
HAL Id: hal-03270585
https://hal.science/hal-03270585v1

Submitted on 28 Jun 2021 (v1), last revised 1 Jul 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Characteristic Polynomials of p-Curvatures
in Average Polynomial Time

Raphaël Pagès

To cite this version:
Raphaël Pagès. Computing Characteristic Polynomials of p-Curvatures in Average Polynomial Time.
ISSAC 2021 - International Symposium on Symbolic and Algebraic Computation, Jul 2021, Saint-
Petersbourg / Virtual, Russia. �10.1145/3452143.3465524�. �hal-03270585v1�

https://hal.science/hal-03270585v1
https://hal.archives-ouvertes.fr

Computing Characteristic Polynomials of 𝑝-Curvatures
in Average Polynomial Time

Raphaël Pagès

IMB, Université de Bordeaux, France

raphael.pages@u-bordeaux.fr

ABSTRACT
We design a fast algorithm that computes, for a given linear dif-

ferential operator with coefficients in Z[𝑥], all the characteristic
polynomials of its 𝑝-curvatures, for all primes 𝑝 < 𝑁 , in asymptoti-

cally quasi-linear bit complexity in 𝑁 . We discuss implementations

and applications of our algorithm. We shall see in particular that

the good performances of our algorithm are quickly visible.

CCS CONCEPTS
• Computing methodologies→ Algebraic algorithms.

KEYWORDS
Algorithms, complexity, 𝑝-curvature, matrix factorial.

ACM Reference Format:
Raphaël Pagès. 2021. Computing Characteristic Polynomials of𝑝-Curvatures

in Average Polynomial Time. In Proceedings of the 2021 International Sym-
posium on Symbolic and Algebraic Computation (ISSAC ’21), July 18–23,
2021, Virtual Event, Russian Federation. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3452143.3465524

1 INTRODUCTION
The study of differential equations is a large part of mathemat-

ics which finds applications in many fields, particularly in physi-

cal sciences. Although the classical study of differential equations

concerns essentially functions of real or complex variables, those

equations can also be studied in an algebraic way. The functions in

calculus get replaced by the elements of a so-called differential ring,
and the “set of differential equations” is endowed with a ring struc-

ture. The resulting formalism is more flexible than that of calculus

and makes it possible to study problems in positive characteristic.

In the algebraic context, the most relevant questions about a

linear differential system𝑌 ′ = 𝐴𝑌 , with𝐴 a matrix with coefficients

in Q(𝑥), differ a little from those in calculus. For example we may

ask ourselves if such a system has an algebraic basis of solutions.

This problem is especially difficult, though decidable, as was shown

by Singer in [Sin80] (see also [BCDVW16]).

However, such a system can be reducedmodulo 𝑝 for any prime 𝑝

not dividing the denominators of the matrix. Thus we can consider

reductions modulo 𝑝 of a given linear differential system. This

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’21, July 18–23, 2021, Virtual Event, Russian Federation
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8382-0/21/07. . . $15.00

https://doi.org/10.1145/3452143.3465524

construction turns out to be useful. Indeed if a system has an al-

gebraic basis of solutions in characteristic 0, then its reduction

modulo 𝑝 also has one for almost all primes 𝑝 . The well-known

Grothendieck-Katz conjecture [Kat82] states that this is in fact an

equivalence.

Thus it is very interesting for a given linear differential system in

characteristic 0 to be able to determine if their reduction modulo 𝑝

have a basis of algebraic solutions (or, more generally, to determine

the dimension of its space of algebraic solutions) for a large amount

of primes 𝑝 , even if this only has heuristic applications for the

time being. However, effective versions of the Grothedieck-Katz

conjecture would turn this heuristic into a complete algorithm.

The resolution of this problem in positive characteristic is much

easier than in characteristic 0 thanks to an invariant of linear differ-

ential systems in characteristic 𝑝 : the 𝑝-curvature. This invariant is

a linear map, whose kernel has the same dimension as the space of

algebraic solutions of 𝑌 ′ = 𝐴𝑌 . Moreover, it is “easily computable”,

as its matrix is the 𝑝-th matrix 𝐴𝑝 of the recursive sequence

𝐴1 = −𝐴 and 𝐴𝑖+1 = 𝐴′𝑖 −𝐴 · 𝐴𝑖 for 𝑖 ⩾ 1. (1)

In this paper we are interested in computing the characteristic poly-

nomials of the 𝑝-curvatures of a linear differential operator with

coefficients in Z[𝑥] for a whole range of primes 𝑝 < 𝑁 . This infor-

mation contains an upper bound on the dimension of the kernel of

the 𝑝-curvatures. It also enables us to tell whether the 𝑝-curvatures

are nilpotent. This is interesting since Chudnovsky’s theorem, of

which a formulation can be found in [DGS94, Section VIII.1, The-

orem 1.5], states that the minimal operator making a 𝐺-function

vanish is globally nilpotent. As being globally nilpotent is quite

an uncommon property, this provides a robust heuristic test when

trying to post-certify a guessed annihilating differential operator.

The naive approach to this problem consists in computing the

𝑝-curvature with the recursive sequence (1) and then computing its

characteristic polynomial. This strategy is sometimes referred to as

Katz’s algorithm [vdPS03, p. 324] and outputs the result in �̃� (𝑝2) bit
operations (in this paper the notation �̃� will have the same meaning

as 𝑂 except we neglect logarithmic factors). Bostan, Caruso and

Schost [BCS14] brought back the computation of the characteristic

polynomial of the 𝑝-curvature to that of a factorial of matrices,

and presented an algorithm finishing in �̃� (√𝑝) bit operations. It is
unknown if the 1/2 exponent is optimal for this problem. Indeed, the

characteristic polynomial of the 𝑝-curvature is a polynomial 𝑃 of

degree𝑂 (1) in 𝑥𝑝 , and it is still unknown whether 𝑃 is computable

in polynomial time in log(𝑝).
In this paper, we build upon [BCS14] to design an algorithm

computing, for a given differential operator, almost all of the char-

acteristic polynomials of its 𝑝-curvatures, for all primes 𝑝 < 𝑁 ,

in quasi-linear, thus quasi-optimal, time in 𝑁 . This is a significant

https://doi.org/10.1145/3452143.3465524
https://doi.org/10.1145/3452143.3465524

improvement over previous algorithms for the given task, since the

iterations of Katz’s algorithm and of the algorithm from [BCS14]

only terminate in respectively �̃� (𝑁 3) and �̃� (𝑁 3/2) bit operations.
Since the number of primes smaller than 𝑁 is also quasi-linear

in 𝑁 , this means that the average time spent on the computation

of one characteristic polynomial is polynomial in log(𝑁). It is im-

portant to note that “average” here is meant as average over the

range of primes, and definitely not over the set of operators (even

of fixed degree and order).

To achieve this goal, we reuse an idea of Costa, Gerbicz and

Harvey, who designed an algorithm computing (𝑝−1)! mod 𝑝2 for

all primes 𝑝 less than 𝑁 in quasi-linear time in 𝑁 [CGH14]. This

algorithm was originally designed to search for the so-calledWilson
primes, but it soon foundmany applications, for instance in counting

points on curves [Har14].

We begin this article with a quick reminder of the theoretical

facts about differential operators which make our algorithm possi-

ble. We then present our algorithm and evaluate its complexity to

see that it is indeed quasi-linear in 𝑁 . Lastly we present the results

of our implementation of the algorithm in the computer algebra

software SageMath.

Acknowledgements. This work was supported by DeRerum-

Natura ANR-19-CE40-0018 and CLap–CLap ANR-18-CE40-0026-01.

I address special thanks to my PhD thesis advisors, Alin Bostan and

Xavier Caruso who helped me during the preparation of this article,

whose roots are in my Master’s thesis [Pag20]. I also warmly thank

the reviewers for their relevant and numerous comments and the

amazing amount of work they put on this paper.

2 DIFFERENTIAL OPERATORS
In this section, we outline the theoretical aspects necessary to our

algorithm by following the exposition of [BCS14] (to which we

refer for more detailed explanations) and extending the results of

loc. cit. to characteristic 0. All results in Sections 2.1 and 2.2 come

from [BCS14]. Besides, proofs were added when they were not

given in loc. cit.
Let R be either 𝑅 [𝑥] or 𝑅(𝑥), with 𝑅 = Z or F𝑝 , equipped with

their usual derivation 𝑓 ↦→ 𝑓 ′. Throughout this article we will

study the ring of differential operators with coefficients in R, which
we denote by R⟨𝜕⟩. The elements of R⟨𝜕⟩ are polynomials in 𝜕 of

the form

𝑓𝑛𝜕
𝑛 + 𝑓𝑛−1𝜕𝑛−1 + · · · + 𝑓1𝜕 + 𝑓0

with 𝑓𝑖 ∈ R. The (noncommutative) multiplication in this ring is

deduced from the Leibniz rule 𝜕𝑓 = 𝑓 𝜕 + 𝑓 ′ for all elements 𝑓 of R.

2.1 Euler and integration operators
In Sections 2.1 and 2.2 we will only consider the case 𝑅 = F𝑝 . We

study the Euler operator 𝑥𝜕. One can show that

𝜕 · (𝑥𝜕) = (𝑥𝜕 + 1) · 𝜕 and 𝑥 · (𝑥𝜕) = (𝑥𝜕 − 1) · 𝑥 .

We introduce a new variable \ and consider the noncommutative

ring F𝑝 [\]⟨𝜕⟩ (resp. F𝑝 (\)⟨𝜕⟩) whose elements are polynomials in

the variable 𝜕 with coefficients in F𝑝 [\] (resp. F𝑝 (\)), with multi-

plication deduced from the rule 𝜕\ = (\ + 1)𝜕.

We now want to rewrite operators in the variable 𝑥 as operators

in the variable \ with the association \ ↦→ 𝑥𝜕. In order to do this, we

introduce the integration operator 𝜕−1 and the algebras F𝑝 [𝑥]⟨𝜕±1⟩
(resp. F𝑝 (𝑥)⟨𝜕±1⟩) of Laurent polynomials in the variable 𝜕 with

coefficients in F𝑝 [𝑥] (resp. F𝑝 (𝑥)). The same can be done in the

variable \ .

Proposition 2.1 ([BCS14, Section 2]). The rings F𝑝 [𝑥]⟨𝜕±1⟩ ⊂
F𝑝 (𝑥)⟨𝜕±1⟩ (resp. F𝑝 [\]⟨𝜕±1⟩ ⊂ F𝑝 (\)⟨𝜕±1⟩) of Laurent polynomi-
als in the variable 𝜕 are all well defined. Furthermore, the multipli-
cation satisfies 𝜕−1 𝑓 =

∑𝑝−1
𝑖=0
(−1)𝑖 𝑓 (𝑖) 𝜕−𝑖−1 for all 𝑓 ∈ F𝑝 (𝑥), and

𝜕𝑖𝑔(\) = 𝑔(\ + 𝑖)𝜕𝑖 for all 𝑔 ∈ F𝑝 (\) and 𝑖 ∈ Z.

Proof. One can show that 𝜕𝑝 is central in F𝑝 (\)⟨𝜕⟩. This is
also the case in F𝑝 (𝑥)⟨𝜕⟩ since 𝑓 (𝑝) = 0 for all 𝑓 ∈ F𝑝 (𝑥), and
thus 𝜕𝑝 𝑓 =

∑𝑝

𝑖=0

(𝑝
𝑖

)
𝑓 (𝑖) 𝜕𝑝−𝑖 = 𝑓 𝜕𝑝 + 𝑓 (𝑝) = 𝑓 𝜕𝑝 .

It follows that we only need to invert the central element 𝜕𝑝 of

both sets of rings, which can be done the same way as commutative

localization.

The first relation comes from the fact that 𝜕−1 𝑓 = 𝜕𝑝−1 𝑓 𝜕−𝑝

and

(𝑝−1
𝑖

)
≡ (−1)𝑖 mod 𝑝 and the second one is trivial. □

Theorem 2.2 ([BCS14, Section 2.2]). The following induces an
isomorphism of F𝑝 -algebras:

F𝑝 [𝑥]⟨𝜕±1⟩
∼↔ F𝑝 [\]⟨𝜕±1⟩

𝜑𝑝 : 𝑥 ↦→ \𝜕−1

𝑥𝜕 ←� \ : 𝜓𝑝
𝜕 ↔ 𝜕

Proof. It is enough to check that 𝜑𝑝 (𝜕)𝜑𝑝 (𝑥) = 𝜑𝑝 (𝑥)𝜑𝑝 (𝜕) + 1
and 𝜓𝑝 (𝜕)𝜓𝑝 (\) = (𝜓𝑝 (\) + 1)𝜓𝑝 (𝜕) to see that 𝜑𝑝 and 𝜓𝑝 are

well defined. We check that𝜓𝑝 and 𝜑𝑝 are invertible by checking

that𝜓𝑝 ◦ 𝜑𝑝 (resp. 𝜑𝑝 ◦𝜓𝑝) is the only morphism mapping 𝑥 to 𝑥

(resp. \ to \) and 𝜕 to 𝜕. □

Remark 2.3 ([BCS14, Section 2.2]). The element (𝑥+1)𝜕 is in-
vertible in F𝑝 (𝑥)⟨𝜕±1⟩ but 𝜑𝑝 ((𝑥 + 1)𝜕) = \ + 𝜕 is not invertible
in F𝑝 (\)⟨𝜕±1⟩. As such, 𝜑𝑝 does not extend to an isomorphism

F𝑝 (𝑥)⟨𝜕±1⟩ → F𝑝 (\)⟨𝜕±1⟩.

One can show that F𝑝 [\𝑝 − \]⟨𝜕±𝑝 ⟩ is the center of F𝑝 [\]⟨𝜕±1⟩
and that 𝜑−1𝑝 (\𝑝 − \) = 𝑥𝑝 𝜕𝑝 . This will be useful later on.

2.2 Operators and 𝑝-curvature
We recall that for 𝐿 ∈ F𝑝 (𝑥)⟨𝜕⟩, the left multiplication by the opera-

tor 𝜕𝑝 defines an F𝑝 (𝑥)-linear endomorphism of F𝑝 (𝑥) ⟨𝜕⟩/F𝑝 (𝑥) ⟨𝜕⟩𝐿
since 𝜕𝑝 is a central element.We define the 𝑝-curvature of 𝐿 as being

this F𝑝 (𝑥)-linear endomorphism or, for computational purposes,

its matrix in the canonical basis (1, 𝜕, 𝜕2, . . .), which we denote

by 𝐴𝑝 (𝐿).

Remark 2.4. It follows from the definition that the 𝑝-curvature of
a differential operator 𝐿 does not change if 𝐿 is multiplied on the left
by an element of F𝑝 (𝑥). Though Algorithm 3 presented in Section 3.4
will work for operators in Z[𝑥]⟨𝜕⟩ for convenience, this remark allows
us to say that it in fact works for all operators in Q(𝑥)⟨𝜕⟩.

https://specfun.inria.fr/chyzak/DeRerumNatura/
https://specfun.inria.fr/chyzak/DeRerumNatura/

As we did for operators with coefficients in F𝑝 (𝑥), we define the
𝑝-curvature of an operator 𝐿 with coefficients in F𝑝 (\) as the F𝑝 (\)-
linear endomorphism of F𝑝 (\) ⟨𝜕⟩/F𝑝 (\) ⟨𝜕⟩ ·𝐿 induced by the left mul-

tiplication by 𝜕𝑝 , and we denote by 𝐵𝑝 (𝐿) its matrix in the canonical

basis (1, 𝜕, 𝜕2, . . .). By [BCS14, Lemma 2.3] which is proved by a

straightforward computation, if 𝐵(𝐿) (\) is the companion matrix

of 𝐿 then

𝐵𝑝 (𝐿) = 𝐵(𝐿) (\) · 𝐵(𝐿) (\ + 1) · · ·𝐵(𝐿) (\ + 𝑝 − 1).
As we are interested in computing the characteristic polynomial of

the 𝑝-curvature we introduce the following (cf [BCS14, Section 3]):

Let 𝐿𝑥 ∈ F𝑝 (𝑥)⟨𝜕⟩, and 𝐿\ ∈ F𝑝 (\)⟨𝜕⟩. We denote their respective

leading coefficients by 𝑙𝑥 ∈ F𝑝 (𝑥) and 𝑙\ ∈ F𝑝 (\) respectively and

define two new operators:

Ξ𝑥,𝜕 (𝐿𝑥) := 𝑙𝑝𝑥 𝜒 (𝐴𝑝 (𝐿𝑥)) (𝜕𝑝)

Ξ\,𝜕 (𝐿\) :=
(
𝑝−1∏
𝑖=0

𝑙\ (\ + 𝑖)
)
𝜒 (𝐵𝑝 (𝐿\)) (𝜕𝑝)

where 𝜒 (𝑀), for a square matrix𝑀 , is its characteristic polynomial.

Remark 2.5. Depending on the context, we may write Ξ𝑥,𝜕,𝑝
and Ξ\,𝜕,𝑝 if we want to specify the characteristic.

Proposition 2.6 ([BCS14, Section 3.1]). ThemapsΞ𝑥,𝜕 andΞ\,𝜕
are multiplicative and can thus be extended to maps on F𝑝 (𝑥)⟨𝜕±1⟩
and F𝑝 (\)⟨𝜕±1⟩ respectively.

Proof. Let 𝐷 := F𝑝 (𝑥)⟨𝜕⟩ (resp. 𝐷 := F𝑝 (\)⟨𝜕⟩) and 𝐿1, 𝐿2 ∈ 𝐷 .
The right multiplication by 𝐿2 induces a map Z1 : 𝐷/𝐷𝐿1 → 𝐷/𝐷𝐿1𝐿2.

There is also a canonical map Z2 : 𝐷/𝐷𝐿1𝐿2 → 𝐷/𝐷𝐿2. We check that

0→ 𝐷/𝐷𝐿1
Z1−−→ 𝐷/𝐷𝐿1𝐿2

Z2−−→ 𝐷/𝐷𝐿2 → 0

is an exact sequence. Furthermore the left multiplication by 𝜕𝑝

induces an endomorphism of this exact sequence. It follows that in

a suitable basis, the matrix of the 𝑝-curvature of 𝐿1𝐿2 is an upper

triangular block matrix, with the upper left block being the matrix

of the 𝑝-curvature of 𝐿1 and the bottom right block, that of 𝐿2. The

multiplicativity immediately follows. We extend those applications

by setting Ξ𝑥,𝜕 (𝐿𝜕−𝑛) = Ξ𝑥,𝜕 (𝐿)Ξ𝑥,𝜕 (𝜕)−𝑛 (resp. Ξ\,𝜕) for all 𝑛 and
all operators 𝐿. □

Theorem 2.7 ([BCS14, Section 3]).

• The map Ξ𝑥,𝜕 (resp. Ξ\,𝜕) takes its values in F𝑝 (𝑥𝑝) [𝜕±𝑝]
(resp. F𝑝 (\𝑝 − \) [𝜕±𝑝]).
• Those two maps send an operator with polynomial coefficients
to an operator with polynomial coefficients.
• The following diagram commutes:

F𝑝 [𝑥]⟨𝜕±1⟩ F𝑝 [\]⟨𝜕±1⟩

F𝑝 [𝑥𝑝] [𝜕±𝑝] F𝑝 [\𝑝 − \] [𝜕±𝑝]

Ξ𝑥,𝜕

𝜑𝑝∼

Ξ\,𝜕
𝜑𝑝∼

This is the main result that makes our algorithm possible. Theo-

rem 2.7 is interesting since it brings back the computation of the

characteristic polynomial of the 𝑝-curvature to that of the “facto-

rial of matrices” 𝐵𝑝 (𝐿), and can thus be computed using factorial

computation methods.

2.3 Extension to integral coefficients
Although the 𝑝-curvature is defined for operators of F𝑝 (𝑥)⟨𝜕⟩, we
can define the 𝑝-curvature of an element of Z[𝑥]⟨𝜕⟩, since the

canonical morphism Z→ F𝑝 induces a ring homomorphism

Z[𝑥]⟨𝜕⟩ → F𝑝 [𝑥]⟨𝜕⟩.

Our goal is to compute, for a differential operator with coefficients

in Z[𝑥], the characteristic polynomials of its 𝑝-curvatures, for

nearly all primes 𝑝 up to a certain integer 𝑁 , in �̃� (𝑁) bit oper-
ations.

Proposition 2.8. The rings Z[𝑥]⟨𝜕±1⟩ and Z[\]⟨𝜕±1⟩ (analogous
to those of Section 2.1) are well defined and we have an isomorphism
𝜑 : Z[𝑥]⟨𝜕±1⟩ ∼−→ Z[\]⟨𝜕±1⟩ defined in a similar manner to 𝜑𝑝 (see
Theorem 2.2).

Proof. It is enough to check that the multiplicative part 𝑆 =

{𝜕𝑛 |𝑛 ∈ N} is a right denominator set of the ring Z[\]⟨𝜕⟩ (see
[Lam99, Section 10A]). Since this ring has no nontrivial zero divisor,

we only have to check that 𝑆 is right permutable, that is to say that

∀𝑔 ∈ Z[\]⟨𝜕⟩,∀𝑛 ∈ N, ∃𝑔1 ∈ Z[\]⟨𝜕⟩, ∃𝑛1 ∈ N, 𝑔𝜕𝑛1 = 𝜕𝑛𝑔1 .

This is the case since for all𝑛 ∈ N and all𝑔 ∈ Z[\], 𝜕𝑛𝑔(\−𝑛) = 𝑔𝜕𝑛
and the fact that Z[\]⟨𝜕±1⟩ is well defined follows by additivity.

The same can be done for operators with coefficients in the

variable 𝑥 . Let 𝑓 ∈ Z[𝑥] and suppose that 𝑓 (𝑛1) = 0. Then

𝑓 𝜕𝑛1+1 = 𝜕
𝑛1−1∑︁
𝑘=0

(−1)𝑘 𝑓 (𝑘) 𝜕𝑛1−𝑘 .

Now by induction on 𝑖 , we show that for all 𝑛1 ∈ N, all 𝑖 ∈ N∗ and
all 𝑓 ∈ Z[𝑥] such that 𝑓 (𝑛1) = 0, there exists 𝑓𝑖 ∈ Z[𝑥]⟨𝜕⟩ such that

𝑓 𝜕𝑛1+𝑖 = 𝜕𝑖 𝑓𝑖 . We then conclude by additivity, which yields the fact

that Z[𝑥]⟨𝜕±1⟩ is well defined. We show that 𝜑 is an isomorphism

the same way we did for 𝜑𝑝 . □

By denoting 𝜋𝑝 : Z → F𝑝 the canonical reduction modulo 𝑝 ,

we can easily see that 𝜋𝑝 ◦ 𝜑 = 𝜑𝑝 ◦ 𝜋𝑝 (where we extend natu-

rally 𝜋𝑝 to suitable rings of operators). This enables us, for a given

operator in Z[𝑥]⟨𝜕⟩, to compute the characteristic polynomials

of its 𝑝-curvatures, by computing the isomorphism 𝜑 before the

reduction modulo 𝑝 . We will now see how to use this fact.

3 MAIN ALGORITHM
In this section, we present our algorithm and estimate its complexity.

We denote by 2 ⩽ 𝜔 ⩽ 3 an exponent of matrix multiplication. From

[AW21], we know thatwe can take𝜔 < 2.3728596.Wewill also have

to address the cost of computing characteristic polynomials. Let

us denote Ω1 ∈ R∗+ such that the computation of the characteristic

polynomial of a square matrix of size𝑚 with coefficients in a ring

𝑅 can be done in �̃� (𝑚Ω1) arithmetic operations in 𝑅. From [KV05,

Section 6], we know that it is theoretically possible to take Ω1 ≃
2.697263. Finally, throughout this section, we assume that any two

polynomials of degree 𝑑 over a ring 𝑅 (resp. integers of bit size 𝑛)

can bemultiplied in �̃� (𝑑) operations in𝑅 (resp. �̃� (𝑛) bit operations);
FFT-like algorithms allow for these complexities [CK91, HvdH21].

We now give an outline of our algorithm.

Input: 𝐿𝑥 ∈ Z[𝑥]⟨𝜕⟩, 𝑁 ∈ N
Output: A list of the characteristic polynomials of the 𝑝-curvatures

of 𝐿𝑥 , for all primes 𝑝 with 𝑝 < 𝑁 except a finite number not

depending on 𝑁 .

(1) Name 𝑙𝑥 the leading coefficient of 𝐿𝑥 .

(2) Compute 𝐿\ := 𝜑 (𝐿𝑥) ∈ Z[\]⟨𝜕±1⟩.
(3) Name 𝑙\ the leading coefficient of 𝐿\ .

(4) Compute P𝑙\ , the list of all primes 𝑝 < 𝑁 which do not

divide 𝑙\ .

(5) Construct 𝐵(𝐿\).
(6) Compute

(∏𝑝−1
𝑖=0

𝑙\ (\ + 𝑖)
)
mod 𝑝 for all 𝑝 ∈ P𝑙\ .

(7) Compute 𝐵(𝐿) (\) · · ·𝐵(𝐿) (\ + 𝑝 − 1) mod 𝑝 for all 𝑝 ∈ P𝑙\ .
(8) Deduce all the Ξ\,𝜕,𝑝 (𝐿\), for 𝑝 ∈ P𝑙\ .
(9) Deduce all 𝜒 (𝐴𝑝 (𝐿𝑥)) = 𝑙−𝑝𝑥 𝜑−1𝑝 (Ξ\,𝜕,𝑝 (𝐿\)), for 𝑝 ∈ P𝑙\ .

Remark 3.1. We only do the computation for the primes which
do not divide the leading coefficient of 𝐿\ because for those which do,
the companion matrix of its reduction modulo 𝑝 is not the reduction
modulo 𝑝 of its companion matrix.

Lemma 3.2. Let 𝐿\ ∈ F𝑝 [\]⟨𝜕⟩ be an operator with coefficients
of degree at most 𝑑 ∈ N. Then Ξ\,𝜕 (𝐿\) has coefficients of degree at
most 𝑑𝑝 .

Proof. See [BCS14, Lemma 3.9]. □

From Lemma 3.2, we deduce that at the end of step (8) we have

a list of (lists of) polynomials of degree linear in 𝑝 , which means

that the bit size of the output of this step is quadratic in 𝑁 . This

seems to remove all hope of ending up with a quasi-linear algorithm.

Fortunately those polynomials lie in F𝑝 [\𝑝 − \](see Theorem 2.7).

Thus each of them can be represented by data of bit size𝑂 (𝑑 log(𝑝)).
We explain how in Section 3.1.

Remark 3.3. This problem is also present at the end of step (9),
but is easy to solve as we only need to determine the coefficients
of 𝑥𝑖 when 𝑖 is a multiple of 𝑝 . Thus we in fact compute polynomials
𝑃𝑝 ∈ F𝑝 [𝑥,𝑌] such that 𝑃𝑝 (𝑥𝑝 , 𝑌) = 𝜒 (𝐴𝑝 (𝐿)) for all 𝑝 < 𝑁 .

3.1 Reverse isomorphism, computation modulo
\𝑑+1

We know from Theorem 2.7 that for 𝐿\ ∈ F𝑝 [\]⟨𝜕⟩, the opera-

tor Ξ\,𝜕 (𝐿\) has coefficients in F𝑝 [\𝑝 − \].

Lemma 3.4. Let 𝑄 ∈ F𝑝 [\𝑝 − \] be a polynomial of degree 𝑑
in \𝑝 − \ with 𝑑 < 𝑝 . Write:

𝑄 =

𝑑∑︁
𝑖=0

𝑞𝑖 (\𝑝 − \)𝑖 and 𝑄 =

𝑑𝑝∑︁
𝑖=0

𝑞′𝑖\
𝑖 .

For all 𝑖 ⩽ 𝑑 , we have 𝑞𝑖 = (−1)𝑖𝑞′𝑖 .

Proof. This comes from the fact that (−1)𝑖\𝑖 is the only mono-

mial of degree less than 𝑝 in (\𝑝 − \)𝑖 . □

When 𝑝 is strictly greater than 𝑑 , it follows that we only need to

compute the Ξ\,𝜕,𝑝 modulo \𝑑+1 where 𝑑 is the highest degree of

the coefficients of the operator (in both variables 𝑥 or \), as one can

Algorithm 1 reverse_iso

Input: 𝑄\ ∈ F𝑝 [\𝑝 − \] [𝑌], of degree𝑚 in 𝑌 and degree at most

𝑑𝑝 in \ , known modulo \𝑑+1.
Output: 𝑄𝑥 ∈ F𝑝 [𝑥,𝑌] such that 𝑄𝑥 (𝑥𝑝 , 𝜕𝑝) = 𝜑−1𝑝 (𝑄\ (𝜕𝑝)).

(1) 𝑄𝑥 ← 0.

(2) For all 𝑖 ⩽ 𝑚:

(a) Let 𝑄\,𝑖 be the coefficient of 𝜕𝑖 of 𝑄\ and write 𝑄\,𝑖 =∑𝑑
𝑗=0 𝑞𝑖, 𝑗\

𝑗 +𝑂 (\𝑑+1).
(b) 𝑄𝑥 ← 𝑄𝑥 +

∑𝑑
𝑗=0 (−1) 𝑗𝑞𝑖, 𝑗𝑥 𝑗𝑌 𝑖+𝑗 .

(3) Return: 𝑄𝑥 .

see in Algorithm 1. We deduce the following lemma whose proof is

obvious.

Lemma 3.5. If 𝑄\ ∈ F𝑝 [\𝑝 − \] [𝑌] is of degree𝑚 in 𝑌 and 𝑑𝑝
in \ with 𝑑 < 𝑝 , then Algorithm 1 computes 𝑄𝑥 ∈ F𝑝 [𝑥,𝑌] such
that 𝑄𝑥 (𝑥𝑝 , 𝜕𝑝) = 𝜑−1𝑝 (𝑄\ (𝜕𝑝)) in 𝑂 (𝑑𝑚 log(𝑝)) bit operations.

Remark 3.6. In fact we can still compute 𝜑−1𝑝 if 𝑝 ⩽ 𝑑 while only
knowing the operator modulo \𝑑+1 but this is more tedious since there
is no nice formula. In that case, with notation as in Lemma 3.4, we
have 𝑞′

𝑖
=

∑ ⌊𝑖/(𝑝−1) ⌋
𝑘=0

(−1)𝑖−𝑘𝑝
(𝑖−𝑘 (𝑝−1)

𝑘

)
𝑞𝑖−𝑘 (𝑝−1) .

This relation is easily invertible since it is given by a triangular matrix
with no zero on the diagonal.

3.2 Translation before the computation
From the results of the previous subsection, we know that we

only need to determine Ξ\,𝜕 modulo a small power of \ . Unfortu-

nately, the companion matrix of an operator in F𝑝 [\]⟨𝜕⟩, even if

the operator has polynomial coefficients, usually has its coefficient

in F𝑝 (\). In [BCS14], the authors solve this issue by injecting F𝑝 (\)
in F𝑝 ((\)) and computing modulo a slightly higher power of \ .

In order to minimize the degree of the polynomials used in the

computation, we take a different approach based on the following

proposition.

Proposition 3.7. Let 𝑎 ∈ F𝑝 . We denote by 𝜏𝑎 : F𝑝 [𝑥] → F𝑝 [𝑥]
the shift automorphism 𝑄 ↦→ 𝑄 (𝑥 + 𝑎). This automorphism extends
to automorphisms of F𝑝 [𝑥]⟨𝜕⟩ and F𝑝 [𝑥,𝑌]. Then

𝜏𝑎 ◦ 𝜒 (𝐴𝑝) = 𝜒 (𝐴𝑝) ◦ 𝜏𝑎 .

Proof. We know that 𝜏𝑎 (𝑓)′ = 𝜏𝑎 (𝑓 ′) for all 𝑓 ∈ F𝑝 [𝑥]. We

can thus extend 𝜏𝑎 to F𝑝 [𝑥]⟨𝜕⟩. Now, since for any 𝐿, the opera-
tor 𝜏𝑎 (𝐿) has the same order as 𝐿, we get that𝐴(𝜏𝑎 (𝐿)) = 𝜏𝑎 (𝐴(𝐿))
(where 𝐴(𝐿) is the companion matrix of 𝐿). Now with the relation

between 𝜏𝑎 and derivation we recursively extend that equality us-

ing (1) to get 𝜏𝑎 (𝐴𝑝 (𝐿)) = 𝐴𝑝 (𝜏𝑎 (𝐿)). Since 𝜏𝑎 is an endomorphism,

the result follows. □

From Proposition 3.7, we deduce that we can shift an operator

before computing the characteristic polynomials of its 𝑝-curvatures,

and do the opposite translation on those to get the desired result. It

is especially useful because of the following lemma.

Lemma 3.8. Let 𝐿𝑥 ∈ Z[𝑥]⟨𝜕⟩ be an operator and denote by 𝑙𝑥 ∈
Z[𝑥] its leading coefficient. If 𝑙𝑥 (0) ≠ 0 then 𝜑 (𝐿𝑥) has 𝑙𝑥 (0) ∈ Z as
its leading coefficient.

Proof. A straightforward computation shows that 𝜑 (𝑥𝑖 𝜕 𝑗) =
𝑝𝑖 (\)𝜕 𝑗−𝑖 with 𝑝𝑖 (\) being a polynomial only dependent on 𝑖 (and

not on 𝑗). Thus the leading coefficient of 𝜑 (𝐿𝑥) can only come from

the constant coefficient of 𝑙𝑥 if this one is not 0. □

In our setting, the fact that 𝜑 (𝐿𝑥) has a constant leading coeffi-

cient means that its companion matrix (see §2.2) has its coefficients

inQ[\], implying that we can do all the computations modulo \𝑑+1.
Lemma 3.8 shows that we can shift our starting operator by 𝑎 ∈ Z
where 𝑎 is not a root of its leading coefficient to place ourselves in

that setting.

Since translating back all the characteristic polynomials (the 𝑃𝑝
in fact, see Remark 3.3) at the end of the computation is basically

the same as translating a list of 𝑂 (𝑁𝑚) univariate polynomials of

degree 𝑑 , it can be done in �̃� (𝑁𝑚𝑑) bit operations (for example

with binary splitting), with𝑚 being the order of the operator and 𝑑

the maximum degree of its coefficients.

3.3 Computing a matrix factorial modulo 𝑝 for
a large amount of primes 𝑝

Let 𝑀 (\) ∈ ℳ𝑚 (Z[\]) be a square matrix of size 𝑚 with coef-

ficients of degree less than 𝑑 . In this subsection we review the

algorithm of [CGH14, Har14] applied to the computation of the

following matrix factorial :

𝑀 (\) ·𝑀 (\ + 1) · · ·𝑀 (\ + 𝑝 − 1) mod (𝑝, \𝑑)

for all primes 𝑝 < 𝑁 . Though very similar, the setting of [Har14] is

slightly different from ours as it concerns only integer matrices and

considers a different kind of products. For this reason, we prefer

to take some time to restate the algorithm in full and, at the same

time, take the opportunity to set up notations.

Since the method of [CGH14] computes products of 𝑝−1 entries
modulo some power of 𝑝 , we will compute𝑀 (\ +1) · · ·𝑀 (\ +𝑝−1)
mod (𝑝, \𝑑) for all 𝑝 , and then left-multiply by𝑀 (\).

Let [:= ⌈log
2
(𝑁)⌉. For all 𝑖 and 𝑗 with 0 ⩽ 𝑖 ⩽ [and 0 ⩽ 𝑗 < 2

𝑖
,

we denote𝑈𝑖, 𝑗 :=

{
𝑘 ∈ N

��� 𝑗 𝑁
2
𝑖 < 𝑘 ⩽ (𝑗 + 1) 𝑁

2
𝑖

}
.

It follows from the definition that for all 0 ⩽ 𝑖 < [and all

0 ⩽ 𝑗 < 2
𝑖
, 𝑈𝑖, 𝑗 = 𝑈𝑖+1,2𝑗 ∪ 𝑈𝑖+1,2𝑗+1. Furthermore, for 𝑖 = [,

the𝑈𝑖, 𝑗 are either empty or a singleton.

From this, we introduce𝑇𝑖, 𝑗 :=
∏

𝑘∈𝑈𝑖,𝑗
𝑀 (\ + 𝑘) mod \𝑑 , with

the product being made by sorting elements of 𝑈𝑖, 𝑗 in ascending

order, and 𝑆𝑖, 𝑗 :=
∏

𝑝∈𝑈𝑖,𝑗

𝑝 prime

𝑝 . From now on, we consider that the𝑇𝑖, 𝑗

are elements of ℳ𝑚 (Z[\]/\𝑑). From the properties of 𝑈𝑖, 𝑗 , we de-

duce that 𝑇𝑖, 𝑗 = 𝑇𝑖+1,2𝑗𝑇𝑖+1,2𝑗+1 and 𝑆𝑖, 𝑗 = 𝑆𝑖+1,2𝑗𝑆𝑖+1,2𝑗+1.

These relations allow us to fill binary trees containing the 𝑇𝑖, 𝑗
and 𝑆𝑖, 𝑗 as their nodes from the bottom. Furthermore, filling those

trees is nothing more than computing a factorial by binary splitting,

and keeping the intermediate steps in memory.

To see how to apply this to our problemwe suppose that 𝑝 ∈ 𝑈[,𝑗
for a certain 𝑗 . A direct computation gives:

𝑀 (\ + 1) ·𝑀 (\ + 2) · · ·𝑀 (\ + 𝑝 − 1) mod (𝑝, \𝑑)
= 𝑇[,0𝑇[,1 · · ·𝑇[,𝑗−1 mod 𝑆[,𝑗 .

Algorithm 2 matrix_factorial

Input: 𝑀 (\) ∈ℳ𝑚 (Z[\]) with coefficients of degree less than 𝑑 ,

P a list of primes smaller than 𝑁 .

Output: A list containing𝑀 (\)𝑀 (\ + 1) · · ·𝑀 (\ + 𝑝 − 1)
mod (𝑝, \𝑑) for all 𝑝 in P.

(1) [← ⌈log
2
(𝑁)⌉.

(2) Fill 𝑇[,_ and 𝑆[,_.

(3) Compute the binary trees 𝑇 and 𝑆 .

(4) 𝑊0,0 ← 1.

(5) For 𝑖 going from 0 to [− 1:
(a) For 𝑗 going from 0 to 2

𝑖 − 1:
(i) 𝑊𝑖+1,2𝑗 ←𝑊𝑖, 𝑗 mod 𝑆𝑖+1,2𝑗 .
(ii) 𝑊𝑖+1,2𝑗+1 ←𝑊𝑖, 𝑗𝑇𝑖+1,2𝑗 mod 𝑆𝑖+1,2𝑗+1.

(6) Construct

∏
the list of𝑊[,𝑗 where 𝑆[,𝑗 ∈ P.

(7) Do the left multiplication by𝑀 (\) on the elements of

∏
.

(8) Return:

∏
.

This motivates the following definition: for all 𝑖, 𝑗 with 0 ⩽ 𝑖 ⩽ [

and 0 ⩽ 𝑗 < 2
𝑖
, we set𝑊𝑖, 𝑗 :=

∏𝑗−1
𝑘=0

𝑇𝑖,𝑘 mod 𝑆𝑖, 𝑗 . The following

lemma is easily checked.

Lemma 3.9. For all 𝑖 and 𝑗 such that the following quantities are
well defined,𝑊𝑖+1,2𝑗 =𝑊𝑖, 𝑗 mod 𝑆𝑖+1,2𝑗 and𝑊𝑖+1,2𝑗+1 =𝑊𝑖, 𝑗𝑇𝑖+1,2𝑗
mod 𝑆𝑖+1,2𝑗+1.

Thus we can compute the𝑊[,𝑗 by filling a binary tree from the

top starting from𝑊0,0 = 1. This proves the correctness of Algo-

rithm 2, while its complexity is addressed in the next proposition.

Proposition 3.10. This algorithm has a cost of

�̃�
(
𝑚𝜔𝑑𝑁 (𝑛 + 𝑑 log(𝑁) + log(𝑚))

)
bit operations, where 𝑛 is the maximum bit size of the integers in the
matrix𝑀 (\).

Proof. The computation of the binary tree 𝑆 is less costly than

that of𝑇 , so we do not consider it. Let us evaluate the complexity of

the computation of 𝑇 . We need to know the bit size of the integers

at each level of 𝑇 . We use the following lemma.

Lemma 3.11. For any 𝑎 ⩽ 𝑁 , all the integers appearing in𝑀 (\ +𝑎)
have bit size at most 𝑛 + 𝑑 (1 + log

2
(𝑁)).

Proof. Let 𝑄 ∈ Z[\] of degree less than 𝑑 appearing in 𝑀 (\).
Then we can write

𝑄 (\ + 𝑎) =
𝑑−1∑︁
𝑗=0

©«
𝑑−1∑︁
𝑖=𝑗

(
𝑖

𝑗

)
𝑞𝑖𝑎

𝑖−𝑗 ª®¬\ 𝑗
where the 𝑞𝑖 are the coefficients of 𝑄 . Moreover, we know that all

the 𝑞𝑖 are at most 2
𝑛
. Thus the coefficients of 𝑄 (\ + 𝑎) are less

than 2
𝑛𝑁𝑑−1 ∑𝑑−1

𝑖=𝑗

(𝑖
𝑗

)
⩽ 2

𝑛+𝑑𝑁𝑑
. □

We now resume the proof of Proposition 3.10. If Δ1 and Δ2 are

matrices in ℳ𝑚 (Z[\]/\𝑑) with integers of bit size at most 𝑛1, then

Δ1Δ2 has integers of bit size at most 2𝑛1 + log2 (𝑑𝑚). It follows that
the integers in the matrices 𝐴𝑖, 𝑗 are of bit size at most:

2
[−𝑖 (𝑛 + 𝑑 (1 + log

2
(𝑁))) + (2[−𝑖 − 1) log

2
(𝑑𝑚)

= 𝑂 (2[−𝑖 (𝑛 + 𝑑 log
2
(𝑁) + log

2
(𝑚))).

The computation of 𝑇 is reduced to the computation of its two

sub-trees, followed by a multiplication of two square matrices of

size 𝑚 with polynomial coefficients of degree 𝑑 and integers of

bit size 𝑂 (2[−1 (𝑛 + 𝑑 log
2
(𝑁) + log

2
(𝑚))). Since the bit size of the

integers is halved at each level, we finally find, using that 2
[⩽ 2𝑁 ,

that the computation of𝑇 can be done in �̃� (𝑚𝜔𝑑𝑁 (𝑛 +𝑑 log
2
(𝑁) +

log
2
(𝑚)) bit operations.

The cost of computing𝑊 is the same as that of reducing 𝑇𝑖, 𝑗
mod 𝑆𝑖, 𝑗+1 whenever both quantities are well defined, and then of

computing recursively the𝑊𝑖, 𝑗 using only integers smaller than 𝑆𝑖, 𝑗 .

The first step can be done in �̃� (𝑁𝑚2𝑑 (𝑛 +𝑑)) bit operations, while
the second requires �̃� (𝑚𝜔𝑑𝑁) bit operations. □

3.4 Final algorithm
The most important pieces of our main algorithm are now in place,

we are almost ready to write down its final version. Before doing

this, we analyze the cost of converting an operator in Z[𝑥]⟨𝜕⟩ to
its counterpart in Z[\]⟨𝜕±1⟩.

Proposition 3.12. For any operator 𝐿 ∈ Z[𝑥]⟨𝜕⟩, of order𝑚 with
coefficients of degree at most 𝑑 , with integer coefficients of bit size at
most 𝑛, the computation of 𝜑 (𝐿), can be done in �̃� (𝑑 (𝑚 + 𝑑) (𝑛 + 𝑑))
bit operations.
Furthermore the resulting operator in the variable \ has its integer
coefficients of bit size 𝑂 (𝑛 + 𝑑 log

2
(𝑑)).

Proof. From [BCS14, Section 4.1] we get that this computation

over a ring 𝑅 can be done in �̃� ((𝑚 + 𝑑)𝑑) algebraic operations

in 𝑅. Following their algorithm, we can show that, when 𝑅 = Z,
intermediate computations do not produce integers larger than

those of the final result. Moreover, if

𝜑

(∑︁
0⩽𝑖⩽𝑑
0⩽ 𝑗⩽𝑚

𝑙𝑖, 𝑗𝑥
𝑖 𝜕 𝑗

)
=

∑︁
0⩽𝑖⩽𝑑
−𝑑⩽ 𝑗⩽𝑚

𝑙 ′𝑖, 𝑗\
𝑖 𝜕 𝑗

the estimation |𝑙𝑖, 𝑗 | ⩽ 2
𝑛
implies |𝑙 ′

𝑖, 𝑗
| ⩽ 2

𝑛+𝑑+1𝑑𝑑 . Putting all

together, we get the announced result. □

Note that for an operator 𝐿 ∈ Z[𝑥]⟨𝜕⟩ of order𝑚 with coeffi-

cients of degree at most 𝑑 , 𝜑 (𝐿) has nonzero coefficients for powers

of 𝜕 varying from −𝑑 to 𝑚, making the square matrices used in

Algorithm 3 of size at most𝑚 + 𝑑 .
We now present the final algorithm in Algorithm 3.

Theorem 3.13. For any operator 𝐿 ∈ Z[𝑥]⟨𝜕⟩, Algorithm 3 com-
putes a list of polynomials 𝑃𝑝 ∈ Q[𝑥,𝑌] for all primes 𝑝 < 𝑁 except a
finite number not depending on 𝑁 , such that 𝑃𝑝 (𝑥𝑝 , 𝑌) = 𝜒 (𝐴𝑝 (𝐿))
in

�̃�
(
𝑁𝑑 ((𝑛 + 𝑑) (𝑚 + 𝑑)𝜔 + (𝑚 + 𝑑)Ω1)

)
bit operations, where𝑚 is the order of the operator, 𝑑 is the maximum
degree of its coefficients and 𝑛 is the maximum bit size of the integers
appearing in 𝐿.

Proof. This is easily seen by summing the cost of each step of

Algorithm 3.We observe that these complexities are correct whether

or not 0 is a root of 𝐿𝑥 . Indeed, when it is not, the new operator

obtained after the translation of step (3) has integer coefficients of

bit size 𝑂 (𝑛 + 𝑑 log(𝑑)), therefore our complexity analysis remains

correct. □

Algorithm 3 charpoly_p_curv

Input: 𝐿𝑥 ∈ Z[𝑥]⟨𝜕⟩ of order𝑚, with coefficients of degree at

most 𝑑 and integer coefficients of bit size at most 𝑛, 𝑁 ∈ N.
Output: A list of polynomials 𝑃𝑝 ∈ F𝑝 [𝑥,𝑌] such that

𝑃𝑝 (𝑥𝑝 , 𝑌) = 𝜒 (𝐴𝑝 (𝐿)) for all primes 𝑝 < 𝑁 , except a finite number

not depending on 𝑁 .

(1) 𝑙𝑥 ← the leading coefficient of 𝐿𝑥 .

(2) 𝑎 ← 0.

(3) If 𝑙𝑥 (0) = 0 do:

(a) Shift 𝐿𝑥 by 𝑏 with 𝑏 ∈ Z not a root of 𝑙𝑥 .
(b) 𝑎 ← 𝑏.

Cost: �̃� (𝑚𝑑 (𝑛 + 𝑑)) bit operations.
(4) Compute 𝐿\ 𝜕

−𝑘
:= 𝜑 (𝐿𝑥) with x_d_to_theta_d from

[BCS14, Section 4].

Cost: �̃� ((𝑚 + 𝑑) (𝑛 + 𝑑)𝑑) bit operations.
(5) 𝑑 ← the maximum degree of the coefficients of 𝐿\ .

(6) 𝑙\ ← the leading coefficient of 𝐿\ .

It has been made to be an integer.
(7) Construct𝑀 (\) = 𝑙\ · 𝐵(𝐿\).
(8) Compute the list P of all primes 𝑝 that do not divide 𝑙\ with

𝑑 + 1 ⩽ 𝑝 < 𝑁 .

Cost: �̃� (𝑁) bit operations (see [CGH14, Proposition 2.1]).
(9) Compute the list L of𝑀 (\) · · ·𝑀 (\ + 𝑝 − 1) mod (\𝑑+1, 𝑝)

for all 𝑝 in P using matrix_factorial.
Cost: �̃� ((𝑚 + 𝑑)𝜔 (𝑛 + 𝑑)𝑑𝑁) bit operations.

(10) Divide all elements of L by 𝑙\ .

Cost: 𝑂 (𝑁 (𝑚 + 𝑑)2𝑑 bit operations.
(11) Compute the list C of the characteristic polynomials of ele-

ments of L.
Cost: �̃� (𝑁 (𝑚 + 𝑑)Ω1𝑑) bit operations.

(12) Multiply the elements of C by 𝑙\ .

Cost: �̃� (𝑁 (𝑚 + 𝑑)𝑑) bit operations.
(13) Compute the image by𝜑−1𝑝 of elements of C using reverse_iso.

Cost: �̃� (𝑁𝑑 (𝑚 + 𝑑)) bit operations.
(14) Divide the polynomials obtained by 𝑙𝑥 and 𝑌−𝑘 .

Cost: �̃� (𝑁𝑚𝑑) bit operations.
(15) If 𝑎 ≠ 0, shift the polynomials obtained by −𝑎.

Cost: �̃� (𝑁𝑚𝑑) bit operations.

Aswe have seen, Algorithm 3 does not compute the characteristic

polynomial of the 𝑝-curvature for every 𝑝 < 𝑁 , as we have to

remove all primes dividing 𝑙𝑥 (0), where 𝑙𝑥 is the leading coefficient

of the operator (provided of course that 𝑙𝑥 (0) ≠ 0). Primes less than

the maximum degree of the coefficients of the operator are also

not included; however, it is possible to remedy these with minor

tweaks using Remark 3.6.

Proposition 3.14. It is possible to compute all characteristic poly-
nomials of the 𝑝-curvatures of an operator 𝐿 ∈ Z[𝑥]⟨𝜕⟩ of order𝑚
and maximum degree of the coefficients 𝑑 , for all primes 𝑝 less than 𝑁 ,
in asymptotically quasi-linear time in 𝑁 .

Proof. The computation for primes dividing 𝑙𝑥 (0) (with 𝑙𝑥 being

the leading coefficient of 𝐿) can be done using the main algorithm

from [BCS14]. All other primes can be addressed using our new

Algorithm 3.

As primes which cannot be computed using our algorithm only

depend on the operator itself, the result immediately follows. □

4 IMPLEMENTATION AND TIMINGS
We have implemented Algorithm 3 in the Computer Algebra soft-

ware SageMath. The source code can be downloaded from the fol-

lowing URL: https://github.com/raphitek/p_curvatures.
As mentioned earlier, the computation of the characteristic poly-

nomial of a matrix of size 𝑚 with coefficients in a ring can be

performed in theory using �̃� (𝑚Ω1) ring operations, with Ω1 ≃
2.697263, see [KV05]. However, we did not implement the algorithm

from [KV05], and instead used an algorithm computing a Hessen-

berg form of the matrix in 𝑂 (𝑚3) operations [CRV17]. Indeed, the
latter algorithm is easier to implement and the computation of the

characteristic polynomials is usually not the bottleneck and does

not hinder the quasi-linear nature of our algorithm. Furthermore,

experiments, as well as Theorem 3.13, showed that most of the

running time is spent on the computation of trees 𝑇 and𝑊 when

the order of the operator is of the same magnitude as the degrees of

its coefficients. We expect this trend to improve when the ratio of

these two factors grows in favor of the order of the operator, but all

experiments conducted so far showed that the computation of the

characteristic polynomials is never the bottleneck by a wide margin.

It is still more than six times faster on an operator of order 50 with

coefficients of degree 2, for 𝑁 = 100.

Remark 4.1. In our experiments we do not consider cases where
the degree 𝑑 of the coefficients is higher than the order𝑚 of the oper-
ator because the complexity in 𝑑 is worse than in𝑚. As in [BBvdH12,
Section IV], the general case reduces to this one using the transforma-
tion 𝑥 ↦→ −𝜕, 𝜕 ↦→ 𝑥 which exchanges the roles of 𝜕 and 𝑥 .

4.1 Timings on random operators
Quasilinear as expected. Figure 1 shows computation timings of

our implementation for operators in Z[𝑥]⟨𝜕⟩ of varying sizes on

SageMath version 9.3.rc4 on an Intel(R) Core(TM) i3-40050 machine

at 1.7Ghz, running ArchLinux. As expected, it does appear that our

algorithm finishes in quasi-linear time in 𝑁 . We can also see a floor

phenomenon, with computation time varying very little between

two powers of 2, and then doubling. This is an expected effect of

the use of the complete binary tree structure in our algorithm. This

effect however seems less visible, even if it is still perceptible, as

the operator size increases. This is probably due to the fact that for

operators of small sizes, the cost of manipulating empty nodes is

non-negligible.

Comparison with the previous algorithm. We have compared the

timings between our algorithm and the iteration of that of [BCS14]

for an operator of order 3 and degree 2. Results are displayed on

Figure 2 and show that the work presented in this paper is indeed

a concrete progress for the considered task, compared to previous

state of the art: experiments have shown that our algorithm was

already more than twice as fast (on the same machine) than the

algorithm of [BCS14]
∗
for 𝑁 ∼ 10

4
. The right part shows the ratio

of computation times for operators of varying sizes. Results tend to

∗
The implementation of the algorithm from [BCS14] used can be found at

https://github.com/raphitek/p_curvatures/blob/main/p_curvature_single.sage

Figure 1: Computation time for random operators of varying
orders and degrees

indicate that the good performances of our algorithm compared to

the iteration of [BCS14] appear earlier when the order of the oper-

ator grows. Further experiments should be conducted to determine

the influence of the degree of the coefficients.

4.2 Execution on special operators
Our algorithm was also tested on various “special” operators. One

example is an operator proven in [BK10] to annihilate the generat-

ing function 𝐺 (𝑡 ; 1, 0) of Gessel walks in the quarter plane ending

on the horizontal axis. The result of this test indicates that this op-

erator has a nilpotent 𝑝-curvature for all primes 𝑝 < 200. This was

of course expected since the generating function of Gessel walks

is algebraic [BK10], hence the 𝑝-curvatures of its minimal-order

differential operator are all zero. A similar test was performed on an

operator proved in [BKV] to annihilate the generating function of

Kreweras walks with interacting boundaries, which is not algebraic.

Once again, the result of this test indicates that this operator has

a nilpotent 𝑝-curvature for all primes 𝑝 < 200
†
. Further testing

was conducted on all the 76 operators for (specializations of) the D-

finite generating functions for lattice walks classified in [BCvH
+
17]

with 𝑝 < 200, with yet again similar results
‡
. All those results were

already predicted by Chudnovsky’s theorem and make us quite

confident in the accuracy of our implementation.

5 CONCLUSION AND FUTUREWORK
We have proposed an algorithm which computes the characteristic

polynomials of the 𝑝-curvatures of a differential operator with

coefficients in Z[𝑥] for almost all primes 𝑝 < 𝑁 , in quasi-linear

time in 𝑁 .

We expect that the principle of this algorithm can theoretically

be applied for differential operators with polynomial coefficients in

any ring𝐴 by replacing Z/𝑝Z by 𝐴/𝑝𝐴. Especially we expect that this

†
The program running the above mentioned tests can be found at

https://github.com/raphitek/p_curvatures/blob/main/test_p_curvature.sage
‡
The precise list of operators we considered can be found at

https://specfun.inria.fr/chyzak/ssw/ct-P.mpl and the testing file can be found

at https://github.com/raphitek/p_curvatures/blob/main/ct-P.sage

https://github.com/raphitek/p_curvatures
https://github.com/raphitek/p_curvatures/blob/main/p_curvature_single.sage
https://github.com/raphitek/p_curvatures/blob/main/test_p_curvature.sage
https://specfun.inria.fr/chyzak/ssw/ct-P.mpl
https://github.com/raphitek/p_curvatures/blob/main/ct-P.sage

Computation time for operators of order 3 and degree 2 Ratio of computation times for operators of varying sizes

Figure 2: Comparison between the iteration of [BCS14]’s algorithm and our algorithm

algorithm extends nicely to operators with polynomial coefficients

in the integer ring of a number field or with multivariate polyno-

mial coefficients (which will allow us to deal with operators with

parameters). In the latter case, we expect its time complexity in 𝑁

to be in �̃� (𝑁 𝑠) where 𝑠 is the number of variables. Furthermore,

[BCS16] brought back the computation of the similarity class of the

𝑝-curvature of an operator in 𝐾 [𝑥]⟨𝜕⟩, with 𝐾 a field of positive

characteristic, to that of a matrix factorial. Thus we hope that the

same principle can be applied to design an algorithm for computing

the similarity classes of the 𝑝-curvatures of an operator in Z[𝑥]⟨𝜕⟩,
for almost all primes 𝑝 < 𝑁 , in quasi-linear time in 𝑁 .

This algorithm may also have applications to future works on

factorisation of differential operators, as in [Clu03].

REFERENCES
[AW21] Josh Alman and Virginia Vassilevska Williams. A Refined Laser Method

and Faster Matrix Multiplication, pages 522–539. SIAM, 2021.

[BBvdH12] Alexandre Benoit, Alin Bostan, and Joris van der Hoeven. Quasi-optimal

multiplication of linear differential operators. In FOCS 2012 - IEEE 53rd
Annual Symposium on Foundations of Computer Science, pages 524–530,
New Brunswick, United States, October 2012. IEEE.

[BCDVW16] Moulay Barkatou, Thomas Cluzeau, Lucia Di Vizio, and Jacques-Arthur

Weil. Computing the Lie algebra of the differential Galois group of a

linear differential system. In Proceedings of the 2016 ACM International
Symposium on Symbolic and Algebraic Computation, pages 63–70. ACM,

New York, 2016.

[BCS14] Alin Bostan, Xavier Caruso, and Éric Schost. A fast algorithm for

computing the characteristic polynomial of the 𝑝-curvature. In IS-
SAC 2014—Proceedings of the 39th International Symposium on Symbolic
and Algebraic Computation, pages 59–66. ACM, New York, 2014.

[BCS16] Alin Bostan, Xavier Caruso, and Éric Schost. Computation of the similar-

ity class of the 𝑝-curvature. In Proceedings of the 2016 ACM International
Symposium on Symbolic and Algebraic Computation, pages 111–118.
ACM, New York, 2016.

[BCvH
+
17] Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Manuel Kauers, and

Lucien Pech. Hypergeometric expressions for generating functions

of walks with small steps in the quarter plane. European J. Combin.,
61:242–275, 2017.

[BK10] Alin Bostan and Manuel Kauers. The complete generating function for

Gessel walks is algebraic. Proc. Amer. Math. Soc., 138(9):3063–3078, 2010.
With an appendix by Mark van Hoeij.

[BKV] Alin Bostan, Manuel Kauers, and Thibaut Verron. The generating func-

tion of Kreweras walks with interacting boundaries is not algebraic.

Proceedings of FPSAC’21, to appear.

[CGH14] Edgar Costa, Robert Gerbicz, and David Harvey. A search for Wilson

primes. Math. Comp., 83(290):3071–3091, 2014.
[CK91] David G. Cantor and Erich Kaltofen. On fast multiplication of polyno-

mials over arbitrary algebras. Acta Inform., 28(7):693–701, 1991.
[Clu03] Thomas Cluzeau. Factorization of differential systems in characteristic

𝑝 . In Proceedings of the 2003 International Symposium on Symbolic and
Algebraic Computation, pages 58–65. ACM, New York, 2003.

[CRV17] Xavier Caruso, David Roe, and Tristan Vaccon. Characteristic poly-

nomials of 𝑝-adic matrices. In ISSAC’17—Proceedings of the 2017 ACM
International Symposium on Symbolic and Algebraic Computation, pages
389–396. ACM, New York, 2017.

[DGS94] Bernard Dwork, Giovanni Gerotto, and Francis J. Sullivan. An intro-
duction to 𝐺-functions, volume 133 of Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 1994.

[Har14] David Harvey. Counting points on hyperelliptic curves in average

polynomial time. Ann. of Math. (2), 179(2):783–803, 2014.
[HvdH21] David Harvey and Joris van der Hoeven. Integer multiplication in time

𝑂 (𝑛 log𝑛) . Ann. of Math. (2), 193(2):563–617, 2021.
[Kat82] Nicholas M. Katz. A conjecture in the arithmetic theory of differential

equations. Bull. Soc. Math. France, 110(2):203–239, 1982.
[KV05] Erich Kaltofen and Gilles Villard. On the complexity of computing

determinants. Comput. Complex., 13(3–4):91–130, February 2005.

[Lam99] T. Y. Lam. Lectures on modules and rings, volume 189 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1999.

[Pag20] Raphaël Pagès. Étude d’algèbres d’opérateurs différentiels, techniques

de calcul rapide de factorielles et applications au calcul de la 𝑝-courbure.

Master’s thesis, Univ. Paris 7, 2020. 91 pages.

[Sin80] Michael F. Singer. Algebraic solutions of 𝑛th order linear differential

equations. In Proceedings of the Queen’s Number Theory Conference, 1979
(Kingston, Ont., 1979), volume 54 of Queen’s Papers in Pure and Appl.
Math., pages 379–420. Queen’s Univ., Kingston, Ont., 1980.

[vdPS03] Marius van der Put and Michael F. Singer. Galois theory of linear differ-
ential equations, volume 328 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, 2003.

https://github.com/raphitek/p_curvatures/raw/main/explications_detaillees(fr).pdf
https://github.com/raphitek/p_curvatures/raw/main/explications_detaillees(fr).pdf

	Abstract
	1 Introduction
	2 Differential operators
	2.1 Euler and integration operators
	2.2 Operators and p-curvature
	2.3 Extension to integral coefficients

	3 Main algorithm
	3.1 Reverse isomorphism, computation modulo d+1
	3.2 Translation before the computation
	3.3 Computing a matrix factorial modulo p for a large amount of primes p
	3.4 Final algorithm

	4 Implementation and timings
	4.1 Timings on random operators
	4.2 Execution on special operators

	5 Conclusion and Future Work
	References

