq such that for µ-a.e. x P Ω and for every ξ PM we have

c|ξ|p ď f px, ξq ď a pxq ` b|ξ|p.

The following two assertions are equivalent:
(i) for µ-a.e. x P Ω and for every ξ PM it holds

f px, ξq “ lim
ρÑ0

inf
ϕPH1,p

µ,0pBρpxq;R
mq

 
Bρpxq

f py, ξ `∇µϕq dµ.

(ii) for every O P O pΩq, the functional

H1,p
µ pO;Rm

q Q u ÞÝÑ

ˆ
O

f px,∇µu pxqq dµ pxq

is Lpµ-lower semicontinuous.

The plan of the paper is as follows. In Section 2 we provide the materials about metric
measure spaces and Cheeger-Sobolev spaces we need for our purposes. In Section 3 we give
the proof of Theorem 1. The proof splits into several steps, we use �rst Lemma 10 which
provides an integral representation of the Vitali envelope of the local minimizationDirichlet
problem associated with the functional, then we can localize, using cut-o� techniques, the
formula of the integrand by replacing u with ux p¨q :“ u pxq ` ∇µu pxq ¨

`

γk p¨q ´ γk pxq
˘

.
The last step is to show that the integrand is Borel measurable. In Section 4, we prove
the relaxation theorem Theorem 2 with the help of Theorem 1 and by using mainly the
De Giorgi-Letta Lemma which gives su�cient conditions for increasing set functions on
open sets to be a measure. In Section 5 we prove Corollary 1 which is a consequence of
Theorem 2 and Corollary 2 about the equality of Borel measurable which is a recast in the
setting of metric measure space of an Alberti’s result [Alb91]. The last Section 6 is devoted
to the auxiliary results we need in the proofs.

Notation.
‚ We will denote by B pΩq the Borel σ-algebra ofX and Bµ pΩq the µ-completion of B pΩq.
‚ We will denote by Bρ pxq :“ ty P X : d px, yq ă ρu the open ball, and by Bρ pxq :“ ty P
X : d px, yq ď ρu the closed ball, centered at x with radius ρ ą 0.

‚ For every measurable set A Ă Ω with positive measure, and for every nonnegative mea-
surable or integrable function f on A, we set 

A

fdµ :“
1

µ pAq

ˆ
A

f pxq dµ pxq .

‚ The algebra of Lipschitz functions from Ω to R is denoted by Lip pΩq.

2. Preliminaries: the metric measure spaces, the Cheeger–Sobolev spaces

Let p ą 1 be a real number, let pX, d, µq be ametric measure space, where µ is a nontrivial
locally �nite Borel regular measure on X and pX, dq is a separable metric space. In what
follows, we assume that µ is doubling, i.e. there exists a constantCd (called doubling constant)
such that

@x P X @ρ ą 0 µ pB2ρ pxqq ď Cdµ pBρ pxqq . (4)
The concept of upper gradient was introduced by Heinonen and Koskela (see [HK98]), and
generalized by Cheeger (see [Che99, De�nition 2.8]):

De�nition 1.
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(i) A Borel function g : X Ñ r0,8s is said to be an upper gradient for f : X Ñ R if

|f pc p1qq ´ f pc p0qq| ď

ˆ 1

0

g pc psqq ds

for all continuous recti�able curves c : r0, 1s Ñ X.
(ii) A function g P Lpµ pXq is said to be a p-weak upper gradient for f P Lpµ pXq if there exist

tfnun Ă Lpµ pXq and tgnun Ă Lpµ pXq such that for each n ě 1, gn is an upper gradient
for fn, fn Ñ f in Lpµ pXq and gn Ñ g in Lpµ pXq.

De�nition 2. The metric measure space pX, d, µq enjoys a p1, pq-Poincaré inequality with p P
s1,8r if there exist Cp ą 0 and σ ě 1 such that for every x P X and every ρ ą 0,

 
Bρpxq

ˇ

ˇ

ˇ

ˇ

ˇ

f pyq ´

 
Bρpxq

fdµ

ˇ

ˇ

ˇ

ˇ

ˇ

dµ pyq ď ρCp

˜ 
Bσρpxq

gpdµ

¸
1
p

(5)

for every f P Lpµ pXq and every p-weak upper gradient g P Lpµ pXq for f .

FromCheeger [Che99, Theorem 4.38] (see also Keith [Kei04, De�nition 2.1.1 and The-
orem 2.3.1]) we have:

Theorem3. If µ is doubling, i.e. (4) holds, andX enjoys a p1, pq-Poincaré inequality, i.e. (5) holds,
then there exist a countable family t

`

Xk, γ
k
˘

ukPN of µ-measurable disjoint subsets Xk of X with

µ pXz Y8k“0 Xkq “ 0 and of functions γk “
´

γk1 , ¨ ¨ ¨ , γ
k
Npkq

¯

: X Ñ RNpkq with γki P Lip pXq

satisfying the following properties:

(i) there exists an integer N ě 1 such that N pkq P t1, . . . , Nu for all k P N;
(ii) for every k P N and every f P Lip pXq there is a unique Dk

µf P L
8
µ

`

Xk;R
Npkq

˘

such that
for µ-a.e. x P Xk,

lim
ρÑ0

sup
yPBρpxq

ˇ

ˇf pyq ´ f pxq ´
@

Dk
µf pxq , γ

k pyq ´ γk pxq
D
ˇ

ˇ

ρ
“ 0, (6)

where fx P Lip pXq is given by fx pyq :“ f pxq`
@

Dk
µf pxq , γ

k pyq ´ γk pxq
D

; in particular

Dk
µfx pyq “ Dk

µf pxq for µ-a.a. y P Xk;

(iii) the operator Dµ : Lip pXq Ñ L8µ
`

X;RN
˘

given by

Dµf :“
ÿ

kPN

1XkD
k
µf,

where 1Xk denotes the characteristic function of Xk, is linear and, for each f, g P Lip pXq,
we have

Dµ pfgq “ fDµg ` gDµf ;

(iv) for every f P Lip pXq, Dµf “ 0 µ-a.e. on every µ-measurable set where f is constant.

We setM “ RmˆN where N is given by Theorem 3 (i). For every k P N we denote by
| ¨ |k the Euclidean norm on RmˆNpkq where N pkq is given by Theorem 3, and we set for
every x P Ω and every ξ PM

|ξ|x :“
8
ÿ

k“0

|ξ|k1Xk pxq .

5



There exists Borel sets Ω Ą Bk Ą XkXΩ such that µ pΩz pY8k“0Bkqq “ 0 since the regularity
of µ. If we de�ne N : ΩˆMÑ R` by

N px, ξq :“
8
ÿ

k“0

|ξ|k1Bk pxq ,

then we can see that N is Borel measurable and coincide with | ¨ |x for µ-a.e. x P Ω.

Lemma 1. There exists a Borel measurable function N : ΩˆMÑ R` such that for µ-a.e. in Ω
and for every ξ PM we have N px, ξq “ |ξ|x.

In the following, for every k P N and every x P Xk X Ω, we simply denote the norm of
ξ P RNpkqˆm ĂM by |ξ| instead of |ξ|x.

Let Lip pΩ;Rmq :“ rLip pΩqsm and let ∇µ : Lip pΩ;Rmq ÝÑ L8µ pΩ;Mq given by

∇µu :“

¨

˝

Dµu1
...

Dµum

˛

‚ with u “ pu1, ¨ ¨ ¨ , umq .

From Theorem 3 (iii) we see that for every u P Lip pΩ;Rmq and every f P Lip pΩq, we have

∇µ pfuq “ f∇µu`Dµf b u. (7)

De�nition 3. The p-Cheeger–Sobolev space H1,p
µ pΩ;Rmq is de�ned as the completion of

the space of Lipschitz functions Lip pΩ;Rmq with respect to the norm

}u}H1,p
µ pΩ;Rmq :“ }u}LpµpΩ;Rmq ` }∇µu}LpµpΩ;Mq. (8)

Taking Proposition 1 (ii) below into account, since }∇µu}LpµpΩ;Mq ď }u}H1,p
µ pΩ;Rmq for all

u P Lip pΩ;Rmq the linear map ∇µ from Lip pΩ;Rmq to Lpµ pΩ;Mq has a unique extension
to H1,p

µ pΩ;Rmq which will still be denoted by ∇µ and will be called the µ-gradient.

Remark 1. In fact, the original Cheeger’s de�nition [Che99, (2.1), pp. 440] of H1,p
µ pΩq is

all the functions u P Lpµ pΩq for which |u|1,p ă 8 where

|u|1,p “ |u|LpµpΩq ` inf

"

lim
nÑ8

|gun |LpµpΩq : Lpµ pΩq Q un Ñ u in Lpµ

*

where gun is an upper gradient for un for all n P N. Cheeger [Che99, Theorem 4.47, pp.
459] shows that the spaceH1,p

µ pΩq can be seen as the completion of Lipschitz functions for
the norm |u|LpµpΩq ` |Dµu|LpµpΩq for all u P Lip pΩq. This latter norm coincide with | ¨ |1,p
by combining [Che99, De�nition 2.9 and Theorem 2.10, pp. 441] and [Che99, Corollary
4.41, pp. 458].

For more details on the various possible extensions of the classical theory of the Sobolev
spaces to the setting of metric measure spaces, we refer to [Hei07, 10-14] (see also [Che99,
Sha00, GT01, Haj03]).

The following proposition gathers some results of many authors and provides useful
properties for dealing with calculus of variations in the metric measure setting.

Proposition 1. Under the hypotheses of Theorem 3, we have:
(i) (from [HKST15, Theorem 3.4.3, pp. 73]) the metric measure space X satis�es the Vi-

tali covering theorem, i.e. for every A Ă X and every family F of closed balls in X , if
inf

 

ρ ą 0 : Bρ pxq P F
(

“ 0 for all x P A then there exists a countable disjoint subfamily
G of F such that µ pAz YBPG Bq “ 0; in other words, A Ă pYBPGBq YN with µ pNq “ 0;

6



(ii) (from [FHK99, Theorem 10]) the µ-gradient is closable in H1,p
µ pΩ;Rmq, i.e. for every

u P H1,p
µ pΩ;Rmq and every measurable set A Ă Ω, if u pxq “ 0 for µ-a.a. x P A then

∇µu pxq “ 0 for µ-a.a. x P A;
(iii) (from [BB11, Corollary 4.24 pp. 93], [BB11, Theorem 5.51, pp. 142] and [Che99,

§4]) the metric space X enjoys a p-Sobolev inequality, i.e. there exists CS ą 0 such that
˜ˆ

Bρpxq

|v|pdµ

¸
1
p

ď ρCS

˜ˆ
Bρpxq

|∇µv|
pdµ

¸
1
p

(9)

for all 0 ă ρ ď ρ0, with ρ0 ą 0, and all v P H1,p
µ,0 pBρ pxq ;Rmq, where, for eachO P O pXq,

H1,p
µ,0 pO;Rmq is the closure of Lip0 pO;Rmq with respect to H1,p

µ -norm de�ned in (8) with

Lip0 pO;Rm
q :“

"

u P Lip pX;Rm
q : u “ 0 on XzO

*

;

(iv) (from [Bjö00, Theorem 4.5 and Corollary 4.6] or [GH13, Theorem 2.12]) for every
u P H1,p

µ pΩ;Rmq and µ-a.e. x P Ω there exists ux P H1,p
µ pΩ;Rmq given by ux pyq :“

u pxq `∇µu pxq ¨
`

γk pyq ´ γk pxq
˘

such that

∇µux pyq “ ∇µu pxq for µ-a.a. y P X;

lim
ρÑ0

1

ρ

˜ 
Bρpxq

|u pyq ´ ux pyq|
p dµ pyq

¸
1
p

“ 0; (10)

(v) (from [Che99, Theorem 6.1]) for every x P Ω, every ρ ą 0 and every τ Ps0, 1r there exists
a function ϕ P Lip pΩ; r0, 1sq such that

ϕ pxq “ 0 for all x P ΩzBρ pxq , ϕ pxq “ 1 for all x P Bτρ pxq

and
}Dµϕ}L8µ pΩ;RN q ď

C0

ρ p1´ τq
for some C0 ą 0.

Such a ϕ is called an Urysohn function for the pair
`

ΩzBρ pxq , Bτρ pxq
˘

.

De�nition 4. We say that themetric measure space pX, d, µq satis�es the annular decay property
if there exist η ą 0 and K0 ě 1 such that for every x P X , every ρ ą 0 and every τ Ps0, 1r,

µ pBρ pxq zBτρ pxqq ď K0 p1´ τq
η µ pBρ pxqq .

The annular decay property was introduced independently by [Buc99, pp. 521 and §2
pp. 524] and [CM98]. This property holds, for instance, when the metric space is a length
space, i.e. metric space in which the distance between points is the in�mum of lenghts
of recti�able paths joining those points, see [Buc99, Corollary 2.2], [CM98, Lemma 3.3],
[Che99, Proposition 6.12] and [HKST15, Proposition 11.5.3, pp. 328].

Remark 2. We can remark that, when the annular decay property holds, the boundary of
balls is of zero measure, indeed, if x P X , ρ ą 0 and τ Ps1

2
, 1r, we have

µ pBBρ pxqq ď µ
´

B ρ
τ
pxq zBρ pxq

¯

ď K0 p1´ τq
η µ

´

B ρ
τ
pxq

¯

ď K0 p1´ τq
η µ pB2ρ pxqq ,

letting τ Ñ 1 we obtain that µ pBBρ pxqq “ 0.

Lemma 2. Assume that the annular decay property holds. Let λ be a positive Radon measure. Let
x P X satisfy

lim
ρÑ0

λ pBρ pxqq

µ pBρ pxqq
“:

dλ

dµ
pxq ă 8. (11)

7



Then for every τ Ps0, 1r

lim
ρÑ0

λ pBρ pxq zBτρ pxqq

µ pBρ pxqq
ď K0 p1´ τq

η dλ

dµ
pxq . (12)

In particular, we have

lim
τÑ1

lim
ρÑ0

λ pBρ pxq zBτρ pxqq

µ pBρ pxqq
“ 0.

Proof of Lemma 2. Let x P X satisfy (11). We can write for every ρ ą 0

λ pBρ pxq zBτρ pxqq

µ pBρ pxqq
“
λ pBρ pxqq

µ pBρ pxqq
´
µ pBτρ pxqq

µ pBρ pxqq

λ pBτρ pxqq

µ pBτρ pxqq

“

ˆ

λ pBρ pxqq

µ pBρ pxqq
´
λ pBτρ pxqq

µ pBτρ pxqq

˙

`
µ pBρ pxq zBτρ pxqq

µ pBρ pxqq

λ pBτρ pxqq

µ pBτρ pxqq

ď

ˆ

λ pBρ pxqq

µ pBρ pxqq
´
λ pBτρ pxqq

µ pBτρ pxqq

˙

`K0 p1´ τq
η λ pBτρ pxqq

µ pBτρ pxqq
,

letting ρÑ 0 and using (11), we obtain (12).�

We will need a version of the Rellich-Kondrachov theorem in the metric measure spaces
setting. The following result is due to [HK00, Theorem 8.1, pp. 37].

Theorem 4. Let B Ă Ω a ball. Let tϕnunPN Ă H1,p
µ pB;Rmq be a bounded sequence, i.e.

sup
nPN

ˆˆ
B

|ϕn|
pdµ

˙
1
p

`

ˆˆ
B

|∇µϕn|
pdµ

˙
1
p

ă 8.

Then there exist a subsequence tϕniuiPN Ă H1,p
µ pB;Rmq and ϕ P H1,p

µ pB;Rmq such that

lim
iÑ8

ˆ
B

|ϕni ´ ϕ|
p dµ “ 0.

Outline of the proof of Theorem 4. For the sake of simplicity we assume that m “ 1. By a
development of Cheeger [Che99, pp. 449-450], we have, in our setting (doubling measure
and Poincaré inequality), for every u P H1,p

µ pXq, every x P X and every r ą 0 the following
Poincaré-Sobolev inequality

ˆ 
Brpxq

ˇ

ˇ

ˇ

ˇ

u pyq ´

 
Brpxq

udµ

ˇ

ˇ

ˇ

ˇ

χp

dµ pyq

˙
1
χp

ď Cr

ˆ 
Brpxq

|Dµu|
p dµ pyq

˙
1
p

(13)

for some χ ą 1 which only depends on the doubling constant Cd in (4) and the constant Cp
in (5) and C ą 0 depending on the constants Cp, Cd and on the constant σ appearing in (5).
Consider a ball B “ Bρ pxq Ă Ω and a bounded sequence tϕnunPN Ă H1,p

µ pB;Rmq.
From (13), we have for every n P N

›

›

›

›

ϕn ´

 
B

ϕndµ

›

›

›

›

Lχpµ pBq

ď Cµ pBq
1
χp
´ 1
p ρ }Dµϕn}LpµpBq

thus

}ϕn}Lχpµ pBq ď µ pBq
1
χp

ˇ

ˇ

ˇ

ˇ

 
B

ϕndµ

ˇ

ˇ

ˇ

ˇ

` Cµ pBq
1
χp
´ 1
p ρ }Dµϕn}LpµpBq ,

and by using the Hölder inequality we obtain

}ϕn}Lχpµ pBq ď µ pBq
1
χp
´ 1
p

´

}ϕn}LpµpBq ` Cρ }Dµϕn}LpµpBq

¯

8



which means that the sequence tϕnunPN Ă Lχpµ pBq is bounded. Thus, there exists a subse-
quence (not relabelled) which weakly converges in Lχpµ pBq to some ϕ P Lχpµ pBq.

Lemma 3. [HK00, Lemma 8.2, pp. 37] Let B1 Ă B be a ball and χ ą 1. Let tψnunPN Ă
Lχpµ pB

1q be a bounded sequence. If tψnunPN converges in measure to ψ P Lχpµ pB
1q then

lim
nÑ8

}ψn ´ ψ}LpµpB1q “ 0.

Taking Lemma 3 into account, we see that it su�ces to show that tϕnunPN converges in
measure to ϕ.

Let t Ps0, 1r. Fix ε ą 0 and n P N. We set for every positive r ă ρp1´tq
σ

(where σ is the
constant appearing in (5)) and every x P tB :“ Btρ pxq

ϕr pxq :“

 
Brpxq

ϕdµ and ϕn,r pxq :“

 
Brpxq

ϕndµ.

We have

µ ptB X r|ϕn ´ ϕ| ą εsq ďµ
´

tB X
”

|ϕn ´ ϕn,r| ą
ε

3

ı¯

` µ
´

tB X
”

|ϕn,r ´ ϕr| ą
ε

3

ı¯

` µ
´

tB X
”

|ϕr ´ ϕ| ą
ε

3

ı¯

Since the Lebesgue di�erentiation theorem, µ
`

tB X
“

|ϕr ´ ϕ| ą
ε
3

‰˘

goes to 0 as r Ñ 0.
The term µ

`

tB X
“

|ϕn,r ´ ϕr| ą
ε
3

‰˘

tends to 0 as n Ñ 8 for all r ą 0, since the weak
convergence of tϕnunPN in Lχpµ pBq to ϕ. Using [HK00, Proof of theorem 3.2, pp. 13-14]
we can deduce for every x P tB

|ϕn pxq ´ ϕn,r pxq| ď Kr

˜

sup
ρPs0,σrr

 
Bρpxq

|Dµϕn|
pdµ

¸
1
p

ď Kr

ˆ

sup
rą0

 
BrpxqXB

|Dµϕn|
pdµ

˙
1
p

for some constant K ą 0 depending only on the doubling constant and the constant Cp
appearing in the Poincaré inequality (5). Using the maximal theorem [HK00, Theorem
14.13], there exists C 1 ą 0 depending on the doubling constant only such that

µ
´

tB X
”

|ϕn ´ ϕn,r| ą
ε

3

ı¯

ď µ

ˆ„

sup
rą0

 
Brp‚qXB

|Dµϕn|
pdµ ą

ˆ

1

3K

˙p
´ε

r

¯p
˙

ď C 1 p3Kqp
´r

ε

¯p

sup
nPN

ˆ
B

|Dµϕn|
pdµ,

therefore supnPN µ
`

tB X
“

|ϕn ´ ϕn,r| ą
ε
3

‰˘

tends to 0 as r Ñ 0. It follows that

lim
nÑ8

µ ptB X r|ϕn ´ ϕ| ą εsq “ 0.

Applying Lemma 3 with ψn “ ϕnttB , ψ “ ϕttB and B1 “ tB, we obtain

lim
nÑ8

}ϕn ´ ϕ}LpµptBq “ 0.

Now, since the sequence tϕnunPN is bounded in Lχpµ pBq, we have supnPN }ϕn ´ ϕ}Lχpµ pBq ă

8. Choose tε Ps0, 1r such that µ pBztεBq ď ε
χ
χ´1

´

1` supnPN }ϕn ´ ϕ}
p
Lχpµ pBq

¯´1

, by the
9



Hölder inequality we haveˆ
B

|ϕn ´ ϕ|
p dµ “

ˆ
tεB

|ϕn ´ ϕ|
p dµ`

ˆ
BztεB

|ϕn ´ ϕ|
p dµ

ď }ϕn ´ ϕ}
p
LpµptεBq

` }ϕn ´ ϕ}
p
Lχpµ pBq

µ pBztεBq
χ´1
χ

ď }ϕn ´ ϕ}
p
LpµptεBq

` ε

letting nÑ 8 and then εÑ 0 we obtain the desired result.�

3. Proof of Theorem 1

For a functionalF : H1,p
µ pΩ;RmqˆO pΩq Ñ r0,8swe de�nem : H1,p

µ pΩ;RmqˆO pΩq Ñ
r0,8s by

m pu,Oq :“ inf
 

F pu` ϕ,Oq : ϕ P H1,p
µ,0 pO;Rm

q
(

.

3.1. Proof of (i) and (ii).

Step 1: integral representation of F pu, ¨q viam pu, ¨q. In this step, we show that for every
u P H1,p

µ pΩ;Rmq and every O P O pΩq

F pu,Oq “

ˆ
O

lim
ρÑ0

m pu,Bρ pxqq

µ pBρ pxqq
dµ pxq .

Let pu,Oq P H1,p
µ pΩ;Rmq ˆO pΩq. By lemma 10 we have

m˚
´ pu,Oq “

ˆ
O

lim
ρÑ0

m pu,Bρ pxqq

µ pBρ pxqq
dµ pxq ,

where

m˚
´ pu,Oq :“ sup

εą0
inf

#

ÿ

iPI

m pu,Biq : tBiuiPI P V
ε
pOq

+

with for every ε ą 0

Vε pOq :“
!

tBiuiPI Ă B pΩq : I is countable, µ
´

Oz Y
iPI
Bi

¯

“ 0, Bi Ă O,

0 ă diam pBiq ď ε and Bi XBj “ H for all i “ j
)

.

By (C1) and (C4), we see that F pu, ¨q is a positive Radon measure which is absolutely con-
tinuous with respect to µ, so, we have

m˚
´ pu,Oq ď F pu,Oq . (14)

It remains to prove that
F pu,Oq ď m˚

´ pu,Oq . (15)

Fix ε ą 0. There exists a countable family of mutually disjoints balls tBiuiPI P Vε pOq such
that

ÿ

iPI

m pu,Biq ď m˚
´ pu,Oq `

ε

2
. (16)

Given any i P I , by de�nition of m pu,Biq, there exists ϕiε P H
1,p
µ,0 pBi;R

mq such that

F
`

u` ϕiε, Bi

˘

ď m pu,Biq ` ε
µ pBiq

2µ pOq
. (17)

10



De�ne ϕε : Ω Ñ Rm by ϕε :“
ř8

i“0 ϕ
i
ε1Bi P H

1,p
µ,0 pO;Rmq, that is

ϕε :“

"

0 in ΩzO
ϕiε in Bi.

Take the sum over the countable family of mutually disjoints balls tBiuiPI in (17), we obtain
by using (C2) and (C1)

F pu` ϕε, Oq“
ÿ

iPI

F pu` ϕε, Biq “
ÿ

iPI

F
`

u` ϕiε, Bi

˘

ď
ÿ

iPI

m pu,Biq`
ε

2
ď m˚

´ pu,Oq`ε.

If limεÑ0 }ϕε}LpµpX;Rmq “ 0 then we get (16) by using (C1) the lower semicontinuity of
F p¨, Oq. So, it remains to prove that ϕε Ñ 0 in Lpµ pΩ;Rmq as εÑ 0. We have by using the
Sobolev inequality (9), the coercivity condition (C4), (14) and the growth condition (C4)ˆ
X

|ϕε|
p dµ “

ˆ
O

|ϕε|
p dµ “

ÿ

iPI

ˆ
Bi

ˇ

ˇϕik
ˇ

ˇ

p
dµ ď

ÿ

iPI

εpCp
S

ˆ
Bi

ˇ

ˇ∇µϕ
i
ε

ˇ

ˇ

p
dµ

ď
2p´1Cp

Sε
p

c

ÿ

iPI

F
`

u` ϕiε, Bi

˘

` F pu,Biq

ď
2p´1Cp

Sε
p

c

`

m˚
´ pu,Oq ` ε` F pu,Oq

˘

ď
2pCp

Sε
p

c
pε` F pu,Oqq

ď
2pCp

Sε
p

c

ˆ

ε`

ˆ
O

a pxq ` b|∇µu pxq|pdµ pxq
˙

by passing to the limit εÑ 0 we �nd that ϕε Ñ 0 in Lpµ pX;Rmq. Thus we obtain

F pu,Oq “ m˚
´ pu,Oq “

ˆ
O

lim
ρÑ0

m pu,Bρ pxqq

µ pBρ pxqq
dµ pxq .

Step 2: re�nement of the formula for the integrand. In this step we show that for µ-a.e.
x P Ω

lim
ρÑ0

m pu,Bρ pxqq

µ pBρ pxqq
“ lim

ρÑ0

m pux, Bρ pxqq

µ pBρ pxqq

where ux is given by Proposition 1 (iv).
Let x P Ω satisfy

lim
ρÑ0

 
Bρpxq

a pyq dµ pyq “ a pxq ă 8; (18)

lim
ρÑ0

 
Bρpxq

|∇µu|
pdµ “ |∇µu pxq |

p
ă 8; (19)

∇µux pyq “ ∇µu pxq for µ-a.e. y P O; (20)

lim
ρÑ0

1

ρ

˜ 
Bρpxq

|u pyq ´ ux pyq|
p dµ pyq

¸
1
p

“ 0. (21)

Step 2.1: we prove that limρÑ0
mpux,Bρpxqq

µpBρpxqq
ď limrÑ0

mpu,Brpxqq
µpBrpxqq

for µ-a.e. x P Ω. Let ε ą 0,

ρ ą 0 and t Ps0, 1r. There exists v P u`H1,p
µ,0 pBtρ pxq ;Rmq such that

F pv,Btρ pxqq ď εµ pBtρ pxqq `m pu,Btρ pxqq . (22)
11



Let τ Pst, 1r. We consider a Lipschitz function ϕ : Ω Ñ r0, 1s which is a Urysohn function
for the pair

`

ΩzBτρ pxq , Btρ pxq
˘

, i.e. satisfying ϕ ” 1 on Btρ pxq, ϕ ” 0 on ΩzBτρ pxq and

}Dµϕ}L8µ ď
C0

ρ pτ ´ tq

for some C0 ą 0 not depending on ρ, τ and t. We set

w :“ ϕv ` p1´ ϕqux P ux `H
1,p
µ,0 pBρ pxq ;Rm

q

verifying

w “

$

&

%

v in Btρ pxq
ϕu` p1´ ϕqux in Bτρ pxq zBtρ pxq

ux in Bρ pxq zBτρ pxq .

As in [DM93, pp. 182, Proposition 15.23 and pp. 172, Proposition 14.23] we set

F ˚ pw,Bq :“ inftF pw,Oq : O pΩq Q O Ą Bu (23)

for all Borel set B Ă Ω and all w P H1,p
µ pΩ;Rmq. The functional F ˚ pw, ¨q is a nonnegative

Borel measure which extends to all Borel sets the measure F pw, ¨q, moreover, since the
growth condition (C4) we have

F ˚ pw,Bq ď

ˆ
B

a pxq ` b |∇µw pxq|
p dµ pxq (24)

for all Borel set B Ă Ω and all w P H1,p
µ pΩ;Rmq. Since the locality hypothesis (C2) and (24)

m pux, Bρ pxqq ď F pw,Bρ pxqq “F pw,Btρ pxqq ` F
˚
pw,Bρ pxq zBtρ pxqq

ďF pv,Btρ pxqq `

ˆ
BρpxqzBtρpxq

a pyq ` b|∇µw pyq|pdµ pyq .

(25)

Using the annular decay property (see De�nition 4), we haveˆ
BρpxqzBtρpxq

|∇µw|pdµ “
ˆ
BρpxqzBτρpxq

|∇µw|pdµ`
ˆ
BτρpxqzBtρpxq

|∇µw|pdµ

ď K0 p1´ τq
η µ pBρ pxqq |∇µu pxq|p `

ˆ
BτρpxqzBtρpxq

|∇µw|pdµ. (26)

Since ∇µw “ ϕ∇µv ` p1´ ϕq∇µu pxq ` Dµϕ b pv ´ uxq µ-a.e. in Ω, for some Cp ą 1
depending on p only, we haveˆ

BτρpxqzBtρpxq

|∇µw|pdµ ďCp
ˆ
BτρpxqzBtρpxq

|∇µu|pdµ` Cpµ pBτρ pxq zBtρ pxqq|∇µu pxq|p

` Cp

ˆ
BτρpxqzBtρpxq

}Dµϕ}
p
L8µ

|u´ ux|pdµ

ďCp

ˆ
BρpxqzBtρpxq

|∇µu|pdµ` CpK0 p1´ tq
η µ pBρ pxqq |∇µu pxq|p

`
CpC

p
0

pτ ´ tqp
1

ρp

ˆ
Bρpxq

|u´ ux|pdµ. (27)

12



Collecting (26) and (27) and dividing by µ pBρ pxqq, we have

1

µ pBρ pxqq

ˆ
BρpxqzBtρpxq

|∇µw|pdµ

ďK0 p1´ τq
η |∇µu pxq|p `

Cp
µ pBρ pxqq

ˆ
BρpxqzBtρpxq

|∇µu|pdµ` CpK0 p1´ tq
η |∇µu pxq|p

`
CpC

p
0

pτ ´ tqp
1

ρp

 
Bρpxq

|u´ ux|pdµ.

Passing to the limit ρÑ 0, by taking (21), (19) and Lemma 2 (12) into account, we obtain

lim
ρÑ0

1

µ pBρ pxqq

ˆ
BρpxqzBtρpxq

|∇µw|pdµ ď K0 p1´ τq
η |∇µu pxq|p ` 2CpK0 p1´ tq

η |∇µu pxq|p

ď 4CpK0 p1´ tq
η |∇µu pxq|p. (28)

Now, dividing by µ pBρ pxqq the inequality (25) and using (22)

m pux, Bρ pxqq

µ pBρ pxqq
ď
F pv,Btρ pxqq

µ pBtρ pxqq
`

1

µ pBρ pxqq

ˆ
BρpxqzBtρpxq

a` b|∇µw|pdµ

ďε`
m pu,Btρ pxqq

µ pBtρ pxqq
`

1

µ pBρ pxqq

ˆ
BρpxqzBtρpxq

adµ

` b
1

µ pBρ pxqq

ˆ
BρpxqzBtρpxq

|∇µw|pdµ,

letting ρÑ 0, by using Lemma 2 (12) together with (18) and (28), we have

lim
ρÑ0

m pux, Bρ pxqq

µ pBρ pxqq
ď ε` lim

ρÑ0

m pu,Btρ pxqq

µ pBtρ pxqq
`K0 p1´ tq

η a pxq`4CpK0 p1´ tq
η |∇µu pxq|p.

(29)
Since (18), (19) and the growth condition (C4) we have

lim
ρÑ0

m pu,Btρ pxqq

µ pBtρ pxqq
“ lim

rÑ0

m pu,Br pxqq

µ pBr pxqq
ă 8.

Letting tÑ 1 in (29) we obtain

lim
ρÑ0

m pux, Bρ pxqq

µ pBρ pxqq
ď ε` lim

rÑ0

m pu,Br pxqq

µ pBr pxqq
.

Step 2.2: we prove that limρÑ0
mpux,Bρpxqq

µpBρpxqq
ě limrÑ0

mpu,Brpxqq
µpBrpxqq

for µ-a.e. x P Ω. Let ε ą 0,

ρ ą 0 and t Ps1, 2r. There exists v P ux `H
1,p
µ,0 pBρ pxq ;Rmq such that

F pv,Bρ pxqq ď εµ pBρ pxqq `m pux, Bρ pxqq . (30)

Let τ Ps1, tr. We consider a Lipschitz function ϕ : Ω Ñ r0, 1s which is a Urysohn function
for the pair

`

ΩzBτρ pxq , Bρ pxq
˘

, i.e. satisfying ϕ ” 1 on Bρ pxq, ϕ ” 0 on ΩzBτρ pxq and

}Dµϕ}L8µ ď
C0

ρ pt´ τq
,

for some C0 ą 0 not depending on ρ, τ and t. We set w :“ ϕv ` p1´ ϕqu P u `
H1,p
µ,0 pBρ pxq ;Rmq given by

w “

$

&

%

v in Bρ pxq
ϕux ` p1´ ϕqu in Bτρ pxq zBρ pxq

u in Btρ pxq zBτρ pxq .
13



Since the locality hypothesis (C2) and (24)

m pu,Btρ pxqq ď F pw,Btρ pxqq “F pw,Bρ pxqq ` F
˚
pw,Btρ pxq zBρ pxqq

ďF pv,Btρ pxqq `

ˆ
BtρpxqzBρpxq

a` b|∇µw|pdµ. (31)

Using the annular decay property, we have for some Cp ą 1 depending on p onlyˆ
BtρpxqzBρpxq

|∇µw|pdµ “
ˆ
BtρpxqzBτρpxq

|∇µw|pdµ`
ˆ
BτρpxqzBρpxq

|∇µw|pdµ

ďCp

ˆ
BtρpxqzBρpxq

|∇µu|pdµ` CpK0

ˆ

1´
1

τ

˙η

µ pBτρ pxqq |∇µu pxq|p

`
CpC

p
0 t
p

pt´ τqp
1

ptρqp

ˆ
Btρpxq

|u´ ux|pdµ (32)

dividing by µ pBtρ pxqq and passing to the limit ρ Ñ 0, by taking (21), (19) and (12) into
account, we have

lim
ρÑ0

1

µ pBtρ pxqq

ˆ
BtρpxqzBρpxq

|∇µw|pdµ ď 2CpK0

ˆ

1´
1

t

˙η

|∇µu pxq|p. (33)

Now, dividing by µ pBtρ pxqq the inequality (31) and using (30)

m pu,Btρ pxqq

µ pBtρ pxqq
ďε`

m pux, Bρ pxqq

µ pBρ pxqq
`

1

µ pBtρ pxqq

ˆ
BtρpxqzBρpxq

adµ

` b
1

µ pBtρ pxqq

ˆ
BtρpxqzBρpxq

|∇µw|pdµ

letting ρÑ 0, by using Lemma 2 (12) together with (18) and (33), we have

lim
ρÑ0

m pu,Btρ pxqq

µ pBtρ pxqq
ď ε` lim

ρÑ0

m pux, Bρ pxqq

µ pBρ pxqq
`K0

ˆ

1´
1

t

˙η

pa pxq ` 2Cp|∇µu pxq|pq . (34)

Since (18), (19) and the growth condition (C4) we have

lim
ρÑ0

m pu,Btρ pxqq

µ pBtρ pxqq
“ lim

rÑ0

m pu,Br pxqq

µ pBr pxqq
ă 8.

Letting tÑ 1 in (34) we obtain

lim
rÑ0

m pu,Br pxqq

µ pBr pxqq
ď ε` lim

ρÑ0

m pux, Bρ pxqq

µ pBρ pxqq
.

Step 3: proof of (i) and (ii). From Steps 1 and 2, we have

F pu,Oq “

ˆ
O

lim
ρÑ0

m pux, Bρ pxqq

µ pBρ pxqq
dµ pxq

for all pu,Oq P H1,p
µ pΩ;Rmq ˆO pΩq. Using the extension (23) of F pu, ¨q to all Borel sets,

we have

F ˚ pu,Bq “

ˆ
B

lim
ρÑ0

m pux, Bρ pxqq

µ pBρ pxqq
dµ pxq

14



for all pu,Bq P H1,p
µ pΩ;Rmq ˆ B pΩq. By Theorem 3, we have X “ Y8k“0Xk Y N with

µ pNq “ 0. For each k P N, consider a nonincreasing sequence of open sets tOl
kulPN˚ Ă

O pΩq satisfying Ol
k Ą pXk X Ωq and µ

`

Ol
kz pXk X Ωq

˘

ď 1
l
for all l P N˚, and

Bk :“
8
č

l“1

Ol
k Ą pXk X Ωq with µ pBkq “ µ pXk X Ωq for all k P N.

Then we can write Ω “ Y8k“0BkYN0 with N0 :“ N YY8k“0Bkz pXk X Ωq. Since F ˚ pu, ¨q is
a Borel measure absolutely continuous with respect to µ, by using (C3) and the monotone
convergence theorem, we have

F pu,Oq “ F ˚ pu,Oq “
8
ÿ

k“0

F ˚ pu,O XBkq

“

8
ÿ

k“0

ˆ
OXBk

lim
ρÑ0

m pux, Bρ pxqq

µ pBρ pxqq
dµ pxq

“

ˆ
O

8
ÿ

k“0

lim
ρÑ0

inf
ϕPH1,p

µ,0pBρpxq;R
mq

F pux ` ϕ,Bρ pxqq

µ pBρ pxqq
1Bk pxq dµ pxq

“

ˆ
O

8
ÿ

k“0

lim
ρÑ0

m
`

∇µu pxq ¨ γ
k, Bρ pxq

˘

µ pBρ pxqq
1Bk pxq dµ pxq

for all pu,Oq P H1,p
µ pΩ;Rmq ˆO pΩq. We set

f px, ξq :“
8
ÿ

k“0

fk px, ξq where fk px, ξq :“ lim
ρÑ0

m
`

ξ ¨ γk, Bρ pxq
˘

µ pBρ pxqq
1Bk pxq

for all px, ξq P Ω ˆM and all k P N. First, (ii) holds because for every k P N, for µ-a.e.
x P Xk X Ω and for every ξ PM

f px, ξq :“ lim
ρÑ0

m
`

ξ ¨ γk, Bρ pxq
˘

µ pBρ pxqq

since Bk “ pXk X Ωq YNk with µ pNkq “ 0. Second, if we set

fkρ px, ξq :“
m
`

ξ ¨ γk, Bρ pxq
˘

µ pBρ pxqq
1Bk pxq

then fk px, ξq “ limρÑ0 f
k
ρ px, ξq and f

k
ρ px, ξq “ inf lě1 f

k,l
ρ px, ξq where

fk,lρ px, ξq :“
m
`

ξ ¨ γk, Bρ pxq
˘

µ pBρ pxqq
1Olk

pxq

for all px, ξq P Ω ˆM. Now, to prove (i), we need to show that f is Borel measurable, it
su�ces to prove that each fk,lρ is Borel measurable, indeed, this would imply that each fkρ is
Borel measurable as in�mum on countable set of fk,lρ , then the upper limit de�ning fk can
be computed as ρÑ 0 along a suitable countable set, and �nally f is Borel measurable as a
countable sum of Borel measurable functions. In fact, the following lemma shows that each
fk,lρ is lower semicontinuous.

Lemma 4. Let k P N, ρ ą 0 and l P N˚. Let
`

x, ξ
˘

P ΩˆM and two sequences txnunPN Ă Ω,
tξnunPN ĂM satisfy limnÑ8 d pxn, xq “ 0 and limnÑ8

ˇ

ˇξn ´ ξ
ˇ

ˇ “ 0. Then

lim
nÑ8

fk,lρ pxn, ξnq ě fk,lρ
`

x, ξ
˘

. (35)
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Proof of Lemma 4. Fix k P N and ρ ą 0. Assume that there exists a subsequence (not
relabelled) tξnunPN ĂM such that

8 ą lim
nÑ8

m
`

ξn ¨ γ
k, Bρ pxq

˘

“ lim
nÑ8

m
`

ξn ¨ γ
k, Bρ pxq

˘

.

Note that by the growth condition (the right inequality in) (C4)

sup
nPN

m
`

ξn ¨ γ
k, Bρ pxq

˘

ď sup
nPN

ˆ
Bρpxq

pa pxq ` b |ξn|
p
q dµ pxq ă 8. (36)

There exists tϕnunPN˚ Ă H1,p
µ,0 pBρ pxq ;Rmq such that for all n ě 1

1

n
`m

`

ξn ¨ γ
k, Bρ pxq

˘

ě F
`

ξn ¨ γ
k
` ϕn, Bρ pxq

˘

. (37)

By the coercivity condition (the left inequality in) (C4) and (36) we get

sup
nPN˚

ˆ
Bρpxq

|∇µϕn|
pdµ ă 8.

Using the p-Sobolev inequality Proposition 1 (iii), we see that tϕnunPN˚ Ă H1,p
µ,0 pBρ pxq ;Rmq

is bounded, so, by Theorem 4, there exists a subsequence which converges strongly in
Lpµ pBρ pxq ;Rmq and weakly to ϕ in H1,p

µ,0 pBρ pxq ;Rmq. By the lower semicontinuity hy-
pothesis (C5), we have

lim
nÑ8

F
`

ξn ¨ γ
k
` ϕn, Bρ pxq

˘

ě F
`

ξ ¨ γk ` ϕ,Bρ pxq
˘

ě m
`

ξ ¨ γk, Bρ pxq
˘

,

thus, passing to the limit nÑ 8 in (37), we obtain

lim
nÑ8

m
`

ξn ¨ γ
k, Bρ pxq

˘

ě m
`

ξ ¨ γk, Bρ pxq
˘

. (38)

Fix l P N˚. We can assume that x P Ol
k, otherwise f

k,l
ρ px, ¨q “ 0. Thus, there exists N P N

such that xn P Ol
k for all n ě N .

We claim that

lim
nÑ8

m
`

ξn ¨ γ
k, Bρ pxnq

˘

´m
`

ξn ¨ γ
k, Bρ pxq

˘

ě 0. (39)

Indeed, �x n ě N , there exists a sequence tϕmn umPN˚ Ă H1,p
µ,0 pBρ pxnq ;Rmq such that for all

m ě 1

8 ą

ˆ
Bρpxq

a pxq ` b |ξn|
p dµ pxq ě m

`

ξn ¨ γ
k, Bρ pxnq

˘

ě ´
1

m
` F

`

ξn ¨ γ
k
` ϕmn , Bρ pxnq

˘

,

using the coercivity condition (C4), we have

sup
mPN˚

ˆ
Bρpxnq

|∇µϕ
m
n |

pdµ ă 8.

We apply the p-Sobolev inequality Proposition 1 (iii), we see that the sequence tϕmn umPN˚ Ă
H1,p
µ,0 pBρ pxnq ;Rmq is bounded. So, by Theorem 4, there exists a subsequence (not rela-

belled) which converges strongly inLpµ pBρ pxnq ;Rmq andweakly toϕ8n inH1,p
µ,0 pBρ pxnq ;Rmq
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as mÑ 8. By the lower semicontinuity hypothesis (C5), we have

m
`

ξn ¨ γ
k, Bρ pxnq

˘

ě lim
mÑ8

F
`

ξn ¨ γ
k
` ϕmn , Bρ pxnq

˘

ěF
`

ξn ¨ γ
k
` ϕ8n , Bρ pxnq

˘

“F
`

ξn ¨ γ
k
` ϕ8n , Bρ pxnq

˘

´ F
`

ξn ¨ γ
k
` ϕ8n , Bρ pxq

˘

` F
`

ξn ¨ γ
k
` ϕ8n , Bρ pxq

˘

ěF
`

ξn ¨ γ
k
` ϕ8n , Bρ pxnq

˘

´ F
`

ξn ¨ γ
k
` ϕ8n , Bρ pxq

˘

`m
`

ξn ¨ γ
k, Bρ pxq

˘

For every n ě N and every open set O Ă Ω, we have by using (C4)

F
`

ξn ¨ γ
k, O

˘

ď

ˆ
O

ˆ

a` b sup
nPN

|ξn|
p

˙

dµ “ ν pOq ,

we also have for every Borel set B Ă Ω

F ˚
`

ξn ¨ γ
k, B

˘

ď ν pBq

where F ˚ is given by (23) and ν :“ pa` b supnPN |ξn|
p
qµtΩ. By (C1), we have

F
`

ξn ¨ γ
k
` ϕ8n , Bρ pxnq

˘

´ F
`

ξn ¨ γ
k
` ϕ8n , Bρ pxq

˘

“ F ˚
`

ξn ¨ γ
k
` ϕ8n , Bρ pxnq zBρ pxq

˘

´ F ˚
`

ξn ¨ γ
k
` ϕ8n , Bρ pxq zBρ pxnq

˘

“ F ˚
`

ξn ¨ γ
k
` ϕ8n , Bρ pxnq zBρ pxq

˘

´ F ˚
`

ξn ¨ γ
k, Bρ pxq zBρ pxnq

˘

ě ´F ˚
`

ξn ¨ γ
k, Bρ pxq zBρ pxnq

˘

ě ´ν pBρ pxq zBρ pxnqq .

Since limnÑ8 d pxn, xq “ 0, we have limnÑ8 ν pBρ pxq zBρ pxnqq “ 0, so (39) holds. Now,
using (38) and (39), we obtain

lim
nÑ8

m
`

ξn ¨ γ
k, Bρ pxnq

˘

“ lim
nÑ8

`

m
`

ξn ¨ γ
k, Bρ pxnq

˘

´m
`

ξn ¨ γ
k, Bρ pxq

˘

`m
`

ξn ¨ γ
k, Bρ pxq

˘˘

ě lim
nÑ8

`

m
`

ξn ¨ γ
k, Bρ pxnq

˘

´m
`

ξn ¨ γ
k, Bρ pxq

˘˘

` lim
nÑ8

m
`

ξn ¨ γ
k, Bρ pxq

˘

ě m
`

ξ ¨ γk, Bρ pxq
˘

.

Fix ε ą 0. Since the measure of the boundary of balls is zero (see Remark 2), we have
limnÑ8 µ pBρ pxnqq “ µ pBρ pxqq, so, for some integer N 1 ě N and for all n ě N 1

µ pBρ pxnqq ď ε` µ pBρ pxqq .

It follows that for all n ě N 1

fk,lρ pxn, ξnq “
m
`

ξn ¨ γ
k, Bρ pxnq

˘

µ pBρ pxnqq
ě
m
`

ξn ¨ γ
k, Bρ pxnq

˘

ε` µ pBρ pxqq
,

letting nÑ 8 and then εÑ 0 we obtain (35).�
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Step 4: proof of (iv) and (v). By (C4) and the integral representation obtained in the pre-
vious step, we have for every pu,Oq P H1,p

µ pΩ;Rmq ˆO pΩq

c

ˆ
O

|∇µu pxq|
p dµ pxq ď

ˆ
O

f px,∇µu pxqq dµ pxq ď

ˆ
O

a pxq ` b |∇µu pxq|
p dµ pxq

where c ą 0, b ě 0 and a P L1
µ pΩq are given by (C4). By the Lebesgue di�erentiation

theorem, we deduce that for every u P H1,p
µ pΩ;Rmq and for µ-a.e. x P Ω

g1 px,∇µu pxqq ď f px,∇µu pxqq ď g2 px,∇µu pxqq (40)

where for every px, ξq P ΩˆM

g1 px, ξq “ c|ξ|p and g2 px, ξq “ a pxq ` b|ξ|p,

Using the Borel measurable function N of the Lemma 1, we set for every px, ξq P ΩˆM

rg1 px, ξq :“ cN px, ξqp and rg2 px, ξq :“ ra` bN px, ξqp

where ra is a Borel measurable function satisfying a “ ra µ-a.e. in Ω (see [HKST15, Propo-
sition 3.3.23, pp. 59 and Lemma 3.3.28, pp. 62]). We have for µ-a.e. x P Ω and for every
ξ PM

rg1 px, ξq “ g1 px, ξq and rg2 px, ξq “ g2 px, ξq ,

thus, using (40), we can write for every u P H1,p
µ pΩ;Rmq and for µ-a.e. x P Ω

rg1 px,∇µu pxqq ď f px,∇µu pxqq ď rg2 px,∇µu pxqq .

We can apply Lemma 9 to obtain (iv). To see (v), we apply Corollary 2.�

4. Proof of Theorem 2

4.1. TheDeGiorgi-Letta lemma. LetX “ pX, dq be ametric space, letO pXq be the class
of open subsets of X and let B pXq be the class of Borel subsets of X , i.e. the smallest σ-
algebra containing the open (or equivalently the closed) subsets of X. The following result
is due to De Giorgi and Letta (see [DGL77] and also [But89, Lemma 3.3.6 p. 105]).

Lemma 5. Let S : O pXq Ñ r0,8s be an increasing set function, i.e. S pUq ď S pV q for all
U, V P O pXq such U Ă V , satisfying the following four conditions:

(i) S pHq “ 0;
(ii) S is superadditive, i.e. S pU Y V q ě S pUq`S pV q for all U, V P O pXq such that UXV “

H;
(iii) S is subadditive, i.e. S pU Y V q ď S pUq ` S pV q for all U, V P O pXq ;
(iv) there exists a �nite regular measure α : B pXq Ñ r0,8s such that S pUq ď α pUq for all

U P O pXq.
Then, S can be uniquely extended to a �nite regular measure S˚ : B pXq Ñ r0,8s de�ned by

S˚ pBq “ inf
!

S pOq : O pXq Q O Ą B
)

,

and which satis�es S˚ pBq ď α pBq for all B P B pXq.
18



4.2. Proof of Theorem 2. We need the following lemma:

Lemma 6. Let u P H1,p
µ pΩ;Rmq and O P O pΩq. Then

(i) the functional F pu, ¨q is a measure;

(ii) c
ˆ
O

|∇µu|pdµ ď F pu,Oq ď

ˆ
O

pa` b|∇µu|pq dµ where c ą 0, a P L1
µ pΩq and b ě 0 are

given by (C4);
(iii) m pu,Oq “ m pu,Oq where m pu,Oq “ inf

!

F pu` ϕ,Oq : ϕ P H1,p
µ,0 pX;Rmq

)

.

The Lemma 6 (i) and (ii) insures that F satis�es (C1) and (C4). It is direct to see that F
veri�es (C2), and we refer to [DM93, Proposition 16.15, pp. 185] for (C3). Therefore we
can apply Theorem 1 to have the following integral representation: for every O P O pΩq
and every u P H1,p

µ pΩ;Rmq

F pu,Oq “

ˆ
O

f px,∇µu pxqq dµ pxq , (41)

where f is a Borel measurable function satisfying, for every k P N, for µ-a.e. x P Ω XXk

and for every ξ PM

f px, ξq :“ lim
ρÑ0

inf
ϕPH1,p

µ,0pBρpxq;R
mq

F
`

ξ ¨ γk p¨q ` ϕ,Bρ pxq
˘

µ pBρ pxqq
;

We obtain the relaxed integrand stated in Theorem 2 (ii) by using Lemma 6 (iii). Note that
Theorem 2 (iv) is a consequence of Theorem 1 (iv).

Proof of Lemma 6 (i). Fix u P H1,p
µ pΩ;Rmq. Using the right inequality in (C4) we see that

F pu,Oq ď

ˆ
O

pa` b|∇µu|pq dµ for all O P O pΩq . (42)

Thus, the condition (iv) of Lemma 5 is satis�ed with α “ pa` b|∇µu|pqµ (which is ab-
solutely continuous with respect to µ). On the other hand, it is easily seen that the con-
ditions (i) and (ii) of Lemma 5 are satis�ed. The proof will be complete by proving the
condition (iii) of Lemma 5, i.e.

F pu, U Y V q ď F pu, Uq ` F pu, V q for all U, V P O pΩq . (43)

To show (43) we need the following lemma:

Lemma 7. If U, V, Z, T P O pΩq are such that Z Ă U and T Ă V , then

F pu, Z Y T q ď F pu, Uq ` F pu, V q . (44)

Proof of Lemma 7. Let tununPN and tvnunPN be two sequences in H1,p
µ pΩ;Rmq such that:

un Ñ u in Lpµ pΩ;Rm
q ; (45)

vn Ñ u in Lpµ pΩ;Rm
q ; (46)

lim
nÑ8

F pun, Uq “ F pu, Uq ă 8; (47)

lim
nÑ8

F pvn, V q “ F pu, V q ă 8. (48)
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Fix δ Ps0, dist pZ, BUq r with BU :“ UzU , �x any integer q ě 1 and considerW´
i ,W

`
i Ă Ω

given by:

W´
i :“

"

x P Ω : dist px, Zq ď
δ

3

ˆ

1`
i´ 1

q

˙*

(49)

and W`
i :“

"

x P Ω :
δ

3

ˆ

1`
i

q

˙

ď dist px, Zq

*

, (50)

where i P t1, ¨ ¨ ¨ , qu. For every i P t1, ¨ ¨ ¨ , qu there exists a Uryshon function ϕi P Lip pΩq
for the pair

`

W`
i ,W

´
i

˘

. Fix n P N. De�ne win P H
1,p
µ pΩ;Rmq by

win :“ ϕiun ` p1´ ϕiq vn.

SettingWi :“ Ωz
`

W´
i YW

`
i

˘

and using Theorem 3 (iii) and (7) we have

∇µw
i
n “

$

&

%

∇µun inW´
i

Dµϕi b pun ´ vnq ` ϕi∇µun ` p1´ ϕiq∇µvn inWi

∇µvn inW`
i .

Noticing that ZYT “
`

pZ Y T q XW´
i

˘

YpW XWiqY
`

T XW`
i

˘

with pZ Y T qXW´
i Ă U ,

T XW`
i Ă V andW :“ T X

 

x P U : δ
3
ă dist px, Zq ă 2δ

3

(

we deduce that

F
`

win, Z Y T
˘

ď F pun, Uq ` F pvn, V q ` F
`

win,W XWi

˘

(51)

for all i P t1, . . . , qu. Moreover, from the right inequality in (C4) we see that for each
i P t1, . . . , qu,

F
`

win,W XWi

˘

ďb }Dµϕi}
p
L8µ pΩ;RN q

}un ´ vn}
p
LpµpΩ;Rmq

`

ˆ
WXWi

pa` b|∇µun|p ` b|∇µvn|pq dµ (52)

with c :“ 22pβ. Substituting (52) into (51) and averaging these inequalities, it follows that
for every n P N and every q ě 1, there exists in,q P t1, . . . , qu such that

F
`

win,qn , Z Y T
˘

ďF pun, Uq ` F pvn, V q `
b

q

q
ÿ

i“1

}Dµϕi}
p
L8µ pΩ;RN q

}un ´ vn}
p
LpµpΩ;Rmq

`
1

q

ˆˆ
V

adµ` b

ˆ
U

|∇µun|pdµ` b
ˆ
V

|∇µvn|pdµ
˙

.

On the other hand, by (45) and (46) we have:

lim
nÑ8

}un ´ vn}
p
LpµpΩ;Rmq

“ 0 and lim
nÑ8

}win,qn ´ u}p
LpµpΩ;Rmq

“ 0 for all q ě 1.

Moreover, using (47) and (48) together with the left inequality in (C4) we see that:

lim
nÑ8

ˆ
U

|∇µun pxq|
p dµ pxq ă 8 and lim

nÑ8

ˆ
V

|∇µvn pxq|
p dµ pxq ă 8.

Letting tÑ 8 (and taking (47) and (48) into account) we deduce that for every q ě 1,

F pu, Z Y T q ď lim
nÑ8

F
`

win,qn , Z Y T
˘

ď F pu, Uq ` F pu, V q `
C

q
(53)

withC :“
´
V
adµ` b limnÑ8

´
U
|∇µun|

pdµ` b limnÑ8

´
V
|∇µvn|

pdµ, and (44) follows from
(53) by letting q Ñ 8.�
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We now prove (43). Fix O1, O2 P O pΩq. Fix ε ą 0 and consider C,D P O pΩq such that
C Ă O1, D Ă O2 and ˆ

E

a pxq ` b |∇µu pxq|
p dµ pxq ă ε

with E :“ O1YO2zC YD. Then F pu,Eq ď ε by (42) Let pC, pD, ppC, ppD P O pΩq be such that

C Ă pC Ă pC Ă
p

pC Ă
p

pC Ă O1 and D Ă pD Ă pD Ă
p

pD Ă
p

pD Ă O2.

Applying Lemma 7 with U “ p

pC Y
p

pD, V “ T “ E and Z “ pC Y pD gives

F pu,O1 YO2q ď F

ˆ

u,
p

pC Y
p

pD

˙

` ε,

since Z Y T “
`

O1 YO2zC YD
˘

Y

´

pC Y pD
¯

Ą
`

O1 YO2zC YD
˘

Y
`

C YD
˘

“ O1YO2,

i.e Z Y T “ O1 Y O2. Using again Lemma 7 with U “ O1, V “ O2, Z “
p

pC and T “ p

pD we
obtain

F

ˆ

u,
p

pC Y
p

pD

˙

ď F pu,O1q ` F pu,O2q ,

hence
F pu,O1 YO2q ď F pu,O1q ` F pu,O2q ` ε,

and (43) follows by letting εÑ 0.�

We can extract and isolate the following lemma by examining the proof of Lemma 7
above:

Lemma 8. If U, V, Z, T P O pXq are such that Z Ă U and T Ă V , and if tununPN is a sequence
in H1,p

µ pΩ;Rmq such that un Ñ u in Lpµ pΩ;Rmq, then for every δ Ps0, dist pZ, BUq r there exists
a sequence twnunPN in H1,p

µ pΩ;Rmq such that:

wn Ñ u in Lpµ pΩ;Rm
q , wn “ u µ-a.e. in

"

x P X : dist px, Zq ě
2δ

3

*

,

and for every n P N and every q ě 1,

F pwn, Z Y T q ďF pun, Uq ` F pu, V q `
b

q

q
ÿ

i“1

}Dµϕi}
p
L8µ pΩ;RN q

}un ´ u}
p
LpµpΩ;Rmq

`
1

q

ˆˆ
V

adµ` b

ˆ
U

|∇µun|pdµ` b
ˆ
V

|∇µu|pdµ
˙

,

where each ϕi P Lip pXq is a Uryshon function for the pair
`

W`
i ,W

´
i

˘

de�ned in (49) and (50).

Proof of Lemma 6 (iii). Let u P H1,p
µ pΩ;Rmq and O P O pΩq. It su�ces to show that

m pu,Oq ě m pu,Oq , (54)

where m pu,Oq “ inf
 

F pu` ϕ,Oq : ϕ P H1,p
µ,0 pO;Rmq

(

.
Fix ε ą 0. There exists ϕ P H1,p

µ,0 pO;Rmq such that

ε`m pu,Oq ě F pu` ϕ,Oq .

There exists tϕnunPN such that ϕn Ñ ϕ in Lpµ pΩ;Rmq and

8 ą ε`m pu,Oq ě F pu` ϕ,Oq “ lim
nÑ8

F pu` ϕn, Oq . (55)
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Apply Lemma 8 with

U :“ O, Z :“

"

x P O : dist px,ΩzOq ą
2δ

3

*

,

T “ V :“ Vδ “ tx P O : dist px,ΩzOq ă δu

and un :“ u` ϕn.

There exists a sequence twnunPN in H1,p
µ pΩ;Rmq such that:

wn Ñ u in Lpµ pΩ;Rm
q and wn “ u` ϕ “ u µ-a.e. in ΩzO,

and for every n P N and every q ě 1,

m pu,Oq ď F pwn, Oq ďF pu` ϕn, Oq ` F pu` ϕ, Vδq

`
b

q

q
ÿ

i“1

}Dµϕi}
p
L8µ pΩ;RN q

}ϕn ´ ϕ}
p
LpµpΩ;Rmq

`
1

q

ˆˆ
V

adµ` b

ˆ
U

|∇µu`∇µϕn|pdµ` b
ˆ
V

|∇µu`∇µϕ|pdµ
˙

,

since O “ Z Y T . Moreover, using (55) together with the left inequality in (C4) we see that:

lim
nÑ8

ˆ
O

|∇µu`∇µϕn|
p dµ ă 8.

Letting nÑ 8 we deduce that for every q ě 1,

m pu,Oq ď ε`m pu,Oq `

ˆ
Vδ

a` b |∇µu`∇µϕ|
p dµ`

C

q
(56)

with C :“
´
V
adµ` b limnÑ8

´
U
|∇µu`∇µϕn|pdµ` b

´
V
|∇µu`∇µϕ|pdµ, and (54) fol-

lows from (56) by letting q Ñ 8, δ Ñ 0 and εÑ 0.�

Proof of Lemma 6 (ii). Fix u P H1,p
µ pΩ;Rmq. Using the right inequality in (C4) we see that

F pu,Oq ď

ˆ
O

pa` b|∇µu|pq dµ for all O P O pΩq .

On the other side by the lower semicontinuity of the norm, we have

F pu,Oq ě c inf

"

lim
nÑ8

ˆ
O

|∇µun pxq|
p dµ pxq : un Ñ u in Lpµ pΩ;Rm

q

*

“ c

ˆ
O

|∇µu pxq|
p dµ pxq .�

5. Proof of Corollary 1

De�ne F : H1,p
µ pΩ;Rmq ˆO pΩq Ñ r0,8s by

F pu,Oq :“

ˆ
O

f px,∇µu pxqq dµ pxq .

We see that F satis�es (C1)-(C4). We apply Theorem 2, we have for every O P O pΩq and
every u P H1,p

µ pΩ;Rmq

F pu,Oq “

ˆ
O

f px,∇µu pxqq dµ pxq
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where the Borel integrand f is given, for µ-a.e. x P Ω and for every ξ PM, by

f px, ξq :“ lim
ρÑ0

inf
ϕPH1,p

µ,0pBρpxq;R
mq

 
Bρpxq

f py, ξ `∇µϕq dµ.

Assume that (ii) holds, i.e. F pu,Oq “ F pu,Oq for all pu,Oq P H1,p
µ pΩ;RmqˆO pΩq. Using

the Lebesgue di�erentiation theorem, we have for every u P H1,p
µ pΩ;Rmq and for µ-a.e.

x P Ω

f px,∇µu pxqq “ f px,∇µu pxqq .

It follows, from Corollary 2 below, that for µ-a.e. x P Ω and for every ξ PM

f px, ξq “ f px, ξq . (57)

Now, assume that (i) holds, i.e. we have the equality (57). Using Theorem 2 we have for all
pu,Oq P H1,p

µ pΩ;Rmq ˆO pΩq

F pu,Oq “

ˆ
O

f px,∇µu pxqq dµ pxq “

ˆ
O

f px,∇µu pxqq dµ pxq “ F pu,Oq

which means that F p¨, Oq is Lpµ-lower semicontinuous.

6. Auxiliary results

6.1. Integrands and Lusin-type theorems. The Lemma 9 below is a version of an Alberti
result [Alb91, Corollary 6, pp. 112] concerning inequalities of Borel integrands, in the
setting of metric measure spaces. In fact, using an extension to metric measure spaces of
the Alberti result on Lusin-type for gradients by David [Dav15], we are able to rewrite the
proof given by Alberti in this framework with minor changes.

Lemma 9. Assume that pX, dq is a complete metric space. Let U Ă X be an open subset and let
h, g : U ˆM Ñ R be two Borel functions such that for every u P Lip0 pU ;Rmq and for µ-a.e.
x P U

h px,∇µu pxqq ď g px,∇µu pxqq . (58)

Then for µ-a.e. x P U and for every ξ PM it holds

h px, ξq ď g px, ξq . (59)

For the proof, we adapt slightly the one of Alberti [Alb91] to our setting. It consists
in showing that µ pπ pBqq “ 0 where π pBq is the projection onto U of the set B of all
px, ξq P U ˆM which do not satisfy (59). For this, a generalized version of the measurable
selection theorem allows to �nd a measurable selection not satisfying (59) at every point of
π pBq, then using the Lusin-type theorem for gradient of David [Dav15], we will be able to
say, because of (58), that µ pπ pBqq is as small as we wish.

Proof of Lemma 9. Depending on the needs of the proof, we state only partially the result
of Lusin-type theorems for gradients in metric measure space:

Proposition 2. [Dav15, Theorem 1.3, pp. 297] Assume that pX, dq is a complete metric space.
For every open subset U Ă X with µ pUq ă 8, every collection of Borel measurable functions
twk : Xk X U ÑMukPN and every ε ą 0, there exist an open set O Ă U and a Lipschitz function
u P Lip0 pU ;Rmq such that

µ pOq ď εµ pUq and wk “ ∇µu µ-a.e. in Xk X pUzOq for all k P N.
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De�ne the Borel set B :“ tpx, ξq P U ˆM : h px, ξq ą g px, ξqu. Suppose B “ H, oth-
erwise there is nothing to prove. Consider π pBq Ă U the projection onto U of B. The
projection theorem [CV77, Theorem III.23, pp. 75] shows that π pBq is µ-measurable, i.e.
π pBq P Bµ pXq. The rest of the proof is dedicated to showing that µ pπ pBqq “ 0.

Let ΛB : π pBq⇒M be the multifunction de�ned by

ΛB pxq :“ tξ PM : px, ξq P Bu .

Note that ΛB pxq “ H for all x P π pBq since π pBq “ H. Moreover, its graph is the Borel
set B, so, we can apply the Aumann-Sainte Beuve theorem [CV77, Theorem III.22, pp.
74] (see [SB74, Theorem 3, pp. 119]), which gives a pBµ pXq ,B pMqq-measurable function
(a measurable selection) σ : π pBq ÑM satisfying

σ pxq P ΛB pxq for all x P π pBq . (60)

De�ne rσ : U Ñ M by rσ :“ σ1πpBq. From [HKST15, Proposition 3.3.23, pp. 59 and
Lemma 3.3.28, pp. 62], there exists a Borel function w : U Ñ M and N P Bµ pXq with
µ pN q “ 0 such that w “ rσ on UzN . Fix ε ą 0. Apply Proposition 2 with wk :“ wtXk .
There exist an open set O Ă U , a Lipschitz function u P Lip0 pU ;Rmq and rN P Bµ pXq with
µ
´

rN
¯

“ 0 such that

µ pOq ď εµ pUq and w “ ∇µu
´

Xz rN
¯

X pUzOq .

For every x P
´

Xz rN
¯

X pUzOq X π pBq zN we have σ pxq “ ∇µu pxq, according to (60) we
can write

h px,∇µu pxqq ą g px,∇µu pxqq .

From (58), there exists N0 P Bµ pXq with µ pN0q “ 0 such that for every x P UzN0

h px,∇µu pxqq ď g px,∇µu pxqq .

It follows that UzN0 X

´

Xz rN
¯

X pUzOq X π pBq zN “ H, i.e. π pBq Ă O YN YN0 Y rN ,

then µ pπ pBqq ď µ pOq ď εµ pUq. Letting εÑ 0, we get µ pπ pBqq “ 0.�

Corollary 2. Assume that pX, dq is a complete metric space. Let U Ă X be an open subset with
µ pUq ă 8 and let h, g : UˆMÑ R be two Borel functions such that for every u P Lip0 pU ;Rmq

and for µ-a.e. x P U
h px,∇µu pxqq “ g px,∇µu pxqq . (61)

Then for µ-a.e. x P U and every ξ PM it holds

h px, ξq “ g px, ξq .

6.2. H1,p
µ -quasiconvex integrands. Here we deduce easily Theorem 1 (iii) and Theo-

rem 2 (iii) from Proposition 3 below.

De�nition 5. Let f : XˆMÝÑr0,8s be a Borel measurable function. LetA be ameasurable
subset of X. We say that f is H1,p

µ -quasiconvex on A at ξ PM if for µ-a.e. x P A it holds

f px, ξq ď lim
ρÑ0

inf
ϕPH1,p

µ,0pBρpxq;R
mq

 
Bρpxq

f py, ξ `∇µϕq dµ.

When f is H1,p
µ -quasiconvex on A at every ξ P M we say that f is H1,p

µ -quasiconvex on A,
and if A “ X we say that f is H1,p

µ -quasiconvex.
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Remark 3. As a direct consequence of the Lebesgue di�erentiation theorem and the de�-
nition of H1,p

µ -quasiconvexity, an integrand f : X ˆM ÝÑ r0,8s is H1,p
µ -quasiconvex at

ξ PM satisfying f p¨, ξq P L1
µ,loc pXq if and only if for µ-a.e. x P X

f px, ξq “ lim
ρÑ0

inf
ϕPH1,p

µ,0pBρpxq;R
mq

 
Bρpxq

f py, ξ `∇µϕq dµ.

In [AHM20, Theorem 3, pp. 10] we proved:

Proposition 3. Let f : XˆMÝÑr0,8s be a p-coercive Borel measurable integrand, i.e. satisfying
for some c ą 0, for µ-a.e. x P X and for every ξ PM

f px, ξq ě c |ξ|p . (62)

Assume that for every u, tuεuεą0 Ă H1,p
µ pX;Rmq satisfying limεÑ0 }uε´u}LpµpX;Rmq “ 0, it holds

lim
εÑ0

ˆ
O

f px,∇µuεq dµ ě

ˆ
O

f px,∇µuq dµ (63)

for all open set O P O pXq with µ pOq ă 8.
Then f is H1,p

µ -quasiconvex on X at every ξ PM satisfying f p¨, ξq P L1
µ,loc pXq.

6.3. Integral representation of the Vitali envelope of a set function. This part is devoted
to the integral representation of the Vitali envelope of a set function de�ned on open subsets
ofX , it is partly inspired by [BB00, BFM98, DMM86]. Then we apply it to the set function
m pu, ¨q.

For each open set O Ă Ω, we denote byB pOq Ă O pOq the class of all open balls B of O.

6.3.1. Vitali envelopes of set functions. Let G : B pΩq Ñ R be a set function. We de�ne the
lower Vitali envelope of G with respect to µ

O pΩq Q O ÞÝÑ G˚´ pOq :“ sup
εą0

inf

#

ÿ

iPI

G pBiq : tBiuiPI P V
ε
pOq

+

and the upper Vitali envelope with respect to µ

O pΩq Q O ÞÝÑ G˚` pOq :“ inf
εą0

sup

#

ÿ

iPI

G pBiq : tBiuiPI P V
ε
pOq

+

,

where for every ε ą 0

VεpOq :“
!

tBiuiPI Ă B pOq : I is countable, µ
´

Oz Y
iPI
Bi

¯

“ 0, Bi Ă O,

0 ă diam pBiq ď ε and Bi XBj “ H for all i “ j

*

.

Remark 4. If G is the trace on B pΩq of a positive Borel measure λ on Ω which is
absolutely continuous with respect to µ then G˚˘ pOq “ λ pOq for all O P O pΩq.

Let G : B pΩq Ñ R be a set function. De�ne the lower and the upper derivatives at x P Ω of
G with respect to µ as follows

d´µG pxq :“ lim
ρÑ0

inf

"

G pBq

µ pBq
: x P B P B pΩq , 0 ă diam pBq ď ρ

*

;

d`µG pxq :“ lim
ρÑ0

sup

"

G pBq

µ pBq
: x P B P B pΩq , 0 ă diam pBq ď ρ

*

.
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We say that G is µ-di�erentiable in O P O pΩq if for µ-a.e. x P O it holds

´8 ă d´µG pxq “ d`µG pxq ă 8,

in this case, we denote the common value by dµG pxq and

dµG pxq “ lim
ρÑ0

G pBρ pxqq

µ pBρ pxqq
.

Under domination and subadditivity conditions (see conditions (i) and (ii) below), a set
function de�ned on open sets is µ-di�erentiable, and the lower and upper Vitali envelopes
are equal and admit an integral representation with density its derivative, for the proof see
[AHM18, Theorem 3.17, pp. 65]:

Theorem 5. Let G : O pΩq Ñ R satisfy:
(i) there exists a positive Radon measure α on Ω absolutely continuous with respect to µ, i.e.

α ! µ, satisfying
|G pOq| ď α pOq for all O P O pΩq ;

(ii) for every U, V,O P O pΩq with U X V “ H, U Ă O, V Ă O and µ pOz pU Y V qq “ 0 it
holds

G pOq ď G pUq `G pV q .

Then G is µ-di�erentiable with Ω Q x ÞÝÑ limρÑ0
GpBρpxqq

µpBρpxqq
P L1

µ pΩq and for every O P O pΩq

G˚` pOq “ G˚´ pOq “

ˆ
O

lim
ρÑ0

G pBρ pxqq

µ pBρ pxqq
dµ pxq . (64)

Lemma 10. Assume that (C1) and (C4) hold. Then
(i) for every u P H1,p

µ pΩ;Rmq the set function m pu, ¨q is µ-di�erentiable and the function

Ω Q x ÞÝÑ lim
ρÑ0

m pu,Bρ pxqq

µ pBρ pxqq
P L1

µ pΩq ;

(ii) for every O P O pΩq and every u P H1,p
µ pΩ;Rmq we have

m˚
´ pu,Oq “

ˆ
O

lim
ρÑ0

m pu,Bρ pxqq

µ pBρ pxqq
dµ pxq .

Proof of Lemma 10. Let u P H1,p
µ pΩ;Rmq. The proof consists in verifying the hypothesis

of Theorem 5 for the set function G p¨q “ m pu, ¨q.
Let us show that the set functionm pu, ¨q : O pΩq Ñ R` is subadditive. Let pU1, U2,W q P

O pΩq3 be three open sets such that U1 Ă W , U2 Ă W with µ pW z pU1 Y U2qq “ 0 and
U1 X U2 “ H. We can assume that m pu, U1q ă 8 and m pu, U2q ă 8. There exists
vi P u`H

1,p
µ,0 pUi;R

mq such that

ε`m pu, Uiq ě F pvi, Uiq . (65)

Set v0 :“
ř2
i“1 vi1Ui ` u1ΩzpU1YU2q P u`H

1,p
µ,0 pW ;Rmq. We have, by using (C1) and (C4),

F pv0,W q “ F ˚ pv0,W q “ F pv0, U1 Y U2q ` F
˚
pv0,W z pU1 Y U2qq

ď

2
ÿ

i“1

F pv0, Uiq `

ˆ
W zpU1YU2q

a pxq ` b|∇µv0|
pdµ

“

2
ÿ

i“1

F pv0, Uiq .
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From (65), it follows that

m pu,W q ď F pv0,W q ď
2
ÿ

i“1

F pv0, Uiq ď 2ε`
2
ÿ

i“1

m pu, Uiq ,

Theorem 5 (ii) holds by letting εÑ 0.
Now, if we set

α pOq :“

ˆ
O

a pxq ` b|∇µu pxq |
pdµ pxq for all open set O Ă Ω

thenα is a positive Radonmeasure (in fact µ is a Radonmeasure, see [HKST15, Proposition
3.3.44, pp. 81]) on Ω absolutely continuous with respect to µ, and

m pu,Oq ď F pu,Oq ď α pOq for all open set O Ă Ω

since (C4), i.e. Theorem 5 (i) holds.�
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