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INTEGRAL REPRESENTATION OF UNBOUNDED VARIATIONAL
FUNCTIONALS ON SOBOLEV SPACES

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. In this paper we establish an unbounded version of the integral representation theo-
rem by Buttazzo and Dal Maso (see and also [BEFLMO2])). More precisely, we prove
an integral representation theorem (with a formula for the integrand) for functionals defined
on WP with p > N (NN being the dimension) that do not satisfy a standard p-growth con-
dition from above and can take infinite values. Applications to I'-convergence, relaxation and
homogenization are also developed.
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2 INTEGRAL REPRESENTATION OF UNBOUNDED FUNCTIONALS ON SOBOLEV SPACES

1. INTRODUCTION AND MAIN RESULT

Let m, N > 1 be two integer, let p > 1 be a real number, let Q@ = R" be a bounded open set,
let M be the space of m x N matrices and let O(2) be the class of all open subset of €. In
this paper we consider variational functional F  WEP(Q;R™) x 6(2) — [0, 0] having the
following growth property:

(Ip) there exists & : WP(Q; R™) x 6(92) — [0, 0] defined by

G(u,A) = J G(z, Vu(x))dz,

Q

with a Borel measurable function G : Q x IM — [0, o0], and there exist «, 5 > 0 such
that for every u € W'?(Q; R™) and every A € 6(1),

af(u, A) < F(u, A) < B(|A] + Z(u, A)).

In the bounded case, i.e. when G(z, ) = |£], Buttazzo and Dal Maso (see [BDM85, Theorem
1.1] and also [But89, §4.3, pp. 148], [BDI8| Chapter 9, pp. 77] and [DM98,, Chapter 20, pp.
215]) and Bouchitté, Fonseca, Leoni and Mascarenhas (see [BEFLMO02, Theorem 2]) proved

the following theorem.

Theorem 1.1 ([BDMS85, BELMO02]]). Under (Iy) with G(z, &) = |£|P, if F satisfies the follow-
ing four conditions:
(I;) forevery u € WH?(Q2; R™), the set function F (u, -) is the restriction to ©(2) of a Borel
measure,
(Iy) for every u,v € WP(; R™) and every A € O(Q), if u(x) = v(z) for Ly-a.a. x € A,
then F (u, A) = F (v, A);
(I3) foreveryu e WhP(Q:;R™), every A€ O(Q) and every z € R", F(u+2,A) = F(u, A);
(I) forevery A € 6(Q) the functional & (-, A) is LP-lower semicontinuous,

then, for every u € W'*(Q; R™) and every A € 6(Q),

F(u, A) = L F(z,Vu(zx))dx

with F': Q x M — [0, o0] defined by

FL Gl s e W@yt R (1)

,5[V and I : RY — R™ is the linear map defined by

=

F(z,¢) := minf{

p—0

where Q,(z) := x + pY with Y :=] —
le(y) = €y.

The object of the present paper is to deal with the problem of finding an integral representation
for # in the unbounded case, i.e. when G(z, &) is not necessarily equal to |£|P. In the scalar

case, i.e. when m = 1, integral representation problems for unbounded functional were studied
by Carbone and De Arcangelis in [CDA02|, Chapter 9]. Here we deal with the vectorial case.

Our main result is to establish the following unbounded version of Theorem 1.1

1By a variational functional we mean a function of functions and sets.
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Theorem 1.2. Assume that p > N and (19)—(14) hold. Assume further that the following five assump-
tions are satisfied:

(Is) G is p-coercive, i.e. there exists ¢ > 0 such that for every (x,£) € Q x M,
G(z,§) = cl¢];
(Ig) there exists v > 0 such that for every x: € Q, every t €]0, 1[ and every £, € IV,
Gz, 1§ + (1 —1)¢) < (1 + G(z,€) + G(x,());
(I;) there exists v > 0 such that
sup G(7 f) € LI(Q)a

[gl<r

(Is) for every A € O(2), every u € dom(Z (-, A)) and Ly-a.e. x € A,

lim |Gy, Vu(z)) — Gz, Vu(z)|dy = 0,
=00 Qpla)
where dom (& (-, A)) denotes the effective domain of € (-, A);
(Iy) F is radially uniformly upper semicontinuous (ru-usc), i.e. there exists a € L*(Q;]0, o0]) such
that
lim A%(¢) <0

t—1—

with A% : [0,1] —] — 00, 0] defined by

A (t) S S g(tua A) - 97(“’7 A)
=3 = up up 9
s Ae6(Q) uedom (% (,4)) § 4 a(x)dz + F (u, A)

where dom(F (-, A)) denotes the effective domain of F (-, A)ﬂ
Then, for every A € O(X2),

J Ple, Vu(@))dz  ifu e dom(Z(-, A))
Fu, A) = { I

0 if u e WH(Q; R™)\dom(Z (-, A)),

where F': Q0 x M — [0, 50] is defined by

F(z,&) = lim F(x, t€)

t—1—
with F given by (1.1).
Remark 1.3.
() If G(z,€) = Gi(z) + Go(€&) or G(z,€) = G1(2)Ga(€) and if G € L} (), then (Ig)
holds.

(i) (Is) implies that for every x € M, the effective domain of G(z, -) is convex.

2Note that under (Iy) we have dom(Z (-, A)) = dom(€(-, A)) forall A € 6(Q).
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(iii)) When G does not depend on z, i.e. G(z,§) = G(&), (Is) can be dropped and (I7) means
that G is bounded at the neighborhood of the null matrix. It is proved in [AHM12,
Lemma 4.1] that such a boundlessness condition holds if (Is) is satisfied and if the null
matrix belongs to the interior of the effective domain of G. So, for G(z,¢&) = G(§),
under (Ig), (I7) can be replaced by the following “simpler” assumption:

(I7) the null matrix belongs to the interior of the effective domain of G.

(iv) When G is convex with respect to £, (Is) can be dropped and, since a convex function is
continuous in the interior of its effective domain, (I7) can be replaced by the following
“simpler”assumption:

(I7#) the null matrix belongs to the interior of the effective domain of the convex function & —
sup,eq G(, §)-

Integral representation theorems for variational functionals are part of a general method, usu-
ally called “the localization metho , which was introduced by the Italian school at the end
of the seventies (see [DGL77, DM78,[DMMS81]) for dealing with I"-convergence, relaxation
and homogenization of integral functionals of the Calculus of Variations. In the bounded
case, i.e. under standard p-growth conditions, the method is well-developed (see the books
[But89, [DM93,BD9I8]). On the other hand, in the unbounded case the method does not work
satisfactory and from [Bra06, Remark 4.1] and [BD98 Remark 12.7] a long-standing conjec-
ture of De Giorgi is that it should be possible to deal with the G-growth case where G is such
that €(u, A) = §, G(x, Vu(x))dz is lower semicontinuous. Theorem and its corollaries
(see Theorem and Corollaries and gives a partial answer to this conjecture, the
main ingredient being the condition of ru-usc (see for more details on this notion) that
plays a fundamental role in the proof of Theorem and its applications to I'-convergence,
relaxation and homogenization. Convexity implies ru-usc (see [AHM14]) but, in the noncon-
vex and vectorial case, ru-usc seems to be essential to develop the localization method beyond
the p-growth case.

The plan of the paper is as follows. Section 2 contains auxiliary results for proving Theorem
(see and for dealing with applications (see §2.2] §2.3] §2.4| and [2.5). Section 3 is
devoted to the proof of Theorem Finally, in Section 4, applications to I'(L?)-convergence
(see Theorem [£.3), relaxation (see Corollary and homogenization (see Corollary

are developed.

Throughout the paper, we will use the following notation and terminology.

e The Lebesgue measure is denoted by dz, dy or £y and the Lebesgue measure of any
Borel measurable set Q = R” is denoted by |Q).

e The interior (resp. closure) of a set B < R” is denoted by B (resp. B).

e The interior of any subset U of the set IM of m x N matrices will be denoted by int(U).

e The symbol { stands for the mean-value integral, i.e. &2 fdx = ﬁ SQ fdx.

3From [Bra98| Lesson Two, pp. 51] the localization method consists of, firstly, proving a compactness theorem
which allows to obtain for each sequence of integral functionals a subsequence I'-converging to an abstract limit
functional, secondly, proving an integral representation result which allows us to write the limit functional as
an integral and, thirdly, proving a representation formula for the limit integrand which does not depend on the
subsequence, showing thus that the limit is well-defined.
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e By the effective domain of a function L : M — [0,00] we mean . < M given by
L:={eM: L() < o}.

e Given a variational functional .# : W' (Q; R™) x 6(Q) — [0, 0], by the effective
domain 7 (-, A) with A € O(2), where O(2) denotes the class of all open subset of €,
we mean dom (7 (-, A)) given by dom(57(+, A)) := {u € WH(; R™) : I (u, A) < o0}.

9. AUXILIARY RESULTS

2.1. Integral representation of the Vitali envelope of a set function. What follows was first
developed in [BEM98, BB0O0] (see also [AHCM17]). Let Q = RY be a bounded open set and
let ©(Q2) be the class of open subsets of 2. We begin with the concept of the Vitali envelope of
a set function.

For each ¢ > 0 and each A € 0(Q), denote the class of countable families {Q; = Q,, (%) }ier

(where Q,,(z;) := z; + p;Y where Y :=] — 1 1[V) of disjoint open cubes of A with z; € A4,

pi > 0 and diam(Q);) €]0, ¢[ such that |A\ Ue; Q;| = 0 by ZZ(A).
Definition 2.1. Given § : O(€2) — [0, 0], for each € > 0 we define §° : 6(Q2) — [0, 0] by

§°(A) := inf {Z S(Q;) : {Qilicr € %(A)} . (2.1)

i€l
By the Vitali envelope of & we call the set function §* : 6(2) — [—0, 0] defined by
S*(A) :=sup S (A) = lim §°(A). (2.2)

e>0 e—0

The interest of Definition comes from the following integral representation result. (For a
proof we refer to [AHCM17, §A.4].)

Theorem 2.2. Let § : O(Q) — [0, 0] be a set function satisfying the following two conditions:

(@) there exists a finite Borel measure v on 2 which is absolutely continuous with respect to £ such
that S(A) < v(A) forall A e O(Q);

(b) & is subadditive, i.e. S$(A) < S(B) + S(C) forall A,B,C € 0(Q) with B,C < A,
BnC =g and|A\Bu C| = 0.

Then lim,,_,g w e LY (Q) and for every A € O(Q),
sy — [ i S(@p(2))

2.2. Compactness theorem with respect to I'(L?)-convergence. Let p > 1,let Q = RY be a
bounded open set and let O(£2) denote the class of all open subset of Q2. We begin by recalling
the definition of I'(L?)-convergence (see [DM93] [ BD98| Bra06] for more details).

Definition 2.3. For each e > 0,let J : WHP(Q;R™) x 6(Q) — [0, 0] be a variational functional
and let T(LP)-lim, 7. : WHP(Q; R™)xO(Q2) — [0, 0] and T'(LP)- lim, o F- : WHP(; R™) x
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O(2) — [0, 0] be respectively defined by:

F(Lp)-h_mje(u,A) ;= inf {h_mfe(us,A) D Ue E; u} ;

e—0 e—0
[(LP)-Tim F (u, A) := inf {F%je(ug, A):u B u} .

Let Sy : WP(Q; R™) x 6(Q) — [0, 0] be a variational functional. We say that {.7.}.~o ['(LP)-
converges to %, and we write %y = I'(L?)-lim._( .7, if the following two inequalities hold:

jO < F(Lp)_h_mje;

e—0

F(LP)-@JE < S

For families of increasing variational functionals (typically variational integrals), the following
theorem isolates a condition on the I'( L?)-limit inf and the T'( L?)-limit sup to have compactness
with respect to T'(L?)-convergence. (For a proof we refer to [DM93] Theorem 16.9, pp. 184]
and also [BD98| Theorem 10.3, pp. 84].)

Theorem 2.4. For each ¢ > 0, let . : WIP(Q; R™) x O(2) — [0, 0] be an increasing vari-
ational functional, i.e. J.(u,-) is increasin Jor all v € WHP(Q; R™). Suppose that for every u €
WEP(Q R™),

['(LP)-lim % (u, -) and T'(LP)-Tim 7. (u, -) are inner regular. (2.3)

e—0 =0

Then, every sequence { Iz }.~o has a T'(LP)-convergent subsequence.

Remark 2.5. To verify (2.3) we will use Lemma (see §2.3) which will allow to establish,
under additional assumptions, the stronger property that the I'(L?)-limit inf and the I'(L?)-
limit sup are restrictions to 0(f2) of Borel measures.

The following proposition, combined with Theorem furnishes a useful tool to deal with
the I'(LP?)-convergence of increasing variational functionals. (For a proof we refer to [DM93),

Proposition 16.8, pp. 183].)

Proposition 2.6. For each ¢ > 0, let 7. : WIP(Q; R™) x O(2) — [0, 0] be an increasing varia-
tional functional and let Fo : WHP(£2; R™) x O(Q) — [0, 0] be an increasing variational functional.
If holds then {7} .~ T'(LP)-converges to %y if and only every subsequence of { 7. }.~¢ contains a
Surther subsequence which T'( LP)-converges to %.

A set function & : 6(Q) — [0,00] is said to be increasing if §(A) < §(B) for all A, B € 6(Q) such that
AcB.

3An increasing set function & : O(€2) — [0,00] is said to be inner regular if for every A € 6(2), S(A) =
sup{S(U) : U € 6(Q) and U = A}. (Note that ['(LP)-lim__, %= (u,-) and ['(LP)-lim._o 7= (u, -) are increasing
whenever every % (u, -) is increasing.)
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2.3. Increasing set functions. Let Q2 = R be a bounded open set, let ©(€2) be the class of
open subsets of {2 and let ZB(2) be the class of Borel subsets of €2, i.e. the smallest o-algebra

containing the open (or equivalently the closed) subsets of 2. The following result is due to De
Giorgi and Letta (see [DGL77] and also [DM93, Theorem 14.23, pp. 172]).

Theorem 2.7. Let & : O(2) — [0, 0] be an increasing set function such that () = 0. Then, §
is the restriction to O(S2) of a Borel measure, i.e. there exists a measure jn : B(Q) — [0, 0] such that
S(A) = u(A) forall A e O(X), if and only if the following three conditions hold:

(a1) & is subadditive, i.e. S(A U B) < S(A) + S(B) forall A, B € 6(Q);

(a2) & is superadditive, i.e. S(AUB) = S(A)+ S (B) forall A, B € 6(Q2) suchthat An B = ;

(a3) S is inner regular, i.e. S(A) = sup {S(U) : U € 6(Q) and U < A} forall A € 6().

To establish inner regularity we have the following proposition due to Carbone and De Arcan-

gelis (see [CDAO0Z, Proposition 2.6.10, pp. 74]).

Proposition 2.8. Let § : O(2) — [0, 00] be an increasing set function satisfying (a;) and the following
two additional conditions:
(ag) for every A € O(Q) with §(A) < oo, lim,, o, S(A,) = 0 forall {A,}, < O(Q) such that
A\A,, € A\A,.41 and U, A\A,, = A;
(as) for every A € O(2) with S(A) = oo, lim,,—,o, S(A,) = © forall {A,}, < O(Q) such that
A, < Ay and U A, = A
Then (as) holds.

It is easily seen that the condition (ag) below implies (a;) and (a5). The following result is then

a straightforward consequence of Theorem and Proposition

Lemma 2.9. Let § : 6(Q) — [0, 0] be an increasing set function satisfying (a;) and (az) and the
Jollowing additional condition:

(ag) there exist v, f > 0, a measure v : B(2) — [0, 0] and a finite measure A : B(2) — [0, [
such that av(A) < S(A) < B(NA) +v(A)) forall A e O(Q).

Then, & is the restriction to O(S2) of a Borel measure.

2.4. A subadditive theorem. Let 0,(RY) be the class of all bounded open subsets of RY. We
begin with the following definition.

Definition 2.10. Let § : 6,(RY) — [0, 0] be a set function.
(i) We say that & is subadditive if
S(A) <8(B)+S(0)

forall A, B,C € 0,(RY) with B,C c A, BnC = @ and |[A\B U C| = 0.
(ii) We say that & is Z" -invariant if

S(A+2) = S(A)
forall A e 6,(RY) and all z € Z".

Let Cub(RY) be the class of all open cubes in R". The following theorem is due to Akcoglu
and Krengel (see [AK81] and also [LMO02] and [AHM11,, Theorem 3.11]).
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Theorem 2.11. Let 8 : O,(RY) — [0, 0] be a subadditive and Z.™ -invariant set function for which
there exists C €0, oo[ such that for every A € Op(RY),

S(A) < CA.
Then, for every Q € Cub(RY),
. S(2Q) . s$(0,k[N)
Mgl T R

2.5. Ru-usc property. We begin by recalling the concept of ru-usc function which was intro-
duced in J[AH10] (see also [AHM14] and [AHM11, §3.1]).

2.5.1. Ru-usc function. Let © < RY be an open set and let L : Q@ x M — [0, 0] is a Borel
measurable function, where IM denotes the space of m x N matrices. For each x € €, we
denote the effective domain of L(z,-) by L, and, for each a € L _(£;]0,]), we consider
8¢ 1 [0,1] —] — o0, 0] defined by

a L L(I,tf)—[z(l‘,g)
oL = S = ) D)

Definition 2.12. We say that L : Q x M — [0, o] is ru-usc if there exists a € L

lOC(Q; ]07 OO])
such that

lim 69 (¢) < 0. (2.4)

t—1—

The interest of Definition comes from the following theorem. (For a proof we refer to
[AHM11), Theorem 3.5] and also [AHM12, §4.2]) Let L : Q x M — |0, ] be defined by

L(z,&) := lim L(z,t£).

t—1—

Theorem 2.18. If L : Q x M — [0, o0] is ru-usc and if for every x € €,
tL, < int(LL,) for all t €]0,1], (2.5)

then:
(@) L is ru-usc;

(b) L(z,&) = tlilﬁ L(z,t€) forall (z,£) € 2 x M.

If moreover, for every x € Q, L(z,-) is Isc on int(IL,.) then:
L(z,¢) if € € int(Ly)
(©) L(z,€) = tl_l)flll L(z,t§) if¢edL,
0 otherwise;
(d) forevery x € Z(x, ) is the Isc envelope of L(zx, -).
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2.5.2. Ru-usc variational functional. Letp > 1,let O(Q) be the class of all open subsets of €. Let
S WIP(Q; R™) x O(Q) — [0, 0] be a variational functional and let A% : [0,1] —] — o0, 0]
be defined by
AL (1) = sup J(tu A)— F(u, A)
Ae6(Q) uedom(]( ay §a(@)de + 7 (u, A)
where dom (7 (-, A)) denotes the effective domain of (-, A). From now on, € is bounded.

Analogously to the case of a function, the concept of ru-usc for a variational functional is defined
as follows.

Definition 2.14. We say that & : W'P(Q; R™) x O(2) — [0, 00] is ru-usc if there exists a €
L'(£2;]0, 20]) such that

lim A%(t) < 0.

t—1—

Definition is motivated by the following result which asserts that “the variational integrals
whose integrand is ru-usc are ru-usc variational functionals”.

Proposition 2.15. If L : Q x M — [0, 0] is a ru-usc function with a € L'(Q;]0,0]) and if
FWEP(Q; R™) x O(Q) — [0, 0] is such that

I (u, A) = f L(z,Vu(x))dx
A
forall w € WP(Q;R™) and all A € 6(X), then 5 is a ru-usc variational integral with the same

Jfunction a.

Proof of Proposition Fix any ¢ € [0, 1], any A € 6(Q2) and any u € dom(.# (-, A)). Then
Vu(z) € L, for £y-a.e. x € A, and so

L(z,V(tu)(z)) = L(z,tVu(z)) < 0} (t)(a(x) + L(z, Vu(z)) + L(z, Vu(z))

for £y-a.a. z € A. Hence

F (tu, A) < 5%(t) ( L a(z)dz + I (u, A)> + 7 (u, A)

forall A e O(Q2) and all u € dom (.7 (-, A)), and consequently

(tu A)— F(u, A) W . .
Do+ T A) < 0(t), e A%(t) < 07(1),

sup sup
Aeb(Q) uedom(F(+,A)) SA

for all ¢ € [0, 1], and the proposition follows because L is ru-usc. B

2.5.3. Family of ru-usc variational functionals. The following definition generalizes Definition
to the case of a family of variational functionals.

Definition 2.16. For each ¢ > 0, let 7. : W'P(Q; R™) x 6(Q) — [0, 0] be a variational in-

tegral. We say that the family {%.}.-¢ is ru-usc if there exist {a.}.-o = L'(£2;]0,00]) and
ap € L*(£2;]0,00]) such that:

lir% a.(z)dr = f ao(x)dx for all A e 6(9); (2.6)
=04 A
lim sup A% (t) < 0. (2.7)

t—17 >0
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The interest of Definition comes from the following result.

Proposition 2.17. For each ¢ > 0, let 7. : W'P(Q;R™) x 6(Q) — [0, 0] be a variational
integral. If {F.}e=o is ru-usc with {a.}e=o < L'(Q;]0,0]) and ag € L*(Q;]0,0]) and if { -}~
['(LP)-converges to Fy : WHP(Q; R™) x O(Q) — [0, 0] then Fy is ru-usc with the function ay.

Proof of Proposition[2.17} Fix any A € 6(Q) and any v € dom(%(-, A)). Since {F.}.~0
['(LP)-converges to 5, there exists {u.}.~o < WP(Q; R™) with u. € dom(.7-(-, A)) such that:

u. 25w (2.8)
lir% Fe(ue, A) = F(u, A). (2.9)

Fix any ¢ € [0, 1]. For every € > 0, we have

To(tue, A) < A% (t) (L a:(z)dx + S (ue, A)> + I (u., A)

< sup A% (1) (J a.(z)dr + F(ue, A)) + F(ue, A). (2.10)
e'>0 € A
From (2.8)) we see that tu, = tu, and so, since {7 }.~o ['(LP)-converges to %,
Fo(tu, A) < lim . (tue, A). (2.11)
e—0

As {J }e=0 is ru-usc, (2.6) and (2.7) hold. Letting e — 0 in ( and using (2.6), (2.9) and
we deduce that

Foltu, A) < sup A% (1) (L ao(x)dz + jo(u,A)) o, A).

e'>0

Hence, for every A € 0(Q2) and every u € dom (% (-, A)),
A%
SA d:v + fo(u A) g>g ).

Consequently

su su A% (1), ie. AQ (1) <sup A% (t
Ae@?)uedom(}z SA aO )dl‘ + jO(u A) E>IO) ( ) jO( ) 5>Ig JE( )

forall ¢ € [0, 1], and the proposition follows by using (2.7). B

Remark 2.18. From the proof of Proposition we see that we are in fact proved that if
{ I} om0 i ru-usc with {a.}e~o = L'(2;]0,0]) and ag € L*(§2;]0, 0]) then both T(LP)-lim, .5
and T'(LP)-lim__, F- are ru-usc with the function ay.

The following result is a direct consequence of Proposition

Corollary 2.19. Let 7 : W' (;R™) x O(Q) — [0,00]. If F is ru-usc with a € L'(€2;]0, o0])
then its LP-lower semicontinuous envelope, i.e. 5 : WP (; R™) x 6(Q) — [0, 0] defined by

I (u, A) = F(LP)-lin%f(u,A) = inf {h_mj(u&A) cu, 2 u} ’

e—0

is ru-usc with the same function a.
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2.5.4. Family of ru-usc functions. Analogously to the case of a family of variational functionals,

the concept of ru-usc for a family of functions is defined as follows.

Definition 2.20. For each € > 0, let L. : 2 x M — [0, c0] be a Borel measurable function. We
say that the family {L_}.~¢ is ru-usc if there exist {a.}.~o = L'(€;]0, o0]) and ag € L' (Q;]0, 0])
such that:

lim | a.(z)dx = f ao(x)dx for all A e O6(9);

e—0 A A
lim sup 6% () < 0. (2.12)
t—=1" e>0 ©

The following lemma will be useful for dealing with I'(L?)-convergence (see §4.1).

Lemma 2.21. Foreache > 0, let L. : Q@ x M — [0, c0] be a Borel measurable function and, for each
p>0,let ZPL. : Qx M — [0,00] be defined by

HPL.(x,§) ;= inf {J[Q ( )Lg(y, Vau(y))dy : u —le € Wy P(Q,(x); Rm)} :

If {L.}c=0 is ru-usc with {a.}.~o = L*(2;]0, 0]) and ag € L*(2;]0, 0]) then
Lo := lim lim %7 L. : Q@ x M — [0, 0]

p—0e—0
is ru-usc with the constant function ||ag| .

Proof of Lemma Fix any ¢t € [0,1], any € Q and any & € L, where L is the ef-
fective domain of Lo(z,-). Then Lo(x, &) := lim, o lim. .o #?L.(x,£) < o and without loss
of generality we can suppose that #Z7L.(x,§) < « forall p > 0 and all ¢ > 0. Fix any
p > 0and any ¢ > 0. By definition of #”L.(x,¢) there exists {u,}, = WP(Q;R™) with
Uy — le € WyP(Q,(2); R™) such that:

HPLe(x,§) = lim Le(y, Vun(y))dy; (2.13)

" J Qu(x)

Vu,(y) € L., foralln > 1 and ZLy-a.a. y € Q,(v), (2.14)
where L. , denotes the effective domain of L.(y, -). Moreover, for every n > 1,
oLt < f Ll tVun()dy 2.15)
Qp ()

since tu, —tle = tu, —le € Wy ?(Q,(x); R™). Taking (2.14)) into account, we see that for every
n = 1and Zy-a.e. y e Q,(z),

Le(y, tVu,(y)) < 67 (t) (as(x) + Le(y, Vun(y))) + Le(y, Vua(y)).

Hence

J[ Le(y, tVun(y))dy < 07 (t) <J[ aa(y)dy+J[ La(y,Vun(y))dy>
Qﬁ(m)

Qp(x) Qp (:E)

+][ L.(y, Vu,(y))dy,
Q=)
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and so, by using (2.1J),
F Le(x,t8) < 077 (1) (][ a:(y)dy + J[
Qp() Qp(z)

for all n > 1. Letting n — oo and using (2.13), it follows that

Lc(y, Wn(y))dy> + J[Q ( )Le(y7 Vu,(y))dy

'L (x,t€) < 67 (t) <][ ae(y)dy+?f”L5(x,f)> + XL (x,€)

Qp(z)
< supd; (t) (J[ a.(y)dy + %pLE($,§)> + HPL.(x,8), (2.16)
>0 ° Q, ()

forall e > 0. Letting ¢ — 0 and noticing that ag € L*(€2; ]0, o0]), we get
>0 ¢

'@%%ﬂﬁ)<wwﬁﬁg ammwmy%m@)ﬂﬁ%am@
E— Qp(m) E— E—

< supdy? (1) (Jlaol e + T 77 L. (,€) ) + im 7 L. (1, €)
>0 ° e e

for all p > 0. Hence, by letting p — 0,

Lo(2,t§) — Lo(z,§) < sup 67° (t)

Lo(x,t€) <sup o7 (t)(|lag| e + Lo(x, + Lo(x,§), i.e.
o(e,16) < sup (1) (foollm + Lo, &) + Lole. &), fe. Jo o or o gy <o

forall z € Q and all £ € L ,. Consequently

Lo(z,t§) — Lo(,§) . claol
sup su - 2 < sup 07° (t), ie. 0 M7 (t) < sup o, (¢
vt éebor Jaole + Lo(2,6)  ex0 () L) e e (¥

forall ¢ € [0, 1], and the lemma follows by using (2.12). B
As a direct consequence of Lemma|2.21], we have the following result.

Corollary 2.22. Let L : Q x M — [0, 0] be a Borel measurable function and let ZPL : Q@ x M —
[0, 00] be defined by

HPL(x,§) ;= inf {J[Q ( )L(y,Vu(y))dy tu—le e Wol’p(Qp(z);]Rm)} )

If L is ru-usc with a € L*(€2; 10, 0]) then
lim 7L : Q x M — [0, 0]

p—0
is ru-usc with the constant function |a| .
The following proposition makes clear the link between Definition and Definition [2.20),
Proposition 2.23. Foreach e > 0, let L. : Q x M — [0, 0| be a Borel measurable function and let
Fo: WIP(Q: R™) x 6(Q) — [0, 00] be defined by

Fe(u, A) = fA L (z,Vu(z))dz.
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If {L.}.~0 is ru-usc with {a.}.~o = L*(Q;]0,0]) and ag € L'(Q;]0,0]) then {F.}.~0 is ru-usc
with the same family of functions {a.}.~o and the same function ag.

Proof of Proposition It suffices to prove (2.7). Fixany t € [0,1], any ¢ > 0, any A €
O(?) and any u € dom(#(-, A)). Then Vu(z) € L., for Zy-a.a. © € A, where L., denotes
the effective domain of L.(z, -), and so

Le(x,V(tu)(v)) = Le(x,tVu(r)) < 67 (t)(a:(x) + L (2, Vu(x)) + L(z, Vu(r))

for #£n-a.a. z € A. Hence
Se(tu, A) < 07 (1) (J a.(z)dx + Js(u,A)> + = (u, A)
A

forall A e 6(Q2) and all v € dom(.7(+, A)), and consequently
sup sup I (tu, A) — F-(u, A)
46(Q) uedom(.7. (,A) § 4 Ge(¥)dx + I (u, A)

forall e > 0. Thus

<07 (1), 1e. AT (1) < 07 (1),

sup A7 (t) < sup o7 (t)

e>0 e>0

forall t € [0, 1], and follows from (2.12). H

The following lemma, which motivates Definition with respect to Definition [2.12} will be
useful for homogenization (see §4.3)).

Lemma 2.24. Let L : RN x M — [0, 0] be Borel measurable function such that L(-, £) is 1-periodic
forall ¢ € M, ie forevery (x,2) € RN x ZN, L(x + 2,£) = L(x,€), and, for each ¢ > 0, let
L. : Q2 x M — [0, 0] be defined by

T

Ls(x7€) =L <g7£> :
Let a € L _(RY;]0,00]) be a 1-periodic function and, for each € > 0, let a. € Li _(R";]0,x0]) be

defined by
x
a.(x) :=a <g> :
If L is ru-usc with the function a then {L_}.~q is ru-usc with the family of functions {a.}.~o and the
constant function {a) := {, a(y)dy.

Proof of Lemma[2.24. First of all, it is clear that lim._ { , a.(z)dz = |A|[a) forall A € 6().
So, it suffices to prove (2.12). Forany ¢ € [0,1],any e > 0, any z € Q and any £ € L. ,, we have

Lo(w,t€) — Le(w,§) _ L(%,t6) —L(%€) 2.17)

ac(x) + Le(z,€) a (%) +L(%¢)
AsL., = Lz we see that

L(2.t) - L(%¢) L(y,t¢) — L(y.Q)

(@)L e g
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and from (2.17)) we deduce that
sup 67 (t) < d7(t) (2.18)

e>0

forall ¢ € [0, 1], and (2.12) follows from (2.4) because L is ru-usc. B

3. PROOF OF THE INTEGRAL REPRESENTATION THEOREM

The proof of Theorem is divided into five steps.

Step 1: a simple integral representation for &. We begin by proving the following elementary
lemma.

Lemma 38.1. If (Iy)—(1,) hold then for every u € W'P(Q; R™), F (u,-) is the restriction to O(S)
of a Borel measure which absolutely continuous with respect to £y. More precisely, for every u €

WhP(Q; R™) and every A € O(Q),

F(u, A) = L No(z)dz

with A\, : Q — [0, 00| Borel measurable given by
i T, @p(2)
() = il_r)r(l] P :

Proof of Lemma[3.1l By (Iy) and (I) we see that for every u € W1P(Q; R™), the set function
F (u,-) is the restriction to O(2) of a Borel measure which is absolutely continuous with re-
spect to £y, and the lemma follows by using Radon-Nikodym’s theorem and then Lebesgue’s
differentiation theorem. W

From now on, we fix A € 6(9).
Step 2: using the Vitali envelope. For every u € W'P(Q2; R™) we consider the set function
m, : O(A) — [0, 0] defined by

m(U) 1= inf {F(v,0) v — ue WP (U, R™) }. 3.1)

For every ¢ > 0 and every U € O(A), we denote the class of countable families {Q; :=
Qp; (%) }ier of disjoint open cubes of U with x; € U, p; > 0 and diam(Q;) €]0, ¢[ such that
|U\ Uier Q| = 0by Z(U), we consider m&, : 6(A) — [0, 0] given by

m;,(U) := inf {Z m,(Q:) : {Qi}tier € %(U)} :

1€l
and we define m?* : ©(A) — [0, 0] by
m (U) :=supmi (U) = limm (U),

u
e>0 e—0
i.e. m? is the Vitali envelope of m,, (see §2.1).

Step 2 consists of proving the following lemma.

Lemma 3.2. If (Iy)—(Iy) and (14)—(I5) hold then for every u € W'P(Q2; R™) and every U € O(A),
F(u,U) =m}(U). (3.2)
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Proof of Lemma[3.2l Fix u € W'?(Q;R™). Given any Q € O(A), it is easy to see that
m,(Q) < F(u, Q). Hence, for every U € 6(A),

m*(U) < F (u,U)

u

because, by (I;), F (-, U) is the restriction to O(A) of a Borel measure. So, to establish (3.2), it
remains to prove that for every U € O(A),

F(u,U) <m;(U). (3.3)
Fix U € 0(A) with m#(U) < . Fix any ¢ > 0. By definition of m¢ (U) there exists {Q;}icr €

7:(U) such that

D my(Q) < m§(U) +

el
For each i € I, by definition of m,(Q;) there exists v; € WP(Q;; R™) such that v; — u €
Wol’p(Qi; R™) and

(3.4)

YRS

£|Q;l

20 (3.5)

F (vi, Qi) < my(Qi) +

Define u, : Q@ — R™ by

_fu inQ\U
Ue -= V; anz

Then u, —u e Wol’p(U; R™). Taking (I) into account, from (3 ) we see that

F (1, U) < Ymal@) + .

el

hence F (u.,U) < m%,(U) + € by using (3.4), and consequently
@)y(ug,m <m*(U). (8.6)

u

On the other hand, we have

[ue — ully, = f |uf — tulPdz = ZJ — ulPdz.

el

As diam(Q;) €]0, ¢ for all i € I, by using Poincaré inequality we see that

ZJ —updx<sp02f |\Vv; — Vul|Pdx,

el el

where C' > 0 is independent of ¢, t and i. Hence

ZJ — ul|Pdx < 2PePC (ZJ |V, |Pdx + f |Vu|pdx> :

el el

and consequently

[ue —ulff, < 2PePC (ZJ |V |Pdx —l—J |Vu]pd$> . 3.7)

el
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Taking (I5), (I), (3.5) and (3.4) into account, from (3.7)) we deduce that
1
u. — ul?, < 27ePC <—(mi(U) fe)+ f |Vu|pdx> ,
ac A
which gives
lin% Jue —ulff, =0 (3.8)

because lim._omé(U) = mi(U) < oo, and (3.8) follows from (3.6) because F(u,U) <
lim, o F(we,U) by (Iy). B

Step 3: differentiation with respect to £y. This step consists of applying Theorem with
$ = m, where u € dom(Z(-, A)). More precisely, Step 8 consists of proving the following
lemma.

Lemma 3.3. If (Iy)—(I2) and (I,)—(Ig) then for every u € dom(Z (-, A)) and every U € O(A),

- my,(Q)(2))
*U) = | lim ——22"" . 3.9
my,(U) Lplgg) N e (3.9)
As a direct consequence we have
F(u,U) = f lim 2 Q(0) (3.10)
v r—0 P

forallu e dom(Z(-, A)) and all U € O(A).

Proof of Lemma[3.3l Fix u € dom(Z(-, A)). The integral representation of % (u, -) in (8.10)
follows from by using Lemma[3.2]and the definition of m,, in (8.1). So, we only need to
establish (3.9). For this, it is sufficient to prove that m, is subadditive and there exists a finite
Borel measure v on O(A) which is absolutely continuous with respect to Zy such that

m, (U) < v(U) 3.11)

forall U € 6(A), and then to apply Theorem[2.2] From the definition of m,, it is easy to see
that for every U, V., W € O(A) with VW c U,V n W = ¢ and |[U\V U W| = 0,

m,(U) < m, (V) + m, (W),
which shows the subadditivity of m,. On the other hand, by (Iy) we have
m,(U) < F(u,U)
< (U +¥(wU))
BIU + B JU G(z, Vu(z))dx.
Thus is satisfied with the Borel measure v := (1 + G(-, Vu(-))&x which is finite since
uedom(Z(-,A)). N

Step 4: formula for the integrand. According to (3.10)), the proof of Theorem will be
completed (see Substep 5-2 and also Step 6) if we prove that for every v € dom(€(-, A)) and
Zn-a.e. x € A, we have:

A\
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tim 2l Q@) o i Do (@(2), (3.12)
p—0 P t—1— p—0 P
tim 2 DD ) i e (@) (3.13)
p—0 p t—1-P—0 P

where u,(y) := u(x) + Vu(z)(y — z).

Substep 4-1: proof of (3.12) and (3.13). We only give the proof of (3.12)). As the proof of
(3.13) uses the same method, the details are left to the reader. Fix any ¢ > 0. Since, by (Iy),

lim,_,;- A% (t) <0, there exists to €]0, 1] such that
A% (1) < & (3.14)

forall t € [to, 1[. Fix u € dom(Z(+, A)). Fix any 7 €]0, 1[, any p €]0,¢[ and any t € [to, 1[. By
definition of m,(Q.,(z)) there exists w € W(Q; R™) such that w — u € Wy?(Q,,(z); R™)
and

F (0, Qrp(w)) < my(Qry(2)) +e(7p)". (3.15)
Let ¢ € C*(9) be a cut-off function for the pair (2\Q,(z),Q.,(x)), i.e. p(x) € [0,1] for all
zeQ, p(x) =0forall z € Q\Q,(z) and ¢(z) = 1 for all @Tp(x), such that

c
[Velre < P (3.16)
for some ¢ > 0 (which does not depend on p and 7). Define v € W'?(Q,(z); R™) by
v = ptu+ (1 — )tu,. 3.17)
Then v — tu, € Wy*(Q,(x); R™) and we have
V (tu) in Q,,(z)
Vv = EPSIANC= 3.18
P Dt To 0 ) 4 (Tt (L= V) Q)@ a). 1Y

As tw—tu € Wy P(Q,,(2); R™) we have v+ (tw — tu) — tu, € Wy *(Q,(z); R™). Taking Lemma
[8.1]into account we see that
(@) _ F(o+ tw — tu, ()
(o)™ (rp)™
1

= f )\v w—tu\Y dy
oY Jo,m g

= J >\v+tw7tu(y)dy + J - >\v+tw7tu(y)dy
T ) Q‘rp(x) Qﬂ(m)\Qﬂ'p(x)

L F (v + tw — tu, Qp(2)\Q,(¢))
- Tp)N Joo, /\v+tw—tu (y)dy + (TP)N
F (v +tw —tu, Q. ()  F(v+tw—tu,Q,(2)\Q,,(x))

()™ " (o)™ |

=

—

(-

—_

=

—
=

~—~
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But, by and (Ip), we have F (v + tw — tu, Qry(7)) = F (tw Qrp(z)) and F (v + tw —
0. Qye) Q1 0)) = (@) Qo) becuse 0 1 = 0 in Qy(2) @ (o) and .
using (I;),

i, Q) _ Fltw,Qryl@)) | F(0.Qu(0)\Qr,y ()

)y S T ey m))N

Consequently, since F (tw, Q,,(z)) < (1+ A% () F (w, Qp(x)) + A%( SQ y)dy, we get

mtim(Qp(I)) a %(vam(@) a a
me el < (1 A% () Tl 1 g ) Jf%() (s)dy

LT (0,Q(2)\Qr, (@)
(o)™

From (3.14)), (3.15), (3.18), (Iy) and (Is) we deduce that

mt%(Qp(x)) mtux(Qp<x>> M c € a
NS T @y S (HE)( A >+ J[me i

: f (
+ Gy, —Vgp ® (u— ux)) dy
(TP)™ )@, @)1\@rp(a) 1—t

C
Ol fQ o [G(y, Vu) + Gy, Vu(x))]dy

1
+¢ (1)

with C' := 8 + Bv + 72. On the other hand, by (3.16) we have

+

t
Ve © ) - w)| < || 19l b~ g,

1-—t
- tc 1H H
S T~ ||U — Ugl| ™ z):R™m
(1 t)(l 7_),0 LO(Qp();R™)

for Zn-a.a. y € Q,(2)\Q-,(x). But lim, . %Hu — U | L2(Q,()mm) = 0 because p > N, hence
there exists pg > 0 (which depends on ¢ and 7) such that

‘1—_tVs@ (uly) — ux(y))‘ <r

for Zy-a.a. y € Q,(2)\Q-,(z) and all p €]0, po[ with r > 0 given by (I7). Consequently

f G (y ! Ve® (- ua) dy < f sup Gy, O)dy  (3.19)
Qp(@)\@rp(2) L—t (2)\@rp(a) l€]<r

for all p €]0, po[. Moreover, it easy to see that:
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sup G(y,§)dy < pNJ[Q " sup G(y, &) — sup G(x, )| dy

JQ# (@)\Qrp(x) €IS

[€l<r [gl<r
+oN (1 — ) sup G(x, €); (3.20)
[El<r
| Gy Vuly)y < o) |6 Vuly) - G, Vu(o)|dy
Qp(@)\Qrp() Qp(z)
+pV (1 — )G (z, Vu(z)); (3.21)
| Gy Vule)dy < p*f |Gy, Vulz) - G, Vula) |dy
Qp(x)\QTp(I) Qp(x)
+pN (1 — )G (z, Vu(z)). (3.22)
Combining (3.19) with (3.20)), (3.21) and (3.22) we deduce that
My, (Qp(7)) <mu(Q7p($)) ) ][
—= < (1+4+¢ ——— t €| +¢€ a(y)d
PN ( ) (Tp) Qrp(x) (v)dy
C
T sup G(y, &) — sup G(z,§)| dy
T J Q) |lel<r l¢l<r
Cr
T Qp ()
C
T J Qo)

+C (TLN - 1) (sup G(z,8) + 2G(x,Vu(z)) + 1) . (3.23)

l§l<r

As supjg <, G(+,§) € LY(Q) by (I7), we have

lim

sup G(y,&) — sup G(z,§)
r=0J Q,(x)

€l<r €l<r

dy = 0. (3.24)

In the same way, as u € dom(& (-, A)), i.e. G(-, Vu(-)) € L'(A), we can assert that

lim |Gy, Vu(y)) — Gz, Vu(x))|dy = 0, (3.25)
= Qp(z)

and by (Ig) we have
liII(l) |G(y, Vu(z)) — G(z, Vu(z))|dy = 0. (3.26)
PRI Qp(a)

Moreover, as a € L'(£2;]0, o0]) it is clear that

lim a(y)dy = a(z). (3.27)

P=0J Qrpla)
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Letting p — 0 in (3.23) and using (3.24)), (3.25), (3.26) and (3.27) we see that
lim Mo, (@p(2)) < (1+¢) (lim —“(Qﬁ( z)) + €> + ea(z)

p—0 pN p—0 1%

+C <7_LN — 1> (sup G(z, &) + 2G(x, Vu(x)) + 1) . (3.28)

[E]<r

Lettingt — 1~ and 7 — 17 in (3.28)) we deduce that
lim lim M < (1+¢) (lim %}5(@) + 5) + ca(x)

t—1— p—0 p p—0 P

and (3.12) follows by letting ¢ — 0.
Substep 4-2: establishing the formula for the integrand. By (3.12)) and (3.13) we have

g @l _ e (Qa >> 3.99)

p—0 p t—1— p—0 p

On the other hand, it is easily seen that

lim lim M = lim lim inf {MNP(M tv—tuy, € Wol’p(Qp(a:);]Rm)}

t—1— p—0 p t—1— p—0 p
. -—. (o/T(U—i-tUz,Qp(C(f)) . 1, .JRpm
= tl_l}Iﬁ ll)l_r%mf{ P cve WyP(Qu(x); R™) ¢ .

But by (I3) we have
(0 + 1y, Q) = F (v + 1Vu(z) + tu(z) — Vale)r, Qy(x)) = F (v + 1Vu(z), Q,(x)),

and so

tuz(Qp( ) g [ F WA V), Qp(x)) Lp m
tl—l»IlIl i{r%) pV B tl_l)IE }JI—I% inf pN Hv e Wo(Qp(r); R™)
: T o ‘%@}’ Q (.Z')) ) m
- t1~1>I1n— ,loli% inf {—pr 1V = livu(e) € Wo?(Q,(x); R™)
= lirln F(z,tVu(x)) (3.30)
t—1—

with F': Q x M — [0, o] defined by (I.I). Combining (8.10), (3.29) and (3.30) we conclude

that
F(u,U) =J lipln F(z,tVu(z))dx
Ut=1”
forall u e dom(€(-, A)) and all U € O(A).

Step 5: end of the proof. From Steps 2, 3 and 4, we have proved that for every A € 6(Q2) and
every u € dom(¥ (-, A)), F(u, A) = § , limy_1- F(z,tVu(z))dz. On the other hand, by (I) we
see that for each A € 6(Q), if w € W?(Q; R™)\dom(& (-, A)) then F (u, A) = co. B

4. APPLICATIONS

In what follows, p > 1 is a real number, Q = R" is a bounded open set, ©(Q) denotes the class
of all open subset of 2 and M is the space of m x N matrices.
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4.1. T'(LP)-convergence. Let G : Q x M — [0, 0] be a Borel measurable function satisfying
(I5)—-(Ig) and the following two additional assumptions:
(Cy) for every A € O(Q), €(-,A) is LP-lower semicontinuous with & : WP(Q; R™) x
0(€2) — [0, 0] defined by

G(u,A) = L G(z, Vu(x))dz;

(Cy) tGy, = int(Gy,) forall z € Q and all t €]0, 1] with Gy, denoting the effective domain
of Go(z, ), where Gy : 2 x M — [0, oo] is defined by

Go(z, &) := }}jx%%pc;(g;,g) 4.1)

with Z°G : Q x M — [0, 0] given by

H'G(x,§) = inf {J[Q ( )G(y, Vu(y))dy : u—lg € Wy (Q,(x); Rm)} :

where Q,(z) == = + pY with Y :=] — %,
defined by l¢(y) := &y.

Remark 4.1.

(i) Under (I5), if G is convex and lower semicontinuous with respect to &, then (Cy) can be
dropped.
(i) Under (I) it is easy to see that for every z € Q, Gy, is convex, and so if 0 € int(Gy )
then (C;) holds.
(iii) When G does not depend on z, i.e. G(x,£) = G(£), Gy is the W'P-quasiconvex enve-
lope of G. Hence, Gy = G if moreover (Cy) holds since G is then W!P-quasiconvex.

:[V and l¢ : RN — R™ is the linear map

Foreache > 0,let L. : Q x M — [0, 2] be a Borel measurable function. We assume that the
family {L.}.~¢ satisfies the following three conditions:

(Cy) there exist «v, f > 0 such that for every e > 0 and every (z,£) € Q x M,
aG(z,§) < Le(z,§) < B(1 + G(x,€));
(C3) {L.}e=0is ru-usc with {a.}.~o = L'(€;]0,00]) and ag € L*(£2;]0, «]), i.e.

lim sup 6% (t) < 0
t—1" g>0 °

with 67° : [0,1] —] — o0, 0] defined by

a Ls(xatf) - Lg(fﬂ,f)
°(t) :=
OLll) =P S = )+ Lue.6)

where L. , denotes the effective domain of L.(z, -);
(Cy) forevery z € Q1 and every £ € Gy 4,

lim lim 77 L.(z, €) > lim lim %7 L.(z, £)

p—0:._p p—0e—0



22 INTEGRAL REPRESENTATION OF UNBOUNDED FUNCTIONALS ON SOBOLEV SPACES

with Z7L. : Q x M — [0, ] given by
HPL(x,£) := inf {J[ L.(y, Vu(y))dy : u — le € WyP(Q,(x); ]Rm)} . (4.2)
Qp(z)

Remark 4.2. When {L_.}.~o = L, (C3) means that L is ru-usc and (C4) can be dropped.
For each € > 0, let 7. : WHP(2; R™) x 6(Q) — [0, 0] be defined by

Fo(u, A) = fA L (z,Vu(z))dz.

The following I'(L?)-convergence theorem is a consequence of Theorem (1.2

Theorem 4.3. Assume that p > N and (Cy)—(Cy) and (I5)—(Ig) hold. Then, for every A € O(X2),

J lim lim im #7 L. (z, tVu(z))dz if u € dom(Z(-, A))
F(Lp)— 111% je('u,7 A) _ At—1 p—0e—0
o0 if u e WHP(Q; R™)\dom(Z (-, A)).
Proof of Theorem[4.3l The proof is divided into three steps.
Step 1: proving that I'(L?)-lim, _, % (u, -) and T'(L?)-lim,_ % (u, -) are restrictions to G(1)
of Borel measures. For each u € WHP(Q; R™), let 8, 8" : 6(Q) — [0, 0] be given by:

S, (A) :=T(LP)-lim F(u, A);

u
e—0

S1(A) = D(17)- Tim S (u, A).

u

From (Cy) and (Cy) we see that:

aLa@vwmmgsﬂm<50m+La@vwmm) (4.3)

ozf G(z,Vu(x))dr < S (A) < B (|A| +J G(x, Vu(:v))dx) (4.4)
A A
forall u e WHP(2; R™) and all A € 6(Q). Step 1 consists of proving the following lemma.

Lemma 4.4. Assume that p > N and (Cy), (C2)—(C3) and (I5)—(g) hold. Then, for every u €
Whe(Q;R™), S and 8¢ are restrictions to O(SY) of Borel measures.

Proof of Lemma.4l Fix u € W?(£2; R™). The proof consists of applying Lemma[2.9 with
S =&, (resp. & = &F). By (4.3) and (4.4) we see that the condition (ag) of Lemma
is satisfied with A = &y and v = G(-,Vu(-))Zy. On the other hand, it is easily seen that
the condition (ay) of Lemma is verified. Hence, the proof is completed if we prove the
condition (a;) of Lemma|[2.9] i.e.

S, (AuB)< S, (A)+ S, (B) forall A, Be 6(Q); 4.5)

ST(AuB) <S8 (A)+ S (B) forall A,Be 6(9). (4.6)
Substep 1-1: an auxiliary result for proving Lemma To show and (£.6) we need
the following lemma.
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Lemma 4.5. Assume that p > N and (Cy), (C2)—(C3) and (I5)—(Ig) hold. IfU,V, Z, T € O(2) are
such that Z < U and T < V, then:

S (ZuT) <S8, (U)+ S, (V); 4.7)
SHZUT)<SHU)+ S (V). (4.8)

Proof of Lemma[4.5] As the proofs of (£.7) and (4.8) are the same, we only give the proof of
@.7). Let {u.}e=0 and {v.}.~¢ be two sequences in Wl’p(Q; R™) such that:

LP

Ue — U; 4.9)
v 5o (4.10)
lin% L.(x,Vu.(z))dx = 8, (U) < o0; (4.11)
E—> U

lim | L.(z,Vou.(x))de =&,

e—0 Vv u

(V) < . (4.12)

By (C2) and (I5) we have sup,.g [Vue|r»@) < o0 and sup,. [|Vve| o) < 0. Taking (4.9)
and (4.10) into account, as p > N, up to a subsequence, we have:

ue 28 (4.13)
Ve Lm/) u. (4.14)

Fix  €]0, dist(Z, 0U)[ with oU := U\U, fix any ¢ > 1 and consider W;”, W;"  Q given by:
W= {oe Qi dist(z, 2) < § + GG

)

Wt .= {er:%+§—‘; <dist(x,Z)},

where i € {1,--- ,q}. Foreveryi € {1,--- ¢} there exists a cut-off function p; € C*(Q2) for
the pair (W7, W,7), i.e. o(z) € [0,1] forall z € , p(z) = 0 for all z € W;" and p(z) = 1 for

)

all z € W, . Fix any € > 0 and define w! € WP(Q; R™) by

w' = e + (1 — ;). (4.15)
Fix any t €]0, 1[. Setting W; := Q\(W,” U W,") we have
tvua in VV;
V(twl) =tVw!l = { (1 =875V ® (ue — v.) + t(;Vue + (1 — 9;)Voe) in W;
tV’Ut in VV,L»Jr.

Noticing that Z 0T = (ZuvT)n W) )u (W W) o (T n W) with(ZuT)n W, cU,
TAWS cVandW :=Tn{zeU:$<dist(zr,Z) < £} we deduce that for every

(2

i€{17“' 7Q},

J L.(z,tVwl)dz < J Lg(x,tVug)d:v+J L.(x,tVv.)dx
zZuT U

\%

+J Lo(z,tVw!)dz. (4.16)
WnW;
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Fixanyie {1,--- ,q}. From (Cy) and (Is) we see that

J Le(z,tVwl)dr < BIW nW;| + 3 G(z,tVw')dx
WnW;

WﬁWi

< B+ W n W
5y f (e, oV, + (1 — ) Vo.)da
W W,

t
+ﬂ’}/f G (.73, EV% X (UE — Us)) dZE,
WﬁWi

and so, by using again (Cy) and (Ig),

J Lo(z,tVuwl)dz < B(1+v+93)|W n W
WnW;

2

—i—ﬁi <J L.(z,Vu.)dx + J L.(z, Vve)d:z,)

a WAW; WnW;
t
+[J’7f G (Jc, ——Vi ® (ue — UE)) dx. (4.17)
WAW; 1t
On the other hand, we have
1—1¢

t
) (1elo) — ve(o))| < || IV = oy

for Zy-aa. x€e W W, c Un V. But lim._g |ue: — v:| p=@nyvy = 0 by @.13) and @.14),
hence for each t €]0, 1] and each i € {1,--- |, ¢} there exists €;; > 0 such that

‘EV@ ® (ue(x) —ve(x))| < 7

for £n-a.a. v € W n W, and all € €]0, £, ;] with » > 0 given by (I7). Hence

t
f G (33, ;@ (ue — va)) dr < f sup G(z,&)dz (4.18)
WAW; 11—t WAW; [¢l<r
forall € €]0,2;,] with &, := min{e;; : i € {1,--- , ¢}}. Moreover, we have:

f L.(x,tVu.)dr < (1 + sup 6 (t)> J Le(z, Vu.)dz + sup 67 (t)J a.(z)dzr; (4.19)
U : U U

e'>0 g>0

fv L.(z,tVu.)dx < (1 + sup d;° ( )) JV (z, Vv.)dx + sup d;° ( )JV a-(x)dx, (4.20)

e'>0 e'>0

where 67 : [0,1] —] — o0, 0] is defined in (Cy). Taking (.18) into account and substituting
(4.17), (4.19) and (4.20) into (4.16) and then averaging these inequalities, it follows that for
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every ¢ = 1, every t €]0, 1[ and every ¢ €]0,%,,], there exists i.; , € {1, - - , ¢} such that
f L.(z, V(tw's))dx < (1 + sup ;% (t)) JLE(Z', Vu.)dz + sup 6, (t) Jag(:c)dx
zZuT >0 ° U >0 ° U

<1+sup5 ()) JL (2, V. )dz + sup 5° ()Jae(ac)dac

e'>0 1% e'>0 1%

q le|<r U v

+€ (L sup G(z, E)dx + JLE(I7VU€)d$+ fLs(x,Vvs)dx>

with C' = max {8(1 + v ++?) + 1, %2}’ where {;, supj¢ o, G(x,§)dr < co by (I7). Thus, letting
£ —0,¢q— owandt — 17 and using (Cy), (4.11)) and (4.12)), we get
Tm G Im | Lo(e, V(i) )dz < S7(U) + S-(V). (4.21)

t—1— q—0 e—0 20T
On the other hand, taking (4.15)) into account and using (4.9) and (4.10) we see that

lim lim lim [[tw’=** — u|z» = 0.
t—1— g—0 e—0

By diagonalization, there exist increasing mappings ¢ — t. and € — ¢. with ¢, — 17 and
g. — oo such that:

lim Le(x, Vb )dr < lim lim lim Le(z, V(tw'=))d;

e—0JzuT t—17g—0e=0 J7 7
hm Hwa — UHLP = O,

lete,qe

where w, = t we . Hence

ST(ZuT)< Tim Tm Iim | Lo(z, V(twi=t))dz,

t—1— q—o0 e—0 20T

and follows from (#.21). W

Substep 1-2: end of the proof of Lemma We now prove (4.5). Fix A, B € 6(Q) such
that 8, (A) < o0 and 8, (B) < . Then, by 4.3), §, G(x, Vu(x))dx < . Fixany n > 0
and consider Cy, Dy € 0(£2) such that Cy < A, Dy < B and

BIE| + BJ G(z,Vu(z))dr <n

with £ := AU B\Cy v Dy. Then &, (E) < nby (4.3). Let C, D € 6(Q) be such that Cy c C,

CcC, CCA Doc D,D < Dand D = B. Apply1ngLemma45w1thU CuD,
V=T=FandZ=CuUDesp.U=A,V =B,Z=CandT = D) we obtain

S, (AuB) <8, (CuD)+n(resp. S, (CuD) <S8, (A)+ S, (B)),
ie. 8 (AuB) <8, (A)+ 8, (B)+n,and (4.5) follows by letting n — 0. B
Step 2: applying Theorem For each ¢ > 0 and each u € W (Q;R™), J.(u,") is

an increasing set function. Moreover, from Lemma we can assert that for every u €
Whr(Q; R™), T'(LP)-lim, 7 (u, ) and T'(LP)-lim._o % (u,-) are inner regular. Hence, by
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Theorem every sequence {7 }.~o has a I'(L?)-convergent subsequence. So, without loss
of generality we can assume that {7.}..q I'(L?)-converges. Taking Proposition into ac-
count, to establish Theorem [£.3]it suffices to prove that

['(LP)-lim Jg(u, A) = F(u, A) (4.22)
for all u € WHP(2; R™) and all A € 6(Q) with % : WHP(; R™) x 6(Q) — [0, ] given by

f lim lim lim %7 L. (z,tVu(x))dz if u € dom(% (-, A))
At—1" p—0e—0

Jo(u, A) :=
o0 if ue WH(Q; R™)\dom(Z(-, A)).

lljor this, we are going to apply Theorem [1.2] with & : WP(; R™) x 6(£2) — [0, 0] defined

' F(u, A) := F(Lp)—lii%fe(u,A). (4.23)

First of all, it is clear that (I5)—(I4) hold and (Iy) follows from (Cy) and (Cs). On the other

hand, (I;) follows from Lemma [4.4] and by (Cs), Propositions and [2.17] we see that (Ig)

is verified. So, since (I5)—(Ig) are assumed to be satisfied, from Theorem [1.2]we deduce that
for every A e 6(12),

J Ple, Vu(@))dz  if ue dom(¥(-, A))
Fu, A) = { I

0 if w e WHP(Q; R™)\dom(Z (-, A))
where dom(€ (-, A)) denotes the effective domain of €(-, A) and F:QxM— [0, o0] is defined
by

F(z,€) = lim F(z,t§)

e
with F given by (1.1).
Step 3: refining the formula for the limit integrand. Taking into account we have
F(a,€)= lim F(x,t€)
{ D(L7)- lim 7 (1. Q, (@)
oV

= lim lim inf
t—1— p—0

cu— b € Wy P(Q,(x); ]Rm)} . (4.24)

In what follows, we are going to refine the formula for Fin (@.24).

Substep 3-1: an intermediate lemma. Let .7 : W2(Q; R™) x 6(2) — [0, 0] be defined by

J (u, A) := inf {li_mfg(ua,A) WyP(A; R™) aua—u—>0}

e—0

Substep 3-1 consists of proving the following lemma.
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Lemma 4.6. Assume that p > N and (Cy), (C2)—(C3) and (I5)—(Ig) hold. Then, for every u €
WP (Q; R™), every A € O(Q) and every t €]0, 1],

F (tu, A) < (1 + sup 077 (t)) ['(LP)- lir%fg(u, A) 4 sup 672 (t)f ao(x)dx, (4.25)
e>0 £— e>0 A
where {ac}.~o = L'(2;]0,0]), ag € L*(€2;]0, 0]) and 67 : [0, 1] —] — o0, 0] are given in (Cs).

Proof of Lemmal[4.6l Fix u e WP(Q; R™) and A € 6(f2). Without loss of generality, we can
assume that I'(LP)-lim,_o 7 (u, A) < o0, and so, by (Cy) and (Cy),

G (u,A) < 0. (4.26)
By definition of T'(LP)- lim. o .F-(u, A) there exists {u.}. = WP(Q; R™) such that:

u. 5w (4.27)
lir% I(ue, A) = T'(LP)- lir% I(u, A). (4.28)

Since I'(LP)- lim. o J=(u, A) < o, by (C2) and (I5) we see that sup. |Vue|ra) < 00. As

p > N, up to a subsequence, we have

u, = 4. (4.29)

Fix § > 0 and set As := {x € A : dist(z,0A) > ¢}. Fixany ¢ > 0 and any ¢ > 1 and consider
W, W." < Q given by

W, = {x e Q : dist(x, As) < g + (i—1)5};

2 3q

Wt = {I eQ: g+ ;—‘; < diSt(IL’,A(s)},

where i € {1,--- ,q}. (Note that W;© < A.) For everyi € {1,---,q} there exists a cut-off
function ¢; € C*(Q) for the pair (W.", W.7), i.e. p(z) € [0,1] forall z € Q, p(x) = 0 for all

)

re W' and ¢(z) = 1 forall z € W; . Define w’ : Q@ — R™ by

w' = pue + (1 — @)u. (4.30)
Then w! —u € WyP(A; R™). Fix any t €]0, 1[. Setting W; := Q\(W,” U W;") c A we have
A A tVu, in W~
V(twl) =tVw! = { (1 -85V ® (ue — u) + t(p;Vue + (1 — ¢;)Vu) in W;
tVu in W;.

Noticing that A = W,” U W; U (A n W;") we deduce that for every i € {1,--- ,q},

2

Te(twl, A) = f

Lo(z,tVwl)dz < f
A

L (x,tVu.)dz + J L (x,tVu)dx
A

An Wi+

—i—J L.(z,tVw!)dz. 4.31)
Wi
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Fixanyie {1,--- ,q}. From (Cy) and (Is) we see that

f L(z,tVuwl)dr < B (|WZ| +f G(z,tVuw. )da:)
Wi Wi
< B+ )Wy
+67f G(z, p;Vu. + (1 — ;) Vu)dz
Wi

t
+57f G (x, —Vy; ® (u. — u)) dz,
w, 1—t
and we obtain, by using again (Cy) and (Ig),

| Levaiar < 504y 4anW
Wi
By°
+— L.(x,Vu.(z))dx + | L.(x,Vu(x))dx
a Wi Wi
t
+67J G <x, ——V ® (ue — u)) dx. (4.32)
w, 1—t
On the other hand, we have
1—1¢

t
V) ® (ue(o) = o) < | 19l b e

for Zn-a.a. x € W; < A. But lim._¢ |[ue —uf/ =) = 0 by 4.29), hence for eachi e {1,--- ¢}
there exists ; > 0 such that

<r

V) ® (u(0) ~ u(e)

for Zy-a.a. x € W; and all € €]0, ¢;] with » > 0 given by (I7). Consequently

J G <x, ! ; ® (ue — u)) dr < f sup G(x,§)dx (4.33)
Wi 1-t¢ W [él<r
forall € €]0,g,] with &, = min{e; : i € {1,--- , ¢}}. Moreover, we have:

LLE(x,tVua)d (1+Sup5L/()) L (2, Vuo)dz + sup 82 (1 Laa(x)da:; (4.34)

e’>0 e'>0

JALE(:U,tVu)d (1+Sup5L/()> L (. Vu)de + sup 3 (1) JAaE(x)dx. (4.35)

AWt e'>0 mW+ e'>0

Taking (C3) and (4.33) into account and substituting (4.32), (4.34)) and (4.35) into (4.31) and

then averaging these mequahtles it follows that for every ¢ > 1 and every € E]O 4], there exists
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ieq € {1, -, q} such that

Fo(tw=1, A) < (1 + sup 6, (t)) I-(uz, A) + sup 677 (t)f a-(z)dx
€ £ A

e'>0 e'>0

% [(1 + sup ol (t)) T, A) + sup 83 (1) L aa@)dm]

g>0 ° e'>0

+€ f sup G(x,&)dr + S (us, A) + F(u, A)
q A |€|<r
with C' = max {#(1 + v + %) + 1, %Q} where §, supj <, G(2,§)dx < oo by (I7). Moreover,

by (Cy) we have 7. (u, A) < B(|A| + €(u, A)), and so lim. o 7 (u, A) < o by #.26). Thus,
letting ¢ — 0 and ¢ — o0 and using (4.28)), we get

lim F%Je(twim, A) < <1 + sup 07° (t)) I'(LP)- liII(l) I (u, A)+sup 07 (t) J ao(z)dz. (4.36)
q—0 — e>0 N £— e>0 A

On the other hand, taking (4.30) into account and using (4.27) we see that

lim lim |tw’s — tul|z» = 0.
q—o0 e—0

By diagonalization, there exists an increasing mapping ¢ — ¢. with g. — oo such that:

lim .7 (i, A) < Tim T 7. (fuiee, A):

e—0 q—00 e—0

lim ||IZ)€ - tU”Lp = O,
€

where @, := tw’* is such that . — tu € W) *(A; R™). Hence

F (tu, A) < Tim lim .7 (twi=s, A),

q—00 e—0
and (4.25)) follows from (4.36). W

Substep 3-2: a first estimate for F'. Substep 3-2 consists of proving the following lemma.

Lemma 4.7. Assume that p > N. If (Cy), (C2)—(C3) and (15)—(Ig) hold then for every (x,§) €
Q x M,

I (tu, Q,(x))

lim lim inf
p

t—1— p—0

cu— e € WP (Q,(2); ]Rm)} < F(z,¢).

Proof of Lemmad.7l Fix (z,£) € Q x M. Fix any n > 0. By (Cy), lim,_;- sup,., 67 (¢) < 0,
and so there exists ty €]0, 1| such that for every ¢ € [to, 1],
sup 07° (t) < 7. (4.37)

e>0

Fix any t € [to, 1[, any p > 0 and any u € WP(Q; R™) such that u — Ic € W, ?(Q,(x); R™).
Taking (4.37) into account, from Lemmawe see that

00,Qule)) < (L+ D)y 70 Q)+ | aoluy
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Hence, since ag € L*(;]0, o)),

~ ” T F(Lp>'hmj5( 7Qp< ))
j(t’—gp()) < (1L+1) = T +77J( rols)dy
P 1Y Qp (@)

[(LP)-lim - (u, Q,())

e—0
N
forall t € [to, 1], all p > 0 and all u € W?(Q; R™) such that u — I € Wy (Q,(x); R™). Passing
to the infimum and letting p — 0 and t — 1~ we deduce that
I (tu, Qpl))
o

< (1+41n) + nfao| L

t—1— p—0

lim mmf{ ru—le € Wol’p(Qp(a:); Rm)} < (14 n)F(x,8) + n]ao| L=,

and the result follows by letting n — 0. B
Substep 3-3: further estimates for F'. Substep 3-3 consists of proving the following lemma.

Lemma 4.8. Assume that p > N. If (Cy), (C2)—(C3) and (I15)—(Ig) hold then for every (x,€) €
Q x M,

Tim T T 927 L. (2, £€) < F(x, €) < T [m 97 L. (2, ),

t—1— p—0e—0 p—0e—0

where P L. : Q x M — [0, 0] is defined by (4.2).

Proof of Lemma[4.8| Fix (z,£) € Q x M.

First of all, since I'(LP)-lim,_ 7. (u, A) < lim._%(u, A) for all u € W'P(Q; R™) and all
A e 0(Q), we have
F(Lp)-lii%ja(u,Qp($)) — F(u,Q,(x))
—— < lim ———F—~
p =0 p
forall p > 0 and all uw € W'(Q;R™) such that u — I € W,*(Q,(x); R™). Passing to the

infimum and letting p — 0, we conclude that
_ (P(P)-1lim T (u, Qy(x)) B
lim inf EQOpN cu—le e WoP(Q,(x); R™) ¢ < lim lim #° L. (x,£),

p—0 p—0e—0

ie. F(z,€) < lim, o lim. o #?L.(x,¢).

Fix any ¢ €]0, 1[, any p > 0 and any u € W(Q; R™) such that u — Ic € W, "(Q,(z); R™). By
definition of J(tu, Q,(x)) there exists {u.}. = W?(€; R™) such that:

u. —tu e WyP(Q,(x); R™) forall ¢ > 0; (4.38)
li_r)%fg(ug,Qp(x)) = Fo(tu, Q,(x)). (4.39)

Asu — e € Wy P(Q,(x); R™) we have tu — l,e € Wy P(Q,(x); R™), and so, by (#.38),

Ue — e € Wol’p(Qp(x); R™) forall e > 0. (4.40)
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From (4.39) and (4.38)) we deduce that
h_mlnf {js(va %P(‘T» c— lt§ c W&,p(@p($)7Rm)} < j(tuv gp(x»
e—0 1% p
forall p > 0 and all w € W'(Q;R™) such that u — Ir € W,*(Q,(x); R™). Passing to the

infimum and letting p — 0 we deduce that

S (tu, Qy())
oN

p—0. 0 p—0

lim lim %7 L. (z,t€) < mmf{ tu—lee Wol’p(Qp(x);Rm)} (4.41)

for all ¢t €]0, 1[. But, by (Cs) we have

dom (Mli_m%”Le(x, )) = dom (hm lim #°L.(x, )) = dom (@%’pG(I, )> =: G,
p—

—0:._0 p—0e—0

hence, by (Cy),
lim lim %7 L.(z,¢) < lim lim %7 L.(z,¢) for all ¢ € M,

p—0e—0 p—0 .0
and so
lur(l)hr%%”L (z,t€) < lim lim %7 L.(z, t€) for all ¢ €]0, 1[. (4.42)
p—0e— p—0:_0

Letting t — 17, from (4.41) and (4.42) it follows that

lim lim lim %7 L.(z,t£) < lim Minf{j(tu’—w cu—lg € Wol’p(Qp(x);Rm)} :

t—1— p—0e—0 t—1— p—0 p

and consequently lim,_, ;- mpﬂo lim._o %" L.(z,t€) < F(x,£) by using Lemma [ |
Substep 3-4: end of the proof. By (C3) and Lemma , Ly := mpﬂo lim._,o Z* L. is ru-usc.

Moreover, from (Cs) we see that
Loz = Go, forall z € Q,
where Ly , denotes the effective domain of Ly(z, -). Hence, by (Cy),
tLy,, < int(Lg ) for all z € Q and all ¢ €]0, 1],
and consequently, by using Theorem [2.13(b), for every (z,£) € Q x M,

Eo(x,g) = lim lim lim #”L_(z,7¢) = lim lim lim %7 L. (v, 7€). (4.43)
r1—- pP—0e—0 7—1— p—0e—0
Fix (z,£) € Q x M. From Lemma[f.8|we deduce that
F{l lirln @@%’)Le(x,tsf) < lir{1 F(z,s8) < hr{1 hm hm%”L (z, 8E). (4.44)
s—17 t—1— p—Ue— s—1— S— p—0e—0

By diagonalization, there exist increasing mappings ¢ +— s;, with s; — 1~ as t — 17, such that

lim lim hm HPL.(v,ts,£) < lim lim lim lim %7 L. (z, ts€).

t—1- p—0e—0 s—1—t—1— p—0e—0
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But, since ts; — 1~ ast — 1~ and by using (4.43)),

lim lim lim %7 L.(z,ts,¢) > lim lim lim %7 L.(z,ts,£)
t—1— p—0e—0 t—1— pP—0e—0

> lim lim lim #7L.(z, 7€)

r—1—- P—0e—0

= hm mm%pLa(xaT€)7

7—1— p—0e—0
hence

lim lim lim %7 L. (z, 7€) < lim F(z,s¢) < lim lim lim %7 L.(z, s§). (4.45)

7—1— p—0e—0 s—1~ s—17 p—0e—0

From (4.44) and (4.45)) we conclude that lim; ;- F(z,t£) = lim;_,;- M,HO lim._o %7 L.(z,t£),

1.e.

F(z,€) = lim lim lim #°L.(z, t£).

t—1— p—0e—0

We have thus established (4.22), which finishes the proof of Theorem [ |

4.2. Relaxation. Let G : Q2 xIM — [0, 0] be a Borel measurable function satistying (Co)—(C;)
and (I5)—(Ig) and let L : Q x M — [0, 0] be a Borel measurable such that:

(Ro) there exist a, B > 0 such that for every (z,£) € Q x M,
aG(z,§) < L(z,§) < B(1 + G(z,));

(Ry) L is ru-usc with a € L*(9;]0, 0]), i.e.

lim 69(t) <0
t—1—

with 6¢ : [0,1] —] — o0, 0] defined by

a L L(l’,tf)-L(l’,g)
OLll) =SSP = e (e E)

where L, denotes the effective domain of L(z, ).

Let 5 : WHP(Q; R™) x 6(Q) — [0, 0] be defined by

I (u, A) := JA L(z,Vu(x))dx

and let 7 : W'P(Q; R™) x O(2) — [0, 0] be the LP-lower semicontinuous envelope of .7, i.e.
for every u € WHP(Q; R™) and every A € O(1),
e—0

I (u, A) = F(Lp)—lir%J(u,A) = inf {li_mf(ug,A) cu. B u} .

Applying Theorem with {L_.}.~¢o = L and taking Remark into account, as a straight-
forward consequence, we obtain the following relaxation result.
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Corollary 4.9. Assume that p > N and (Ry)—(R;), (Co)—(Cy) and (I5)—(Ig) hold. Then, for every
Ae0O(Q),

J lim T 927 Lz, tVu(2))dz  if ue dom(E(-, A))
F(u, A) = { Jarmet

0 if u e WHP(Q; R™)\dom(Z (-, A)).

4.3. Homogenization. Let G : M — [0, 0] be a Borel measurable function (which does not
depend on x) satisfying (Cy), (I5)—(Is) and

(I77) 0 € int(G) where G denotes the effective domain of G.
Let L : RY x M — [0, o] be a Borel measurable function with the following properties:

(Ho) forevery £ € M, L(-,€) is 1-periodic, i.e. for every (z,2) € RN x Z~,

L(x + 2,§) = L(x,¢);
(Hy) there exist a, 8 > 0 such that for every (z,£) € Q x M,

aG(§) < L(z,§) < B(1+ G(¢));

(Hy) L is ru-usc with a 1-periodic function a € L{, .(RY;]0, «0]), i.e.

lim 6% () <0

t—1—

with §¢ : [0, 1] —] — o0, 0] defined by

a L L(J),té) — L(ZE,f)
OLl) = SUp SUP ) ¥ L(2,0)

where L, denotes the effective domain of L(z, -).

For each e > 0, let 7. : WP(Q; R™) x 6(€2) — [0, 0] be defined by

T A) = |

) L (g, Vu(x)) dx.

As a consequence of Theorem we obtain the following homogenization result (which is a
variant of [AHMZ 15|, Theorem 1.1]).
Corollary 4.10. Assume that p > N and (Hy)—(Hs), (Co), (I5)—(g) and (I:) hold. Then, for every
Ae0(Q),
J im Lyow (tVu(z))dr  if u € dom(Z(-, A))
?(U,7 A) _ At—>1
0 ifu e WHP(Q; R™)\dom(& (-, A))
with Lyom : M — [0, 0] given by

Lpom(§) := inf inf {J[]o k[NL(y, Vu(y))dy : u—l¢ € WOLP(]O, ARE Rm)} )

kelN*



34 INTEGRAL REPRESENTATION OF UNBOUNDED FUNCTIONALS ON SOBOLEV SPACES

Proof of Corollary[4.10] It suffices to apply Theorem with {L.}.~o = {L(é, -)}€>0 and
G(z,&) = G(&). First of all, taking Remark iii) and Remarks ii)-(iii) into account,
from (Cy), (Is) and (I/) we see (C;) and (I5)—(Ig) are verified. On the other hand, it is clear
that by (H;) we have (Cg) and from (H;) and Lemma [2.24] we deduce that (C3) holds. So,
to apply Theorem we only need to show that (Cy) is satisfied. For each £ € MM, let & :

On(RN) — [0, 0] be defined by
Se(A) := inf {f L(z, Vu(x))dz : u — le € WP (A; ]Rm)} .
A

It is easily seen that S is subadditive and, by (Hy), ¢ is Z" -invariant. Moreover, from (H;)
we can assert that for every £ € G and every A € 0,(RY),

Sel4) < CelA
with Cg¢ €]0, oo[ given by C¢ := (1 + G(£)). By Theorem it follows that

1 %G9 _ (6 forall € € G and all @ € Cub(R®
EI—I’%W = hom(é-) ora 56 and a QE u (R )7
where Cub(RY) denotes the class of all open cubes in R"¥. Hence

S (L
lir%%’pl}a(x,ﬁ) = lim M = Lpom(&) forallz e Qand all (£ € G

-0 EQ/?@)}

which shows that (Cy) is verified, and the proof is complete. B
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