
HAL Id: hal-03270667
https://hal.science/hal-03270667

Submitted on 25 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distillation of Weighted Automata from Recurrent
Neural Networks using a Spectral Approach *

Rémi Eyraud, Stéphane Ayache

To cite this version:
Rémi Eyraud, Stéphane Ayache. Distillation of Weighted Automata from Recurrent Neural Networks
using a Spectral Approach *. Machine Learning, 2020, �10.1007/s10994-021-05948-1�. �hal-03270667�

https://hal.science/hal-03270667
https://hal.archives-ouvertes.fr


Distillation of Weighted Automata from Recurrent Neural

Networks using a Spectral Approach∗
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Stéphane Ayache

Aix Marseille Univ, Universite de Toulon, CNRS, LIS, Marseille, France

September 29, 2020

Abstract

This paper is an attempt to bridge the gap between deep learning and gram-
matical inference. Indeed, it provides an algorithm to extract a (stochastic) formal
language from any recurrent neural network trained for language modelling. In de-
tail, the algorithm uses the already trained network as an oracle – and thus does
not require the access to the inner representation of the black-box – and applies a
spectral approach to infer a weighted automaton.

As weighted automata compute linear functions, they are computationally more
efficient than neural networks and thus the nature of the approach is the one of
knowledge distillation. We detail experiments on 62 data sets (both synthetic and
from real-world applications) that allow an in-depth study of the abilities of the
proposed algorithm. The results show the WA we extract are good approximations
of the RNN, validating the approach. Moreover, we show how the process provides
interesting insights toward the behavior of RNN learned on data, enlarging the scope
of this work to the one of explainability of deep learning models.

Keywords: Weighted Automata, Recurrent Neural Network, Spectral Extraction,
Grammatical Inference, Explainability

1 Introduction

In his founding paper, Kleene [1956] studies the expressive power of the ancestors of
our current neural networks, namely the nerve nets of McCulloch and Pitts [1943]. To

∗This paper is the authors’ version of an article to be published at the Machine Learning Journal.
This work is supported in part by the ANR TAUDoS project.
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do so, he introduces two computational models that are now at the core of theoretical
computer science: rational expressions and finite state automata. However, despite of
this common origin, the fields of theoretical computer science and of deep learning look
nowadays almost completely disjoint: the type of mathematics used, the pursued goals,
and the followed research paths are rarely the same.

The context of the work presented in this article lies exactly within the frontier of
these two fields and is thus an attempt to bridge this gap: it proposes a new way to link
finite state machines and deep neural networks for sequential data.

When this kind of data is under consideration, deep learning approaches often rely
on the use of Recurrent Neural Network (RNN). Indeed, these models are known to
obtain state of the art learning results in various practical tasks, including speech pro-
cessing [Graves et al., 2013], automatic natural language translation [Cho et al., 2014],
or caption generation [Xu et al., 2015].

While a wide number of different RNN types exists [Lipton, 2015, Salehinejad et al.,
2018], they are all relying on the same mechanism: elements of the sequence are taken
care of one at a time; for each element an output is computed; this output depends on
the current element and of the part of the sequence seen so far. The memory mechanism
used to remember the previously seen part is often based on the values outputted by the
recurrent layer(s) on the previous element: this is usually a vector in a latent space that
can be understood as the state of the network while dealing with the current element.
The current output is thus computed using the current input and the value of the state-
vector, making RNN de facto state machines. Their state space is infinite as it is a subset
of Rn, with n being an integer fixed by the architecture of the network (it corresponds
usually to the size of the recurrent layer).

Despite their impressive learning ability in practice, RNN suffer from two main draw-
backs. The first one is usually called the black-box problem: the process allowing a RNN
to take a decision or to deal with a given task is not understandable by human beings.
The computational use of a large amount of parameters and the combination of non-
linear functions forbid the interpretation of its behavior. In other words, though the
learning phase is likely to provide a trustworthy model, it brings no human knowledge
about the problem and its resolution. Worst, in case of failure, no feedback can be
inferred to provide ways to tackle the issue. One has thus to accept to blindly follow an
opaque model...

One usual path followed to tackle this issue is called local interpretability [Guidotti
et al., 2018]. In this line of work, one aims at explaining how a neural network takes a
decision on a particular datum. This usually relies on finding clues linking the decision
to a particular part of the input [Ribeiro et al., 2016]. For RNN, this could take for
instance the form of highlighting the importance of each elements of the sequence based
on its importance to the model’s prediction [Li et al., 2016, Wallace et al., 2018].

But this approach is limited and it does not tackle the second drawback of RNN,
that is, their computational cost. If it is nowadays admitted that a learning procedure
could take hours or even days on state of the art computer grids, the use of the learned
model should be computationally efficient. However, RNN may not have this property:
their number of parameters grows quickly with their size and they are computing a
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composition of non-linear functions using these parameters. A consequence is for instance
the wide use of cloud computing for cell phone applications requiring RNN [Chung et al.,
2017], which at the same time forbids users with no or poor data connection to use them
and is an ecological non-sense, in contradiction with green computing goals [Harmon
and Auseklis, 2009].

A way to overcome these two drawbacks, that are actually common to most deep
artificial neural networks, is to achieve a (knowledge) distillation [Hinton et al., 2015,
Furlanello et al., 2018], a process closely related to variational approximation [Metropolis
and Ulam, 1949]. In this approach, a (deep) neural network is first learned, while in
a second step a simpler and less computationally costly model is extracted from the
network. A well-known example of such procedure is the distillation of decision trees
from usual feed-forward neural networks [Hayashi and Nakai, 1990, Craven and Shavlik,
1995, Schmitz et al., 1999, Frosst and Hinton, 2017].

Hinton et al. [2015] have introduced the term distillation as the task of providing
computationally efficient models by transferring knowledge from a complex architecture.
This line of works usually focus on a teacher-student paradigm where a large ”teacher”
network guides the learning of a smaller ”student” model. The knowledge transfer is
typically achieved using a loss that aims at aligning outputs of the student with the ones
of the teacher.

The models obtained by distillation usually enjoy one or both of two interesting fea-
tures: they provide an easier global interpretation of the decision process while requiring
less computational power. This constitutes the main motivation for the present article
that aims at distilling finite state machines, namely Weighted Automata (WA), from
already trained RNN. These models have been extensively studied (see Droste et al.
[2009] for an overview), require only linear computations, and benefit from a graphical
representation.

Our approach, whose preliminary details have been published in the proceedings of
the International Conference on Grammatical Inference [Ayache et al., 2018], relies on
an adaptation of the spectral learning algorithm for WA [Balle et al., 2014]. While this
approach requires a data set as input, our algorithm works from a trained RNN and uses
it as an oracle, querying it well chosen sequences to get the value the network attributes
to them. It then infers the automaton from a mathematical object called the Hankel
matrix, storing the result of these queries.

The novelty of our distillation algorithm is mainly due to two factors: it does not
require learning data and it does not need to access the inside of the RNN. This last point
makes it adapted to work for any architecture, any type of cells, and even for black-boxes
that are not RNN, providing that they are computing a function on sequential data.

This article firstly includes a survey on methods to distill finite state machines from
RNN (Section 2). After carefully introducing notations and defining main notions in
Section 3, we detail our approach in Section 4. The experimental framework is given
in Section 5 and the results of the experiments in Section 6. Section 7 concludes this
article.
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2 Scientific context

In this section, we detail the main works that aim to bridge the gap between RNN and
the models used in classical computer science, those of the formal language theory.

Though more details are given in Section 3, we need first to recall the formalization
of the general behaviour of RNN: at time-step t, that is, on the tth element on the input
sequence, the output of the recurrent layer(s) is given by:

ht = R(xt, ht−1)

where xt is the tth element of the sequence, and R the recurrent or update function. As
already stated, the vector ht is the value of the state of the RNN after seeing the tth

element.

2.1 Relation of RNN classes to other computational models

When the expressive power of RNN is under consideration, one usually refers to the work
of Siegelmann and Sontag [1992, 1994]: it shows that Simple Recurrent Neural Networks
(SRNN) [Elman, 1990] are Turing complete, that is, that any function computable using
a Turing machine can be computed using a SRNN. These networks deserve their name:
the update function for the hidden state correspond to applying an activation function
f to the weighted sum of the previous state and the current input:

ht = f(Wxt + Uht−1 + b)

where W and U are weights matrices, and b is a scalar.
As impressive as this result might look, it is of little help in practice: the proof

requires to have rational weights of infinite precision, an unbounded computation time,
and relies on a mechanism allowing the network to ”think” before computing an output.
This is far from corresponding to the networks used nowadays. In addition, not all re-
current neural networks can be learned using a gradient descent algorithm, the approach
currently used for this task. However, few papers have tackled the more practical ques-
tion of the characterization of the classes of learnable finite precision and time neural
nets.

One exception is the work of Rabusseau et al. [2019] where the authors show an
equivalence between Weighted Automata (WA) (detailed in Section 3.3) and linear sec-
ond order RNN. These models are defined as follow:

ht = f(T · xt · ht−1)

where T is a tensor of order 3.
The obtained result also asserts that the number of states in the minimal WA computing
a given function is exactly the number of neurons in the hidden layer of the RNN for
the same function, adding a structural equivalence to the expressivity one. In addition,
the paper shows how a learning algorithm for WA can be adapted to this type of RNN,
keeping its proven learning capacity.
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Another recent exception is the work of Weiss et al. [2018b] that compares different
recurrent network architectures. It empirically shows that finite precision SRNN and
Gated Recurrent Units (GRU) [Cho et al., 2014] cannot compute non-regular recognizers,
while Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] can be
trained to recognize some context-free and even some context-sensitive dependencies.
The paper also proposes a connection between LSTM and a simplified version of counter
automata [Hopcroft and Ullman, 1979].

Following this work, Merrill [2019] focuses on the kinds of computation that real-
time, bounded-precision neural networks can perform by relating them to different types
of automata. In this theoretical work, different types of RNN (and CNN) are studied in
a framework the author called asymptotic convergence: their expressiveness is consid-
ered at point-wise convergence [Rudin, 1976]. In this context, the space state of RNN
tends to be discrete and the following results can be proven: LSTM behave similarly
to counter machines; the class of SRNN-acceptable and GRU-acceptable languages is
exactly the regular languages. Empirical studies partially confirm these results, though
some experiments show a clear limit to the asymptotic framework by contradicting some
of the obtained theoretical results. A recent direct continuation of this work [Merrill
et al., 2020] renames the framework into saturated RNN study, adds to state expres-
siveness the notion of language expressiveness1, and propose a hierarchy based on this
elements covering a large amount of RNN classes.

Adopting a different research path, Avcu et al. [2017] investigate the learning abil-
ity of RNN on different sub-regular classes of languages: their experiments show that
long term dependencies are not always learned by RNN, even by gated formalism like
LSTM. Mahalunkar and Kelleher [2019] recently continue this line of work and confirm
its conclusions on large benchmarks.

Other approaches have been proposed for this goal of studying RNN in relation
to other computational models. For instance, it is worth to cite the work of Chen
et al. [2017]. Though it does not link RNN to another computational model per se, it
aims at studying single-layer, ReLU-activation, rational-weight RNN using usual formal
language approaches. It concludes that classical properties of computational models,
such as consistency, equivalence, and minimization, are not decidable for this type of
RNN, while these problems are known to be tractable for models like WA.

Finally, in a recent article, Marzouk and de la Higuera [2020] adopt also the classical
approach of theoretical computer science to provide insights on the link between RNN
and several classes of stochastic finite state machines. They show in particular that the
equivalence problem of classic classes of finite state machines and weighted first-order
RNN is not decidable in general. They also show how the problem becomes decidable
when restricting the study to particular (and reasonable) RNN sub-classes, though its
complexity remains intractable (NP-hard).

1While state expressiveness focuses on the variability that can be obtained within the latent space of
a type of RNN, language expressivity deals with the languages potentially recognizable from this vector
when using different functions that map it to a Boolean.
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2.2 Distillation of binary classifiers on sequential data

First ideas for knowledge distillation from RNN concentrate on binary classifiers, some-
time called RNN-acceptors. Indeed, early works train a RNN on data coming from a
Deterministic Finite State Automaton (DFA) and then propose an algorithm to extract
a DFA from the RNN. As DFA are language models, the output of the learned RNN
consist of 2 possible values: +1 if the complete input sequence is in the language, −1
(or 0) otherwise.

Though first attempts consist in feeding a RNN with training data coming from a
DFA and then using a test set to determine if it learned correctly (see for instance the
work of Cleeremans et al. [1989] and Watrous and Kuhn [1992]), some of these works
already focus on distilling a DFA from RNN.

To our knowledge, the first attempt at this task is the work of Giles et al. [1992]
where the authors use a quantization algorithm on the state space of second order RNN.
This approach tries to partition the RNN state space by dividing each dimension into
equal intervals. If this was tractable with the RNN used in the 90’s, it clearly is not
with today networks, given the explosion of the dimension of the internal state.

Another idea is to use a clustering algorithm on the state space of RNN. Though
Cleeremans et al. [1989] are already using hierarchical clustering to verify that the struc-
ture of the RNN state space corresponds to the one of the target DFA, distillation of
DFA using that approach is first introduced by Giles et al. [1992] and enjoys many re-
finements (see for instance the work of Manolios and Fanelli [1994], Omlin and Giles
[1996], or Cechin et al. [2003]). As in the previous approach, data is fed to a RNN
already trained on data coming from a DFA and the vector values obtained all along
the different input sequences is stored. Then a clustering algorithm, like the k-means
one [Steinhaus, 1957], is used on these vectors to get k clusters, each one correspond-
ing to a state. The transitions between states are then obtained by parsing selected
sequences into the RNN to get the cluster the resulting vector belongs to.
These works are the starting point of numerous refinements, most of which are detailed in
the survey of Jacobsson [2005] and empirically compared on different RNN architectures
in a recent paper by Wang et al. [2017].

Weiss et al. [2018a] recently open a new approach for the distillation of DFA from
RNN: they adapt the L* algorithm from Angluin [1987] so that the RNN plays the role
of the oracle. The algorithm first completes a table whose rows correspond to prefixes
and columns to suffixes by querying the RNN to know which sequence made of one given
prefix and one given suffix is recognized by the RNN. Then a DFA is inferred from the
table and the algorithm has to decide whether this DFA is equivalent to the RNN, a
problem recently shown to be undecidable [Marzouk and de la Higuera, 2020]. While
in the initial theoretical framework this step is straightforward, it requires carefully
defined heuristics when distilling from a RNN: the authors propose an iterative process
that parse at the same time the distilled DFA and another one obtained by partitioning
the RNN state space using SVM. The latter is refined recursively until one can conclude
the RNN and the DFA are equivalent, or a sequence on which the distilled DFA and
the RNN disagree is obtained. If this last event occurs, the process continues since the
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obtained counter example allows modifications of the table and thus the distillation of
a better DFA. Their experiments show that their algorithm distills in an efficient way
smaller and more accurate DFA than previous methods, allowing a better understanding
of the behaviour of the RNN.

To be complete on the subject, one should cite the work of Wang et al. [2019a]
where the authors extract DFA from different types of RNN in order to find adversarial
examples. Their experiments show that such examples can be exhibited for almost all
architectures, the type of examples challenging the robustness depending on the type of
RNN considered.

2.3 Distillation of estimators

While of great interest, distillation of DFA from neural networks suffers from one im-
portant drawback: it does not correspond to the practical use of RNN. Indeed, these
models are rarely trained for binary classification. While other practical frameworks
exist (see for instance the work of Cho et al. [2014]), RNN are mainly trained for lan-
guage modeling, a setting in which the models are trained to guess the probability of
each potential symbol to be the next in the sequence (a particular symbol often marks
the end of sequence). After each new input symbol xt, these Language Modelling RNN
(LM-RNN) thus output a vector of real values, each value corresponding to the estimated
probability of a given symbol to be the following one in the sequence.

As far as we know, first attempts at such a distillation process take place in the
context of speech recognition, where having computationally efficient model is critical.
For instance, the work of Deoras et al. [2011] proposes to sample a LM-RNN and then
infers a n-gram from the sampled sequences. Experiments show better results than just
inferring n-gram from training sample of usual NLP benchmarks.

A second approach, still in the context of early phases of speech recognition, is the
work of Lecorvé and Motĺıcek [2012]. Their algorithm aims at distilling Weighted Au-
tomata from LM-RNN: they use the k-means algorithm to cluster vectors that consist
of the concatenation of vectors from the state space of the network and the last sym-
bol seen. Their approach refines iteratively this discretisation in a greedy manner and
massively uses domain specific heuristics to avoid the explosion of the size of the dis-
tilled WA and to allow back-tracking. Experiments show globally better results than
the previously cited approach using n-gram.

In a recent article, Okudono et al. [2019] extended the work on DFA of Weiss et al.
[2018a] to WA, focusing on RNN assigning a single real value to sequences. Instead of
having a binary table, they store the weights of the sequence made of the concatenation
of the prefix defining the row and the suffix of the corresponding column. To complete
the table, they replace the idea of distinct row values by the notion of co-linearity. Then,
using Balle and Mohri [2015] algorithm, they distill a WA and, finally, need to check
its (approximate) equivalence with the RNN. To achieve this last goal, they open the
black-box and try to iteratively learn a regression function from the observed states of
the RNN to WA configurations, that is, the real value vectors one can obtain along
the parsing of a sequence into a WA (see Section 3.3 for details). If they exhibit such
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function, then the WA and RNN are considered equivalent, up to a predefined threshold.
If not, the process gives them a counter example, and the algorithm continues in the
same way than in the DFA distillation case.

Finally, Weiss et al. [2019] have also recently extended their approach to distill de-
terministic weighted automata from LM-RNN. Their key ideas are to use conditional
probabilities to fill the table and a tolerance hyper-parameter to distinguished the states
from the table, as co-linearity is a too strong requirement, especially in the presence of
noise. Reported empirical results are promising though the method requires some heuris-
tics to be run in reasonable time and the obtained automata can consist of thousands of
states.

3 Preliminaries

3.1 Elements of language theory

In theoretical computer science, a finite set of symbols is called an alphabet, usually
denoted by the Greek letter Σ. Language theory mainly deals with finite sequences on
an alphabet that are called strings and are usually denoted by the letters w, v, or u. We
denote the set of all possible strings over Σ by Σ∗. For instance, the alphabet can be
the ASCII characters, the 4 nucleobases of DNA, Part-of-Speech tags or lemmas from
Natural Language Processing, or even a set of symbols obtained by the discretization of
a time series [Dimitrova et al., 2010].

Throughout the paper, we will use other notions from language theory: the length of
a string w is the number of symbols of the sequence (denoted |w|); the string of length
zero is denoted λ; given 2 strings u and v we note uv their concatenation; if a string w
is the concatenation of strings u and v, w = uv, we say that u is a prefix of w and that
v is a suffix of w. Given a set of strings S, we denote pref(S) the set of all the prefixes
of the elements of S.

3.2 Functions on sequences

In this article we consider functions that assign real values to strings: f : Σ∗ → R.
These functions are known under the name of series [Sakarovitch, 2009]. In particular,
probability distributions over strings are such functions. Each of these functions is
associated with a specific object that has been proven to be extremely useful:

Definition 1 (Hankel Matrix [Berstel and Reutenauer, 1988]) Let f be a series
over Σ∗. The Hankel matrix of f is a bi-infinite matrix H ∈ RΣ∗×Σ∗

whose entries are
defined as H(u, v) = f(uv), ∀u, v ∈ Σ∗. Rows are thus indexed by prefixes and columns
by suffixes.

For obvious reasons, only finite sub-blocks of Hankel matrices are of interest. An
easy way to define such sub-blocks is by using a basis B = (P,S), where P,S ⊆ Σ∗. If
we note p = |P| and s = |S|, the sub-block of H defined by B is the matrix HB ∈ Rp×s
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with HB(u, v) = H(u, v) for any u ∈ P and v ∈ S. We may write H if the basis B is
arbitrary or obvious from the context.

3.3 Weighted Automata

The following definitions are adapted from Mohri [2009] and Balle et al. [2014]:

Definition 2 (Weighted automaton) A weighted automaton (WA) is a tuple
〈Σ, Q, T , γ, ρ〉 such that:

• Σ is a finite alphabet;

• Q is a finite set of states;

• I ⊆ Q is the set of initial states;

• T : Q× Σ×Q→ R is the transition function;

• γ : Q→ R is an initial weight function;

• ρ : Q→ R is a final weight function.

A transition is usually denoted (q1, σ, p, q2) instead of T (q1, σ, q2) = p. We say that two
transitions t1 = (q1, σ1, p1, q2) and t2 = (q3, σ2, p2, q4) are consecutive if q2 = q3. A path
π is an element of T ∗ made of consecutive transitions. We denote by o[π] its origin and
by d[π] its destination. The weight of a path is defined by µ(π) = γ(o[π])× ω × ρ(d[π])
where ω is the multiplication of the weights of the constitutive transitions of π. We say
that a path (q0, σ1, p1, q1) . . . (qn−1, σn, pn, qn) reads a string w if w = σ1 . . . σn.

The weight of a string w, that is, the real value assigned by the WA to w, is the
sum of the weights of the paths that read w. A weighted automaton assigns weights to
strings, that is, it maps each string of Σ∗ to a real value. The set of functions computable
by a WA is called the rational series.

WA admit an equivalent representation using linear algebra:

Definition 3 (Linear representation [Denis and Esposito, 2008, Balle et al., 2014])
A linear representation of a WA A is a triplet 〈α0, (Mσ)σ∈Σ, α∞〉 where

• the vector α0 provides the initial weights (i.e. the values of the function γ for each
state),

• the vector α∞ is the terminal weights (i.e. the values of function ρ for each state),

• each matrix Mσ corresponds to the σ-labeled transition weights (Mσ(q1, q2) = p⇐⇒
T (q1, σ, q2) = p).

The dimension of each element is the number of states of the automaton.
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Figure 1: A WA in its graphical form and its equivalent linear representation.

Figure 1 shows the same WA using the two representations. In what follows, we will
consider that WA are defined in terms of linear representations, unless specified other-
wise.

To compute the weight that a WA A assigns to a string w = σ1σ2 . . . σn us-
ing a linear representation, it suffices to compute the product A(w) = α>0 Mwα∞ =
α>0 Mσ1Mσ2 . . .Mσnα∞.

This can be interpreted as a projection into Rr, where r is the number of states of
A, followed by an inner product [Rabusseau et al., 2019]. Indeed, α0 = α>0 is a vector
that corresponds to the initial projection; each of the following steps computes a new
vector αi in the same space, moving from one vector to the next one by computing the
product with the corresponding symbol matrix (αi = αi−1Mσi); the final projection is
αn = α>0 Mw; the output of the WA on w is given by the inner product 〈αn, α∞〉.

αi is sometime referred to the WA configuration after seeing the prefix σ1 . . . σi. It is
a vector of the latent state space of WA since the output of the models depends of this
vector and the following symbols, in a standpoint analogue to the one of RNN. This is
of crucial importance to understand WA: their state space is potentially infinite as it is
a part of Rr. It also distinguishes these models from classically used others, like DFA –
whose state space is discrete finite – and in some sense Hidden Markov Models (HMM)
– which model distributions over a discrete finite set of states.

If a WA computes a probability distribution over Σ∗, it is called a stochastic WA. In
this case, it can easily be used to compute the probability of each symbol to be the next
one of a given prefix [Balle et al., 2014]: the probability of σ being the next symbol of
the prefix w is given by

α>0 MwMσα̃∞ = α|w|Mσα̃∞

where α̃∞ = (Id− (
∑

σ∈ΣMσ))−1α∞, with Id the identity matrix.

The following theorem is at the core of the spectral learning of WA (introduced
independently by Hsu et al. [2009] and Bailly et al. [2009]) and of our approach (described
in Section 4):

Theorem 1 ([Carlyle and Paz, 1971, Flies, 1974]) A function f : Σ∗ → R can be
defined by a WA if and only if the rank of its Hankel matrix is finite. In that case this
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rank is equal to the minimal number of states of any WA computing f .

3.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are artificial neural networks designed to handle
sequential data. To do so, the RNN we consider incorporates an internal state that is
used as memory to take into account the influence of previous elements of the sequence
when computing the output for the current one.

Two type of architecture units are mainly used: the widely studied Long Short Term
Memory (LSTM) [Hochreiter and Schmidhuber, 1997] and the recent Gated Recurrent
Unit (GRU) [Cho et al., 2014]. In both cases, these models realize a non-linear projection
of the seen prefix into Rd, where d is the number of neurons on the penultimate layer:
this vector is usually called latent representation of the part of the sequence seen so far.
The last, usually dense, layer — several layers can potentially be used — specializes the
RNN to its targeted task from this final latent layer.

A RNN is often trained to perform the next symbol prediction task2: given a prefix
of a sequence, it outputs the probabilities for each symbol to be the next symbol of the
sequence (a special symbol denoted o [resp. n] is added to mark the start [resp. the
end] of a sequence). Outputting the final symbol means that the input sequence is not
a prefix of a longer sequence but instead a complete sequence. Notice that it is easy to
use such RNN to compute the probability given to a string w = σ1σ2 . . . σn: one only
needs to compute

P (w) = P (o)P (σ1|o)P (σ2|o σ1) . . . P (n|o σ1σ2 . . . σn)

4 Algorithm

In this section, we describe our approach: from an already trained LM-RNN, we fill a
finite part of the Hankel matrix, then use a spectral approach to obtain a WA from the
matrix. The following subsections detail the different steps of our proposition

4.1 From Hankel to WA

The proof of Theorem 1 is constructive: it provides a way to generate a WA from its
Hankel matrix H. Moreover, the construction can be used on particular finite sub-blocks
of this matrix: the ones defined by a complete and prefix-closed basis. Formally, a basis
B = (P,S) is prefix-closed iff for all w ∈ P, all prefixes of w are also elements of P; B is
complete if the rank of the sub-block HB is equal to the rank of H.

Explicitly, from such sub-block HB of H of rank r, one can compute a minimal WA
using a rank factorization PS = HB, with P ∈ Rp×r, S ∈ Rr×s. Let us denote:

• Hσ the sub-block defined over B by Hσ(u, v) = H(uσ, v),

2This task is often called language modelling and the corresponding networks are denoted LM-RNN.
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• hP,λ the p-dimensional vector with coordinates hP,λ(u) = H(u, λ) (hP,λ is the first
column of HB if suffixes are given in lexicographic order),

• hλ,S the s-dimensional vector with coordinates hλ,S(v) = H(λ, v) (hλ,S is first line
of HB if prefixes are sorted in lexicographic order).

The WA A = 〈α0, (Mσ)σ∈Σ, α∞〉, with:

α>0 = h>λ,SS
+, α∞ = P+hP,λ, and, for all σ ∈ Σ, Mσ = P+HσS

+,

is a minimal WA3 whose Hankel matrix is exactly the initial one [Balle et al., 2014].
This procedure is the core of the theoretically founded spectral learning algo-

rithm [Bailly et al., 2009, Hsu et al., 2009, Balle et al., 2014], where the content of
the sub-blocks is estimated by counting the occurrences of strings in a learning sample.
Contrary to that, the work presented here uses an already trained RNN to fill HB and
Hσ on a carefully selected basis B.

4.2 Proposed Algorithm

Our algorithm is presented in synthetic form in Algorithm 1. It can be broken down
into three steps: from a LM-RNN model trained on some data, denoted M, we first
build a basis B; second, we fill the required sub-blocks HB and (Hσ)σ∈Σ with the values
computed by the initial RNN M; and third, we extract a WA from the Hankel matrix
sub-blocks by low-rank factorisation of HB.

4.2.1 Generating basis

Choosing the right basis B = (P,S) to define the right sub-block is an important task
and different possibilities have been studied in the context of spectral learning [Bailly,
2011, Quattoni et al., 2017].

A first idea is to implement Generate Basis() by sampling from the uniform distri-
bution on symbols with a maximum length parameter. A second possibility, if the black
box is a generative device like LM-RNN, is to use it to build a basis, for instance by
recursively sampling a symbol from the next symbol distribution given by the network.

3As usual, N+ denotes the Moore-Penrose pseudo-inverse [Moore, 1920] of a matrix N .
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Though other ways of generating a basis can be designed, for instance by using
training data if available, the experiments presented in this paper concentrate on these
two approaches, in section 6.2.

Once a string is obtained, we add all its prefixes to P (to be prefix-closed) and all
its suffixes to S. The process is reiterated until |P| ≥ p. If needed, the set of suffixes is
then completed in the same way until |S| ≥ s.

4.2.2 Filling Hankel matrix

Once we have a basis B, the procedure Fill Hankels() uses the black box RNN to
compute the content of the sub-blocks HB and (Hσ)σ∈Σ: it queries each string made
of selected prefix and suffix to the black box and fill the corresponding cells in the
sub-blocks of the Hankel matrix with its answer. This procedure is the core step for
knowledge distillation in our algorithm, enabling the knowledge from RNN outputs to
be directly transferred into the Hankel matrix from which we can extract WA by spectral
extraction.

4.2.3 Spectral extraction

Finally, a rank factorization HB = PS for a certain rank parameter r, has to be obtained:
the function Spectral Extraction() performs a Singular Value Decomposition on HB and
truncates the result to obtain the needed rank factorization (see [Balle et al., 2014] for
details). It then generates a WA using the formulas described in Section 4.1. Section 6.5
elaborates on the top highest singular values and their relations to number of states of
WA.

5 Experimental framework

5.1 Data

When one wants to systematically studies an algorithm working on sequences, there does
not exist a wide number of benchmarks not specific to a particular field of application
and thus that does not require large and impacting pre-treatment (for instance, NLP
corpus require important and result influencing pre-processing steps, e.g., POS-tagging,
lemmatisation, etc.). As a consequence, researchers tend to compare their work using
well-known problems from the early times of machine learning, mostly the Reber’s gram-
mar [Reber, 1967] and the Tomita problems [Tomita, 1982] (see for instance the work of
Weiss et al. [2018a], Mozer et al. [2018], or Wang et al. [2019b] for recent examples of
uses of these data).

Though of great interest, these two sets of problems are too specific and neither large
nor covering enough to convincingly support claims about an algorithm only tested on
them. Fortunately, 2 benchmarks have been recently made available that allow an as
exhaustive as possible study of the type of algorithms we are interested in. Each of them
were made freely available in the context of on-line challenges : the PAutomaC [Verwer
et al., 2014] and the SPiCe [Balle et al., 2017] competitions.
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5.1.1 PAutomaC data

The first sets of data we experiment on are the ones of the competition PAutomaC whose
goal was to learn distributions from multi-sets of sequences of symbols of varying length.
The competition provides 48 artificial problems generated by randomly generated finite
state machines : Deterministic Probabilistic Finite Automata (DPFA), non-deterministic
Probabilistic Finite Automata (PFA), and Hidden Markov’s Models (HMM). Large range
of machine sizes, alphabet sizes, and sparsity indicators values are covered by the different
instances and the competition results proved it is covering a wide range of difficulty levels.

Though all of these models are strictly less expressive than stochastic WA [Denis and
Esposito, 2008], it is relevant to test our distillation procedure on this wide variety of
problems. Moreover, having access to the true target model gives an interesting point
of comparison with the extracted automaton.

For each of these 48 problems, we have access to a training set (20 000 or 100 000
sequences), that we only use to train the RNN.

5.1.2 SPiCe data

The SPiCe benchmark is made of 15 problems covering a large variety of contexts,
from various natural languages processing data to software engineering data, including
bioinformatics and well-chosen synthetic ones.

The aim of the competition was to learn a model from each of the available training
samples and then to propose a ranking of the top 5 next potential symbols to given
prefixes.

These test sets made of prefixes are not what we need for our task, since they do not
provide complete information on whole sequences. We thus split randomly the available
learning samples into a training and a test sample, keeping 20% for the test.

We also choose to not handle problem 11 of SPiCe, due to its large vocabulary (6 722
symbols) that would require long computation times for each of the parameters we want
to study.

5.2 RNN training

We base the architecture on the work of Shibata and Heinz [2017], who won the SPiCe
competition, itself inspired by Sutskever et al. [2014]. The architecture is quite simple:
it is composed of an initial embedding layer (with 3∗ |Σ| neurons), two GRU (or LSTM)
layers, one or two dense layers, followed by a final dense layer with softmax activation
composed of |Σ| + 1 neurons. The networks are trained using the back-propagation
through time algorithm [Rumelhart et al., 1986, Werbos, 1988] with the categorial cross-
entropy loss function [Rubinstein and Kroese, 2004] on the distribution over next symbols
for all prefixes.

Given this framework, we considered several hyper-parameters to tune. First, the
number of neurons in the recurrent layers and the following dense layer: we tested a
number of neurons between 30 and 400, the first following dense layer uses half of it, the
second dense layer is set as the size of the input embedding layer, or ignored. We also
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compared tanh and RELu activations. We trained our networks during 150 epochs. We
do witness expected over-fitting before this limit: after a phase in which the loss on a
validation set decreases, it starts to rise. This confirms that this number is adequate as
maximum iterations.

We finally selected one single configuration for each problem that scores the best
categorical cross-entropy on the validation set in average since we did not observe sig-
nificant variations among tested configurations. The results detailed below are obtained
from the following configuration: an initial embedding layer, then two GRU (or LSTM)
layers build with 400 neurons and tanh activations; followed by one hidden dense layer
with 200 neurons and RELu activations, before the final output layer. We trained models
using Adam optimizer for 150 epochs with batch size of 512, a learning rate of 0.001,
and defaults beta values.

The evaluation of this protocol shows good learning results but it is also clear that
better results could be obtained tuning the RNN on the chosen data independently for
each problem. We decide to not push to its limits this learning part since it is not central
in this work. Moreover, having RNN with various learning qualities is interesting from
the standpoint of the evaluation of the WA extraction: we expect the WA to be as good
— or, thus, as bad — as the RNN. We report in appendix the validation loss for each
RNN model.

5.3 Metrics

5.3.1 Evaluation samples

In order to not bias the evaluation by picking a particular type of data, we use two
evaluation sets to compute the different metrics chosen to evaluate the quality of the
WA extraction. STest is the test set from the competition: directly the one used for
PAutomaC, and the one coming from a random partitioning of the learning sample for
SPiCe. SRNN consists in generated sequences sampled using the learned RNN. Both
STest and SRNN contain 1 000 sequences.

This way we test the quality of our distillation process using the distribution of
initial learning task and the one of the RNN we are targeting. Notice that SRNN is more
relevant for our task: it contains sequences enjoying high probability in the model we are
distilling from. STest has this property only if the RNN achieves good learning results.

We evaluate the quality of the approximation obtained by the extraction using two
metrics.

5.3.2 Normalized Discounted Cumulative Gain

The second metrics is the Normalized Discounted Cumulative Gain (NDCG, used in
SPiCe). This metric is given by: for a prefix w of a sequence in an evaluation set,

NDCGn(w, σ̂1, ..., σ̂n) =

∑n
k=0

PRNN(σ̂k|w)
log(k+1)∑n

k=0
PRNN(σk|w)
log(k+1)
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where σk is the kth most likely next symbol of w following PRNN and σ̂k is the kth most
likely next symbol of w following PWA.

The NDCGn score of an extraction is the sum of NDCGn on each prefix of a sequence
in the evaluation set, normalized by the number of these prefixes in the test set. In our
experiment, we focus on NDCG5 scores: this value for n is the one used for the SPiCe
competition and it is actually the largest computable on all datasets, since the smallest
alphabet size is 4 (to which a symbol marking the end of a sequence is added).

5.3.3 Word Error Rate for Distillation

Word Error Rate (WER) is a classical quality measurement in the field of Natural
Language Processing. In its simplest and most used form, it is computed from a set
of sequences by counting on all prefixes the number of times the most probable next
symbol in the model is different to the actual next symbol in the sequence. This total
number is then divided by the total number of prefixes in order to have a value between
0 and 1, the closer to 0 the better.

Given that we have access to two evaluation samples (see Section 5.3.1), a simple
idea would be to compute the classical WER on these sets. However, in the context of
distillation we can design a different metric, inspired by WER, that will better suit the
evaluation of our goal.

The idea is to use the black-box as ground truth: instead of looking at the next
symbol in the dataset, one can compare the most probable next symbol in the distilled
model and the most probable one in the model from which the distillation occurred. We
call this metric Word Error Rate for Distillation (WER-D). Formally:

WER-DS(RNN,WA) =
1

|pref(S)|
∑

w∈pref(S)

1σ1(w)6=σ̂1(w)

where S is an evaluation set and, for any prefix w, σ1(w) is the most probable next
symbol in the RNN and σ̂1(w) the one in the WA.

WER-D is thus the frequency observed on a test set of the disagreement between
the two models on the next most probable symbol. Though this metric has not been
described in any article yet, as far as we know, it is the one used by Weiss et al. [2019],
as their available code shows.

5.4 Experimental setting

We describe here the protocol we followed to validate our method for RNN distillation.
We also detail the experiments we conducted and hyper-parameters we explored for WA
extraction.

5.4.1 Global procedure

We first trained RNN with the different architecture parameters detailed in previous
section on the 62 benchmark problems of the PAutomaC and SPiCe competitions. We
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then keep the best RNN in term of categorical cross-entropy for each problem and
consider it as the black-box of the problem.

We then extract WA from this RNN following the algorithm described in Section 4.
We test both already described approaches for basis generation (uniform distribution on
symbols and RNN sampling) with a wide range of parameter values:

• the size of the basis varies from 100 prefixes and suffixes up to 3 000,

• the rank for the Hankel matrix factorization is also taken between 1 and the full
rank of Hankel matrix (up to 3 000).

5.4.2 Hyper-parameters for extraction

We compare different hyper-parameter values for the extraction algorithm: size p and
s of the basis is varying between (100, 100) and (3000, 3000). We tested different rank
values from 1 to the number of prefixes. On Spice datasets, we considered all rank
values below 15 and 25 others logarithmically picked in the other possible values. On
PAutomaC datasets, we tested 20 ranks below 50 then 5 ranks logarithmically chosen
until the number of prefixes. We also compare two possible strategies for sampling the
basis to build the Hankel matrix, as discussed in section 4.2.1.

Some values of the size of the basis exceed what is reasonably computable on our
limited computation capacities for some datasets: few problems did not finished the
extraction with (3000, 3000) for basis size. However, as it is shown in Section 6, small
values already allow the extracted WA to be a great approximation of the RNN.

5.4.3 Implementation details

All experiments are conducted using the Scikit-SpLearn toolbox [Arrivault et al., 2017]
to handle WA and their extraction, and the PyTorch framework [Paszke et al., 2017]
for RNN learning and querying. A (simplified) version of our code can be find on first
author’s website.

6 Results

6.1 Overall quality extraction

This section globally summarizes experiments to assess the quality of extracted WA
on the 62 datasets from PAutomaC and SPiCe competitions. Figure 2 shows the best
obtained quality on SRNN through the various hyper-parameters and sampling strategies
we tested. It highlights that a large part of NDCG scores are higher than 0.9 while a
majority of WER-D scores are below 0.2. This shows clearly the great ability of our
algorithm to reproduce the behaviour of a LM-RNN.
In the following, we provide a finer analysis related to PAutomaC and SPiCe problems.
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Figure 2: Overall statistics on PAutomaC and SPiCe computed on SRNN

.

6.2 Basis generation

The impact of the basis for the quality of the task of WA extraction is of crucial interest.
We thus carefully study the difference between the two ways to generate the basis: by
sampling uniformly at random using a parameter for maximum length, and using the
RNN to be distilled.

Figure 3 shows the best values obtained for each chosen metric on the evaluation
datasets for the two methods. In this figure, each radius of a polar plot corresponds to
one problem whose corresponding number is given outside of the circle. It details only
the results on the difficult problems of the SPiCe competition: the average results on
the PAutomaC problems are summed up in Table 1. The difference on these datasets is
even more significant.

WER-D ↓ NDCG ↑
on STest on SRNN on STest on SRNN

random basis 0.334 0.336 0.851 0.848

RNN sampled basis 0.254 0.259 0.921 0.915

Table 1: Comparison of the average metric values on the PAutomaC problems.

Recalling that best possible NDCG is 1 while best possible WER-D is 0, these el-
ements indicate a clear trend: the generation of the prefixes and suffixes of the basis
based on sampling from RNN allows better WA to be extracted.
Therefore, unless it is specified differently, all the following results concern WA extracted
using a basis obtained by sampling the RNN.

6.3 Impact of the size of the basis

Figures 4 and 5 show the evolution of the NDCG and WER-D on the two evaluation
sets when the size of the basis varies, on the 48 PAutomaC benchmarks. A global trend
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Figure 3: Influence of the basis sampling method on the quality of the extraction for the
SPiCe problems.

tends to occur: the larger the size of the basis is, the better the extracted WA seems to
be.

This result is confirmed on SPiCe: all but one problems obtained the best quality
measures with the largest basis size our experimental setup allowed us to test.
Though it is worth to be verified, this observation is not surprising: having larger basis
means having access to more information about the RNN to distill, which is likely to be
useful for the process.

It is worth noticing that, if for most PAutomaC problems we managed to run ex-
periments up to 3000 times 3000 bases, it is not the case for SPiCe: the hardness of
these tasks, in particular the large size of the vocabulary, narrowed what was possible
on our (limited) computing server. Concretely, only 3 of the 14th experiments finished
with 3000×3000 basis (Problems 2, 3, and 9), while two of them did not even allowed a
1500×1500 to run till the end (Problems 6 and 13).

6.4 Comparison with n-grams

We compared the quality of our distilled WA with a classical baseline: n-gram [Shannon,
1948]. This knowingly powerful model requires a sample of data to be learned: for each
problem we randomly generate a multi-set of sequences using the corresponding trained
RNN until the sum of the lengths of these strings exceeds 10 millions. This dataset is
then used for training, with the window size of the model varying between 2 and 20.
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Figure 4: Best obtained metric values on the 24th first problems of PAutomaC by the
extraction using a basis sampled from the RNN. Each plot corresponds to one metric on
one evaluation sample.

Figure 6 show the comparison on the 2 evaluation sets, for the two metrics on the
PAutomaC problems. Globally, the two models seems to offer comparable quality: the
best distilled WA is doing slightly better than the n-gram on a majority of datasets,
while facing some difficulties on few of them (6 over 48).

We investigated these troublesome problems to see if the characteristics of the models
used to generate them can explain these lack of performance. We did not find any obvious
reasons: the 3 types of machines (DPFA, PFA, HMM) are present and the values of the
two sparsity parameters cover the whole range available. A common feature, though
shared by problems on which the distilled WA are doing great, is that the models that
generated these datasets have both a large alphabet and a big number of states. This
may indicate that the Hankel matrix is not large enough, that is, it is not complete:
increasing the number of prefixes and suffixes may allow better results.

Figure 7 shows the same curves for the more challenging problems of the SPiCe
competition. As already noticed by Weiss et al. [2019], the n-gram is a (very) strong
baseline on these datasets. On some problems our algorithm obtains close results but the
overall difference is notable, in particular when the size of the vocabulary is important.

6.5 Impact of the rank

Globally, in our experiments, the quality of the extracted WA quickly increases at first
when the rank grows, then, when a relatively small rank is reached, the quality decreases
and often stabilizes far from the optimum after a while. This behaviour is exemplifies
on some datasets in Figure 8 that shows the evolution of WER-D when the rank hyper-
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Figure 5: Best obtained metric values on the 24th last problems of PAutomaC

parameter increases (same plots for all the problems are given in Figures 9 and 10 in the
Appendix).

A first element of discussion is that the rank allowing the best result reinforces the
interest of our distillation procedure. Indeed, the number of parameters of a WA is
|Q|2|Σ| + 2|Q| where Q is the number of states, that is, the rank in our experiments,
and Σ the alphabet: with the best overall rank average being around 175, the average
number of parameters in the extracted WA is 30 625|Σ|+ 350 while the used RNN have
already 2 million parameters just for the recurrent part (the number of parameters of
the embedding layer is quadratic in the size of the alphabet and it is linear on |Σ| for
the final dense layer).

Investigating the reasons behind the relatively low-rank observation, we witness an
interesting behavior of the singular values of the Hankel matrix built from the RNN.
Their fast decrease, followed by a long plateau of very small values, indicates that the
matrix is almost enjoying a finite number of non null singular values (the singular values
for all problems are given in Figures 11 and 12 in the Appendix). Indeed, first values
are several order of magnitude larger than the following ones.

By computing the gradient of the singular values curves, and applying the same
chosen threshold on them, we automatically identify for each problem a number of
significant singular values4. By a slight abuse of language, we called this number the
Hankel rank. It is shown in orange in the previously introduced figures and its numerical
value.

An important observation is that the evaluation metrics at the Hankel ranks are close
to the optimum. The last two columns of Tables 2 and 4 of the Appendix provide the

4Though we witness small variations when the size of the bases increases, it is remarkably stable.
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Figure 6: Quality comparison between the best obtained results of n-grams and distilled
WA for the PAutomaC problems.

difference of the metrics at these ranks and at the ranks allowing the best results. This
shows that even when the best rank is larger than the Hankel rank – we do witness an
overall increase of these best ranks when the size of the basis grows – the improvement
is not significant.

This is of great interest for the understanding of the RNN behavior. Indeed, Theo-
rem 1 states that functions whose Hankel matrix is of finite rank, that is, with a finite
number of non null singular values, are exactly the ones computable by WA. Our dis-
covery thus tends to show that our trained RNN are computing distributions almost
corresponding to finite state machines, even on data that do not correspond to that kind
of models, like the ones of SPiCe.

On data sets knowingly generated by finite state machines, as in PAutomaC, our
study can be refined. Indeed, the green dots in the PAutomaC plot of Figures 8, 9, and
10, indicates the number of states of the original finite state machine. We obviously
do not aim to retrieve the exact amount of states since models used for generating the
PAutomaC data may require more states than WA to represent the same distribution5.
We however notice that our framework is remarkably able to get close to the correct
number of states.

5HMM and their expressively equivalent representations of PFA may required more states than WA
for the same distribution [Denis and Esposito, 2008]. DPFA are well-known to need more states than
PFA to represent the same stochastic language.
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Figure 7: Quality comparison between the best obtained results of n-grams and distilled
WA for the SPiCe problems.

Figure 8: Evolution of the quality in term of WER-D on SRNN with the value of the rank
hyper-parameter on some PAutomaC and SPiCe problems (basis size is 1000 prefixes
and suffixes).
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This provides important understandings both on the quality of the learned RNN –
as the number of significant singular values is close to the number of states of the target,
validating the quality of the learning phase – and of our distillation process – as the
quality of the extracted WA with Hankel rank states is almost always comparable to the
optimum.

Finally, as stated in different theoretical works summarized in Section 2, finite pre-
cision and time GRU RNN are expected to behave like finite state machines (at least
asymptotically), and our empirical conclusions tend to validate this point. This is why
we re-run our experiments using LSTM cells instead of GRU ones: we observed the
exact same behaviour despite the fact that the theoretical studies indicates a greater
expressivity power for this type of RNN. We think this finding is an important outcome
of our study.

7 Conclusion

This article presents a spectral approach to extract weighted automata from recurrent
neural networks already trained on a language modelling task. The proposed algorithm
uses the RNN as an oracle, querying it to know values it assigned to carefully selected
data, and then produces the automaton using a singular value decomposition of the
Hankel matrix, a mathematical object it uses to store the RNN answers. Importantly,
the algorithm does not require access to the inner representation of the networks: this
allows it to work on any type of black box that computes a real value from an input
sequence – like models used for sentiment analysis from text [Chaudhuri, 2019] – or that
can be straightforwardly used for this task – like language modelling RNN. This point
is an important advantage of the proposed method compared to existing ones.

Our experiments on 62 different datasets show the overall quality of the extraction
in the sense that the obtained WA represent good approximations of the distributions
of the RNN. This validates our distillation process: WA computing linear functions, our
algorithm provides linear, and thus computably efficient, models from non linear ones.
This is emphasized by the fact that even the small extracted WA are already acceptable
approximations, while requiring far less parameters.

Moreover, our process allows a deeper understanding of the underlying decision pro-
cess of the trained RNN: the quick decrease of the singular values of the Hankel matrices
indicates that these RNN are computing (approximations of) rational series, that is, their
behaviour is the one of a linear finite state machine. This peek into the internal and
opaque functioning of RNN allows to raise an fundamental question : to which extend
RNN trained on data are biased towards functions of the lowest level of the Chomsky
hierarchy?

Though interpretability of automata is well-established, partly but not entirely due
to the existence of a graphical representation (see Hammerschmidt et al. [2016] for a
detailed discussion), one can argue that the non-deterministic nature of our WA, and the
potential presence of negative weights, diminish the interest of the proposed work toward
explainability. If this critic is understandable, the observation of the quick decrease of
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the singular values reinforces the merit of our approach for that task. Moreover, WA
enjoy characteristics that RNN do not, as for instance the existence of a computable
distance between WA [Droste et al., 2009], the opportunity to efficiently decide their
equivalence [Tzeng, 1992], or the possibility to modify any WA such that it consists of a
deterministic tree-structured part as deep as one wants followed by a non-deterministic
part [Bailly, 2011]. These elements indicate clear paths for the continuation of the study
presented here.

This paper rises other questions that constitute potential interesting future works.
The first one is to take into account the observation on the size of the singular values
directly in a distillation algorithm. For instance, one can imaging that another, smaller
RNN can be designed from this information, following the framework of born again
neural networks [Furlanello et al., 2018].

Another interesting line of research is to extend this approach to multi-valued
weighted automata [Rabusseau et al., 2017]: these finite state machines can directly
be trained on a language modelling task or can be used for multi-task learning. Testing
whether this allows better distillation is an important question that should be answered.

Extending our study to other types of RNN is also something that is worth to be
mined. In particular, it would be interesting to know if second order RNN learned on data
exhibit the same behavior than the one observed here: as their linear version is equivalent
to WA [Rabusseau et al., 2019], the process would correspond to a linearization.
Verifying whether bi-directional RNN [Schuster et al., 1997] also share the finite state
flavour that we detect in this paper provides also an interesting future line of research.
Because of the works on learning context-free grammars [Clark and Eyraud, 2007, Clark
et al., 2010] and beyond context-free [Clark and Yoshinaka, 2014], we conjecture that
it would not be the case. Indeed, bi-directional RNN use information from both the
prefix and the suffix of a given element, which positions them within the spectrum of
distributional learning [Clark and Yoshinaka, 2016]. The work on spectral learning of
non finite state models [Bailly et al., 2013] would then be then a good starting point for
a distillation process for these networks.
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We want to thanks our former student Noé Goudian for developing the first version of
the code used for the experiments. We owe likewise a great debt of gratitude to Gail
Weiss for the long discussions, the code sharing, and the hours passed confronting our
results. We are also very grateful to Guillaume Rabusseau, François Denis, and Matthias
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Appendix

Tables 2 and 4 gives numerical detailed results of our experiments on PAutomaC and
SpiCe, respectively. For each metric, for each evaluation set, the tables give the best
value obtained by the spectral extraction with a RNN sampled basis and the n-gram
baseline. For the spectral extraction, corresponding best parameters are given as a pair:
the first value is the number of prefixes and suffixes of the basis, the second one is the
rank. The value between parenthesis for n-gram is the size of the window. To give an
idea of the quality of the trained RNN on each problem, the tables also provide their loss
on a validation set. The Table also gives the Hankel rank for each RNN for bases made
of 1 000 prefixes and suffixes (column HR). The difference between the best obtained
NDCG [resp. WER-D] by a WA and the NDCG [resp. WER-D] at the Hankel rank for
the corresponding basis size is given in column ∆NDCG [resp. ∆WER-D].
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NDCG ↑ WER-D ↓
STest SRNN STest SRNN RNN

Pb WA n-gram WA n-gram WA n-gram WA n-gram loss HR ∆NDCG ∆WER-D

1 0.945 (3000, 100) 0.9569 (4) 0.938 (3000, 100) 0.9587 (4) 0.24 (3000, 250) 0.1957 (4) 0.252 (3000, 100) 0.1952 (4) 0.008 15 0.063 0.181

2 0.947 (3000, 1000) 0.9444 (3) 0.948 (1500, 250) 0.9602 (3) 0.079 (3000, 1000) 0.0837 (3) 0.081 (1000, 24) 0.0695 (3) 0.007 13 0.021 0.017

3 0.991 (3000, 250) 0.9832 (6) 0.993 (3000, 250) 0.9824 (6) 0.103 (3000, 500) 0.2236 (6) 0.101 (3000, 250) 0.2343 (6) 0.006 18 0.018 0.092

4 1.0 (500, 100) 0.9579 (5) 1.0 (500, 100) 0.9584 (5) 0.178 (3000, 1000) 0.297 (5) 0.177 (1000, 100) 0.2987 (5) 0.005 13 0.001 0.003

5 1.0 (100, 39) 0.9827 (4) 1.0 (100, 42) 0.9824 (4) 0.229 (3000, 33) 0.2281 (9) 0.224 (1000, 18) 0.2255 (8) 0.003 10 0.001 0.015

6 0.998 (3000, 100) 0.9879 (6) 0.992 (3000, 250) 0.9882 (6) 0.097 (3000, 250) 0.0698 (6) 0.102 (3000, 250) 0.066 (6) 0.004 16 0.014 0.021

7 1.0 (500, 75) 0.9637 (3) 1.0 (1000, 250) 0.9622 (3) 0.126 (3000, 1000) 0.3078 (4) 0.116 (3000, 1000) 0.314 (4) 0.006 16 0.004 0.052

8 0.968 (3000, 250) 0.9543 (4) 0.953 (3000, 250) 0.9537 (4) 0.206 (3000, 250) 0.2106 (4) 0.226 (3000, 250) 0.2087 (4) 0.007 28 0.047 0.112

9 0.998 (1500, 250) 0.9899 (6) 1.0 (3000, 500) 0.9908 (6) 0.027 (1500, 250) 0.0261 (6) 0.024 (3000, 500) 0.0262 (6) 0.002 16 0.012 0.036

10 0.794 (3000, 100) 0.8955 (4) 0.744 (3000, 75) 0.899 (4) 0.49 (3000, 100) 0.3483 (4) 0.535 (3000, 75) 0.3479 (4) 0.007 20 0.114 0.15

11 0.692 (3000, 75) 0.8254 (3) 0.643 (3000, 75) 0.8381 (3) 0.612 (3000, 75) 0.4654 (3) 0.641 (3000, 100) 0.4586 (3) 0.008 21 0.178 0.221

12 0.995 (3000, 15) 0.9855 (4) 0.986 (1500, 48) 0.9852 (4) 0.145 (3000, 100) 0.0756 (3) 0.142 (3000, 75) 0.0757 (3) 0.005 15 0.011 0.025

13 0.997 (1500, 250) 0.9853 (8) 0.995 (1500, 250) 0.983 (7) 0.062 (3000, 500) 0.0791 (7) 0.072 (3000, 250) 0.0882 (7) 0.004 30 0.045 0.144

14 0.998 (3000, 75) 0.9583 (3) 0.997 (1500, 250) 0.9533 (3) 0.277 (3000, 500) 0.2371 (4) 0.255 (1000, 100) 0.2359 (4) 0.008 12 0.065 0.062

15 0.912 (3000, 45) 0.9393 (3) 0.886 (3000, 42) 0.9453 (3) 0.297 (3000, 42) 0.2044 (3) 0.312 (3000, 42) 0.1958 (3) 0.007 20 0.035 0.057

16 0.955 (3000, 75) 0.8905 (4) 0.932 (3000, 100) 0.8881 (4) 0.268 (3000, 250) 0.3546 (4) 0.29 (3000, 100) 0.3568 (4) 0.007 19 0.225 0.288

17 0.956 (3000, 100) 0.978 (3) 0.96 (3000, 75) 0.9794 (3) 0.146 (3000, 100) 0.1251 (3) 0.14 (3000, 75) 0.1108 (3) 0.006 22 0.021 0.049

18 0.999 (3000, 250) 0.9866 (4) 0.997 (1000, 75) 0.9868 (4) 0.084 (3000, 250) 0.0841 (3) 0.095 (1500, 42) 0.0823 (3) 0.005 23 0.107 0.0

19 0.938 (3000, 250) 0.9318 (5) 0.929 (3000, 250) 0.9314 (5) 0.19 (3000, 250) 0.1639 (5) 0.207 (3000, 250) 0.1697 (5) 0.005 12 0.201 0.35

20 0.974 (3000, 42) 0.9656 (3) 0.978 (3000, 39) 0.965 (3) 0.208 (3000, 42) 0.1902 (3) 0.208 (3000, 39) 0.1936 (3) 0.008 15 0.022 0.019

21 0.535 (3000, 100) 0.8772 (3) 0.569 (3000, 100) 0.8853 (3) 0.701 (3000, 100) 0.2965 (3) 0.675 (3000, 100) 0.2875 (3) 0.008 22 0.267 0.267

22 0.606 (1500, 75) 0.8985 (3) 0.606 (1500, 75) 0.9043 (3) 0.625 (1500, 39) 0.3029 (3) 0.627 (1500, 75) 0.3003 (3) 0.007 27 0.028 0.018

23 0.979 (3000, 250) 0.9475 (4) 0.982 (3000, 250) 0.9501 (4) 0.174 (3000, 250) 0.1409 (4) 0.169 (3000, 250) 0.1341 (4) 0.006 12 0.067 0.123

24 1.0 (100, 18) 0.9613 (5) 1.0 (100, 18) 0.9615 (5) 0.246 (500, 100) 0.4483 (3) 0.243 (3000, 39) 0.4468 (5) 0.005 10 0.001 0.004

Table 2: Detailed results on the PAutomaC benchmark.
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NDCG ↑ WER-D ↓
STest SRNN STest SRNN RNN

Pb WA n-gram WA n-gram WA n-gram WA n-gram loss HR ∆NDCG ∆WER-D

25 0.918 (3000, 250) 0.9163 (4) 0.927 (3000, 250) 0.9146 (4) 0.285 (3000, 250) 0.3035 (4) 0.276 (3000, 250) 0.3113 (4) 0.008 9 0.177 0.252

26 0.953 (3000, 100) 0.9587 (5) 0.951 (3000, 100) 0.9629 (5) 0.204 (3000, 250) 0.1592 (6) 0.203 (3000, 250) 0.1509 (6) 0.005 34 0.073 0.2

27 0.93 (3000, 45) 0.885 (3) 0.885 (3000, 45) 0.8891 (3) 0.369 (3000, 100) 0.3462 (3) 0.418 (3000, 45) 0.3527 (3) 0.008 17 0.036 0.083

28 0.995 (3000, 500) 0.9372 (4) 0.994 (3000, 500) 0.9383 (4) 0.213 (3000, 500) 0.3591 (4) 0.212 (3000, 500) 0.3431 (4) 0.008 10 0.054 0.351

29 0.986 (3000, 100) 0.9413 (5) 0.976 (3000, 250) 0.9418 (5) 0.15 (3000, 500) 0.2516 (5) 0.164 (3000, 1000) 0.244 (5) 0.005 20 0.042 0.144

30 0.979 (3000, 33) 0.9329 (3) 0.976 (3000, 250) 0.9353 (3) 0.267 (3000, 500) 0.2819 (3) 0.266 (3000, 250) 0.2713 (3) 0.008 11 0.018 0.07

31 0.999 (3000, 500) 0.9599 (4) 0.998 (3000, 250) 0.9604 (4) 0.108 (3000, 500) 0.1698 (5) 0.111 (3000, 250) 0.1726 (5) 0.006 12 0.013 0.123

32 0.997 (3000, 1000) 0.9684 (7) 0.996 (3000, 500) 0.9673 (7) 0.092 (3000, 1000) 0.1659 (8) 0.101 (3000, 500) 0.1685 (7) 0.005 24 0.016 0.097

33 0.995 (1500, 39) 0.969 (3) 0.994 (3000, 42) 0.969 (3) 0.014 (500, 6) 0.1008 (3) 0.01 (3000, 50) 0.0999 (3) 0.007 11 0.02 0.04

34 0.465 (3000, 50) 0.8707 (3) 0.482 (3000, 50) 0.8775 (3) 0.785 (3000, 50) 0.4048 (3) 0.773 (3000, 50) 0.398 (3) 0.008 15 0.07 0.076

35 0.815 (3000, 100) 0.9148 (3) 0.771 (3000, 75) 0.9186 (3) 0.415 (3000, 100) 0.2816 (3) 0.455 (3000, 100) 0.2757 (3) 0.006 26 0.23 0.284

36 0.921 (3000, 50) 0.9542 (3) 0.919 (3000, 50) 0.9527 (3) 0.38 (3000, 100) 0.3128 (3) 0.384 (3000, 48) 0.3212 (3) 0.008 13 0.089 0.234

37 0.999 (3000, 250) 0.9747 (3) 0.999 (3000, 250) 0.9752 (3) 0.136 (3000, 250) 0.2277 (3) 0.133 (3000, 50) 0.2206 (3) 0.009 11 0.008 0.145

38 0.998 (3000, 250) 0.9455 (3) 0.998 (3000, 250) 0.9459 (3) 0.307 (3000, 250) 0.3744 (3) 0.303 (3000, 250) 0.3643 (3) 0.009 6 0.017 0.123

39 0.996 (3000, 30) 0.9608 (4) 0.997 (3000, 100) 0.9588 (4) 0.145 (3000, 100) 0.1687 (4) 0.134 (3000, 6) 0.1583 (4) 0.006 9 0.006 0.135

40 0.735 (1500, 48) 0.888 (3) 0.716 (3000, 50) 0.8898 (3) 0.695 (3000, 100) 0.4751 (3) 0.706 (3000, 100) 0.4795 (3) 0.009 10 0.129 0.211

41 1.0 (3000, 250) 0.9793 (3) 1.0 (3000, 250) 0.9792 (3) 0.048 (3000, 250) 0.1602 (3) 0.045 (3000, 250) 0.1579 (3) 0.008 7 0.045 0.432

42 1.0 (1500, 250) 0.9648 (4) 0.999 (3000, 500) 0.9632 (4) 0.01 (3000, 250) 0.0723 (4) 0.01 (3000, 100) 0.0761 (4) 0.006 9 0.01 0.089

43 1.0 (100, 45) 0.9743 (4) 1.0 (100, 45) 0.9743 (4) 0.083 (3000, 500) 0.2612 (2) 0.088 (3000, 12) 0.2649 (2) 0.008 8 0.001 0.041

44 0.895 (3000, 50) 0.9396 (3) 0.896 (3000, 50) 0.9408 (2) 0.485 (3000, 250) 0.435 (3) 0.495 (3000, 50) 0.434 (3) 0.009 8 0.085 0.195

45 1.0 (500, 45) 0.956 (3) 1.0 (100, 30) 0.9548 (3) 0.0 (500, 27) 0.0732 (2) 0.0 (500, 75) 0.0708 (2) 0.009 4 0.001 0.001

46 0.705 (1500, 45) 0.8945 (3) 0.687 (1500, 39) 0.9011 (3) 0.567 (1500, 45) 0.3421 (3) 0.573 (1500, 42) 0.3258 (3) 0.009 10 0.154 0.231

47 0.961 (3000, 100) 0.9536 (4) 0.937 (3000, 100) 0.952 (4) 0.212 (3000, 100) 0.1531 (4) 0.231 (3000, 100) 0.1571 (4) 0.005 9 0.52 0.593

48 0.805 (1000, 24) 0.8139 (3) 0.816 (1000, 24) 0.8282 (3) 0.417 (1000, 39) 0.4369 (3) 0.41 (1000, 24) 0.4209 (3) 0.008 13 0.108 0.231

Table 3: Detailed results on the PAutomaC benchmark (end).
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NDCG ↑ WER-D ↓
STest SRNN STest SRNN RNN

Pb WA n-gram WA n-gram WA n-gram WA n-gram loss HR ∆NDCG ∆WER-D

1 0.645 (1000, 175) 0.9569 (4) 0.652 (100, 10) 0.9587 (4) 0.624 (3000, 40) 0.1957 (4) 0.629 (1500, 60) 0.1952 (4) 0.003 14 0.191 0.068

2 0.686 (1500, 30) 0.9444 (3) 0.689 (1500, 30) 0.9602 (3) 0.552 (1000, 35) 0.0837 (3) 0.542 (1000, 35) 0.0695 (3) 0.002 17 0.112 0.061

3 0.639 (3000, 90) 0.9832 (6) 0.645 (3000, 90) 0.9824 (6) 0.746 (3000, 90) 0.2236 (6) 0.739 (3000, 500) 0.2343 (6) 0.002 19 0.078 0.149

4 0.752 (1500, 250) 0.9579 (5) 0.776 (1500, 250) 0.9584 (5) 0.595 (1000, 250) 0.297 (5) 0.588 (1500, 250) 0.2987 (5) 0.005 165 0.021 0.014

5 0.284 (500, 20) 0.9827 (4) 0.342 (1000, 2) 0.9824 (4) 0.815 (500, 2) 0.2281 (9) 0.808 (500, 2) 0.2255 (8) 0.001 15 0.05 0.039

6 0.466 (1000, 35) 0.9879 (6) 0.483 (1000, 50) 0.9882 (6) 0.747 (1000, 60) 0.0698 (6) 0.754 (1000, 50) 0.066 (6) 0.002 31 0.016 0.036

7 0.326 (3000, 150) 0.9637 (3) 0.346 (3000, 150) 0.9622 (3) 0.833 (500, 3) 0.3078 (4) 0.83 (500, 3) 0.314 (4) 0.002 4 0.115 0.009

8 0.446 (1500, 25) 0.9543 (4) 0.452 (1500, 25) 0.9537 (4) 0.725 (100, 4) 0.2106 (4) 0.726 (100, 4) 0.2087 (4) 0.002 28 0.069 0.164

9 0.9 (3000, 50) 0.9899 (6) 0.891 (3000, 150) 0.9908 (6) 0.215 (3000, 200) 0.0261 (6) 0.223 (3000, 150) 0.0262 (6) 0.001 36 0.133 0.26

10 0.534 (1500, 40) 0.8955 (4) 0.541 (1500, 40) 0.899 (4) 0.709 (1500, 40) 0.3483 (4) 0.705 (1500, 40) 0.3479 (4) 0.003 33 0.0 0.0

12 0.683 (1500, 70) 0.8254 (3) 0.69 (1500, 70) 0.8381 (3) 0.796 (1500, 70) 0.4654 (3) 0.785 (1500, 70) 0.4586 (3) 0.002 33 0.161 0.141

13 0.436 (500, 90) 0.9855 (4) 0.44 (500, 90) 0.9852 (4) 0.77 (500, 90) 0.0756 (3) 0.761 (500, 90) 0.0757 (3) 0.004 22 0.235 0.171

14 0.534 (1000, 150) 0.9853 (8) 0.549 (1500, 150) 0.983 (7) 0.574 (1000, 150) 0.0791 (7) 0.562 (1500, 150) 0.0882 (7) 0.001 46 0.229 0.197

15 0.369 (1000, 60) 0.9583 (3) 0.375 (1000, 60) 0.9533 (3) 0.796 (1000, 60) 0.2371 (4) 0.785 (1000, 60) 0.2359 (4) 0.002 45 0.116 0.127

Table 4: Detailed results on the SPiCe benchmark.
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Figure 9: Evolution of the quality in term of WER-D with the value of the rank hyper-
parameter on the 40 first PAutomaC problems, evaluated on SRNN with basis size
1000× 1000.



Figure 10: Evolution of the quality in term of WER-D with the value of the rank hyper-
parameter on the 8 last PAutomaC problems and the SPiCe ones, evaluated on SRNN
with basis size 1000× 1000.



Figure 11: Singular values of the Hankel matrix of the RNN learned on the 40 first
PAutomaC datasets, with a 1000 × 1000 basis. So called Hankel rank is shown by a
orange dot.



Figure 12: Singular values of the Hankel matrix of the RNN learned on the last 8
PAutomaC datasets and the SPiCe ones, with 1000× 1000 bases.
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