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INTEGRAL REPRESENTATION AND RELAXATION OF LOCAL
FUNCTIONALS ON CHEEGER-SOBOLEV SPACES

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABsTRACT. We prove an integral representation theorem for local functionals with poly-
nomial growth defined on Cheeger-Sobolev spaces. More precisely, we give a version of
the well-known Buttazzo-Dal maso integral representation theorem in the framework of
Cheeger-Sobolev spaces. The integral representation theorem is used to prove a relaxation
theorem.

1. INTRODUCTION

Let (X, d, 1) be a metric measure space with p a nontrivial Borel (regular) measure on
X and (X, d) is a separable metric space. Let p €1, o0[. Cheeger showed in a seminal pa-
per [Che99] that if we assume that p is doubling and (X, d, i) enjoys a (1, p)-Poincaré
inequality (see Section [2), then X has a measurable differentiable structure, i.e. there
exists a countable collection {(X k,vk) }kew of measurable sets X} and of Lipschitz “co-

ordinate” functions 7* := <yf, . ,7]"{,(,6)> 0 X — RN® such that pu(X\ U Xz) = 0

and each Lipschitz function f : X — R is differentiable in the sense that there exists
ijf e Ly (Xk; RN(’“)) such that for p-a.e. x € X,

lim sup \f () = f(x) ={DEF(2) 7" (y) —F (2))]
P=0yeB, (x) P

The Cheeger-Sobolev space H,” (X; R™) on X, introduced by Cheeger [Che99] (see Sec-
tion [2] Definition [3)), can be defined as the completion of Lipschitz functions.

Our goal is to show an integral representation and a relaxation theorem for local func-
tionals with p-growth defined on Cheeger-Sobolev spaces H/i’p (Q; R™) where Q c X is an
open set with finite measure. More precisely, we want to give a version of the integral rep-
resentation and relaxation results of [BDM8J5, BFLMO0Z2] in the setting of Cheeger-Sobolev
spaces.

The proof of the integral representation of [BDM8J5] on open sets of Euclidean spaces
splits into several steps, first, the integrand is defined on linear functions, which allows
easily to write an integral representation on continuous piecewise affine functions. Then
it is shown that necessarily the integrand is continuous with respect to the second vari-
able (Carathéodory integrand) by proving the “zig-zag lemma” whose proof uses the lower
semicontinuity property along specific construction of continuous piecewise affine func-
tions. The conclusion comes by passing to the limit and by using the local approximation
of Sobolev functions by continuous piecewise affine functions and the continuity (and the
growth conditions) with respect to the second variable of the integrand. At first glance,
there does not seem to be an easy way to adapt this strategy in Cheeger-Sobolev spaces.
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Especially, we do not know how to adjust the zig-zag lemma to obtain the continuity of the
integrand. One way is to assume a convexity condition on the functional (see [MPSCZ20),
MV20]).

The integral representation result of [BFLMO02, Theorem 2, pp. 189] shows that the
integrand can be written as limit, when the radius of balls goes to zero, of the average of
minimization Dirichlet problems associated with the functional on small balls. The strat-
egy of the proof, known as the “global relaxation method”, uses mainly an intermediate
representation result of an envelope, similar to the Carathéodory construction in mea-
sure theory (see Subsection [6.3), of local minimization Dirichlet problems associated with
the functional. The advantage of the method is that it avoids the use of approximation
by continuous piecewise affine functions. It can therefore be adapted more easily to the
framework of Cheeger-Sobolev spaces, we already got several results by following this path,
see [AHM15, AHM17, AHM18]]. We must emphasize that this strategy makes significant
use of the coercivity of the functional, which is not the case of the Buttazzo and Dal Maso’s
integral representation theorem [BDMS8J5].

One motivation, for developing the calculus of variations in the setting of metric mea-
sure spaces, comes from applications to hyperelasticity. In fact, the interest of considering
a general measure is that its support can be interpreted as a hyperelastic structure with its
singularities like for example thin dimensions, corners, junctions, etc. Such mechanical
“singular” objects naturally lead to develop calculus of variations in the setting of metric
measure spaces. (We refer the reader to [BBS97, Zhi02, [CJLP02]and [CPS07, Chapter
2, §10] and the references therein). Another motivation is the development of the cal-
culus of variations on “singular” spaces, which are of interest for geometers and physicists,
like Carnot groups, glued spaces, Laakso spaces, Bourdon-Pajot spaces, Gromov-Hausdorff
limit spaces, spaces satisfying generalized Ricci bounds (see [KM16] for more details). In-
deed, all these spaces are examples of doubling metric measure spaces satisfying a Poincaré
inequality on which our integral representation and relaxation results on Cheeger-Sobolev
spaces could be applied.

We assume in the following of the paper that u is doubling, (X, d, 1) enjoys a (1,p)-
Poincaré inequality, (X, d) is a complete separable metric space, and (X, d, u) satisfies the
annular decay property (see Definition [4)).

Throughout the rest of the paper 2 = X denotes an open set of finite measure z (€2) < o0.
We denote by O () the class of all open subsets of €.

Our first result is an integral representation theorem in Cheeger-Sobolev spaces:

Theorem 1. Let I : Hﬁ’p (Q;R™) x O (Q) — [0, 0] satisfy

(Cy) for every u € HyP (S R™) the set function F (u,-) is the restriction to O (2) of a positive
Radon measure;

(Co) F (-,0) is local, i.e. F(u,0) = F(v,0) whenever u = v p-a.e. in O for all (u,v) €
HYP (;R™)? and all O € O (Q);

(C3) F(u+2,0) =F(u,0) forall z € R™, all uw e H* (;R™) and all O € O (Q);

(Cy) there exist ¢ > 0, b > 0 and a € L, (Q) such that for every (u, O) € H» (Q;R™) x O (Q)

c/o \V,u(x)Pdp (z) < F(u,0) < /Oa(x) + 0|V, u(z)” du (x)

where V ,u is the ji-gradient of .
(Cs) for every O € O (Q) the functional F (-, O) is L, -lower semicontinuous.

Then there exists a Borel measurable function f : Q@ x M — [0, oo] such that
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(i) for every O € O (Q) and every u € H” (Q;R™)

F(u,0) - / £ (@, Vo (2)) dp () : ()
o)
(ii) for every k € N, for p-a.e. x € Q N X}, and every £ € M

o F (€% () + ¢, B, (2))
= f /

(i11) the function f is H i’p-quasiconvex, i.e. for every & € M and for pi-a.e. x € <)
g =ty it Vi) de()s
= @EHM:S(BP(‘T)JR"L) By ()
(tv) for p-a.e. x € Q and for every & € M we have
el < f(2,8) < a(z)+blE)
where ¢ > 0, b > 0 and a € L), () are given by|(Cy)

(v) if there exists a Borel measurable function f : Q0 x M — [0, 0] such that for every O € O ()
and every u € HP (Q; R™)

F(,0) = [ Fle. V() dn (o) @
o
then for p-a.e. x € X and for every £ € M

~

[, 8) = [f(x,6).

When the functional is not necessarily L -lower semicontinuous we need to consider the
L7 -lower semicontinuous envelope of F' (-, 0) defined by

1, .R™ il s ; . ; .R™
HP (5 R™) s uv— F (u,0) .—1nf{7%F(un,O).un—>u1nLﬁ(Q,]R )}

We have the following relaxation theorem:

Theorem 2. Let F': H ﬁi (R™) x O (Q) — [0, 0] satisfying (C) - Then there exists a
Borel measurable function f : Q@ x M — [0, 0] such that
(i) for every O € O (Q) and every u € H? (Q; R™)

P(.0) = [ 7@ V,u(e) du @) )
(i1) for every k € N, for p-a.e. x € Xy, and for every £ € M
Twg=Tm w L& OTeB@)

p—0 gpeHlltzg(Bp(J:);Rm) 2 (Bﬂ (flf)) ,

(iii) the function f is H }L’p -quasiconvex;
(iv) for p-a.e. x € Q2 and for every & € M we have

cl¢lP < f(x,€) <a(z) +blgf
wherec > 0,b>0and a € L}L (Q) are given by|(Cy)

The following consequence of the relaxation Theorem[2]is a characterization of the lower
semicontinuity of integral functionals. This is an improvement of the H*-quasiconvexity,
a necessary condition (playing the same role as the quasiconvexity concept in the Euclidean

case, see for instance [BM84]) studied in [AHM20] (see Subsection [6.2).
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Corollary 1. Let f : Q x M — [0, 0] be a Borel measurable function. Assume that there exists
c>0,b=0andac L}L (Q) such that for p-a.e. x € Q2 and for every £ € M we have

gl < f (#,6) < a(x)+blE".
The following two assertions are equivalent:
(1) for p-a.e. x € Q2 and for every & € M it holds

fo€) —Tm  inf ]fg( .6+ )

1,
P=0 peH b (B,(z);R™)

(ii) for every O € O (Q2), the functional

HI? (O;R™) 51— /O f (2, Vo (2)) dpt ()
is Lﬁ—lower Semicontinuous.

The plan of the paper is as follows. In Section [2| we provide the materials about metric
measure spaces and Cheeger-Sobolev spaces we need for our purposes. In Section[3|we give
the proof of Theorem [I} The proof splits into several steps, we use first Lemma [10] which
provides an integral representation of the Vitali envelope of the local minimization Dirichlet
problem associated with the functional, then we can localize, using cut-off techniques, the
formula of the integrand by replacing u with u, () := u(z) + V,u(z) - (" (-) = +* (2)).
The last step is to show that the integrand is Borel measurable. In Section 4} we prove
the relaxation theorem Theorem [2| with the help of Theorem [1| and by using mainly the
De Giorgi-Letta Lemma which gives sufficient conditions for increasing set functions on
open sets to be a measure. In Section [5| we prove Corollary [1] which is a consequence of
Theorem[2 and Corollary [2]about the equality of Borel measurable which is a recast in the
setting of metric measure space of an Alberti’s result [AIb91]]. The last Section[6]is devoted
to the auxiliary results we need in the proofs.

Notation.

o We will denote by B (©2) the Borel g-algebra of X and B, (€2) the p-completion of B (Q2).

e We will denote by B, (z) := {y € X : d(z,y) < p} the open ball, and by B, (z) := {y €
X :d(z,y) < p} the closed ball, centered at = with radius p > 0.

e For every measurable set A < Q with positive measure, and for every nonnegative mea-
surable or integrable function f on A, we set

]ifdu::ﬁ/j(x)du(w)-

e The algebra of Lipschitz functions from €2 to R is denoted by Lip (€2).

2. PRELIMINARIES: THE METRIC MEASURE SPACES, THE CHEEGER—SOBOLEV SPACES

Letp > 1be areal number, let (X, d, 1) be a metric measure space, where p is a nontrivial
locally finite Borel regular measure on X and (X, d) is a separable metric space. In what
follows, we assume that p is doubling, i.e. there exists a constant Cy (called doubling constant)
such that

VeeX VYp>0 p(Ba, (7)) < Cqu (B, (x)) - 4)
The concept of upper gradient was introduced by Heinonen and Koskela (see [HK98]), and
generalized by Cheeger (see [Che99, Definition 2.8]):

Definition 1.



(i) A Borel function g : X — [0, 0] is said to be an upper gradient for f : X — R if

[/ (¢ (1)) = [ (c(0))] </0 g(c(s))ds

for all continuous rectifiable curves ¢ : [0, 1] — X.

(ii) A function g € L%, (X) is said to be a p-weak upper gradient for f € L7 (X) if there exist
{futn © L7 (X) and {gn}, < L% (X) such that for each n > 1, g, is an upper gradient
for fo, fu — fin L%, (X) and g,, — g in L%, (X).

Definition 2. The metric measure space (X, d, i) enjoys a (1, p)-Poincaré inequality with p €
|1, oo if there exist €, > 0 and o > 1 such that for every x € X and every p > 0,

- du| du (y) < p€, ’d 5
]ép(m) f () ]ép(z)fu ny) <p (]igp(x)g u) 4)

for every f € L7 (X) and every p-weak upper gradient g € L%, (X) for f.

1

From Cheeger [Che99, Theorem 4.38] (see also Keith [Kei04), Definition 2.1.1 and The-

orem 2.3.1]) we have:

Theorem 3. If uis doubling, i.e. (4]) holds, and X enjoys a (1, p)-Poincaré inequality, i.e. (3] holds,
then there exist a countable family {(X ks ’Yk) Yrew of p-measurable disjoint subsets Xy, of X with
p (X\ Uiy Xi) = 0 and of functions v = (’yf, _ ,’y]’i[(k)> : X — RY®) with 4F € Lip (X)
satisfying the following properties:

(i) there exists an integer N > 1 such that N (k) € {1,..., N} forall k € IN;

(ii) for every k € N and every f € Lip (X) there is a unique D/’jf e LY (Xk; RN(k)) such that
Jor p-a.e. x € Xy,

I sup |f () = f(2) = {DEF () A% (y) — 7" (2))]

P=0yeB,(2) P
where f, € Lip (X) is given by f, (y) := f () +<{DEf () ,+* (y) — ~* () ); in particular
Dﬁfm (y) = D/’jf (x) for p-a.a. y € Xg;
(iii) the operator D), : Lip (X) — L7 (X ‘RN ) given by

D,f:= ) 1x,D}f,

kelN

=0, (6)

where 1 x, denotes the characteristic function of Xy, is linear and, for each f, g € Lip (X),
we have

Dy (fg) = fDug + gDuf;
(iv) for every f € Lip (X), D, f = 0 p-a.e. on every pi-measurable set where f is constant.

We set M = R™¥ where N is given by Theorem For every k € IN we denote by
| - |x the Euclidean norm on R™*N®) where N (k) is given by Theorem (3} and we set for
every x € () and every £ € M

o0
€l 1= D €lix, (2).
k=0
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There exists Borel sets Q o By, © X n§2 such that p (Q\ (U, Bx)) = 0since the regularity
of . If we define N : Q x M — R, by

Qa0
2 Elxlp, (),

then we can see that N is Borel measurable and coincide with | - |, for u-a.e. z € Q.

Lemma 1. There exists a Borel measurable function N :  x M — R such that for p-a.e. in )
and for every & € M we have N (x,€) = ||,

In the following, for every k € IN and every x € X n €, we simply denote the norm of
¢ e RNW>m — M by |¢] instead of |€],.
Let Lip (€; R™) := [Lip (©2)]™ and let V, : Lip (; R™) — L7 (€2; M) given by

Duul
V= : with u = (uq, -+, up) .
Dy,
From Theorem we see that for every u € Lip (2; R™) and every f € Lip (Q2), we have
V,(fu)=fV,u+D,f ®u. (7)

Definition 3. The p-Cheeger—Sobolev space H;’p (©; R™) is defined as the completion of
the space of Lipschitz functions Lip (©2; R™) with respect to the norm

HUHHW QR™) - HUHLP QRm) T HV;LUHLP(Q M)- 8)
Taking Proposition Hbelow into account, since |V ulzr o) < HuHH1 »(qrmy for all

u € Lip (€; R™) the linear map V, from Lip (Q; R™) to LE (©2; M) has a unique extension
to H,? (€; R™) which will still be denoted by V,, and will be called the ji-gradient.

Remark 1. In fact, the original Cheeger’s definition [Che99, (2.1), pp. 440] of H;’p (Q) is
all the functions u € L%, (2) for which |ul,, < o where

ulip = [ulpp(q) + inf {T}L_Holo |Gun |2 L}, () 2wy — win Lﬁ}
where g, is an upper gradient for u, for all n € IN. Cheeger [Che99, Theorem 4.47, pp.
459] shows that the space H ;’p () can be seen as the completion of Lipschitz functions for
the norm [u|zr ) + |Dyulpp (o) for all u € Lip (©2). This latter norm coincide with | - |3,
by combining [Che99, Definition 2.9 and Theorem 2.10, pp. 441] and [Che99, Corollary
4.41, pp. 458].

For more details on the various possible extensions of the classical theory of the Sobolev
spaces to the setting of metric measure spaces, we refer to [Hei07, 10-14] (see also [Che99,
Sha00, |GT01} Haj03]).

The following proposition gathers some results of many authors and provides useful
properties for dealing with calculus of variations in the metric measure setting.

Proposition 1. Under the hypotheses of Theorem |3} we have:

(1) (from [HKST15, Theorem 3.4.3, pp. 73]) the metric measure space X satisfies the Vi-
tali covering theorem, i.e. for every A < X and every family F of closed balls in X, if
inf {p > 0:B,(x) e F} = 0forall x € A then there exists a countable disjoint subfamily
G of F such that 11 (A\ Upeg B) = 0; in other words, A © (UpegB) U N with p (N) = 0;

6



(iz) (from [FHK99, Theorem 10]) the p-gradient is closable in H Plt’p (Q;R™), d.e. for every
u € HyP (4 R™) and every measurable set A < Q, if u(x) = 0 for p-a.a. x € A then
V,u (z) = 0 for p-a.a. v € A;

(ii1) (from [BB11, Corollary 4.24 pp. 93], [BB11, Theorem 5.51, pp. 142] and [Che99,

841]) the metric space X enjoys a p-Sobolev inequality, i.e. there exists C's > 0 such that
1 1

(/ !v\”du> < pCs ( / IVW\”du> (9)
Bp(x) Bp(x)

Jorall0 < p < po, with pg > 0, and all v € H;:g (B, (z) ; R™), where, for each O € O (X),
H ;;g (O;R™) is the closure of Lip, (O; R™) with respect to H\?-norm defined in (8) with

Lip, (O; R™) := {u e Lip(X;R™):u=0o0n X\O};

(iv) (from [Bj600, Theorem 4.5 and Corollary 4.6] or [GH18|, Theorem 2.12]) for every
u € H;’p (QR™) and p-a.e. x € € there exists u, € H;’p (Q; R™) given by u, (y) :=
u(z) + Vyu(z) - (V% (y) = +* (x)) such that

Vg (y) = V,yu(x) for p-a.a. y e X;

1

1 p
lim — u(y) — uy (y)|° d = 0; 10
(729(@ u(y) ()| du (y)> (10)

p—0p
(v) (from [Che99, Theorem 6.1]) for every x € Q, every p > 0 and every T €]0, 1| there exists
a function ¢ € Lip (£2; [0, 1]) such that
¢(z) =0 forallz e \B, (x), ¢(z) =1 forall x € B,,(z)
and

Co
Dol ie@mry) < ——— Cy > 0.
IDpe| e rm) S0—7) Jor some C

Such a  is called an Urysohn function for the pair (Q\B, (), B;, (z)).

Definition 4. We say that the metric measure space (X, d, uu) satisfies the annular decay property
if there exist n > 0 and K > 1 such that for every z € X, every p > 0 and every 7 €]0, 1|,

p(By (2)\Brp (7)) < Ko (1 = 7)" 11(B, (7)) -

The annular decay property was introduced independently by [Buc99, pp. 521 and §2
pp. 524] and [[CM98]. This property holds, for instance, when the metric space is a length
space, i.e. metric space in which the distance between points is the infimum of lenghts
of rectifiable paths joining those points, see [Buc99, Corollary 2.2], [CM98, LLemma 3.3],
[Che99, Proposition 6.12] and [HKST15, Proposition 11.5.3, pp. 328].

Remark 2. We can remark that, when the annular decay property holds, the boundary of
balls is of zero measure, indeed, if x € X, p > 0 and 7 e]%, 1[, we have

1 (0B, () < (Be (2)\B, () < Ko (L) (Be (@) < Ko (1= 7)" o (Byy (1)
letting 7 — 1 we obtain that p (0B, (z)) = 0.

Lemma 2. Assume that the annular decay property holds. Let X be a positive Radon measure. Let
x € X satisfy
(B d\
o AB,)

pﬁom;' an () < 0. (11)



Then for every T €]0, 1]

7— A (B, () \Bry (2)) dA
;l)l—r>% /Z(Bp (x); < Ko(1—1)" i (). (12)
In particular, we have
i T A8 (@) \Brp (@) _

B, (o)
Proof of Lemma[2l Let z € X satisfy (I1)). We can write for every p > 0

A(B, (2)\By (1)) (B, (1)) i(Bry(2)) A(Byy ()
W(B, (@) uBy@)  n(By(@) 5 (Boy (@)
CAB@) ABo @) . 1B, (@)\Buy (1)) A(By (2))
_(M@A@) <&<@Q W(B, (@) (B (@)
(B, () A(Byy(2)) W ABL@)
(M@A@) <T<wQ+K“1 S (B @)

letting p — 0 and using (L)), we obtain (12)).H

We will need a version of the Rellich-Kondrachov theorem in the metric measure spaces
setting. The following result is due to [HK00, Theorem 8.1, pp. 37].

Theorem 4. Let B < Qa ball. Let {@y}new < H,P (B; R™) be a bounded sequence, i.e.

1 1
sup ( / !son!pdu) + < / \Vusonlpdu) < .
nelN B B

Then there exist a subsequence {y, }iew < H)P (B;R™) and ¢ € Hy? (B; R™) such that

lim |s0n — ¢’ dpu = 0.

1—00
Outline of the proof of Theorem |4} For the sake of simplicity we assume that m = 1. By a
development of Cheeger [Che99, pp. 449-450], we have, in our setting (doubling measure
and Poincaré inequality), for every u € H ;’p (X), every x € X and every r > 0 the following

Poincaré-Sobolev inequality
Xp - N
dp (y)) < Or (][ | Dyul” dp (y)) (18)
()

(o,

for some x > 1 which only depends on the doubling constant Cy in (4)) and the constant &,

n (b) and C > 0 depending on the constants €,, C; and on the constant o appearing in (5).
Consider a ball B = B; (T) < Q and a bounded sequence {¢, }nen < H,” (B; R™).
From (18), we have for every n € IN

Pn — ][ Ondj
B

1
[onll sy < 1 (B)x

11
< Cu(B)™» o[ Dyenll )
L3"(B)

thus

a1
][ wndu’ +Cpu(B)> 7 0| Dunl 1z
B
and by using the Holder inequality we obtain

1 1 —
lenl e < 1 (B (Ioaligm + CP 1Dl )
8



which means that the sequence {©,},en < Lxr (B) is bounded. Thus, there exists a subse-
quence (not relabelled) which weakly converges in L}? (B) to some p € LX? (B).

Lemma 3. [HKOO, Lemma 8.2, pp. 37] Let B' < B be a ball and x > 1. Let {1, }nen <
LXP (B') be a bounded sequence. If {1, }new converges in measure to 1y € LXP (B') then

lim |0 — V| Lpy =0

Taking Lemma into account, we see that it suffices to show that {¢, },en converges in
measure to .

Let ¢ €]0,1[. Fix ¢ > 0 and n € IN. We set for every positive r < 25=1 (where ¢ is the
constant appearing in (5)) and every z € tB := By; (T)

or (z) 1= ][ pdp  and o, () = ][ Ondp.
() ()
We have

1 (tB A [|lon — @] > €]) <p <tB N [\son On,r| > 3]) + (tB g [|90m or| > %D

+u(tBﬂ [!sor—sﬁl > §D

Since the Lebesgue differentiation theorem, p (tB N []gor — | > %]) goes to 0 as r — 0.

The term p (tB N []gom — @] > %]) tends to 0 as n — oo for all » > 0, since the weak
convergence of {¢n }ew in LY (B) to . Using [HK0O, Proof of theorem 3.2, pp. 13-14]
we can deduce for every x € tB

- 1
P P
lon () — ny (z)] < Kr | sup ][ |DynlPdp | < Kr <sup ][ |Du90n|”du>
pel0,07[ J B, (z) r>0 J B, (z)nB

for some constant X > 0 depending only on the doubling constant and the constant €,
appearing in the Poincaré inequality (5). Using the maximal theorem [HK00Q, Theorem
14.13], there exists C’ > 0 depending on the doubling constant only such that

ft (tB N [\son — Oyl > %D < p ([igg][r( - | DyspulPdp > (%K)p (;)pD

< C'(BK)" (- sup/ | Dyon|Pdp,

nelN

therefore sup, o 1t (tB N [|on — @nyr| > £]) tends to 0 as r — 0. It follows that
lim o (EB 0 [l — | > €]) = 0.
Applying Lemma 8| with ¢, = ¢,|¢5, ¥ = ¢|is and B’ = tB, we obtain
lim fon =@l pp) = 0.

Now, since the sequence {¢, }nen is bounded in LY (B), we have sup,c lon — ¢@ll v (5) <

-1
0. Choose t. €]0,1[ such that y (B\t.B) < ex-1 (1 + SUp,en ||n — 90”2“’(3)) , by the
n
9



Holder inequality we have

/Ison—wldeZ/ |<pn—90|”du+/ lon — P dp
B teB B\t.B

< lon = @l7n . m) + lon — @l 1 (B\tB)

< | — <,0Hiﬁ(t53) +e€

x—1
X

letting n — oo and then e — 0 we obtain the desired result.l

3. Proor or THEOREMI]
Forafunctional F': H)? (Q; R™) x O () — [0, 0] we definem : H? (;R™)x O (Q) —
[0, o] by
m (u,0) :=inf {F (u+¢,0): pe H;:’O’ (O;R™)}.

3.1. Proof of (i) and i)}

Step 1: integral representation of F' (u, -) viam (u, -). In this step, we show that for every
ue H? (Q;R™) and every O € O (Q)

. m (u, B, (x))
F,0) = [ iy ™25 )
O o1 (B, ()
Let (u,0) € Hy? (€ R™) x O (Q). By lemmawe have

oy [ @B @)
i 0:0) = [ g T S,

du ().

where

m* (u,O) := supinf {Zm (u, B;) : {Bi},.; € VS(O)}

e>0 iel

with for every € > 0
Ve (0) = {{Bi}ief < B () : I is countable, i (O\igl Bz-> =0, B;c O,
0 < diam (B;) < ¢ and B;n B; = & forall z':lcj}.
By and we see that F' (u, -) is a positive Radon measure which is absolutely con-

tinuous with respect to y, so, we have

m* (u,0) < F (u,0). (14)
It remains to prove that

F(u,0) <m?* (u,0). (15)

Fix £ > 0. There exists a countable family of mutually disjoints balls { B;};c; € V. (O) such
that

Zm (u, B;) <m* (u,0) + g. (16)
iel
Given any i € I, by definition of m (u, B;), there exists ¢ € H ;38 (B;; R™) such that
, B
F(u+gp§,Bi)<m(u,BZ~)+5M( ) (17)

21(0)
10



Define p. : Q > R™ by . := 37 ¢l € Hi:g (O;R™), that is

{0 im0
e ¢l in B,
Take the sum over the countable family of mutually disjoints balls { B;};c; in (17)), we obtain

by using [(Cy)|and [(C,)|

F(u+ ¢, 0 ZF (u+ ¢, B ZF u+90€, EmuB

iel iel el

€
—<m* (u,0)+e
2

If lime o l¢ellzz (x;rmy = O then we get (16) by using (Cy) the lower semicontinuity of
F (-,0). So, it remains to prove that . — 0 in L? (©2; R™) as e — 0. We have by using the

Sobolev inequality (9)), the coercivity condition m (I4) and the growth condition

/ oel? dpu = / ol dp =Y / il du < Y ercy / 1V, di
6[

el 1

op=1CP p .
< —SgZF(uﬂoi,Bi) + F (u, By)
i€l

r—1P p
< ng (m* (u,0) + ¢ + F (u,0))

WP P
< CSE (e + F (u,0))
- 2PCheP

- <a+ /O a(z) + bV u (z)|Pdu (:1:))

by passing to the limit e — 0 we find that . — 0 in L? (X;RR™). Thus we obtain

" _ | iy 2w By (2))
F(u,0) =m"* (u,0) = /ofl’l—’némd

Step 2: refinement of the formula for the integrand. In this step we show that for p-a.e.

z e
o (s By (2) (U, By (2))

im —————-—2 = lim
=0 (B, (x))  em0 p(B,(2))
where u, is given by Proposition
Let x € Q satisfy

(@) .

lim a(y)du(y) =a(x) < oo (18)
p=0 By (z)
lim |V, ulPdp = |V, u(z) [P < oo; (19)
p=0 Bp(w)
Vg (y) = Vyu(z) for p-ae. ye O (20)
1
1 !
lim ~ <][ u(y) — ua (y)|" dpe (y)) = 0. 21)
p=0 P Bp(x)
Step 2.1: we prove that lim, g % lim, o M“BL&E‘T) Jor p-a.e. x € Q. Lete > 0,

p > 0and t €]0, 1[. There exists v € u + H .0 (B () ; R™) such that

F (0, By (1) < 2 (Buy (2)) + 1 0 Byy (1) (22)



Let 7 €]¢, 1[. We consider a Lipschitz function ¢ : € — [0, 1] which is a Urysohn function
for the pair (Q\B,, (z), By, ()), i.e. satisfying ¢ = 1 on By, (z), p = 0 on Q\B,, (z) and

Co
[ Dutl e <
P T p(r - 1)

for some Cy > 0 not depending on p, 7 and ¢t. We set

w = v+ (1 — @) u; € uy +H;zg (B, (z);R™)

verifying
v in By, (x)
w=1< pu+(l—p)u, inB,,(x)\B, ()
Uy in B, () \B;, (z).

As in [DM93,, pp. 182, Proposition 15.28 and pp. 172, Proposition 14.23] we set
F*(w,B) := inf{F (w,0) : O () 20 o B} (23)

for all Borel set B < Q and all w € H,” (Q;R™). The functional F* (w, -) is a nonnegative
Borel measure which extends to all Borel sets the measure F' (w, -), moreover, since the

growth condition we have

F*(w,B) < /Ba(a:) + 0|V, w (2)” du (x) (24)

for all Borel set B < Qand allw € H}L’p (©; R™). Since the locality hypothesisand
2 (12, By (2)) < F (w, B, (2) =F (w, By (@) + F* (w, B, (2)\Bey (v)

<F (0, B,y (2)) + /B ) UV ) ).
e 95)

Using the annular decay property (see Definition [4]), we have

/ Vb= [ Vyupdat [ 90 dy
By (x)\Btp(x) By (z)\Brp(z) Brp(x)\Bip(z)

< Ko (1= )" (B @) V@) + [ Vwldp. (26)

Brp(2)\Bip(z)

Since V,w = ¢V, v + (1 —¢)V,u(x) + D,y ® (v —u,) p-a.e. in Q, for some C), > 1
depending on p only, we have

/ Yl <C, | 9l djs + Cppt (Bry (2) \Byp ()] ¥t ()
Brp(2)\Btp(x) Brp(@)\Btp(x)

G, [ Dl lu— sl
Brp(x)\Btp(z g

<G [ VaPdu Gl (1= 0 (B, (@) [V, ()
BP(I)\Btp(m)

|
Gl — / |u — ug [Pdp. (27)
By (z)

(r=1)"pv
12



Collecting and and dividing by p (B, (z)), we have
1

— VwlPdp
1 (B, () /Bp(:v)\Btp(x) g

C,
<K 1—T”VU:CP+—”/ V,ulPdu + C, Ky (1 — )" |V ,u (z)|P
o(1=7)"|Vyu(z)| (B, (@) Bp(x)\Btp(x)\ uu| pKo (1 =1)" [V,u(2)]

C,CH 1
P=0 —][ |u — ug|[Pdp.
BP(I)

=17
Passing to the limit p — 0, by taking (21, and Lemma 2] into account, we obtain
— 1
lim —/ \V,wlPdp < Ko (1 —7)"|V,u(2)]P + 2C,Ko (1 — )" |V, u ()P
=0 (B, (7)) J B,(2)\Bop (e . P p
<4AC,Ko (1 —t)" |V u (z)]P. (28)

Now, dividing by u (B, (x)) the inequality (25)) and using (22)
m (ug, By (x)) _F (v, By (2)) 1 /
< + a+ bV, wPdu
(B n B @) a8 @) S

m (u, By, (7)) 1 a
=T u B, @) +u(Bp<x>>/ (2)\Brp (2) v

1
* bM (Bp (z)) /B;p(x)\Btp(x)|vuw|pdlu7
letting p — 0, by using Lemma[Z2] (I2) together with and (28)), we have
i e, By (2)) = (u, By ()
=0 (B, (x)) =0 (By, (7))
Since (18], and the growth condition we have
m By (@) _ | m(.B ()

+Ko(1—t)"a(x)+4C, Ko (1 — )" |V u (x)F.
(29)

lim ———"2 2 — i < 0.
=0 (B (x)) =0 p(Br(2))
Lettingt — 1 in we obtain
_ B
g 0 Bo0) 0B (0
=0 (B, (x)) =0 (B (2))
Step 2.9: we prove that lim _, ™0zBe@) 5 1y Mfor p-a.e. v € . Lete > 0,
e ==r=0  pu(By(x)) = 70 " (B, (2))

p > 0andt€]l,2[. There exists v € u, + H;:g (B, (z) 7IRm) such that
F (v, B, (x)) < ep (B, (x)) + m (uq, B, (7)) (30)

Let 7 €]1,¢[. We consider a Lipschitz function ¢ : €2 — [0, 1] which is a Urysohn function
for the pair (Q\B,, (z), B, (z)), i.e. satisfying ¢ = 1 on B, (z), ¢ = 0 on Q\B,, (z) and
Co
Dyplpe S ———,
|| 14 ||L# p(t—T)

for some Cy > 0 not depending on p,7 and t. We set w := v + (1—p)u € u +
H!P (B, (x);R™) given by

v in B, (z)
w=1< pu,+(1—¢)u inB;,(x)\B,(z)
u in By, () \Br, (v)



Since the locality hypothesis and
m (u, By, (z)) < F(w, By, (x)) =F (w, B, () + F* (w, By, () \B, (x))

<F (v, B, (x)) + / a+ bV, w|Pdp. 31)
Btp(x)\Bp(x)

Using the annular decay property, we have for some C,, > 1 depending on p only

/ |V, w|Pdp :/ ]V#w]pdqu/ |V, w|Pdp
Bip(z)\By(z) Bip(x)\Brp(z) Brp(x)\By ()

1 n
<, VP + Gyl (1= ) (B (0) 9,0 0
Bip(x)\Bp () T
C,one 1 /
+ — u — Uz |Pdu (32)
GV @V o "

dividing by 11 (B, (z)) and passing to the limit p — 0, by taking (21)), and into

account, we have
Tm—
p=0 1 (B ()
Now, dividing by p (B, (x)) the inequality and using
m(wBy(@) __ munBy) 1

1By @) o u(By @) w(By@) /Bt,)m\gp@“d“
1

+b———— / |V, w[Pdu
M(Btp () Bip(z)\B, () g
letting p — 0, by using Lemma 2] together with and (33)), we have
. m (u, By, (1)) -
lim ———————= < e+lim
p—0 1 (B, (z)) —0 11 (B, (x))
Since (18], and the growth condition we have
h_mm(u,Btp (=) _ lim m (u, B, (x)) .
p—0 M (Btp ($)) r—0 2 (BT ([E))

Letting ¢t — 1in we obtain

m (u, B, (x))

B @) (s, B (0)
B Gy St B )

1 n
/B o )\Vuw\pdu < 2C,K (1 — Z) |V, u(z)P. (33)

m (ug, B, (x

) | K, (1 B %)n (a () + 26|V, ()]?) . (34)

Step 38: proof of [(i)] and [(ii), From Steps 1 and 2, we have

[l B,
F0) = [l =

for all (u,0) € H,”? (€ R™) x O (). Using the extension of F' (u,-) to all Borel sets,

we have

* . imm(uvap(x)) "
) = [l
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for all (u, B) € H)? (Q;R™) x B(Q). By Theorem we have X = UL X, u N with
p(N) = 0. For each k € NN, consider a nonincreasing sequence of open sets {O! };cn+

O () satisfying O}, > (X n Q) and 1 (O}\ (X 1 Q)) < 1 forall 1 € N*, and
= ﬂOk (X N Q) with p(By) = p (X n Q) forall ke IN.

Then we can write Q = U}”_ By, u Ny with Ny := N U UL B\ (X n Q). Since F* (u, -) is
a Borel measure absolutely continuous with respect to u, by using and the monotone
convergence theorem, we have

F(u,0) = F* (u,0) = > F* (1,0 n By)
k=0

_ Z/ mm(ume (x))d,u ()

k=0 OnBy p—0 l’[’ (BP (x))

_ /OZE T2 By )

— =0 genlr(B,@mm) (B, (7))
_ o Em(vuu(x)-fy aBp<I)) . .
) /ok_oflw W (B, () e @@

forall (u,0) € H (Q R™) x O (). We set

k .CC whnere k Z, = 1 (5 7 <:U)) x

for all (z,&) € 2 x M and all & € IN. First, [(i1) holds because for every k € N, for p-a.e.
x € X n Qand for every £ e M

since By, = (X n Q) u Ny, with p (Ng) = 0. Second, if we set

k . m (€9, B, (v)) .
fp (xvg) = H(Bp(x)) ]]‘Bk( )

then f* (z,£) = lim, g fh(@,€) and f) (2,&) = infizy i (,€) where

Bl () e (£-7* B, (=) .

for all (z,£) € Q x M. Now, to prove (i), we need to show that f is Borel measurable, it
suffices to prove that each flf’l is Borel measurable, indeed, this would imply that each f[’f is

Borel measurable as infimum on countable set of f;"l, then the upper limit defining f* can
be computed as p — 0 along a suitable countable set, and finally f is Borel measurable as a
countable sum of Borel measurable functions. In fact, the following lemma shows that each
f If’l is lower semicontinuous.

Lemma 4. Let k€ N, p > 0and [ € N*. Let (T E) € Q x M and two sequences {x,}new < €,
{&}nen © M satisfy lim,, o d (2, T) = 0 and lim,,_, 4 |§n E‘ = 0. Then

lim f5 (2,,&) = [ (T,€) . (35)

n—0oo
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Proof of Lemmaldl Fix ¥ € IN and p > 0. Assume that there exists a subsequence (not
relabelled) {¢,,},env © M such that

o0 > lim m (§n‘7k,Bp (Z)) = lim m (én‘yk,Bp (2)) .

n—00 —0

Note that by the growth condition (the right inequality in) [Cy)]

supm (&, -+*, B, (7)) < sup /B @@ P () < (36)

nelN nelN

There exists {¢p fnens < Hifg (B, (z) ; R™) such that forall n > 1

% (607" By (T) = F (€04 + o, B, (7)) (87)

By the coercivity condition (the left inequality in)[(Cy) and (86) we get

sup / |V on|Pdp < 0.
nelN* J B, (z)

Using the p-Sobolev inequality Proposition we see that {¢, }nens € H ijg (B, (z);R™)
is bounded, so, by Theorem |4} there exists a subsequence which converges strongly in
L7 (B, (z); R™) and weakly to © in H;:g (B, (z);R™). By the lower semicontinuity hy-
pothesis we have

h_mF(gn’Yk'i_(PnaBP(E)) >F(§7k+@3p(f>) 2m<§7k7BP(E))7

n—00

thus, passing to the limit n — oo in (37)), we obtain

lim m (&, 7", B, (7)) = m (£ 7", B, (7)) . (38)
n—a0
Fix [ € IN*. We can assume that T € Oj, otherwise f¥! (Z,-) = 0. Thus, there exists N € IN

such that z,, € O} foralln > N.
We claim that

lim m (fn Ak B, (a:n)) —m (fn v B, (T)) > 0. (39)

Indeed, fix n = N, there exists a sequence {¢!"}ens < Hi:g (B, (x,,) ; R™) such that for all
m =1

1
0 > / ( )a(:c) + 016, dp (z) = m (& - 7*, B, (2,)) = - +F (& + o, B, (2)),
B,(@
using the coercivity condition |(C,), we have

sup / \V,ont|Pdp < oo.
By ()

melN*

We apply the p-Sobolev inequality Proposition[I[iii), we see that the sequence {7} e+ <

H ;:g (B, (z,,) ; R™) is bounded. So, by Theorem , there exists a subsequence (not rela-

belled) which converges strongly in L? (B, (z,,) ; R™) and weakly to ¢, in H, ;:g (B, (x,); R™)
16



as m — o0. By the lower semicontinuity hypothesis we have

m—00

>F (&0 -2" + @, By (22))

=F (& 7" +¢n, By (22)) = F (&0 7" + ¢, B, (7))
+ F (& 2" + ¢, B, (7))

>F (&0 7"+ 00, B, () — F (& - + ¢, B, (T))
+m (fn : ’Yka B, (f))

For every n > N and every open set O < €2, we have by using[(C,)
F (& -+",0) < / (a+ bsup|§n|p) du=v(0),
o

nelN

we also have for every Borel set B < ()

F* (¢,-7*,B) < v (B)

where F* is given by and v := (a + bsup,cy |&[") plo- By[(C1) we have
F(én-vkﬂom ) = F (& 7’“+30??73p(f))
= F* (& 7" + o0, By (2)\B, (7)) = F* (&0 7" + 07, B, (8)\B, (wn))
= F* (fn 'Y + 90n> (xn) \B ( )) —F" (gn : PYka Bp (E) \BP (xn))
> —F" (Sn ’ 7 . By () \Bp (l'n))
> —v (B, (T)\B, (zn)) -

Since lim,,_,, d (z,,,T) = 0, we have lim,_,o, v (B, (Z) \B, (z»)) = 0, so holds. Now,

using and (39), we obtain

n—o0

= 7}1)_1210 (m (& - ¥, B, (2,)) —m (& - +*, B, (@) +m (& - ¥, B, (2)))

Fix £ > 0. Since the measure of the boundary of balls is zero (see Remark [2), we have
limy, o pt (B, (x)) = (B, (Z)), so, for some integer N’ > N and for all n > N’

(B, (xn)) < &+ (B, (7).

It follows that for all n > N’

m (fn -, B, (wn)) < m (fﬁ -, B, (xn))
p(B,(xn)  ~  e+p(B,(T)

letting n — o0 and then € — 0 we obtain (35)).H
17
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Step 4: proof of and By and the integral representation obtained in the pre-
vious step, we have for every (u,0) € H? (Q;R™) x O ()

o[ Wau@p ) < [ 7@ V@)@ < [ a0+ 019, @ d @)

where ¢ > 0,b > 0and a € LL (Q) are given by By the Lebesgue differentiation
theorem, we deduce that for every u € H P (€; R™) and for p-a.e. x € Q

91 (2, Vyu () < f (2, Vyu(z)) < g2 (2, Vyu (2)) (40)
where for every (z,€) € Q x M
g1 (z,§) =cl¢]” and  gs(z,§) = a(z) + D¢,
Using the Borel measurable function N of the LemmalI] we set for every (z,£) € @ x M
gi(z,§) :=cN (2,§)" and G (2,§) :=a+bN (2,8)"

where @ is a Borel measurable function satisfying a = a p-a.e. in Q (see [HKST15, Propo-
sition 8.3.23, pp. 59 and Lemma 3.3.28, pp. 62]). We have for p-a.e. x € Q and for every
Ee M

?1 (I,f) =0 (x7€> and §2 (l’,S) =92 (CL’,S),
thus, using (@0), we can write for every u € H)? (Q; R™) and for p-a.e. z € Q2

a1 (=, V. u (z)) < f(z, Vuu (7)) < g2 (, V,u (z)).

We can apply Lemma [9] to obtain To see we apply Corollary 2]l

4. Proor or THEOREM [2]

4.1. The De Giorgi-Lettalemma. Let X = (X, d) be a metric space, let O (X) be the class
of open subsets of X and let B (X) be the class of Borel subsets of X, i.e. the smallest o-
algebra containing the open (or equivalently the closed) subsets of X. The following result

is due to De Giorgi and Letta (see [DGL77] and also [But89) Lemma 3.3.6 p. 105]).

Lemma 5. Let S : O (X) — [0, 0] be an increasing set function, i.e. S (U) < S (V) for all
U,V e O(X)such U < V, satisfying the following four conditions:
(i) () =0;
(i) S is superadditive, ie. S(U L V) = S(U)+S (V) foral U,V € O (X) such that U NV =
;
(iii) S is subadditive, i.e. S(U L V) < S(U)+S (V) forallU,V € O(X);
(iv) there exists a finite regular measure o : B(X) — [0, 0] such that S (U) < « (U) for all
UeO(X).

Then, S can be uniquely extended to a finite regular measure S* : B (X) — [0, 0| defined by
S*(B) = inf {3 (0):0(X)20 > B},

and which satisfies S* (B) < o (B) for all B € B (X).
18



4.2. Proof of Theorem [2 We need the following lemma:
Lemma 6. Let u € H,? (4 R™) and O € O (Q). Then

(i) the functional F (u,-) is a measure;
(1) c/ 'V, ulPdp < F (u,0) < /o (a + 0|V ,ul?) dp where ¢ > 0, a € L), () and b = 0 are

o
given by [(Co
(iii) m (u, O) = m (u, O) where m (u, O) = inf {F (u+¢,0):pe H;:g (X;R™) }

The Lemma [6][()] and [Gi)| insures that F satisfies and It is direct to see that F'
verifies and we refer to [DM93], Proposition 16.15, pp. 185] for[(C3)l Therefore we

can apply Theorem [1] to have the following integral representation: for every O € O (1)
and every u € H,” (€;R™)

P(.0) = | Te.Vyu@) duto). 1)

where f is a Borel measurable function satisfying, for every k € IN, for p-a.e. x € Q n X,
and for every £ e M

— T . F(f-’yk(-)—}—(p,Bp(ZE)).
f <I7 f) o E_I’I(l) weHizg(lgpf‘(z);Rm) K (BP (J])) ,

We obtain the relaxed integrand stated in Theorem by using Lemma 6][(iii)} Note that
Theorem is a consequence of Theorem

Proof of Lemma [6](i)l Fix u e H”? (Q;R™). Using the right inequality in we see that

F (u,0) < / (a+ bV, ulP)dpforall O e O(Q). (42)
o)

Thus, the condition of Lemma [5] is satisfied with & = (a + b|V ,ul?) p (which is ab-
solutely continuous with respect to p). On the other hand, it is easily seen that the con-
ditions |(i) and of Lemma |5| are satisfied. The proof will be complete by proving the
condition [(iii) of Lemmal[3] i.e.

Fu,UuV)<F(u,U)+F(u,V) foral UV e O(Q). (43)
To show {@3) we need the following lemma:
Lemma 7. IfU,V,Z, T € O (Q) are such that Z < U and T < V, then
Fu,ZuT)< F(u,U)+FuV). (44)

Proof of Lemmal[7 Let {uy}new and {v, }new be two sequences in H P (€; R™) such that:

U, — uwin L (Q;R™); 45)
v, — win LF (Q;R™); (46)
lim F (u,,U) = F (u,U) < o; 47)
n—00

lim F (v,,V) =F (u,V) < o0. (48)

n—o0
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Fix § €]0,dist (Z, 0U) [ with oU := U\U, fix any integer ¢ > 1 and consider W,”, W;" < Q
given by:

) — 1
Wi:={er:dist(m,Z><§<1+2q >} (49)
5 .
and W/ = {xEQ:§<1+3> <dist(x,Z)}, (b0)
q
where i € {1,--- q}. Foreveryie {1, -- ¢} there exists a Uryshon function ¢; € Lip (2)
for the pair (W;", W;"). Fix n € N. Define w, € H.? (Q;R™) by
w! = sty + (1 — ;) vy
Setting W; := Q\ (W;” u W;") and using Theorem and (7) we have

2

, V in W,
Vo, =< Dy @ (U —vp) + @iVypun + (1 — ;) Vv, in W
V, o, in W,*.

Noticing that Z U T = ((ZUT)OW*) (W nW;)u (TmW*)with(ZuT)mI/V[cU,
TAW cVandW:=Tn{zeU: I <dist(z,Z) < £} we deduce that

F(w,,ZuT) <F(u,,U)+ F(v,,V) + F (w,, W n W) (51)
forall i € {1,...,q}. Moreover, from the right inequality in we see that for each
ie{l,...,q},

F (w, W o Wa) <bI Dl o qmy ltn = 0l omy

+ / (@ + b|V ytn]? + b|V 0, |P) dpt (52)
WnW;

with ¢ := 2?73, Substituting (562) into (51)) and averaging these inequalities, it follows that
for every n € IN and every ¢ > 1, there exists 7,4 € {1, ..., ¢} such that

F(wie,Z 0T) <F (un,U) + F (05, V Z | Duill] o vy It = vz gpmy

1
+ - (/ adp + b/|VMun\pdu+b/|Vuvn]pdu) .
4 \Jv 1%

On the other hand, by (45)) and (46)) we have:

7}1_{210 |wn — vnHLz(Q;Rm) =0 and 7}1_{1010 Jwiee — uHLp qmmy = 0 forallg>1

Moreover, using (#7) and (48) together with the left inequality in [(C,)|we see that:

lim [ |V,u, (2)Pdu(r) <o and lim / Vo, ()P dp () <
U

n—ao0 n—aoo

Letting t — oo (and taking (4 7)) and (48) into account) we deduce that for every ¢ > 1,

— . — — C
F(u,2oT)< lim Fwp, 20T) <F (wU) + Fu V) + (58)

with C' := [, adp + blim, o [, |Vtn|Pdp + blim, o [, |V,0,[Pdp, and (@4) follows from

(3) by letting ¢ — o.M
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We now prove (3). Fix O, 05 € O (Q2). Fix e > 0 and consider C, D € O (2) such that
6C01,ECOQaHd

/a(a:) +b|Vyu(z)Pdu(x) <e

E

with E := O; UO,\C U D. Then F (u, E) < e by @) Let C, D, C, D € O () be such that
écécgc@cécOl and EC@CBCﬁCﬁCOQ.

App]yingLemmawithU:@uﬁ,VZTzEandeéuﬁgives

F(U,OlUOQ) SF(U,@UE) + &,

since ZuT = (OluOg\CuD)u(éuﬁg - (Olqu\CuD)u(auE) = 0; U0y,

i,e ZuT = O; U O,. Using again Lemma|7|with U = O,V = O,, Z = Cand T = D we

obtain
F (ué U f)) <F(u,00) + F (u,0,),
hence
F(u,0100) < F(u,00) + F(u,05) + ¢
and follows by letting ¢ — 0.1

We can extract and isolate the following lemma by examining the proof of Lemma [7]
above:

Lemma 8. IfU,V,Z, T € O(X) are such that Z < U and T < V, and if {t, }nei is a sequence
in H P (Q;R™) such that u, — win L? (Q;R™), then for every 0 €]0,dist (Z, 0U) [ there exists
a sequence {wy }new in HYP (4 R™) such that:

20
wy, — win Ly (G R™), w, =u  p-ae in {x e X :dist(z,2) = 3} :
and for every n € IN and every q = 1,

q
F(me v T) <F (UmU) + F u V Z HD/L(PzHLoo (QRN) Hun UHLP (Q;R™)

1
+ - (/ adu+b/|V”un|pd,u+b/|Vﬂu|pd,u),
4 \Jv U v

where each @; € Lip (X)) is a Uryshon function for the pair (W;”, VVZ_) defined in and (50).
Proof of Lemma [6](iii)l Let u € H)? (;R™) and O € O (Q). It suffices to show that
m(u,0) = m(u,0), (54)
where m (u, O) = inf {F (u+ ¢,0) : p € H,i;g (O;R™)}.
Fix ¢ > 0. There exists ¢ € Hl’p (O; R™) such that
e+m(u,0)=F (u+p0).
There exists {¢, }new such that ¢, — ¢ in Lr (€; R™) and

0 >e+m(u,0)=F(u+p,0)=lim F (u+ ¢,,0). (55)
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Apply Lemma |8 with

U:=0, Z:= {er dist (z, 0\O) > 2;}

T=V:=Vs={xeO:dist(z,Q0) < d}
and u,, ;== u + @,.
There exists a sequence {wy, }pew in H, P (; R™) such that:
wy, — win L (Q;R™) and w, =u+ ¢ = u p-a.e. in Q\O,
and for every n € N and every ¢ > 1,

m (u,0) < F (wy, 0) <F (u+ pn, 0) + F (u+ ¢, Vs)

+ - ZHDW’ZH 2 (RN lpn — SDHLP (QR™)

1
+ = (/ adp + b/ |V, u+ Vo, Pdp + b/ |V, u+ V”Mpdu) ,
49 \Jv U 1%
since O = Z U T. Moreover, using (55) together with the left inequality in[(C,)|we see that:

lim |Vuu + Vuon|” dp < 0.

n—0o0

Letting n — o0 we deduce that for every ¢ > 1,
C
m(u,0) <e+m(u,O) + / a+b|Vuu+Vugo|pdu+E (56)
Vs

with C adp + bl o [Vt + VupulPdp + b [, |V,ou + V,,0|Pdp, and fol-
lows from d 50) by letting ¢ — 00,0 — 0and e — 0.1

Proof of Lemma [6]Gi)l Fixue H ;’p (€; R™). Using the right inequality in we see that
F (u,0) < / (a+ bV, ulP)duforall O e O ().
o)
On the other side by the lower semicontinuity of the norm, we have

F (u,0) cmf{hm/|v Up (2) P dp () : n—»uinLﬁ(Q;Rm)}

n—o0

= c/ V,u(x)Pdp(z) .1
o
5. Proor or CoroLLARY[]]

Define F': H;’p (4 R™) x O(Q) — [0,0] by

F(u,0) := /Of(m,vuu (x))du ().

We see that F satisfies We apply Theorem [2, we have for every O € O (2) and
every u € H P (€;R™)

F(u,0) = /O T (2, V0 (2)) dps (2)
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where the Borel integrand f is given, for p-a.e. = € Q and for every ¢ € M, by

@)=t it e V) d
P=0 geH, B (By(x);R™) J B, ()

Assume that holds, i.e. F' (u,0) = F (u,O) for all (u,0) € H.»* (Q; R™) x O (2). Using

the Lebesgue differentiation theorem, we have for every u € H ' (€;R™) and for pi-a.e.

x el

[, V() = f(2,Vyu(z)).
It follows, from Corollary [2] below, that for p-a.e. x € Q and for every £ € M
fla,8) = f(z,€). (57)

Now, assume that[(i) holds, i.e. we have the equality (57). Using Theorem 2|we have for all
(u,0) € HY? (Q;R™) x O (Q)

T (u,0) /fxvuu()d,u /fxvﬂu())du() F (u,0)

which means that F' (-, 0) is L%, -lower semicontinuous.

6. AUXILIARY RESULTS

6.1. Integrands and Lusin-type theorems. The Lemma[J|below is a version of an Alberti
result [AIb91, Corollary 6, pp. 112] concerning inequalities of Borel integrands, in the
setting of metric measure spaces. In fact, using an extension to metric measure spaces of
the Alberti result on Lusin-type for gradients by David [Dav15]], we are able to rewrite the
proof given by Alberti in this framework with minor changes.

Lemma 9. Assume that (X, d) is a complete metric space. Let U < X be an open subset and let
h,g : U x M — R be two Borel functions such that for every u € Lip, (U; R™) and for p-a.e.
relU

h(xavuu (z)) < g (=, Vu (2))- (58)
Then for p-a.e. x € U and for every & € M it holds
h(z,§) < g(z,€). (59)

For the proof, we adapt slightly the one of Alberti [AIb91] to our setting. It consists
in showing that p (7 (B)) = 0 where 7 (B) is the projection onto U of the set B of all
(x,€) € U x M which do not satisfy (539). For this, a generalized version of the measurable
selection theorem allows to find a measurable selection not satisfying at every point of
7 (B), then using the Lusin-type theorem for gradient of David [Dav15], we will be able to
say, because of (58)), that i (7 (B)) is as small as we wish.

Proof of Lemma[9. Depending on the needs of the proof, we state only partially the result
of Lusin-type theorems for gradients in metric measure space:

Proposition 2. [Dav1), Theorem 1.3, pp. 297] Assume that (X, d) is a complete metric space.
For every open subset U < X with u(U) < oo, every collection of Borel measurable functions
{wy, : Xy 0" U — M}, _ and every ¢ > 0, there exist an open set O < U and a Lipschitz function
u € Lip, (U; R™) such that

p(0) <ep(U) and wy = V,u  p-ae in Xy 0 (UNO)  forall k e IN.
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Define the Borel set B := {(z,{) e U x M : h(x,§) > g (z,£)}. Suppose B £+ J, oth-
erwise there is nothing to prove. Consider 7w (B) < U the projection onto U of B. The
projection theorem [CV77, Theorem I11.23, pp. 75] shows that 7 (B) is -measurable, i.e.
7 (B) € B, (X). The rest of the proof is dedicated to showing that p (7 (B)) = 0.

Let Ap : m (B) = M be the multifunction defined by

Ag(z) :={{eM: (z,§) € B}.

Note that Ap (z) £ & for all x € 7 (B) since 7 (B) + J. Moreover, its graph is the Borel
set B, so, we can apply the Aumann-Sainte Beuve theorem [CV77, Theorem II1.22, pp.
74] (see [SB74) Theorem 3, pp. 119]), which gives a (B, (X) , B (IM))-measurable function

(a measurable selection) o : 7 (B) — M satisfying
o(z)eAg(z) forallzen (B). (60)

Define ¢ : U — M by ¢ := ol,). From [HKST15, Proposition 3.3.23, pp. 59 and
Lemma 3.8.28, pp. 62], there exists a Borel function w : U - M and N € B, (X) with
p(N) = 0 such that w = & on U\N. Fix ¢ > 0. Apply Proposition [2] with wj, := w]|x,.
There exist an open set O © U, a Lipschitz function u € Lip, (U; R™) and N e B, (X) with

I (/\N/' ) = 0 such that
1(0) < en(U) and w=V,u (X\Kf) A (U\O).

For every z € <X\./\~f> N (U\O) n 7 (B)\W we have o (x) = V,u (z), according to we
can write

h(z,V,u(z)) > gz, V,u(r)).
From (58), there exists Ny € B, (X) with p (Np) = 0 such that for every z € U\Nj

h(z, Vyu(z)) < gz, Vyu(z)).

It follows that U\Ny N (X\./\N/'> A (U\O) N7 (B)\W = &, ie. 1(B)c OUN UNy UN,
then p (7 (B)) < p(0) < ep (U). Letting e — 0, we get p (7 (B)) = 0.1
Corollary 2. Assume that (X, d) is a complete metric space. Let U < X be an open subset with

w(U) < ooandleth,g: UxIM — R be two Borel functions such that for every u € Lip, (U; R™)
and for p-a.e. v € U

h(z,V,u(z)) =gz, V,u(x)). (61)
Then for p-a.e. x € U and every & € M it holds
h(z, &) =g(z,§).
6.2. HYP-quasiconvex integrands. Here we deduce easily Theorem and Theo-
rem from Proposition [3|below.

Definition 5. Let f : X xIM— |0, c0] be a Borel measurable function. Let A be a measurable
subset of X. We say that f is H;’p-quasiconvex on Aat & € M if for p-a.e. x € A it holds

fag<im iwf o fe6 Vel

p—0 e HL (B, (@):R™) J B, (x)

: 1,p_ : 1 Lp_ 1
When fis H,?-quasiconvex on A at every £ € M we say that f is H,P-quasiconvex on A,

and if A = X we say that fis H /}L’p—quasiconvex.
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Remark 3. As a direct consequence of the Lebesgue differentiation theorem and the defi-
nition of H ;’p-quasiconvexity, an integrand f : X x M — [0,00] is H ;’p-quasiconvex at
¢ € M satisfying f (-,€) € LY, _(X) if and only if for py-a.e. z € X

w,loc

o=l wf A fE Ve

P=0 peH, B (B,(x);R™) J B,(z)
In [AHMZ20, Theorem 8, pp. 10] we proved:

Proposition 3. Let f : X x M——[0, o] be a p-coercive Borel measurable integrand, i.e. satisfying
Jfor some ¢ > 0, for p-a.e. x € X and for every £ € M

f(@,8) = clé]”. (62)

Assume that for every u, {uc}eso © HP (X; R™) satisfying lim. o |ue —ul| 1 (x;m) = 0, it holds

tiw [ f (o, ) > [ f (@9, do (63)
(@)

e—0J0O

Jor all open set O € O (X)) with pu (O) < oo.

Then fis H ;’p -quasiconvex on X at every & € M satisfying f (-,€) € L}LJOC

(X).

6.3. Integral representation of the Vitali envelope of a set function. This part is devoted
to the integral representation of the Vitali envelope of a set function defined on open subsets
of X, itis partly inspired by [BB00, BEM98,[DMMS86]. Then we apply it to the set function
m (u, ).

For each open set O < Q, we denote by 8 (O) < O (O) the class of all open balls B of O.

6.3.1. Vitali envelopes of set functions. Let G : B (£2) — R be a set function. We define the
lower Vitali envelope of G with respect to

e>0

O(Q) 30— G* (O) := supinf {Z G(By): {Bi},, € VE(O)}

el

and the upper Vitali envelope with respect to i
0(Q) 30— G (0) := inf sup {ZG (Bi) : {Bi}ies € w(O)} ,
el
where for every € > 0 e
VH(O) = {{BZ-}M < B (0) : I is countable, 1 (O\i\é BZ-) —0, B, c O,
0 < diam (B;) <e and B;n B; = & forall i 4:]'}.

Remark 4. If G is the trace on B () of a positive Borel measure A on Q which is
absolutely continuous with respect to p then G% (0O) = A (O) forall O € O (Q).

Let G : B (2) — R be a set function. Define the lower and the upper derivatives at x € 2 of
G with respect to i as follows

d,G(r):= liminf{G( ) cxeBeB (), 0<diam(B)<p};

p—0

Q
=

d:G(x):zlir%sup{ :xeBe%(Q),O<diam(B)<p}.
p—)
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We say that G is p-differentiable in O € O (Q) if for p-a.e. x € O it holds
—w<d,G(r) =dG(x) <o
in this case, we denote the common value by d,G () and
G (B, (z))
d,G (z) = lim —=222,
W) =0 (B, @)
Under domination and subadditivity conditions (see conditions |(i) and [(ii) below), a set

function defined on open sets is p-differentiable, and the lower and upper Vitali envelopes
are equal and admit an integral representation with density its derivative, for the proof see

[AHM18, Theorem 3.17, pp. 65]:
Theorem 5. Let G : O (§2) — R satisfy:
(1) there exists a positive Radon measure o on §) absolutely continuous with respect to y, i.e.

a L 1, satisfying
IG(O)] <a(0) foral OeO(Q);

(i) for every U,V,0 € O (Q) withU nV = &, U <O,V cOand p(O\(UuvV))=0it

holds
GO)<GU)+G(V).
Then G is p-differentiable with Q 5 x — lim,_,g ((g”((j)))) € L, () and for every O € O (Q)
G(B,(2))
G* (0)=G* (O =/hm (64)
+( ) ( ) OPHO,U(B (.Z')) ()

Lemma 10. Assume that [(C,) and [(Cy) hold. Then
(i) for every u € H)P (4 R™) the set function m (u, -) is p-differentiable and the function

m (u, By (x))

. 1 .
Qoz ’IJILI(I) (B, (2)) €L, (Q);
(ii) for every O € O () and every u € H,* (Q; R™) we have

L B,
Loy = [ 1™ W (B, () -

Proof of Lemma Letu e H? (€;R™). The proof consists in verifying the hypothesis
of Theorem [5] for the set function G () = m (u, -).

Let us show that the set function m (u, ) : O (Q2) — R, is subadditive. Let (Uy, Uy, W) €
O (Q)? be three open sets such that Uy ¢ W, Uy, ¢ W with u(W\ (U; u U,)) = 0 and
Uy nUy = . We can assume that m (u,U;) < o and m (u,Us) < 0. There exists
v; €U+ Hifg (U;; R™) such that
Set vy := Y2 vy, + uloyw,omy) € U + H1 0 (W; R™). We have, by using and ,

F(Uo,W) = F* (Uo,W) = F(Uo,Ul ) Ug) + F* (UQ,W\ (Ul U UQ))

2
< ZF (vo, Us) + / a(z) + bV, Pdp
i=1 WA\(U1uUz2)

UOa

Mw

=1
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From (6J)), it follows that

2
m (u, W) < F (vg, W) <ZF(UU,U1) <25+Zm(u,Ui),

i=1 i=1

Theorem holds by letting e — 0.

Now, if we set

a(0) := /Oa (z) + bV, u(x) |Pdu(x)  forall open set O < Q

then avis a positive Radon measure (in fact ;2 is a Radon measure, see [HKST15] Proposition
3.3.44, pp. 81]) on  absolutely continuous with respect to u, and

m(u,0) < F (u,0) < a(0) forall openset O c 2

since i.e. Theorem holds.H
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