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INTEGRAL REPRESENTATION OF UNBOUNDED VARIATIONAL
FUNCTIONALS ON SOBOLEV SPACES

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Abstract. In this paper we establish an unbounded version of the integral representation theo-
rem by Buttazzo and Dal Maso (see [BDM85] and also [BFLM02]). More precisely, we prove
an integral representation theorem (with a formula for the integrand) for functionals de�ned
on W 1,p with p ą N (N being the dimension) that do not satisfy a standard p-growth con-
dition from above and can take in�nite values. Applications to Γ-convergence, relaxation and
homogenization are also developed.
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2 INTEGRAL REPRESENTATION OF UNBOUNDED FUNCTIONALS ON SOBOLEV SPACES

1. Introduction and main result

Let m,N ě 1 be two integer, let p ą 1 be a real number, let Ω Ă RN be a bounded open set,
let M be the space of m ˆ N matrices and let OpΩq be the class of all open subset of Ω. In
this paper we consider variational functionals1 F : W 1,ppΩ;Rmq ˆ OpΩq ! r0,8s having the
following growth property:

(I0) there exists G : W 1,ppΩ;Rmq ˆOpΩq! r0,8s de�ned by

Gpu,Aq :“

ż

Ω

Gpx,∇upxqqdx,

with a Borel measurable function G : Ω ˆM ! r0,8s, and there exist α, β ą 0 such
that for every u P W 1,ppΩ;Rmq and every A P OpΩq,

αGpu,Aq ď Fpu,Aq ď β p|A| `Gpu,Aqq .

In the bounded case, i.e. whenGpx, ξq “ |ξ|p, Buttazzo and Dal Maso (see [BDM85, Theorem
1.1] and also [But89, §4.3, pp. 148], [BD98, Chapter 9, pp. 77] and [DM93, Chapter 20, pp.
215]) and Bouchitté, Fonseca, Leoni and Mascarenhas (see [BFLM02, Theorem 2]) proved
the following theorem.

Theorem 1.1 ([BDM85, BFLM02]) . Under (I0) with Gpx, ξq “ |ξ|p, if F satis�es the follow-
ing four conditions:

(I1) for every u P W 1,ppΩ;Rmq, the set function Fpu, ¨q is the restriction to OpΩq of a Borel
measure,

(I2) for every u, v P W 1,ppΩ;Rmq and every A P OpΩq, if upxq “ vpxq for LN-a.a. x P A,
then Fpu,Aq “ Fpv,Aq;

(I3) for every u P W 1,ppΩ;Rmq, everyA P OpΩq and every z P Rm, Fpu`z, Aq “ Fpu,Aq;
(I4) for every A P OpΩq the functional Fp¨, Aq is Lp-lower semicontinuous,

then, for every u P W 1,ppΩ;Rmq and every A P OpΩq,

Fpu,Aq “

ż

A

F px,∇upxqqdx

with F : ΩˆM! r0,8s de�ned by

F px, ξq :“ lim
ρ!0

inf

"

Fpu,Qρpxqq

ρN
: u´ lξ P W

1,p
0 pQρpxq;R

m
q

*

, (1.1)

where Qρpxq :“ x ` ρY with Y :“s ´ 1
2
, 1

2
rN and lξ : RN ! Rm is the linear map de�ned by

lξpyq :“ ξy.

The object of the present paper is to deal with the problem of �nding an integral representation
for F in the unbounded case, i.e. when Gpx, ξq is not necessarily equal to |ξ|p. In the scalar
case, i.e. whenm “ 1, integral representation problems for unbounded functional were studied
by Carbone and De Arcangelis in [CDA02, Chapter 9]. Here we deal with the vectorial case.

Our main result is to establish the following unbounded version of Theorem 1.1.

1By a variational functional we mean a function of functions and sets.
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Theorem 1.2. Assume that p ą N and (I0)–(I4) hold. Assume further that the following �ve assump-
tions are satis�ed:

(I5) G is p-coercive, i.e. there exists c ą 0 such that for every px, ξq P ΩˆM,

Gpx, ξq ě c|ξ|p;

(I6) there exists γ ą 0 such that for every x P Ω, every t Ps0, 1r and every ξ, ζ PM,

Gpx, tξ ` p1´ tqζq ď γp1`Gpx, ξq `Gpx, ζqq;

(I7) there exists r ą 0 such that

sup
|ξ|ďr

Gp¨, ξq P L1
pΩq;

(I8) for every A P OpΩq, every u P dompGp¨, Aqq and LN-a.e. x P A,

lim
ρ!0

´

ż

Qρpxq

ˇ

ˇGpy,∇upxqq ´Gpx,∇upxq
ˇ

ˇdy “ 0,

where dompGp¨, Aqq denotes the e�ective domain of Gp¨, Aq;
(I9) F is radially uniformly upper semicontinuous (ru-usc), i.e. there exists a P L1pΩ; s0,8sq such

that
lim
t!1´

∆a
Fptq ď 0

with ∆a
F : r0, 1s!s ´ 8,8s de�ned by

∆a
Fptq :“ sup

APOpΩq

sup
uPdompFp¨,Aqq

Fptu, Aq ´Fpu,Aq
ş

A
apxqdx`Fpu,Aq

,

where dompFp¨, Aqq denotes the e�ective domain of Fp¨, Aq2.
Then, for every A P OpΩq,

Fpu,Aq “

$

’

&

’

%

ż

A

pF px,∇upxqqdx if u P dompGp¨, Aqq

8 if u P W 1,ppΩ;RmqzdompGp¨, Aqq,

where pF : ΩˆM! r0,8s is de�ned by

pF px, ξq “ lim
t!1´

F px, tξq

with F given by (1.1) .

Remark 1.3.
(i) If Gpx, ξq “ G1pxq ` G2pξq or Gpx, ξq “ G1pxqG2pξq and if G1 P L

1
locpΩq, then (I8)

holds.
(ii) (I6) implies that for every x PM, the e�ective domain of Gpx, ¨q is convex.

2Note that under (I0) we have dompFp¨, Aqq “ dompGp¨, Aqq for all A P OpΩq.
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(iii) WhenG does not depend on x, i.e. Gpx, ξq “ Gpξq, (I8) can be dropped and (I7) means
that G is bounded at the neighborhood of the null matrix. It is proved in [AHM12,
Lemma 4.1] that such a boundlessness condition holds if (I6) is satis�ed and if the null
matrix belongs to the interior of the e�ective domain of G. So, for Gpx, ξq “ Gpξq,
under (I6), (I7) can be replaced by the following “simpler” assumption:
(I71) the null matrix belongs to the interior of the e�ective domain of G.

(iv) WhenG is convex with respect to ξ, (I6) can be dropped and, since a convex function is
continuous in the interior of its e�ective domain, (I7) can be replaced by the following
“simpler”assumption:
(I72) the null matrix belongs to the interior of the e�ective domain of the convex function ξ 7!

supxPΩ Gpx, ξq.

Integral representation theorems for variational functionals are part of a general method, usu-
ally called “the localization method3”, which was introduced by the Italian school at the end
of the seventies (see [DGL77, DM78, DMM81]) for dealing with Γ-convergence, relaxation
and homogenization of integral functionals of the Calculus of Variations. In the bounded
case, i.e. under standard p-growth conditions, the method is well-developed (see the books
[But89, DM93, BD98]). On the other hand, in the unbounded case the method does not work
satisfactory and from [Bra06, Remark 4.1] and [BD98, Remark 12.7] a long-standing conjec-
ture of De Giorgi is that it should be possible to deal with the G-growth case where G is such
that Gpu,Aq “

ş

A
Gpx,∇upxqqdx is lower semicontinuous. Theorem 1.2 and its corollaries

(see Theorem 4.3 and Corollaries 4.9 and 4.10) gives a partial answer to this conjecture, the
main ingredient being the condition of ru-usc (see §2.5 for more details on this notion) that
plays a fundamental role in the proof of Theorem 1.2 and its applications to Γ-convergence,
relaxation and homogenization. Convexity implies ru-usc (see [AHM14]) but, in the noncon-
vex and vectorial case, ru-usc seems to be essential to develop the localization method beyond
the p-growth case.

The plan of the paper is as follows. Section 2 contains auxiliary results for proving Theorem
1.2 (see §2.1) and for dealing with applications (see §2.2, §2.3, §2.4 and 2.5). Section 3 is
devoted to the proof of Theorem 1.2. Finally, in Section 4, applications to ΓpLpq-convergence
(see Theorem 4.3), relaxation (see Corollary 4.9) and homogenization (see Corollary 4.10)
are developed.

Throughout the paper, we will use the following notation and terminology.
‚ The Lebesgue measure is denoted by dx, dy or LN and the Lebesgue measure of any

Borel measurable set Q Ă RN is denoted by |Q|.
‚ The interior (resp. closure) of a set B Ă RN is denoted by B̊ (resp. B).
‚ The interior of any subset U of the setM of mˆN matrices will be denoted by intpUq.
‚ The symbol ´

ş

stands for the mean-value integral, i.e. ´
ş

Q
fdx “ 1

|Q|

ş

Q
fdx.

3From [Bra93, Lesson Two, pp. 51] the localization method consists of, �rstly, proving a compactness theorem
which allows to obtain for each sequence of integral functionals a subsequence Γ-converging to an abstract limit
functional, secondly, proving an integral representation result which allows us to write the limit functional as
an integral and, thirdly, proving a representation formula for the limit integrand which does not depend on the
subsequence, showing thus that the limit is well-de�ned.
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‚ By the e�ective domain of a function L : M ! r0,8s we mean L Ă M given by
L :“ tξ PM : Lpξq ă 8u.

‚ Given a variational functional I : W 1,ppΩ;Rmq ˆ OpΩq ! r0,8s, by the e�ective
domain Ip¨, Aq with A P OpΩq, where OpΩq denotes the class of all open subset of Ω,
we mean dompIp¨, Aqq given by dompIp¨, Aqq :“ tu P W 1,ppΩ;Rmq : Ipu,Aq ă 8u.

2. Auxiliary results

2.1. Integral representation of the Vitali envelope of a set function. What follows was �rst
developed in [BFM98, BB00] (see also [AHCM17]). Let Ω Ă RN be a bounded open set and
let OpΩq be the class of open subsets of Ω. We begin with the concept of the Vitali envelope of
a set function.

For each ε ą 0 and each A P OpΩq, denote the class of countable families tQi “ QρipxiquiPI
(where Qρipxiq :“ xi ` ρiY where Y :“s ´ 1

2
, 1

2
rN ) of disjoint open cubes of A with xi P A,

ρi ą 0 and diampQiq Ps0, εr such that |Az YiPI Qi| “ 0 by VεpAq.

De�nition 2.1. Given S : OpΩq! r0,8s, for each ε ą 0 we de�ne Sε : OpΩq! r0,8s by

Sε
pAq :“ inf

#

ÿ

iPI

SpQiq : tQiuiPI PVεpAq

+

. (2.1)

By the Vitali envelope of S we call the set function S˚ : OpΩq! r´8,8s de�ned by

S˚pAq :“ sup
εą0

Sε
pAq “ lim

ε!0
Sε
pAq. (2.2)

The interest of De�nition 2.1 comes from the following integral representation result. (For a
proof we refer to [AHCM17, §A.4].)

Theorem 2.2. Let S : OpΩq! r0,8s be a set function satisfying the following two conditions:

(a) there exists a �nite Borel measure ν on Ω which is absolutely continuous with respect to LN such
that SpAq ď νpAq for all A P OpΩq;

(b) S is subadditive, i.e. SpAq ď SpBq ` SpCq for all A,B,C P OpΩq with B,C Ă A,
B X C “ H and |AzB Y C| “ 0.

Then limρ!0
SpQρp¨qq

ρN
P L1pΩq and for every A P OpΩq,

S˚pAq “

ż

A

lim
ρ!0

SpQρpxqq

ρN
dx.

2.2. Compactness theorem with respect to ΓpLpq-convergence. Let p ą 1, let Ω Ă RN be a
bounded open set and let OpΩq denote the class of all open subset of Ω. We begin by recalling
the de�nition of ΓpLpq-convergence (see [DM93, BD98, Bra06] for more details).

De�nition 2.3. For each ε ą 0, let Iε : W 1,ppΩ;RmqˆOpΩq! r0,8s be a variational functional
and let ΓpLpq- limε!0 Iε : W 1,ppΩ;RmqˆOpΩq! r0,8s and ΓpLpq- limε!0 Iε : W 1,ppΩ;Rmqˆ
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OpΩq! r0,8s be respectively de�ned by:

ΓpLpq- lim
ε!0

Iεpu,Aq :“ inf

"

lim
ε!0

Iεpuε, Aq : uε
Lp
! u

*

;

ΓpLpq- lim
ε!0

Iεpu,Aq :“ inf
!

lim
ε!0

Iεpuε, Aq : uε
Lp
! u

)

.

Let I0 : W 1,ppΩ;RmqˆOpΩq! r0,8s be a variational functional. We say that tIεuεą0 ΓpLpq-
converges to I0, and we write I0 “ ΓpLpq-limε!0 Iε, if the following two inequalities hold:

I0 ď ΓpLpq- lim
ε!0

Iε;

ΓpLpq- lim
ε!0

Iε ď I0.

For families of increasing variational functionals (typically variational integrals), the following
theorem isolates a condition on the ΓpLpq-limit inf and the ΓpLpq-limit sup to have compactness
with respect to ΓpLpq-convergence. (For a proof we refer to [DM93, Theorem 16.9, pp. 184]
and also [BD98, Theorem 10.3, pp. 84].)

Theorem 2.4. For each ε ą 0, let Iε : W 1,ppΩ;Rmq ˆ OpΩq ! r0,8s be an increasing vari-
ational functional, i.e. Iεpu, ¨q is increasing4 for all u P W 1,ppΩ;Rmq. Suppose that for every u P
W 1,ppΩ;Rmq,

ΓpLpq- lim
ε!0

Iεpu, ¨q and ΓpLpq- lim
ε!0

Iεpu, ¨q are inner regular.5 (2.3)

Then, every sequence tIεuεą0 has a ΓpLpq-convergent subsequence.

Remark 2.5. To verify (2.3) we will use Lemma 2.9 (see §2.3) which will allow to establish,
under additional assumptions, the stronger property that the ΓpLpq-limit inf and the ΓpLpq-
limit sup are restrictions to OpΩq of Borel measures.

The following proposition, combined with Theorem 2.4, furnishes a useful tool to deal with
the ΓpLpq-convergence of increasing variational functionals. (For a proof we refer to [DM93,
Proposition 16.8, pp. 183].)

Proposition 2.6. For each ε ą 0, let Iε : W 1,ppΩ;Rmq ˆ OpΩq ! r0,8s be an increasing varia-
tional functional and let I0 : W 1,ppΩ;Rmq ˆOpΩq! r0,8s be an increasing variational functional.
If (2.3) holds then tIεuεą0 ΓpLpq-converges to I0 if and only every subsequence of tIεuεą0 contains a
further subsequence which ΓpLpq-converges to I0.

4A set function S : OpΩq ! r0,8s is said to be increasing if SpAq ď SpBq for all A,B P OpΩq such that
A Ă B.

3An increasing set function S : OpΩq ! r0,8s is said to be inner regular if for every A P OpΩq, SpAq “
suptSpUq : U P OpΩq and U Ă Au. (Note that ΓpLpq- limε!0 Iεpu, ¨q and ΓpLpq- limε!0 Iεpu, ¨q are increasing
whenever every Iεpu, ¨q is increasing.)
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2.3. Increasing set functions. Let Ω Ă RN be a bounded open set, let OpΩq be the class of
open subsets of Ω and let BpΩq be the class of Borel subsets of Ω, i.e. the smallest σ-algebra
containing the open (or equivalently the closed) subsets of Ω. The following result is due to De
Giorgi and Letta (see [DGL77] and also [DM93, Theorem 14.23, pp. 172]).

Theorem 2.7. Let S : OpΩq ! r0,8s be an increasing set function such that SpHq “ 0. Then, S
is the restriction to OpΩq of a Borel measure, i.e. there exists a measure µ : BpΩq ! r0,8s such that
SpAq “ µpAq for all A P OpΩq, if and only if the following three conditions hold:

(a1) S is subadditive, i.e. SpAYBq ď SpAq `SpBq for all A,B P OpΩq;
(a2) S is superadditive, i.e. SpAYBq ě SpAq`SpBq for allA,B P OpΩq such thatAXB “ H;
(a3) S is inner regular, i.e. SpAq “ sup

 

SpUq : U P OpΩq and U Ă A
(

for all A P OpΩq.

To establish inner regularity we have the following proposition due to Carbone and De Arcan-
gelis (see [CDA02, Proposition 2.6.10, pp. 74]).

Proposition 2.8. LetS : OpΩq! r0,8s be an increasing set function satisfying (a1) and the following
two additional conditions:

(a4) for every A P OpΩq with SpAq ă 8, limn!8SpAnq “ 0 for all tAnun Ă OpΩq such that
AzAn Ă AzAn`1 and YnAzAn “ A;

(a5) for every A P OpΩq with SpAq “ 8, limn!8SpAnq “ 8 for all tAnun Ă OpΩq such that
An Ă An`1 and YnAn “ A.

Then (a3) holds.

It is easily seen that the condition (a6) below implies (a4) and (a5). The following result is then
a straightforward consequence of Theorem 2.7 and Proposition 2.8.

Lemma 2.9. Let S : OpΩq ! r0,8s be an increasing set function satisfying (a1) and (a2) and the
following additional condition:

(a6) there exist α, β ą 0, a measure ν : BpΩq! r0,8s and a �nite measure λ : BpΩq! r0,8r
such that ανpAq ď SpAq ď βpλpAq ` νpAqq for all A P OpΩq.

Then, S is the restriction to OpΩq of a Borel measure.

2.4. A subadditive theorem. Let ObpR
Nq be the class of all bounded open subsets of RN . We

begin with the following de�nition.

De�nition 2.10. Let S : ObpR
Nq! r0,8s be a set function.

(i) We say that S is subadditive if

SpAq ď SpBq `SpCq

for all A,B,C P ObpR
Nq with B,C Ă A, B X C “ H and |AzB Y C| “ 0.

(ii) We say that S is ZN-invariant if

SpA` zq “ SpAq

for all A P ObpR
Nq and all z P ZN .

Let CubpRNq be the class of all open cubes in RN . The following theorem is due to Akcoglu
and Krengel (see [AK81] and also [LM02] and [AHM11, Theorem 3.11]).
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Theorem 2.11. Let S : ObpR
Nq! r0,8s be a subadditive andZN-invariant set function for which

there exists C Ps0,8r such that for every A P ObpR
Nq,

SpAq ď C|A|.

Then, for every Q P CubpRNq,

lim
ε!0

S
`

1
ε
Q
˘

ˇ

ˇ

1
ε
Q
ˇ

ˇ

“ inf
kě1

Sps0, krNq

kN
.

2.5. Ru-usc property. We begin by recalling the concept of ru-usc function which was intro-
duced in [AH10] (see also [AHM14] and [AHM11, §3.1]).

2.5.1. Ru-usc function. Let Ω Ă RN be an open set and let L : Ω ˆM ! r0,8s is a Borel
measurable function, where M denotes the space of m ˆ N matrices. For each x P Ω, we
denote the e�ective domain of Lpx, ¨q by Lx and, for each a P L1

locpΩ; s0,8sq, we consider
δaL : r0, 1s!s ´ 8,8s de�ned by

δaLptq :“ sup
xPΩ

sup
ξPLx

Lpx, tξq ´ Lpx, ξq

apxq ` Lpx, ξq
.

De�nition 2.12. We say that L : Ω ˆM ! r0,8s is ru-usc if there exists a P L1
locpΩ; s0,8sq

such that

lim
t!1´

δaLptq ď 0. (2.4)

The interest of De�nition 2.12 comes from the following theorem. (For a proof we refer to
[AHM11, Theorem 3.5] and also [AHM12, §4.2]) Let pL : ΩˆM! r0,8s be de�ned by

pLpx, ξq :“ lim
t!1´

Lpx, tξq.

Theorem 2.13. If L : ΩˆM! r0,8s is ru-usc and if for every x P Ω,

tLx Ă intpLxq for all t Ps0, 1r, (2.5)

then:

(a) pL is ru-usc;
(b) pLpx, ξq “ lim

t!1´
Lpx, tξq for all px, ξq P ΩˆM.

If moreover, for every x P Ω, Lpx, ¨q is lsc on intpLxq then:

(c) pLpx, ξq “

$

&

%

Lpx, ξq if ξ P intpLxq
lim
t!1´

Lpx, tξq if ξ P BLx
8 otherwise;

(d) for every x P Ω, pLpx, ¨q is the lsc envelope of Lpx, ¨q.
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2.5.2. Ru-usc variational functional. Let p ą 1, letOpΩq be the class of all open subsets of Ω. Let
I : W 1,ppΩ;Rmq ˆOpΩq ! r0,8s be a variational functional and let ∆a

I : r0, 1s !s ´ 8,8s
be de�ned by

∆a
Iptq :“ sup

APOpΩq

sup
uPdompIp¨,Aqq

Iptu, Aq ´Ipu,Aq
ş

A
apxqdx`Ipu,Aq

,

where dompIp¨, Aqq denotes the e�ective domain of Gp¨, Aq. From now on, Ω is bounded.
Analogously to the case of a function, the concept of ru-usc for a variational functional is de�ned
as follows.

De�nition 2.14. We say that I : W 1,ppΩ;Rmq ˆ OpΩq ! r0,8s is ru-usc if there exists a P
L1pΩ; s0,8sq such that

lim
t!1´

∆a
Iptq ď 0.

De�nition 2.14 is motivated by the following result which asserts that “the variational integrals
whose integrand is ru-usc are ru-usc variational functionals”.

Proposition 2.15. If L : Ω ˆ M ! r0,8s is a ru-usc function with a P L1pΩ; s0,8sq and if
I : W 1,ppΩ;Rmq ˆOpΩq! r0,8s is such that

Ipu,Aq “

ż

A

Lpx,∇upxqqdx

for all u P W 1,ppΩ;Rmq and all A P OpΩq, then I is a ru-usc variational integral with the same
function a.

Proof of Proposition 2.15. Fix any t P r0, 1s, any A P OpΩq and any u P dompIp¨, Aqq. Then
∇upxq P Lx for LN-a.e. x P A, and so

Lpx,∇ptuqpxqq “ Lpx, t∇upxqq ď δaLptqpapxq ` Lpx,∇upxqq ` Lpx,∇upxqq
for LN-a.a. x P A. Hence

Iptu, Aq ď δaLptq

ˆ
ż

A

apxqdx`Ipu,Aq

˙

`Ipu,Aq

for all A P OpΩq and all u P dompIp¨, Aqq, and consequently

sup
APOpΩq

sup
uPdompIp¨,Aqq

Iptu, Aq ´Ipu,Aq
ş

A
apxqdx`Ipu,Aq

ď δaLptq, i.e. ∆a
Iptq ď δaLptq,

for all t P r0, 1s, and the proposition follows because L is ru-usc. �

2.5.3. Family of ru-usc variational functionals. The following de�nition generalizes De�nition
2.14 to the case of a family of variational functionals.

De�nition 2.16. For each ε ą 0, let Iε : W 1,ppΩ;Rmq ˆ OpΩq ! r0,8s be a variational in-
tegral. We say that the family tIεuεą0 is ru-usc if there exist taεuεą0 Ă L1pΩ; s0,8sq and
a0 P L

1pΩ; s0,8sq such that:

lim
ε!0

ż

A

aεpxqdx “

ż

A

a0pxqdx for all A P OpΩq; (2.6)

lim
t!1´

sup
εą0

∆aε
Iε
ptq ď 0. (2.7)
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The interest of De�nition 2.16 comes from the following result.

Proposition 2.17. For each ε ą 0, let Iε : W 1,ppΩ;Rmq ˆ OpΩq ! r0,8s be a variational
integral. If tIεuεą0 is ru-usc with taεuεą0 Ă L1pΩ; s0,8sq and a0 P L

1pΩ; s0,8sq and if tIεuεą0

ΓpLpq-converges to I0 : W 1,ppΩ;Rmq ˆOpΩq! r0,8s then I0 is ru-usc with the function a0.

Proof of Proposition 2.17. Fix any A P OpΩq and any u P dompI0p¨, Aqq. Since tIεuεą0

ΓpLpq-converges to I0, there exists tuεuεą0 Ă W 1,ppΩ;Rmq with uε P dompIεp¨, Aqq such that:

uε
Lp
! u; (2.8)

lim
ε!0

Iεpuε, Aq “ I0pu,Aq. (2.9)

Fix any t P r0, 1s. For every ε ą 0, we have

Iεptuε, Aq ď ∆aε
Iε
ptq

ˆ
ż

A

aεpxqdx`Iεpuε, Aq

˙

`Iεpuε, Aq

ď sup
ε1ą0

∆
aε1
Iε1
ptq

ˆ
ż

A

aεpxqdx`Iεpuε, Aq

˙

`Iεpuε, Aq. (2.10)

From (2.8) we see that tuε
Lp
! tu, and so, since tIεuεą0 ΓpLpq-converges to I0,

I0ptu, Aq ď lim
ε!0

Iεptuε, Aq. (2.11)

As tIεuεą0 is ru-usc, (2.6) and (2.7) hold. Letting ε! 0 in (2.10) and using (2.6) , (2.9) and
(2.11) we deduce that

I0ptu, Aq ď sup
ε1ą0

∆
aε1
Iε1
ptq

ˆ
ż

A

a0pxqdx`I0pu,Aq

˙

`I0pu,Aq.

Hence, for every A P OpΩq and every u P dompI0p¨, Aqq,

I0ptu, Aq ´I0pu,Aq
ş

A
apxqdx`I0pu,Aq

ď sup
εą0

∆aε
Iε
ptq.

Consequently

sup
APOpΩq

sup
uPdompI0p¨,Aqq

I0ptu, Aq ´I0pu,Aq
ş

A
a0pxqdx`I0pu,Aq

ď sup
εą0

∆aε
Iε
ptq, i.e. ∆a0

I0
ptq ď sup

εą0
∆aε

Iε
ptq

for all t P r0, 1s, and the proposition follows by using (2.7) . �

Remark 2.18. From the proof of Proposition 2.17 we see that we are in fact proved that if
tIεuεą0 is ru-usc with taεuεą0 Ă L1pΩ; s0,8sq and a0 P L

1pΩ; s0,8sq then both ΓpLpq- limε!0 Iε

and ΓpLpq- limε!0 Iε are ru-usc with the function a0.

The following result is a direct consequence of Proposition 2.17.

Corollary 2.19. Let I : W 1,ppΩ;Rmq ˆ OpΩq ! r0,8s. If I is ru-usc with a P L1pΩ; s0,8sq
then its Lp-lower semicontinuous envelope, i.e. I : W 1,ppΩ;Rmq ˆOpΩq! r0,8s de�ned by

Ipu,Aq :“ ΓpLpq- lim
ε!0

Ipu,Aq “ inf

"

lim
ε!0

Ipuε, Aq : uε
Lp
! u

*

,

is ru-usc with the same function a.
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2.5.4. Family of ru-usc functions. Analogously to the case of a family of variational functionals,
the concept of ru-usc for a family of functions is de�ned as follows.

De�nition 2.20. For each ε ą 0, let Lε : Ω ˆM! r0,8s be a Borel measurable function. We
say that the family tLεuεą0 is ru-usc if there exist taεuεą0 Ă L1pΩ; s0,8sq and a0 P L

1pΩ; s0,8sq
such that:

lim
ε!0

ż

A

aεpxqdx “

ż

A

a0pxqdx for all A P OpΩq;

lim
t!1´

sup
εą0

δaεLεptq ď 0. (2.12)

The following lemma will be useful for dealing with ΓpLpq-convergence (see §4.1).

Lemma 2.21. For each ε ą 0, let Lε : ΩˆM! r0,8s be a Borel measurable function and, for each
ρ ą 0, let HρLε : ΩˆM! r0,8s be de�ned by

HρLεpx, ξq :“ inf

#

´

ż

Qρpxq

Lεpy,∇upyqqdy : u´ lξ P W
1,p
0 pQρpxq;R

m
q

+

.

If tLεuεą0 is ru-usc with taεuεą0 Ă L1pΩ; s0,8sq and a0 P L
8pΩ; s0,8sq then

L0 :“ lim
ρ!0

lim
ε!0

HρLε : ΩˆM! r0,8s

is ru-usc with the constant function }a0}L8 .

Proof of Lemma 2.21. Fix any t P r0, 1s, any x P Ω and any ξ P L0,x where L0,x is the ef-
fective domain of L0px, ¨q. Then L0px, ξq :“ limρ!0 limε!0 H

ρLεpx, ξq ă 8 and without loss
of generality we can suppose that HρLεpx, ξq ă 8 for all ρ ą 0 and all ε ą 0. Fix any
ρ ą 0 and any ε ą 0. By de�nition of HρLεpx, ξq there exists tunun Ă W 1,ppΩ;Rmq with
un ´ lξ P W

1,p
0 pQρpxq;R

mq such that:

HρLεpx, ξq “ lim
n!8

´

ż

Qρpxq

Lεpy,∇unpyqqdy; (2.13)

∇unpyq P Lε,y for all n ě 1 and LN-a.a. y P Qρpxq, (2.14)

where Lε,y denotes the e�ective domain of Lεpy, ¨q. Moreover, for every n ě 1,

HρLεpx, tξq ď ´

ż

Qρpxq

Lεpy, t∇unpyqqdy (2.15)

since tun´ tlξ “ tun´ ltξ P W
1,p
0 pQρpxq;R

mq. Taking (2.14) into account, we see that for every
n ě 1 and LN-a.e. y P Qρpxq,

Lεpy, t∇unpyqq ď δaεLεptq
`

aεpxq ` Lεpy,∇unpyqq
˘

` Lεpy,∇unpyqq.
Hence

´

ż

Qρpxq

Lεpy, t∇unpyqqdy ď δaεLεptq

˜

´

ż

Qρpxq

aεpyqdy `´

ż

Qρpxq

Lεpy,∇unpyqqdy

¸

`´

ż

Qρpxq

Lεpy,∇unpyqqdy,
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and so, by using (2.15) ,

HρLεpx, tξq ď δaεLεptq

˜

´

ż

Qρpxq

aεpyqdy `´

ż

Qρpxq

Lεpy,∇unpyqqdy

¸

`´

ż

Qρpxq

Lεpy,∇unpyqqdy

for all n ě 1. Letting n! 8 and using (2.13) , it follows that

HρLεpx, tξq ď δaεLεptq

˜

´

ż

Qρpxq

aεpyqdy `HρLεpx, ξq

¸

`HρLεpx, ξq

ď sup
ε1ą0

δ
aε1
Lε1
ptq

˜

´

ż

Qρpxq

aεpyqdy `HρLεpx, ξq

¸

`HρLεpx, ξq, (2.16)

for all ε ą 0. Letting ε! 0 and noticing that a0 P L
8pΩ; s0,8sq, we get

lim
ε!0

HρLεpx, tξq ď sup
ε1ą0

δ
aε1
Lε1
ptq

˜

´

ż

Qρpxq

a0pyqdy ` lim
ε!0

HρLεpx, ξq

¸

` lim
ε!0

HρLεpx, ξq

ď sup
ε1ą0

δ
aε1
Lε1
ptq

´

}a0}L8 ` lim
ε!0

HρLεpx, ξq
¯

` lim
ε!0

HρLεpx, ξq

for all ρ ą 0. Hence, by letting ρ! 0,

L0px, tξq ď sup
εą0

δaεLεptq
`

}a0}L8 ` L0px, ξq
˘

` L0px, ξq, i.e.
L0px, tξq ´ L0px, ξq

}a0}L8 ` L0px, ξq
ď sup

εą0
δaεLεptq

for all x P Ω and all ξ P L0,x. Consequently

sup
xPΩ

sup
ξPL0,x

L0px, tξq ´ L0px, ξq

}a0}L8 ` L0px, ξq
ď sup

εą0
δaεLεptq, i.e. δ}a0}L8L0

ptq ď sup
εą0

δLεptq

for all t P r0, 1s, and the lemma follows by using (2.12) . �

As a direct consequence of Lemma 2.21, we have the following result.

Corollary 2.22. Let L : ΩˆM! r0,8s be a Borel measurable function and let HρL : ΩˆM!
r0,8s be de�ned by

HρLpx, ξq :“ inf

#

´

ż

Qρpxq

Lpy,∇upyqqdy : u´ lξ P W
1,p
0 pQρpxq;R

m
q

+

.

If L is ru-usc with a P L8pΩ; s0,8sq then

lim
ρ!0

HρL : ΩˆM! r0,8s

is ru-usc with the constant function }a}L8 .

The following proposition makes clear the link between De�nition 2.16 and De�nition 2.20.

Proposition 2.23. For each ε ą 0, let Lε : ΩˆM! r0,8s be a Borel measurable function and let
Iε : W 1,ppΩ;Rmq ˆOpΩq! r0,8s be de�ned by

Iεpu,Aq :“

ż

A

Lεpx,∇upxqqdx.
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If tLεuεą0 is ru-usc with taεuεą0 Ă L1pΩ; s0,8sq and a0 P L
1pΩ; s0,8sq then tIεuεą0 is ru-usc

with the same family of functions taεuεą0 and the same function a0.

Proof of Proposition 2.23. It su�ces to prove (2.7) . Fix any t P r0, 1s, any ε ą 0, any A P

OpΩq and any u P dompIεp¨, Aqq. Then ∇upxq P Lε,x for LN-a.a. x P A, where Lε,x denotes
the e�ective domain of Lεpx, ¨q, and so

Lεpx,∇ptuqpxqq “ Lεpx, t∇upxqq ď δaεLεptqpaεpxq ` Lεpx,∇upxqq ` Lεpx,∇upxqq

for LN-a.a. x P A. Hence

Iεptu, Aq ď δaεLεptq

ˆ
ż

A

aεpxqdx`Iεpu,Aq

˙

`Iεpu,Aq

for all A P OpΩq and all u P dompIεp¨, Aqq, and consequently

sup
APOpΩq

sup
uPdompIεp¨,Aqq

Iεptu, Aq ´Iεpu,Aq
ş

A
aεpxqdx`Iεpu,Aq

ď δaεLεptq, i.e. ∆aε
Lε
ptq ď δaεLεptq,

for all ε ą 0. Thus
sup
εą0

∆aε
Lε
ptq ď sup

εą0
δaεLεptq

for all t P r0, 1s, and (2.7) follows from (2.12) . �

The following lemma, which motivates De�nition 2.20 with respect to De�nition 2.12, will be
useful for homogenization (see §4.3).

Lemma 2.24. Let L : RN ˆM! r0,8s be Borel measurable function such that Lp¨, ξq is 1-periodic
for all ξ P M, i.e. for every px, zq P RN ˆ ZN , Lpx ` z, ξq “ Lpx, ξq, and, for each ε ą 0, let
Lε : ΩˆM! r0,8s be de�ned by

Lεpx, ξq :“ L
´x

ε
, ξ
¯

.

Let a P L1
locpR

N ; s0,8sq be a 1-periodic function and, for each ε ą 0, let aε P L1
locpR

N ; s0,8sq be
de�ned by

aεpxq :“ a
´x

ε

¯

.

If L is ru-usc with the function a then tLεuεą0 is ru-usc with the family of functions taεuεą0 and the
constant function xay :“

ş

Y
apyqdy.

Proof of Lemma 2.24. First of all, it is clear that limε!0

ş

A
aεpxqdx “ |A|xay for all A P OpΩq.

So, it su�ces to prove (2.12) . For any t P r0, 1s, any ε ą 0, any x P Ω and any ξ P Lε,x, we have

Lεpx, tξq ´ Lεpx, ξq

aεpxq ` Lεpx, ξq
“
L
`

x
ε
, tξ

˘

´ L
`

x
ε
, ξ
˘

a
`

x
ε

˘

` L
`

x
ε
, ξ
˘ . (2.17)

As Lε,x “ Lx
ε

we see that

L
`

x
ε
, tξ

˘

´ L
`

x
ε
, ξ
˘

a
`

x
ε

˘

` L
`

x
ε
, ξ
˘ ď sup

yPRN
sup
ζPLy

Lpy, tζq ´ Lpy, ζq

apyq ` Lpy, ζq
“ δaLptq,
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and from (2.17) we deduce that

sup
εą0

δaεLεptq ď δaLptq (2.18)

for all t P r0, 1s, and (2.12) follows from (2.4) because L is ru-usc. �

3. Proof of the integral representation theorem

The proof of Theorem 1.2 is divided into �ve steps.

Step 1: a simple integral representation forFFF. We begin by proving the following elementary
lemma.

Lemma 3.1. If (I0) –(I1) hold then for every u P W 1,ppΩ;Rmq, Fpu, ¨q is the restriction to OpΩq
of a Borel measure which absolutely continuous with respect to LN . More precisely, for every u P

W 1,ppΩ;Rmq and every A P OpΩq,

Fpu,Aq “

ż

A

λupxqdx

with λu : Ω! r0,8s Borel measurable given by

λupxq “ lim
ρ!0

Fpu,Qρpxqq

ρN
.

Proof of Lemma 3.1. By (I0) and (I1) we see that for every u P W 1,ppΩ;Rmq, the set function
Fpu, ¨q is the restriction to OpΩq of a Borel measure which is absolutely continuous with re-
spect to LN , and the lemma follows by using Radon-Nikodym’s theorem and then Lebesgue’s
di�erentiation theorem. �

From now on, we �x A P OpΩq.

Step 2: using the Vitali envelope. For every u P W 1,ppΩ;Rmq we consider the set function
mu : OpAq! r0,8s de�ned by

mupUq :“ inf
!

Fpv, Uq : v ´ u P W 1,p
0 pU ;Rmq

)

. (3.1)

For every ε ą 0 and every U P OpAq, we denote the class of countable families tQi :“
QρipxiquiPI of disjoint open cubes of U with xi P U , ρi ą 0 and diampQiq Ps0, εr such that
|Uz YiPI Qi| “ 0 by VεpUq, we consider mε

u : OpAq! r0,8s given by

mε
upUq :“ inf

#

ÿ

iPI

mupQiq : tQiuiPI PVεpUq

+

,

and we de�ne m˚
u : OpAq! r0,8s by

m˚
upUq :“ sup

εą0
mε
upUq “ lim

ε!0
mε
upUq,

i.e. m˚
u is the Vitali envelope of mu (see §2.1).

Step 2 consists of proving the following lemma.

Lemma 3.2. If (I0) –(I2) and (I4) –(I5) hold then for every u P W 1,ppΩ;Rmq and every U P OpAq,

Fpu, Uq “ m˚
upUq. (3.2)
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Proof of Lemma 3.2. Fix u P W 1,ppΩ;Rmq. Given any Q P OpAq, it is easy to see that
mupQq ď Fpu,Qq. Hence, for every U P OpAq,

m˚
upUq ď Fpu, Uq

because, by (I1), Fp¨, Uq is the restriction to OpAq of a Borel measure. So, to establish (3.2) , it
remains to prove that for every U P OpAq,

Fpu, Uq ď m˚
upUq. (3.3)

Fix U P OpAq with m˚
upUq ă 8. Fix any ε ą 0. By de�nition of mε

upUq there exists tQiuiPI P

VεpUq such that
ÿ

iPI

mupQiq ď mε
upUq `

ε

2
. (3.4)

For each i P I , by de�nition of mupQiq there exists vi P W 1,ppQi;R
mq such that vi ´ u P

W 1,p
0 pQi;R

mq and

Fpvi, Qiq ď mupQiq `
ε|Qi|

2|U |
. (3.5)

De�ne uε : Ω! Rm by

uε :“

"

u in ΩzU
vi in Qi.

Then uε ´ u P W
1,p
0 pU ;Rmq. Taking (I2) into account, from (3.5) we see that

Fpuε, Uq ď
ÿ

iPI

mupQiq `
ε

2
,

hence Fpuε, Uq ď mε
upUq ` ε by using (3.4) , and consequently

lim
ε!0

Fpuε, Uq ď m˚
upUq. (3.6)

On the other hand, we have

}uε ´ u}
p
Lp “

ż

U

|uεt ´ tu|
pdx “

ÿ

iPI

ż

Qi

|vi ´ u|
pdx.

As diampQiq Ps0, εr for all i P I , by using Poincaré inequality we see that
ÿ

iPI

ż

Qi

|vi ´ u|
pdx ď εpC

ÿ

iPI

ż

Qi

|∇vi ´∇u|pdx,

where C ą 0 is independent of ε, t and i. Hence

ÿ

iPI

ż

Qi

|vi ´ u|
pdx ď 2pεpC

˜

ÿ

iPI

ż

Qi

|∇vi|pdx`
ż

U

|∇u|pdx

¸

,

and consequently

}uε ´ u}
p
Lp ď 2pεpC

˜

ÿ

iPI

ż

Qi

|∇vi|pdx`
ż

U

|∇u|pdx

¸

. (3.7)
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Taking (I5), (I0), (3.5) and (3.4) into account, from (3.7) we deduce that

}uε ´ u}
p
Lp ď 2pεpC

ˆ

1

αc
pmε

upUq ` εq `

ż

A

|∇u|pdx
˙

,

which gives
lim
ε!0

}uε ´ u}
p
Lp “ 0 (3.8)

because limε!0 mε
upUq “ m˚

upUq ă 8, and (3.3) follows from (3.6) because Fpu, Uq ď
limε!0 Fpwε, Uq by (I4). �

Step 3: di�erentiation with respect to LNLNLN . This step consists of applying Theorem 2.2 with
S “ mu where u P dompGp¨, Aqq. More precisely, Step 3 consists of proving the following
lemma.

Lemma 3.3. If (I0) –(I2) and (I4) –(I6) then for every u P dompGp¨, Aqq and every U P OpAq,

m˚
upUq “

ż

U

lim
ρ!0

mupQρpxqq

ρN
dx. (3.9)

As a direct consequence we have

Fpu, Uq “

ż

U

lim
ρ!0

mupQρpxqq

ρN
dx (3.10)

for all u P dompGp¨, Aqq and all U P OpAq.

Proof of Lemma 3.3. Fix u P dompGp¨, Aqq. The integral representation of Fpu, ¨q in (3.10)
follows from (3.9) by using Lemma 3.2 and the de�nition of mu in (3.1) . So, we only need to
establish (3.9) . For this, it is su�cient to prove that mu is subadditive and there exists a �nite
Borel measure ν on OpAq which is absolutely continuous with respect to LN such that

mupUq ď νpUq (3.11)

for all U P OpAq, and then to apply Theorem 2.2. From the de�nition of mu, it is easy to see
that for every U, V,W P OpAq with V,W Ă U , V XW “ H and |UzV YW | “ 0,

mupUq ď mupV q `mupW q,

which shows the subadditivity of mu. On the other hand, by (I0) we have

mupUq ď Fpu, Uq

ď β p|U | `Gpu, Uqq

“ β|U | ` β

ż

U

Gpx,∇upxqqdx.

Thus (3.11) is satis�ed with the Borel measure ν :“ βp1`Gp¨,∇up¨qqLN which is �nite since
u P dompGp¨, Aqq. �

Step 4: formula for the integrand. According to (3.10) , the proof of Theorem 1.2 will be
completed (see Substep 5-2 and also Step 6) if we prove that for every u P dompGp¨, Aqq and
LN-a.e. x P A, we have:
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lim
ρ!0

mupQρpxqq

ρN
ě lim

t!1´
lim
ρ!0

mtuxpQρpxqq

ρN
; (3.12)

lim
ρ!0

mupQρpxqq

ρN
ď lim

t!1´
lim
ρ!0

mtuxpQρpxqq

ρN
, (3.13)

where uxpyq :“ upxq `∇upxqpy ´ xq.

Substep 4-1: proof of (3.12) and (3.13). We only give the proof of (3.12) . As the proof of
(3.13) uses the same method, the details are left to the reader. Fix any ε ą 0. Since, by (I9),
limt!1´ ∆a

F ptq ď 0, there exists t0 Ps0, 1r such that

∆a
F ptq ď ε (3.14)

for all t P rt0, 1r. Fix u P dompGp¨, Aqq. Fix any τ Ps0, 1r, any ρ Ps0, εr and any t P rt0, 1r. By
de�nition of mupQτρpxqq there exists w P W 1,ppΩ;Rmq such that w ´ u P W 1,p

0 pQτρpxq;R
mq

and
Fpw,Qτρpxqq ď mupQτρpxqq ` εpτρq

N . (3.15)

Let ϕ P C8pΩq be a cut-o� function for the pair pΩzQρpxq, Qτρpxqq, i.e. ϕpxq P r0, 1s for all
x P Ω, ϕpxq “ 0 for all x P ΩzQρpxq and ϕpxq “ 1 for all Qτρpxq, such that

}∇ϕ}L8 ď
c

ρp1´ τq
(3.16)

for some c ą 0 (which does not depend on ρ and τ ). De�ne v P W 1,ppQρpxq;R
mq by

v :“ ϕtu` p1´ ϕqtux. (3.17)

Then v ´ tux P W
1,p
0 pQρpxq;R

mq and we have

∇v “
"

∇ptuq in Qτρpxq
p1´ tq t

1´t
∇ϕb pu´ uxq ` t

`

ϕ∇u` p1´ ϕq∇upxq
˘

in QρpxqzQτρpxq.
(3.18)

As tw´tu P W 1,p
0 pQτρpxq;R

mq we have v`ptw´tuq´tux P W
1,p
0 pQρpxq;R

mq. Taking Lemma
3.1 into account we see that

mtuxpQρpxqq

pτρqN
ď

Fpv ` tw ´ tu,Qρpxqq

pτρqN

“
1

pτρqN

ż

Qρpxq

λv`tw´tupyqdy

“
1

pτρqN

˜

ż

Qτρpxq

λv`tw´tupyqdy `

ż

QρpxqzQτρpxq

λv`tw´tupyqdy

¸

“
1

pτρqN

ż

Qτρpxq

λv`tw´tupyqdy `
Fpv ` tw ´ tu,QρpxqzQτρpxqq

pτρqN

“
Fpv ` tw ´ tu,Qτρpxqq

pτρqN
`

Fpv ` tw ´ tu,QρpxqzQτρpxqq

pτρqN
.
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But, by (3.17) and (I2), we have Fpv ` tw ´ tu,Qτρpxqq “ Fptw,Qτρpxqq and Fpv ` tw ´
tu,QρpxqzQτρpxqq “ Fpv,QρpxqzQτρpxqq because tw ´ tu “ 0 in QρpxqzQτρpxq, and so, by
using (I1),

mtuxpQρpxqq

pτρqN
ď

Fptw,Qτρpxqq

pτρqN
`

Fpv,QρpxqzQτρpxqq

pτρqN
.

Consequently, since Fptw,Qτρpxqq ď p1`∆a
FptqqFpw,Qτρpxqq`∆a

Fptq
ş

Qτρpxq
apyqdy, we get

mtuxpQρpxqq

pτρqN
ď p1`∆a

F ptqq
Fpw,Qτρpxqq

pτρqN
`∆a

F ptq´

ż

Qτρpxq

apyqdy

`
Fpv,QρpxqzQτρpxqq

pτρqN
.

From (3.14) , (3.15) , (3.18) , (I0) and (I6) we deduce that

mtuxpQρpxqq

ρN
ď

mtuxpQρpxqq

pτρqN
ď p1` εq

ˆ

mupQτρpxqq

pτρqN
` ε

˙

` ε´

ż

Qτρpxq

apyqdy

`
C

pτρqN

ż

QρpxqzQτρpxq

G

ˆ

y,
t

1´ t
∇ϕb pu´ uxq

˙

dy

`
C

pτρqN

ż

QρpxqzQτρpxq

“

Gpy,∇uq `Gpy,∇upxqq
‰

dy

`C

ˆ

1

τN
´ 1

˙

with C :“ β ` βγ ` βγ2. On the other hand, by (3.16) we have
ˇ

ˇ

ˇ

ˇ

t

1´ t
∇ϕpyq b pupyq ´ uxpyqq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

t

1´ t

ˇ

ˇ

ˇ

ˇ

}∇ϕ}L8}u´ ux}L8pQρpxq;Rmq

ď
tc

p1´ tqp1´ τq

1

ρ
}u´ ux}L8pQρpxq;Rmq

for LN-a.a. y P QρpxqzQτρpxq. But limρ!0
1
ρ
}u ´ ux}L8pQρpxq;Rmq “ 0 because p ą N , hence

there exists ρ0 ą 0 (which depends on t and τ ) such that
ˇ

ˇ

ˇ

ˇ

t

1´ t
∇ϕpyq b pupyq ´ uxpyqq

ˇ

ˇ

ˇ

ˇ

ď r

for LN-a.a. y P QρpxqzQτρpxq and all ρ Ps0, ρ0r with r ą 0 given by (I7). Consequently
ż

QρpxqzQτρpxq

G

ˆ

y,
t

1´ t
∇ϕb pu´ uxq

˙

dy ď

ż

QρpxqzQτρpxq

sup
|ξ|ďr

Gpy, ξqdy (3.19)

for all ρ Ps0, ρ0r. Moreover, it easy to see that:



INTEGRAL REPRESENTATION OF UNBOUNDED FUNCTIONALS ON SOBOLEV SPACES 19

ż

QρpxqzQτρpxq

sup
|ξ|ďr

Gpy, ξqdy ď ρN´

ż

Qρpxq

ˇ

ˇ

ˇ

ˇ

ˇ

sup
|ξ|ďr

Gpy, ξq ´ sup
|ξ|ďr

Gpx, ξq

ˇ

ˇ

ˇ

ˇ

ˇ

dy

`ρNp1´ τNq sup
|ξ|ďr

Gpx, ξq; (3.20)

ż

QρpxqzQτρpxq

Gpy,∇upyqqy ď ρN´

ż

Qρpxq

ˇ

ˇGpy,∇upyqq ´Gpx,∇upxqq
ˇ

ˇdy

`ρNp1´ τNqGpx,∇upxqq; (3.21)
ż

QρpxqzQτρpxq

Gpy,∇upxqqdy ď ρN´

ż

Qρpxq

ˇ

ˇGpy,∇upxqq ´Gpx,∇upxqq
ˇ

ˇdy

`ρNp1´ τNqGpx,∇upxqq. (3.22)

Combining (3.19) with (3.20) , (3.21) and (3.22) we deduce that

mtuxpQρpxqq

ρN
ď p1` εq

ˆ

mupQτρpxqq

pτρqN
` ε

˙

` ε´

ż

Qτρpxq

apyqdy

`
C

τN
´

ż

Qρpxq

ˇ

ˇ

ˇ

ˇ

ˇ

sup
|ξ|ďr

Gpy, ξq ´ sup
|ξ|ďr

Gpx, ξq

ˇ

ˇ

ˇ

ˇ

ˇ

dy

`
C

τN
´

ż

Qρpxq

ˇ

ˇGpy,∇upyqq ´Gpx,∇upxqq
ˇ

ˇdy

`
C

τN
´

ż

Qρpxq

ˇ

ˇGpy,∇upxqq ´Gpx,∇upxqq
ˇ

ˇdy

`C

ˆ

1

τN
´ 1

˙

˜

sup
|ξ|ďr

Gpx, ξq ` 2Gpx,∇upxqq ` 1

¸

. (3.23)

As sup|ξ|ďrGp¨, ξq P L
1pΩq by (I7), we have

lim
ρ!0

´

ż

Qρpxq

ˇ

ˇ

ˇ

ˇ

ˇ

sup
|ξ|ďr

Gpy, ξq ´ sup
|ξ|ďr

Gpx, ξq

ˇ

ˇ

ˇ

ˇ

ˇ

dy “ 0. (3.24)

In the same way, as u P dompGp¨, Aqq, i.e. Gp¨,∇up¨qq P L1pAq, we can assert that

lim
ρ!0

´

ż

Qρpxq

ˇ

ˇGpy,∇upyqq ´Gpx,∇upxqq
ˇ

ˇdy “ 0, (3.25)

and by (I8) we have

lim
ρ!0

´

ż

Qρpxq

ˇ

ˇGpy,∇upxqq ´Gpx,∇upxqq
ˇ

ˇdy “ 0. (3.26)

Moreover, as a P L1pΩ; s0,8sq it is clear that

lim
ρ!0

´

ż

Qτρpxq

apyqdy “ apxq. (3.27)
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Letting ρ! 0 in (3.23) and using (3.24) , (3.25) , (3.26) and (3.27) we see that

lim
ρ!0

mtuxpQρpxqq

ρN
ď p1` εq

ˆ

lim
ρ!0

mupQρpxqq

ρN
` ε

˙

` εapxq

`C

ˆ

1

τN
´ 1

˙

˜

sup
|ξ|ďr

Gpx, ξq ` 2Gpx,∇upxqq ` 1

¸

. (3.28)

Letting t! 1´ and τ ! 1´ in (3.28) we deduce that

lim
t!1´

lim
ρ!0

mtuxpQρpxqq

ρN
ď p1` εq

ˆ

lim
ρ!0

mupQρpxqq

ρN
` ε

˙

` εapxq

and (3.12) follows by letting ε! 0.

Substep 4-2: establishing the formula for the integrand. By (3.12) and (3.13) we have

lim
ρ!0

mupQρpxqq

ρN
“ lim

t!1´
lim
ρ!0

mtuxpQρpxqq

ρN
. (3.29)

On the other hand, it is easily seen that

lim
t!1´

lim
ρ!0

mtuxpQρpxqq

ρN
“ lim

t!1´
lim
ρ!0

inf

"

Fpv,Qρpxqq

ρN
: v ´ tux P W

1,p
0 pQρpxq;R

m
q

*

“ lim
t!1´

lim
ρ!0

inf

"

Fpv ` tux, Qρpxqq

ρN
: v P W 1,p

0 pQρpxq;R
m
q

*

.

But by (I3) we have

Fpv ` tux, Qρpxqq “ Fpv ` t∇upxq ` tupxq ´∇upxqx,Qρpxqq “ Fpv ` t∇upxq, Qρpxqq,

and so

lim
t!1´

lim
ρ!0

mtuxpQρpxqq

ρN
“ lim

t!1´
lim
ρ!0

inf

"

Fpv ` t∇upxq, Qρpxqq

ρN
: v P W 1,p

0 pQρpxq;R
m
q

*

“ lim
t!1´

lim
ρ!0

inf

"

Fpv,Qρpxqq

ρN
: v ´ lt∇upxq P W

1,p
0 pQρpxq;R

m
q

*

“ lim
t!1´

F px, t∇upxqq (3.30)

with F : ΩˆM! r0,8s de�ned by (1.1) . Combining (3.10) , (3.29) and (3.30) we conclude
that

Fpu, Uq “

ż

U

lim
t!1´

F px, t∇upxqqdx

for all u P dompGp¨, Aqq and all U P OpAq.

Step 5: end of the proof. From Steps 2, 3 and 4, we have proved that for every A P OpΩq and
every u P dompGp¨, Aqq, Fpu,Aq “

ş

A
limt!1´ F px, t∇upxqqdx. On the other hand, by (I0) we

see that for each A P OpΩq, if u P W 1,ppΩ;RmqzdompGp¨, Aqq then Fpu,Aq “ 8. �

4. Applications

In what follows, p ą 1 is a real number, Ω Ă RN is a bounded open set, OpΩq denotes the class
of all open subset of Ω andM is the space of mˆN matrices.
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4.1. ΓpLpq-convergence. Let G : Ω ˆM ! r0,8s be a Borel measurable function satisfying
(I5)–(I8) and the following two additional assumptions:

(C0) for every A P OpΩq, Gp¨, Aq is Lp-lower semicontinuous with G : W 1,ppΩ;Rmq ˆ
OpΩq! r0,8s de�ned by

Gpu,Aq :“

ż

A

Gpx,∇upxqqdx;

(C1) tG0,x Ă intpG0,xq for all x P Ω and all t Ps0, 1r with G0,x denoting the e�ective domain
of G0px, ¨q, where G0 : ΩˆM! r0,8s is de�ned by

G0px, ξq :“ lim
ρ!0

HρGpx, ξq (4.1)

with HρG : ΩˆM! r0,8s given by

HρGpx, ξq :“ inf

#

´

ż

Qρpxq

Gpy,∇upyqqdy : u´ lξ P W
1,p
0 pQρpxq;R

m
q

+

,

where Qρpxq :“ x ` ρY with Y :“s ´ 1
2
, 1

2
rN and lξ : RN ! Rm is the linear map

de�ned by lξpyq :“ ξy.

Remark 4.1.
(i) Under (I5), if G is convex and lower semicontinuous with respect to ξ, then (C0) can be

dropped.
(ii) Under (I6) it is easy to see that for every x P Ω, G0,x is convex, and so if 0 P intpG0,xq

then (C1) holds.
(iii) When G does not depend on x, i.e. Gpx, ξq “ Gpξq, G0 is the W 1,p-quasiconvex enve-

lope of G. Hence, G0 “ G if moreover (C0) holds since G is then W 1,p-quasiconvex.

For each ε ą 0, let Lε : Ω ˆM! r0,8s be a Borel measurable function. We assume that the
family tLεuεą0 satis�es the following three conditions:

(C2) there exist α, β ą 0 such that for every ε ą 0 and every px, ξq P ΩˆM,

αGpx, ξq ď Lεpx, ξq ď βp1`Gpx, ξqq;

(C3) tLεuεą0 is ru-usc with taεuεą0 Ă L1pΩ; s0,8sq and a0 P L
8pΩ; s0,8sq, i.e.

lim
t!1´

sup
εą0

δaεLεptq ď 0

with δaεLε : r0, 1s!s ´ 8,8s de�ned by

δaεLεptq :“ sup
xPΩ

sup
ξPLε,x

Lεpx, tξq ´ Lεpx, ξq

aεpxq ` Lεpx, ξq
,

where Lε,x denotes the e�ective domain of Lεpx, ¨q;
(C4) for every x P Ω and every ξ P G0,x,

lim
ρ!0

lim
ε!0

HρLεpx, ξq ě lim
ρ!0

lim
ε!0

HρLεpx, ξq
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with HρLε : ΩˆM! r0,8s given by

HρLεpx, ξq :“ inf

#

´

ż

Qρpxq

Lεpy,∇upyqqdy : u´ lξ P W
1,p
0 pQρpxq;R

m
q

+

. (4.2)

Remark 4.2. When tLεuεą0 “ L, (C3) means that L is ru-usc and (C4) can be dropped.

For each ε ą 0, let Iε : W 1,ppΩ;Rmq ˆOpΩq! r0,8s be de�ned by

Iεpu,Aq :“

ż

A

Lεpx,∇upxqqdx.

The following ΓpLpq-convergence theorem is a consequence of Theorem 1.2.

Theorem 4.3. Assume that p ą N and (C0)–(C4) and (I5)–(I8) hold. Then, for every A P OpΩq,

ΓpLpq- lim
ε!0

Iεpu,Aq“

$

’

&

’

%

ż

A

lim
t!1´

lim
ρ!0

lim
ε!0

HρLεpx, t∇upxqqdx if u P dompGp¨, Aqq

8 if u P W 1,ppΩ;RmqzdompGp¨, Aqq.

Proof of Theorem 4.3. The proof is divided into three steps.
Step 1: proving that ΓpLpq- limε!0 Iεpu, ¨qΓpLpq- limε!0 Iεpu, ¨qΓpLpq- limε!0 Iεpu, ¨q and ΓpLpq- limε!0 Iεpu, ¨qΓpLpq- limε!0 Iεpu, ¨qΓpLpq- limε!0 Iεpu, ¨q are restrictions toOpΩqOpΩqOpΩq
of Borel measures. For each u P W 1,ppΩ;Rmq, let S´u ,S

`
u : OpΩq! r0,8s be given by:

S´u pAq :“ ΓpLpq- lim
ε!0

Iεpu,Aq;

S`u pAq :“ ΓpLpq- lim
ε!0

Iεpu,Aq.

From (C0) and (C2) we see that:

α

ż

A

Gpx,∇upxqqdx ď S´u pAq ď β

ˆ

|A| `

ż

A

Gpx,∇upxqqdx
˙

; (4.3)

α

ż

A

Gpx,∇upxqqdx ď S`u pAq ď β

ˆ

|A| `

ż

A

Gpx,∇upxqqdx
˙

(4.4)

for all u P W 1,ppΩ;Rmq and all A P OpΩq. Step 1 consists of proving the following lemma.

Lemma 4.4. Assume that p ą N and (C0) , (C2)–(C3) and (I5)–(I6) hold. Then, for every u P
W 1,ppΩ;Rmq, S´u and S`u are restrictions to OpΩq of Borel measures.

Proof of Lemma 4.4. Fix u P W 1,ppΩ;Rmq. The proof consists of applying Lemma 2.9 with
S “ S´u (resp. S “ S`u ). By (4.3) and (4.4) we see that the condition (a6) of Lemma 2.9
is satis�ed with λ “ LN and ν “ Gp¨,∇up¨qqLN . On the other hand, it is easily seen that
the condition (a2) of Lemma 2.9 is veri�ed. Hence, the proof is completed if we prove the
condition (a1) of Lemma 2.9, i.e.

S´u pAYBq ď S´u pAq `S´u pBq for all A,B P OpΩq; (4.5)
S`u pAYBq ď S`u pAq `S`u pBq for all A,B P OpΩq. (4.6)

Substep 1-1: an auxiliary result for proving Lemma 4.4. To show (4.5) and (4.6) we need
the following lemma.
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Lemma 4.5. Assume that p ą N and (C0) , (C2)–(C3) and (I5)–(I6) hold. If U, V, Z, T P OpΩq are
such that Z Ă U and T Ă V , then:

S´u pZ Y T q ď S´u pUq `S´u pV q; (4.7)
S`u pZ Y T q ď S`u pUq `S`u pV q. (4.8)

Proof of Lemma 4.5. As the proofs of (4.7) and (4.8) are the same, we only give the proof of
(4.7) . Let tuεuεą0 and tvεuεą0 be two sequences in W 1,ppΩ;Rmq such that:

uε
Lp
! u; (4.9)

vε
Lp
! u; (4.10)

lim
ε!0

ż

U

Lεpx,∇uεpxqqdx “ S´u pUq ă 8; (4.11)

lim
ε!0

ż

V

Lεpx,∇vεpxqqdx “ S´u pV q ă 8. (4.12)

By (C2) and (I5) we have supεą0 }∇uε}LppUq ă 8 and supεą0 }∇vε}LppV q ă 8. Taking (4.9)
and (4.10) into account, as p ą N , up to a subsequence, we have:

uε
L8pUq
−! u; (4.13)

vε
L8pV q
−! u. (4.14)

Fix δ Ps0, distpZ, BUqr with BU :“ UzU , �x any q ě 1 and consider W´
i ,W

`
i Ă Ω given by:

W´
i :“

!

x P Ω : distpx, Zq ď δ
3
`
pi´1qδ

3q

)

;

W`
i :“

!

x P Ω : δ
3
` iδ

3q
ď distpx, Zq

)

,

where i P t1, ¨ ¨ ¨ , qu. For every i P t1, ¨ ¨ ¨ , qu there exists a cut-o� function ϕi P C8pΩq for
the pair pW`

i ,W
´
i q, i.e. ϕpxq P r0, 1s for all x P Ω, ϕpxq “ 0 for all x P W`

i and ϕpxq “ 1 for
all x P W´

i . Fix any ε ą 0 and de�ne wiε P W
1,ppΩ;Rmq by

wiε :“ ϕiuε ` p1´ ϕiqvε. (4.15)

Fix any t Ps0, 1r. Setting Wi :“ ΩzpW´
i YW

`
i q we have

∇ptwiεq “ t∇wiε “

$

&

%

t∇uε in W´
i

p1´ tq t
1´t

∇ϕi b puε ´ vεq ` t
`

ϕi∇uε ` p1´ ϕiq∇vε
˘

in Wi

t∇vt in W`
i .

Noticing that Z Y T “ ppZ Y T q XW´
i q Y pW XWiq Y pT XW`

i q with pZ Y T q XW´
i Ă U ,

T X W`
i Ă V and W :“ T X tx P U : δ

3
ă distpx, Zq ă 2δ

3
u we deduce that for every

i P t1, ¨ ¨ ¨ , qu,
ż

ZYT

Lεpx, t∇wiεqdx ď

ż

U

Lεpx, t∇uεqdx`
ż

V

Lεpx, t∇vεqdx

`

ż

WXWi

Lεpx, t∇wiεqdx. (4.16)
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Fix any i P t1, ¨ ¨ ¨ , qu. From (C2) and (I6) we see that
ż

WXWi

Lεpx, t∇wiεqdx ď β|W XWi| ` β

ż

WXWi

Gpx, t∇wiεqdx

ď βp1` γq|W XWi|

`βγ

ż

WXWi

Gpx, ϕi∇uε ` p1´ ϕiq∇vεqdx

`βγ

ż

WXWi

G

ˆ

x,
t

1´ t
∇ϕi b puε ´ vεq

˙

dx,

and so, by using again (C2) and (I6),
ż

WXWi

Lεpx, t∇wiεqdx ď βp1` γ ` γ2
q|W XWi|

`
βγ2

α

ˆ
ż

WXWi

Lεpx,∇uεqdx`
ż

WXWi

Lεpx,∇vεqdx
˙

`βγ

ż

WXWi

G

ˆ

x,
t

1´ t
∇ϕi b puε ´ vεq

˙

dx. (4.17)

On the other hand, we have
ˇ

ˇ

ˇ

ˇ

t

1´ t
∇ϕipxq b puεpxq ´ vεpxqq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

t

1´ t

ˇ

ˇ

ˇ

ˇ

}∇ϕi}L8}uε ´ vε}L8pUXV q

for LN-a.a. x P W XWi Ă U X V . But limε!0 }uε ´ vε}L8pUXV q “ 0 by (4.13) and (4.14) ,
hence for each t Ps0, 1r and each i P t1, ¨ ¨ ¨ , qu there exists εt,i ą 0 such that

ˇ

ˇ

ˇ

ˇ

t

1´ t
∇ϕipxq b puεpxq ´ vεpxqq

ˇ

ˇ

ˇ

ˇ

ď r

for LN-a.a. x P W XWi and all ε Ps0, εt,is with r ą 0 given by (I7). Hence
ż

WXWi

G

ˆ

x,
t

1´ t
∇ϕi b puε ´ vεq

˙

dx ď

ż

WXWi

sup
|ξ|ďr

Gpx, ξqdx (4.18)

for all ε Ps0, εt,qs with εt,q :“ mintεt,i : i P t1, ¨ ¨ ¨ , quu. Moreover, we have:
ż

U

Lεpx, t∇uεqdx ď
ˆ

1` sup
ε1ą0

δ
aε1
Lε1
ptq

˙
ż

U

Lεpx,∇uεqdx` sup
ε1ą0

δ
aε1
Lε1
ptq

ż

U

aεpxqdx; (4.19)
ż

V

Lεpx, t∇vεqdx ď
ˆ

1` sup
ε1ą0

δ
aε1
Lε1
ptq

˙
ż

V

Lεpx,∇vεqdx` sup
ε1ą0

δ
aε1
Lε1
ptq

ż

V

aεpxqdx, (4.20)

where δaε1Lε1
: r0, 1s !s ´ 8,8s is de�ned in (C4). Taking (4.18) into account and substituting

(4.17) , (4.19) and (4.20) into (4.16) and then averaging these inequalities, it follows that for
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every q ě 1, every t Ps0, 1r and every ε Ps0, εt,qs, there exists iε,t,q P t1, ¨ ¨ ¨ , qu such that
ż

ZYT

Lεpx,∇ptwiε,t,qε qqdx ď

ˆ

1` sup
ε1ą0

δ
aε1
Lε1
ptq

˙
ż

U

Lεpx,∇uεqdx` sup
ε1ą0

δ
aε1
Lε1
ptq

ż

U

aεpxqdx

`

ˆ

1` sup
ε1ą0

δ
aε1
Lε1
ptq

˙
ż

V

Lεpx,∇vεqdx` sup
ε1ą0

δ
aε1
Lε1
ptq

ż

V

aεpxqdx

`
C

q

˜

ż

Ω

sup
|ξ|ďr

Gpx, ξqdx`

ż

U

Lεpx,∇uεqdx`
ż

V

Lεpx,∇vεqdx

¸

with C “ max
 

βp1` γ ` γ2q ` 1, βγ
2

α

(

, where
ş

Ω
sup|ξ|ďrGpx, ξqdx ă 8 by (I7). Thus, letting

ε! 0, q ! 8 and t! 1´ and using (C4), (4.11) and (4.12) , we get

lim
t!1´

lim
q!8

lim
ε!0

ż

ZYT

Lεpx,∇ptwiε,t,qε qqdx ď S´u pUq `S´u pV q. (4.21)

On the other hand, taking (4.15) into account and using (4.9) and (4.10) we see that

lim
t!1´

lim
q!8

lim
ε!0

}twiε,t,qε ´ u}Lp “ 0.

By diagonalization, there exist increasing mappings ε 7! tε and ε 7! qε with tε ! 1´ and
qε ! 8 such that:

lim
ε!0

ż

ZYT

Lεpx,∇ŵεqdx ď lim
t!1´

lim
q!8

lim
ε!0

ż

ZYT

Lεpx,∇ptwiε,t,qε qqdx;

lim
ε!0

}ŵε ´ u}Lp “ 0,

where ŵε :“ tεw
iε,tε,qε
ε . Hence

S´u pZ Y T q ď lim
t!1´

lim
q!8

lim
ε!0

ż

ZYT

Lεpx,∇ptwiε,t,qε qqdx,

and (4.7) follows from (4.21) . �
Substep 1-2: end of the proof of Lemma 4.4. We now prove (4.5) . Fix A,B P OpΩq such
that S´u pAq ă 8 and S´u pBq ă 8. Then, by (4.3) ,

ş

AYB
Gpx,∇upxqqdx ă 8. Fix any η ą 0

and consider C0, D0 P OpΩq such that C0 Ă A, D0 Ă B and

β|E| ` β

ż

E

Gpx,∇upxqqdx ă η

with E :“ AYBzC0 YD0. Then S´u pEq ď η by (4.3) . Let Ĉ, D̂ P OpΩq be such that C0 Ă C,

C Ă Ĉ, Ĉ Ă A, D0 Ă D, D Ă D̂ and D̂ Ă B. Applying Lemma 4.5 with U “ Ĉ Y D̂,
V “ T “ E and Z “ C YD (resp. U “ A, V “ B, Z “ Ĉ and T “ D̂) we obtain

S´u pAYBq ď S´u pĈ Y D̂q ` η
`

resp. S´u pĈ Y D̂q ď S´u pAq `S´u pBq
˘

,

i.e. S´u pAYBq ď S´u pAq `S´u pBq ` η, and (4.5) follows by letting η ! 0. �

Step 2: applying Theorem 1.2. For each ε ą 0 and each u P W 1,ppΩ;Rmq, Iεpu, ¨q is
an increasing set function. Moreover, from Lemma 4.4 we can assert that for every u P

W 1,ppΩ;Rmq, ΓpLpq- limε!0 Iεpu, ¨q and ΓpLpq- limε!0 Iεpu, ¨q are inner regular. Hence, by
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Theorem 2.4, every sequence tIεuεą0 has a ΓpLpq-convergent subsequence. So, without loss
of generality we can assume that tIεuεą0 ΓpLpq-converges. Taking Proposition 2.6 into ac-
count, to establish Theorem 4.3 it su�ces to prove that

ΓpLpq- lim
ε!0

Iεpu,Aq “ I0pu,Aq (4.22)

for all u P W 1,ppΩ;Rmq and all A P OpΩq with I0 : W 1,ppΩ;Rmq ˆOpΩq! r0,8s given by

I0pu,Aq :“

$

’

&

’

%

ż

A

lim
t!1´

lim
ρ!0

lim
ε!0

HρLεpx, t∇upxqqdx if u P dompGp¨, Aqq

8 if u P W 1,ppΩ;RmqzdompGp¨, Aqq.

For this, we are going to apply Theorem 1.2 with F : W 1,ppΩ;Rmq ˆ OpΩq ! r0,8s de�ned
by

Fpu,Aq :“ ΓpLpq- lim
ε!0

Iεpu,Aq. (4.23)

First of all, it is clear that (I2)–(I4) hold and (I0) follows from (C0) and (C2). On the other
hand, (I1) follows from Lemma 4.4, and by (C3), Propositions 2.23 and 2.17 we see that (I9)
is veri�ed. So, since (I5)–(I8) are assumed to be satis�ed, from Theorem 1.2 we deduce that
for every A P OpΩq,

Fpu,Aq “

$

’

&

’

%

ż

A

pF px,∇upxqqdx if u P dompGp¨, Aqq

8 if u P W 1,ppΩ;RmqzdompGp¨, Aqq

where dompGp¨, Aqq denotes the e�ective domain ofGp¨, Aq and pF : ΩˆM! r0,8s is de�ned
by

pF px, ξq “ lim
t!1´

F px, tξq

with F given by (1.1) .

Step 3: re�ning the formula for the limit integrand. Taking (4.23) into account we have

pF px, ξq“ lim
t!1´

F px, tξq

“ lim
t!1´

lim
ρ!0

inf

#

ΓpLpq- lim
ε!0

Iεpu,Qρpxqq

ρN
: u´ ltξ P W

1,p
0 pQρpxq;R

m
q

+

. (4.24)

In what follows, we are going to re�ne the formula for pF in (4.24) .

Substep 3-1: an intermediate lemma. Let rI : W 1,ppΩ;Rmq ˆOpΩq! r0,8s be de�ned by

rIpu,Aq :“ inf

"

lim
ε!0

Iεpuε, Aq : W 1,p
0 pA;Rmq Q uε ´ u

Lp
! 0

*

.

Substep 3-1 consists of proving the following lemma.
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Lemma 4.6. Assume that p ą N and (C0) , (C2)–(C3) and (I5)–(I6) hold. Then, for every u P
W 1,ppΩ;Rmq, every A P OpΩq and every t Ps0, 1r,

rIptu, Aq ď

ˆ

1` sup
εą0

δaεLεptq

˙

ΓpLpq- lim
ε!0

Iεpu,Aq ` sup
εą0

δaεLεptq

ż

A

a0pxqdx, (4.25)

where taεuεą0 Ă L1pΩ; s0,8sq, a0 P L
8pΩ; s0,8sq and δaεLε : r0, 1s!s ´ 8,8s are given in (C3) .

Proof of Lemma 4.6. Fix u P W 1,ppΩ;Rmq and A P OpΩq. Without loss of generality, we can
assume that ΓpLpq- limε!0 Iεpu,Aq ă 8, and so, by (C0) and (C2),

Gpu,Aq ă 8. (4.26)

By de�nition of ΓpLpq- limε!0 Iεpu,Aq there exists tuεuε Ă W 1,ppΩ;Rmq such that:

uε
Lp
! u; (4.27)

lim
ε!0

Iεpuε, Aq “ ΓpLpq- lim
ε!0

Iεpu,Aq. (4.28)

Since ΓpLpq- limε!0 Iεpu,Aq ă 8, by (C2) and (I5) we see that supεą0 }∇uε}LppAq ă 8. As

p ą N , up to a subsequence, we have

uε
L8pAq
−! u. (4.29)

Fix δ ą 0 and set Aδ :“ tx P A : distpx, BAq ą δu. Fix any ε ą 0 and any q ě 1 and consider

W´
i ,W

`
i Ă Ω given by

W´
i :“

!

x P Ω : distpx,Aδq ď
δ
3
`
pi´1qδ

3q

)

;

W`
i :“

!

x P Ω : δ
3
` iδ

3q
ď distpx,Aδq

)

,

where i P t1, ¨ ¨ ¨ , qu. (Note that W´
i Ă A.) For every i P t1, ¨ ¨ ¨ , qu there exists a cut-o�

function ϕi P C8pΩq for the pair pW`
i ,W

´
i q, i.e. ϕpxq P r0, 1s for all x P Ω, ϕpxq “ 0 for all

x P W`
i and ϕpxq “ 1 for all x P W´

i . De�ne wiε : Ω! Rm by

wiε :“ ϕiuε ` p1´ ϕiqu. (4.30)

Then wiε ´ u P W
1,p
0 pA;Rmq. Fix any t Ps0, 1r. Setting Wi :“ ΩzpW´

i YW
`
i q Ă A we have

∇ptwiεq “ t∇wiε “

$

&

%

t∇uε in W´
i

p1´ tq t
1´t

∇ϕi b puε ´ uq ` t
`

ϕi∇uε ` p1´ ϕiq∇u
˘

in Wi

t∇u in W`
i .

Noticing that A “ W´
i YWi Y pAXW

`
i q we deduce that for every i P t1, ¨ ¨ ¨ , qu,

Iεptw
i
ε, Aq “

ż

A

Lεpx, t∇wiεqdx ď

ż

A

Lεpx, t∇uεqdx`
ż

AXW`
i

Lεpx, t∇uqdx

`

ż

Wi

Lεpx, t∇wiεqdx. (4.31)
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Fix any i P t1, ¨ ¨ ¨ , qu. From (C2) and (I6) we see that
ż

Wi

Lεpx, t∇wiεqdx ď β

ˆ

|Wi| `

ż

Wi

Gpx, t∇wiεqdx
˙

ď βp1` γq|Wi|

`βγ

ż

Wi

Gpx, ϕi∇uε ` p1´ ϕiq∇uqdx

`βγ

ż

Wi

G

ˆ

x,
t

1´ t
∇ϕi b puε ´ uq

˙

dx,

and we obtain, by using again (C2) and (I6) ,
ż

Wi

Lεpx, t∇wiεqdx ď βp1` γ ` γ2
q|Wi|

`
βγ2

α

ˆ
ż

Wi

Lεpx,∇uεpxqqdx`
ż

Wi

Lεpx,∇upxqqdx
˙

`βγ

ż

Wi

G

ˆ

x,
t

1´ t
∇ϕi b puε ´ uq

˙

dx. (4.32)

On the other hand, we have
ˇ

ˇ

ˇ

ˇ

t

1´ t
∇ϕipxq b puεpxq ´ upxqq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

t

1´ t

ˇ

ˇ

ˇ

ˇ

}∇ϕi}L8}uε ´ u}L8pAq

for LN-a.a. x P Wi Ă A. But limε!0 }uε´u}L8pAq “ 0 by (4.29) , hence for each i P t1, ¨ ¨ ¨ , qu
there exists εi ą 0 such that

ˇ

ˇ

ˇ

ˇ

t

1´ t
∇ϕipxq b puεpxq ´ upxqq

ˇ

ˇ

ˇ

ˇ

ď r

for LN-a.a. x P Wi and all ε Ps0, εis with r ą 0 given by (I7) . Consequently
ż

Wi

G

ˆ

x,
t

1´ t
∇ϕi b puε ´ uq

˙

dx ď

ż

Wi

sup
|ξ|ďr

Gpx, ξqdx (4.33)

for all ε Ps0, εqs with εq “ mintεi : i P t1, ¨ ¨ ¨ , quu. Moreover, we have:

ż

A

Lεpx, t∇uεqdx ď
ˆ

1` sup
ε1ą0

δ
aε1
Lε1
ptq

˙
ż

A

Lεpx,∇uεqdx` sup
ε1ą0

δ
aε1
Lε1
ptq

ż

A

aεpxqdx; (4.34)
ż

AXW`
i

Lεpx, t∇uqdx ď
ˆ

1` sup
ε1ą0

δ
aε1
Lε1
ptq

˙
ż

AXW`
i

Lεpx,∇uqdx` sup
ε1ą0

δ
aε1
Lε1
ptq

ż

A

aεpxqdx. (4.35)

Taking (C3) and (4.33) into account and substituting (4.32) , (4.34) and (4.35) into (4.31) and

then averaging these inequalities, it follows that for every q ě 1 and every ε Ps0, εqs, there exists
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iε,q P t1, ¨ ¨ ¨ , qu such that

Iεptw
iε,q
ε , Aq ď

ˆ

1` sup
ε1ą0

δ
aε1
Lε1
ptq

˙

Iεpuε, Aq ` sup
ε1ą0

δ
aε1
Lε1
ptq

ż

A

aεpxqdx

`
1

q

„ˆ

1` sup
ε1ą0

δ
aε1
Lε1
ptq

˙

Iεpu,Aq ` sup
ε1ą0

δ
aε1
Lε1
ptq

ż

A

aεpxqdx



`
C

q

˜

ż

A

sup
|ξ|ďr

Gpx, ξqdx`Iεpuε, Aq `Iεpu,Aq

¸

with C “ max
 

βp1 ` γ ` γ2q ` 1, βγ
2

α

(

where
ş

A
sup|ξ|ďrGpx, ξqdx ă 8 by (I7). Moreover,

by (C2) we have Iεpu,Aq ď βp|A| `Gpu,Aqq, and so limε!0 Iεpu,Aq ă 8 by (4.26) . Thus,
letting ε! 0 and q ! 8 and using (4.28) , we get

lim
q!8

lim
ε!0

Iεptw
iε,q
ε , Aq ď

ˆ

1` sup
εą0

δaεLεptq

˙

ΓpLpq- lim
ε!0

Iεpu,Aq`sup
εą0

δaεLεptq

ż

A

a0pxqdx. (4.36)

On the other hand, taking (4.30) into account and using (4.27) we see that

lim
q!8

lim
ε!0

}twiε,qε ´ tu}Lp “ 0.

By diagonalization, there exists an increasing mapping ε 7! qε with qε ! 8 such that:

lim
ε!0

Iεpŵε, Aq ď lim
q!8

lim
ε!0

Iεptw
iε,q
ε , Aq;

lim
ε
}ŵε ´ tu}Lp “ 0,

where ŵε :“ tw
iε,qε
ε is such that ŵε ´ tu P W

1,p
0 pA;Rmq. Hence

rIptu, Aq ď lim
q!8

lim
ε!0

Iptwiε,qε , Aq,

and (4.25) follows from (4.36) . �

Substep 3-2: a �rst estimate for FFF . Substep 3-2 consists of proving the following lemma.

Lemma 4.7. Assume that p ą N . If (C0) , (C2)–(C3) and (I5)–(I6) hold then for every px, ξq P
ΩˆM,

lim
t!1´

lim
ρ!0

inf

#

rIptu,Qρpxqq

ρN
: u´ lξ P W

1,p
0 pQρpxq;R

m
q

+

ď F px, ξq.

Proof of Lemma 4.7. Fix px, ξq P Ω ˆM. Fix any η ą 0. By (C3), limt!1´ supεą0 δ
aε
Lε
ptq ď 0,

and so there exists t0 Ps0, 1r such that for every t P rt0, 1r,

sup
εą0

δaεLεptq ď η. (4.37)

Fix any t P rt0, 1r, any ρ ą 0 and any u P W 1,ppΩ;Rmq such that u ´ lξ P W
1,p
0 pQρpxq;R

mq.
Taking (4.37) into account, from Lemma 4.6 we see that

rIptu,Qρpxqq ď p1` ηqΓpL
p
q- lim

ε!0
Iεpu,Qρpxqq ` η

ż

Qρpxq

a0pyqdy.
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Hence, since a0 P L
8pΩ; s0,8sq,

rIptu,Qρpxqq

ρN
ď p1` ηq

ΓpLpq- lim
ε!0

Iεpu,Qρpxqq

ρN
` η´

ż

Qρpxq

a0pyqdy

ď p1` ηq
ΓpLpq- lim

ε!0
Iεpu,Qρpxqq

ρN
` η}a0}L8

for all t P rt0, 1r, all ρ ą 0 and all u P W 1,ppΩ;Rmq such that u´ lξ P W
1,p
0 pQρpxq;R

mq. Passing
to the in�mum and letting ρ! 0 and t! 1´ we deduce that

lim
t!1´

lim
ρ!0

inf

#

rIptu,Qρpxqq

ρN
: u´ lξ P W

1,p
0 pQρpxq;R

m
q

+

ď p1` ηqF px, ξq ` η}a0}L8 ,

and the result follows by letting η ! 0. �

Substep 3-3: further estimates for FFF . Substep 3-3 consists of proving the following lemma.

Lemma 4.8. Assume that p ą N . If (C0) , (C2)–(C3) and (I5)–(I6) hold then for every px, ξq P
ΩˆM,

lim
t!1´

lim
ρ!0

lim
ε!0

HρLεpx, tξq ď F px, ξq ď lim
ρ!0

lim
ε!0

HρLεpx, ξq,

where HρLε : ΩˆM! r0,8s is de�ned by (4.2) .

Proof of Lemma 4.8. Fix px, ξq P ΩˆM.

First of all, since ΓpLpq- limε!0 Iεpu,Aq ď limε!0 Iεpu,Aq for all u P W 1,ppΩ;Rmq and all
A P OpΩq, we have

ΓpLpq- lim
ε!0

Iεpu,Qρpxqq

ρN
ď lim

ε!0

Iεpu,Qρpxqq

ρN

for all ρ ą 0 and all u P W 1,ppΩ;Rmq such that u ´ lξ P W 1,p
0 pQρpxq;R

mq. Passing to the
in�mum and letting ρ! 0, we conclude that

lim
ρ!0

inf

#

ΓpLpq- lim
ε!0

Iεpu,Qρpxqq

ρN
: u´ lξ P W

1,p
0 pQρpxq;R

m
q

+

ď lim
ρ!0

lim
ε!0

HρLεpx, ξq,

i.e. F px, ξq ď limρ!0 limε!0 H
ρLεpx, ξq.

Fix any t Ps0, 1r, any ρ ą 0 and any u P W 1,ppΩ;Rmq such that u ´ lξ P W
1,p
0 pQρpxq;R

mq. By
de�nition of I0ptu,Qρpxqq there exists tuεuε Ă W 1,ppΩ;Rmq such that:

uε ´ tu P W
1,p
0 pQρpxq;R

m
q for all ε ą 0; (4.38)

lim
ε!0

Iεpuε, Qρpxqq “ I0ptu,Qρpxqq. (4.39)

As u´ lξ P W
1,p
0 pQρpxq;R

mq we have tu´ ltξ P W
1,p
0 pQρpxq;R

mq, and so, by (4.38) ,

uε ´ ltξ P W
1,p
0 pQρpxq;R

m
q for all ε ą 0. (4.40)
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From (4.39) and (4.38) we deduce that

lim
ε!0

inf

"

Iεpv,Qρpxqq

ρN
: v ´ ltξ P W

1,p
0 pQρpxq;R

m
q

*

ď
rIptu,Qρpxqq

ρN

for all ρ ą 0 and all u P W 1,ppΩ;Rmq such that u ´ lξ P W 1,p
0 pQρpxq;R

mq. Passing to the
in�mum and letting ρ! 0 we deduce that

lim
ρ!0

lim
ε!0

HρLεpx, tξq ď lim
ρ!0

inf

#

rIptu,Qρpxqq

ρN
: u´ lξ P W

1,p
0 pQρpxq;R

m
q

+

(4.41)

for all t Ps0, 1r. But, by (C2) we have

dom

ˆ

lim
ρ!0

lim
ε!0

HρLεpx, ¨q

˙

“ dom

ˆ

lim
ρ!0

lim
ε!0

HρLεpx, ¨q

˙

“ dom

ˆ

lim
ρ!0

HρGpx, ¨q

˙

“: G0,x,

hence, by (C4),

lim
ρ!0

lim
ε!0

HρLεpx, ζq ď lim
ρ!0

lim
ε!0

HρLεpx, ζq for all ζ PM,

and so
lim
ρ!0

lim
ε!0

HρLεpx, tξq ď lim
ρ!0

lim
ε!0

HρLεpx, tξq for all t Ps0, 1r. (4.42)

Letting t! 1´, from (4.41) and (4.42) it follows that

lim
t!1´

lim
ρ!0

lim
ε!0

HρLεpx, tξq ď lim
t!1´

lim
ρ!0

inf

#

rIptu,Qρpxqq

ρN
: u´ lξ P W

1,p
0 pQρpxq;R

m
q

+

,

and consequently limt!1´ limρ!0 limε!0 H
ρLεpx, tξq ď F px, ξq by using Lemma 4.7. �

Substep 3-4: end of the proof. By (C3) and Lemma 2.21, L0 :“ limρ!0 limε!0 H
ρLε is ru-usc.

Moreover, from (C2) we see that

L0,x “ G0,x for all x P Ω,

where L0,x denotes the e�ective domain of L0px, ¨q. Hence, by (C1),

tL0,x Ă intpL0,xq for all x P Ω and all t Ps0, 1r,

and consequently, by using Theorem 2.13(b), for every px, ξq P ΩˆM,

pL0px, ξq :“ lim
τ!1´

lim
ρ!0

lim
ε!0

HρLεpx, τξq “ lim
τ!1´

lim
ρ!0

lim
ε!0

HρLεpx, τξq. (4.43)

Fix px, ξq P ΩˆM. From Lemma 4.8 we deduce that

lim
s!1´

lim
t!1´

lim
ρ!0

lim
ε!0

HρLεpx, tsξq ď lim
s!1´

F px, sξq ď lim
s!1´

lim
ρ!0

lim
ε!0

HρLεpx, sξq. (4.44)

By diagonalization, there exist increasing mappings t 7! st, with st ! 1´ as t! 1´, such that

lim
t!1´

lim
ρ!0

lim
ε!0

HρLεpx, tstξq ď lim
s!1´

lim
t!1´

lim
ρ!0

lim
ε!0

HρLεpx, tsξq.
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But, since tst ! 1´ as t! 1´ and by using (4.43) ,

lim
t!1´

lim
ρ!0

lim
ε!0

HρLεpx, tstξq ě lim
t!1´

lim
ρ!0

lim
ε!0

HρLεpx, tstξq

ě lim
τ!1´

lim
ρ!0

lim
ε!0

HρLεpx, τξq

“ lim
τ!1´

lim
ρ!0

lim
ε!0

HρLεpx, τξq,

hence

lim
τ!1´

lim
ρ!0

lim
ε!0

HρLεpx, τξq ď lim
s!1´

F px, sξq ď lim
s!1´

lim
ρ!0

lim
ε!0

HρLεpx, sξq. (4.45)

From (4.44) and (4.45) we conclude that limt!1´ F px, tξq “ limt!1´ limρ!0 limε!0 H
ρLεpx, tξq,

i.e.
pF px, ξq “ lim

t!1´
lim
ρ!0

lim
ε!0

HρLεpx, tξq.

We have thus established (4.22) , which �nishes the proof of Theorem 4.3. �

4.2. Relaxation. LetG : ΩˆM! r0,8s be a Borel measurable function satisfying (C0)–(C1)
and (I5)–(I8) and let L : ΩˆM! r0,8s be a Borel measurable such that:

(R0) there exist α, β ą 0 such that for every px, ξq P ΩˆM,

αGpx, ξq ď Lpx, ξq ď βp1`Gpx, ξqq;

(R1) L is ru-usc with a P L8pΩ; s0,8sq, i.e.

lim
t!1´

δaLptq ď 0

with δaL : r0, 1s!s ´ 8,8s de�ned by

δaLptq :“ sup
xPΩ

sup
ξPLx

Lpx, tξq ´ Lpx, ξq

apxq ` Lpx, ξq
,

where Lx denotes the e�ective domain of Lpx, ¨q.

Let I : W 1,ppΩ;Rmq ˆOpΩq! r0,8s be de�ned by

Ipu,Aq :“

ż

A

Lpx,∇upxqqdx

and let I : W 1,ppΩ;RmqˆOpΩq! r0,8s be the Lp-lower semicontinuous envelope of I, i.e.
for every u P W 1,ppΩ;Rmq and every A P OpΩq,

Ipu,Aq :“ ΓpLpq- lim
ε!0

Ipu,Aq “ inf

"

lim
ε!0

Ipuε, Aq : uε
Lp
! u

*

.

Applying Theorem 4.3 with tLεuεą0 “ L and taking Remark 4.2 into account, as a straight-
forward consequence, we obtain the following relaxation result.
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Corollary 4.9. Assume that p ą N and (R0)–(R1) , (C0)–(C1) and (I5)–(I8) hold. Then, for every
A P OpΩq,

Ipu,Aq “

$

’

&

’

%

ż

A

lim
t!1´

lim
ρ!0

HρLpx, t∇upxqqdx if u P dompGp¨, Aqq

8 if u P W 1,ppΩ;RmqzdompGp¨, Aqq.

4.3. Homogenization. Let G : M ! r0,8s be a Borel measurable function (which does not
depend on x) satisfying (C0), (I5)–(I6) and

(I71) 0 P intpGq where G denotes the e�ective domain of G.

Let L : RN ˆM! r0,8s be a Borel measurable function with the following properties:

(H0) for every ξ PM, Lp¨, ξq is 1-periodic, i.e. for every px, zq P RN ˆ ZN ,

Lpx` z, ξq “ Lpx, ξq;

(H1) there exist α, β ą 0 such that for every px, ξq P ΩˆM,

αGpξq ď L px, ξq ď βp1`Gpξqq;

(H2) L is ru-usc with a 1-periodic function a P L1
locpR

N ; s0,8sq, i.e.

lim
t!1´

δaLptq ď 0

with δaL : r0, 1s!s ´ 8,8s de�ned by

δaLptq :“ sup
xPRN

sup
ξPLx

Lpx, tξq ´ Lpx, ξq

apxq ` Lpx, ξq
,

where Lx denotes the e�ective domain of Lpx, ¨q.

For each ε ą 0, let Iε : W 1,ppΩ;Rmq ˆOpΩq! r0,8s be de�ned by

Iεpu,Aq :“

ż

A

L
´x

ε
,∇upxq

¯

dx.

As a consequence of Theorem 4.3, we obtain the following homogenization result (which is a
variant of [AHMZ15, Theorem 1.1]).

Corollary 4.10. Assume that p ą N and (H0)–(H2) , (C0) , (I5)–(I6) and (I71) hold. Then, for every
A P OpΩq,

Ipu,Aq “

$

’

&

’

%

ż

A

lim
t!1´

Lhompt∇upxqqdx if u P dompGp¨, Aqq

8 if u P W 1,ppΩ;RmqzdompGp¨, Aqq

with Lhom : M! r0,8s given by

Lhompξq :“ inf
kPN˚

inf

"

´

ż

s0,krN
Lpy,∇upyqqdy : u´ lξ P W

1,p
0 ps0, krN ;Rmq

*

.
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Proof of Corollary 4.10. It su�ces to apply Theorem 4.3 with tLεuεą0 “
 

Lp ¨
ε
, ¨q

(

εą0
and

Gpx, ξq “ Gpξq. First of all, taking Remark 1.3(iii) and Remarks 4.1(ii)-(iii) into account,
from (C0) , (I6) and (I71) we see (C1) and (I7)–(I8) are veri�ed. On the other hand, it is clear
that by (H1) we have (C2) and from (H2) and Lemma 2.24 we deduce that (C3) holds. So,
to apply Theorem 4.3, we only need to show that (C4) is satis�ed. For each ξ P M, let Sξ :
ObpR

Nq! r0,8s be de�ned by

SξpAq :“ inf

"
ż

A

Lpx,∇upxqqdx : u´ lξ P W
1,p
0 pA;Rmq

*

.

It is easily seen that Sξ is subadditive and, by (H0), Sξ is ZN-invariant. Moreover, from (H1)
we can assert that for every ξ P G and every A P ObpR

Nq,

SξpAq ď Cξ|A|

with Cξ Ps0,8r given by Cξ :“ βp1`Gpξqq. By Theorem 2.11 it follows that

lim
ε!0

Sξ
`

1
ε
Q
˘

ˇ

ˇ

1
ε
Q
ˇ

ˇ

“ Lhompξq for all ξ P G and all Q P CubpRNq,

where CubpRNq denotes the class of all open cubes in RN . Hence

lim
ε!0

HρLεpx, ξq “ lim
ε!0

Sξ
`

1
ε
Qρpxq

˘

ˇ

ˇ

1
ε
Qρpxq

ˇ

ˇ

“ Lhompξq for all x P Ω and all ξ P G

which shows that (C4) is veri�ed, and the proof is complete. �
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