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The paper gives a new representation of conformal groups in n dimensions in terms of hyperquaternions defined as tensor products of quaternion algebras (or a subalgebra thereof). Being Clifford algebras, hyperquaternions provide a good representation of pseudo-orthogonal groups such as O(p+1,q+1) isomorphic to the nD conformal group with n=p+q. The representation yields simple expressions of the generators, independently of matrices or operators. The canonical decomposition and the invariants are discussed. As application, the 4D relativistic conformal group is detailed together with a worked example. Finally, the formalism is compared to the operator representation. Potential uses include in particular, conformal geometry, computer graphics and conformal field theory

Introduction

The 4D conformal group which contains the Poincaré group, is the group of transformations x → x of the Minkowski space E 1,3 (with signature + ---) such that ds 2 = λ 2 ds 2 where λ is a real number and ds 2 = c 2 dt 2 -dx 2 -dy 2 -dz 2 the metric. This group plays a major role in physics in particular in electromagnetism, general relativity and conformal field theories [START_REF] Blumenhagen | Introduction to Conformal Field Theories: With Applications to String Theories[END_REF][START_REF] Kastrup | On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics[END_REF]. Maxwell's equations (in vacuum) are covariant with respect to the 4D conformal group and in general relativity, twistors constitute an algebraic representation of it [START_REF] Penrose | Twistor algebra[END_REF][START_REF] Ward | Twistor Geometry and Field Theory[END_REF]. Generalizing to the nD case (with an arbitrary signature), we shall call them conformal groups Conf n (p, q) with n = p + q. Due to the isomorphism Conf n (p, q) O(p + 1, q + 1), the conformal groups can be expressed as orthogonal groups and represented in particular by Clifford algebras C n+2 (p + 1, q + 1) [START_REF] Anglès | Conformal Groups in Geometry and Spin Structures[END_REF]. Various representations (in specific dimensions or signatures) exist and are often formulated in terms of matrices [START_REF] Helmstetter | Conformal Groups and Vahlen Matrices[END_REF][START_REF] Lasenby | Calculating the Rotor Between Conformal Objects[END_REF][START_REF] Porteous | Clifford Algebras and the Classical Groups[END_REF][START_REF] Vince | Geometric Algebra for Computer Graphics[END_REF]. Though we shall focus on the algebraic properties of the conformal groups, geometric aspects have been developed in particular by Hestenes, the Lasenbys, Dorst, Dechant and Hitzer. Adopting the general method presented in [START_REF] Anglès | Conformal Groups in Geometry and Spin Structures[END_REF], we shall introduce a new algebraic representation in terms of hyperquaternions. Historically, hyperquaternions are rooted in the works of Clifford, Lipschitz and Moore [START_REF] Clifford | Applications of Grassmann's extensive algebra[END_REF][START_REF] Lipschitz | Principes d'un calcul algébrique qui contient comme espèces particulières le calcul des quantitiés imaginaires et des quaternions[END_REF][START_REF] Moore | Hyperquaternions[END_REF][START_REF] Moore | Rotations in hyperspace[END_REF]. Clifford, applying Grassmann's ideas, introduced his algebras as a tensor product of quaternions and gave a proof thereof. Lipschitz established the formula of nD Euclidean rotations and thereby rediscovered, independently of Clifford, the (even) Clifford algebra (composed of products of an even number of generators). Moore was to call Lipschitz's algebras "hyperquaternions" and gave a canonical decomposition of Euclidean rotations which has been extended to pseudo-Euclidean rotations by the authors [START_REF] Girard | Hyperquaternions: An efficient mathematical formalism for geometry[END_REF]. In recent papers, we have applied hyperquaternions to express the unitary, unitary symplectic groups and the Poincaré groups with dual hyperquaternions [START_REF] Girard | Dual Hyperquaternion Poincaré Groups[END_REF][START_REF] Girard | Hyperquaternions: An efficient mathematical formalism for geometry[END_REF][START_REF] Girard | Hyperquaternions: A new tool for physics[END_REF]. Though dual hyperquaternions provide a correct representation of the Poincaré groups, the introduction of a dual element (squaring to zero) might appear as somewhat unnatural. Here, by adding two dimensions to the initial space, we shall introduce such elements within the hyperquaternion framework thereby extending the Poincaré groups to the nD conformal groups. Concerning the isomorphism of hyperquaternions with standard Clifford algebras, a modern proof has been given in [START_REF] Girard | Hyperquaternions: A new tool for physics[END_REF]. Hyperquaternions yield an intrinsically defined tensor product (without generators), a unique multivector structure (after a generator choice) as well as simple expressions of the generators. The result is an efficient calculus with a straightforward implementation. Hyperquaternions might also open new perspectives of unification. After a few preliminaries, we present the general framework of nD conformal groups. Then, we discuss the canonical decomposition and the invariants. As example, the 4D conformal group is examined and a worked example is provided. Finally, the hyperquaternionic approach is compared to an operator representation. The Lie algebra of the nD conformal group and the explicit multivector structure of the 4D case are given respectively in Appendix A and B. Potential applications include in particular, conformal geometry, computer graphics and conformal field theory.

Quaternions, Hyperquaternions and Multivectors

Quaternions, constituting the quaternion algebra (H), are a set of four real numbers [START_REF] Girard | Dual Hyperquaternion Poincaré Groups[END_REF][START_REF] Girard | Hyperquaternions: An efficient mathematical formalism for geometry[END_REF][START_REF] Girard | Hyperquaternions: A new tool for physics[END_REF][START_REF] Girard | Quaternions, Clifford Algebras and Relativistic Physics[END_REF][START_REF] Girard | Algèbre de Clifford et Physique relativiste[END_REF][START_REF] Vince | Quaternions for Computer Graphics[END_REF] 

a = a 1 + a 2 i + a 3 j + a 4 k (2.1)
where the elements i, j, k satisfy the fundamental formula

i 2 = j 2 = k 2 = ijk = -1. (2.2)
The quaternion conjugate is

a c = a 1 -a 2 i -a 3 j -a 4 k with (ab) c = b c a c .
Hyperquaternions are defined as tensor products of quaternions H, H ⊗ H, H ⊗ H ⊗ • • • ⊗ H and their subalgebras C, H ⊗ C, H ⊗ H ⊗ C, etc.. The tensor product is uniquely defined via formulas such as

(i, j, k) ⊗ 1 ⊗ 1 = (i, j, k) , (2.3) 1 ⊗ (i, j, k) ⊗ 1 = (I, J, K) , (2.4 
)

1 ⊗ 1 ⊗ (i, j, k) = (l, m, n) (2.5)
where (i, j, k), (I, J, K), (l, m, n) are distinct commuting quaternionic systems. We shall use the algebra H⊗H⊗H in the 4D example. Hyperquaternions yield all real, complex and quaternionic square matrices via the isomorphism H ⊗ H m(4, R) where m(4, R) stands for real square matrices of degree 4. Hyperquaternions constitute Clifford algebras C n (p, q), over real numbers, having n = p+q generators e i such that e i e j +e j e i = 0 (i = j), e 2 i = +1 (p generators) and e 2 i = -1 (q generators) where the generators have a simple compact form (for example e 1 = kJ, e 2 = kKl, etc.). Products of generators yield multivectors (V k ) (0 ≤ k ≤ n), such as scalars (V 0 ), vectors e i (V 1 ), bivectors e i e j (i < j) (V 2 ), trivectors e i e j e k (i < j < k) (V 3 ) etc.. The products of an even number of e i constitute the subalgebra C + , the rest of the algebra is C -. The commutator of two general elements A, B is

[A, B] = (AB -BA) /2.
(

The conjugate A c of a general element A is obtained by replacing the e i by their opposite -e i and reversing the order of the elements

(A c ) c = A, (AB) c = (B c ) (A c ) . (2.7)
The interior and exterior products of two vectors a, b are given by 2a

• b = (ab + ba) , 2a ∧ b = (ab -ba) . (2.8) 
More generally, for products between a vector and a multivector

A p = a 1 ∧ a 2 ∧ • • • ∧ a p (2 ≤ p < n), one has 2a • A p = [aA p -(-1) p A p a] , (2.9) 
2a ∧ A p = [aA p + (-1) p A p a] . (2.10) 
Products between multivectors are defined by [5]

A p ∧ B q = a 1 ∧ (a 2 ∧ ... ∧ a p ∧ B q ), (2.11) 
A p • B q = (a 1 ∧ ... ∧ a p-1 ) • (a p • B q ) = (-1) p(q+1) B q • A p (p ≤ q).
(2.12)

For bivectors one has, in particular

B 1 B 2 = B 1 • B 2 + B 1 ∧ B 2 + [B 1 , B 2 ] (2.13)
with

B 1 ∧ B 2 = V 4 1 2 (B 1 B 2 + B 2 B 1 ) .
(2.14)

Conformal Groups in n Dimensions

We develop here the hyperquaternion conformal groups in n dimensions. The method consists in embedding the nD space in an (n + 2) D affine space according to the method presented in [START_REF] Anglès | Conformal Groups in Geometry and Spin Structures[END_REF]. We start with the general framework, apply it to the restricted conformal group and then discuss the canonical decomposition as an extension of Moore's method and the invariants [START_REF] Girard | Hyperquaternions: An efficient mathematical formalism for geometry[END_REF].

General Framework

To express the conformal group, consider the real hyperquaternion algebra C n (p, q) having n = p + q generators e i , a vector space (E n , x = n i=1

x i e i ) and the metric

ds 2 = dx 2 = dx 2 1 + • • • + dx 2 p -dx 2 p+1 + • • • + dx 2 p+q . (3.1)
Vectors are said to be timelike, spacelike and isotropic if respectively x 2 is positive, negative or nil. The conformal group of E n is defined as the group of transformations x → x such that

ds 2 = λ(x) 2 ds 2 (λ(x) ∈ R). (3.2)
To obtain the latter, one embeds the algebra C n (p, q) in the algebra C n+2 (p+ 1, q + 1) with two additional generators e 0 , e n+1 e 2 0 = 1, e 2 n+1 = -1 . An affine space is introduced by

X = x 2 -1 2 e 0 + x + x 2 + 1 2 e n+1 = x 2 ε 1 + x + ε 2 (3.3)
with X 2 = 0 and

ε 1 = e 0 + e n+1 2 , ε 2 = e n+1 -e 0 2 , ε 1 ∧ ε 2 = e 0 e n+1 2 , ε 2 1 = ε 2 2 = 0. (3.4)
The nD conformal group of E n is isomorphic to the orthogonal group O(p + 1, q + 1) [START_REF] Anglès | Conformal Groups in Geometry and Spin Structures[END_REF]. The latter can be constructed from orthogonal symmetries with respect to a plane (going through the origin), perpendicular to a unit vector u (time or spacelike) and given by

X = - uXu u 2 . (3.5)
By combining these symmetries, one obtains the formulas

X = ±aXa c (aa c = ±1) (3.6)
where a ∈ C + n+2 (p+1, q+1) or C - n+2 (p+1, q+1). The nD conformal group contains the Poincaré group, transversions (also called special conformal transformations) and dilations. The number of parameters equals (n+2)(n+1)

2

; its Lie algebra is given in Appendix A.

If p and q are odd, the conformal group, like the Poincaré group, has four connected components. In all other cases, it has only two connected components [2, p. 88]. An important physical example of the first type is the 

; m(x) = (1 + Kx)(1 + xK)) R T V D a e eiej m ij 2 e ε1P e ε2K e e0en+1 ϕ 2 X (= aXa c ) x 2 ε 1 x 2 ε 1 x 2 ε 1 + x x 2 ε 1 e -ϕ +x + ε 2 +x + ε 2 +ε 2 m +x + ε 2 e ϕ x axa c (x + P ) x + Kx 2 x α(x) 1 1 m(x) e ϕ y(x) = x α(x) axa c (x + P ) x+Kx 2 m(x) xe -ϕ Table 2. Multiplication rules ε 1 ε 2 e 0 e n+1 ε 1 0 (e0en+1-1) 2 ε 1 ε 2 -(e0en+1+1) 2 0 -ε 2 e 0 e n+1 -ε 1 ε 2 1
relativistic space-time (p = 1, q = 3), which we shall develop below. Since all other connected components can be derived from the restricted conformal group Conf ↑ + (orthochronous and of determinant 1) we shall now focus on the latter below.

Restricted Conformal Group

The restricted conformal group is defined as

X = aXa c = X 0 e 0 + x + X n+1 e n+1 (3.7) 
with

aa c = 1, a ∈ C + n+2 (p + 1, q + 1). Writing X = α(x)Y with Y = y 2 -1 2 e 0 + y(x) + y 2 + 1 2 e n+1 (3.8) 
where Y 2 = 0, one finds α(x) = X n+1 -X 0 and obtains the expression of the conformal transform of x [2]

y(x) = x α(x) = x X n+1 -X 0 .
(3.9)

Explicitly, the conformal group is constituted by (pseudo-Euclidean) rotations, translations, transversions and dilations as indicated in Table 1 where X is obtained via the multiplication rules given in Table 2.

To verify that the above transformations are indeed conformal ones, one might proceed as follows. Assuming a to be constant (independent of x), one has dX = adXa c = dα(x)Y + α(x)dY.

(3.10) Hence,

dX 2 = dX 2 = dx 2 = ds 2 = α(x) 2 dY 2 = α(x) 2 dy 2 (3.
11) where we have used Y 2 = 0 (and thus Y dY + dY Y = 0). Finally, one finds

ds 2 ≡ dy 2 = ds 2 α(x) 2 = λ(x) 2 ds 2 (3.12)
which concludes the verification. The conservation of angles results from 

[d (u + v )] 2 = λ(x) 2 [d (u + v)]
y(x) = x + Kx 2 (1 + Kx) (1 + xK) = x 2 x x 2 + K x x 2 + K xx x x 2 + K = x -1 + K (x -1 + K) 2 = x -1 + K -1 (3.15) 
(where x 2 is a scalar commuting with K) and giving

[y(x)] -1 = x -1 + K. (3.16) 

Canonical Decomposition

Here, we shall apply the canonical decomposition of pseudo-Euclidean rotations given in [START_REF] Girard | Hyperquaternions: An efficient mathematical formalism for geometry[END_REF]. Considering the restricted group SO + (p + 1, q + 1) with n = p + q = 2k (or 2k + 1), a rotation within that group can be decomposed into a maximum of k + 1 orthogonal commuting simple planes

B i [9] a = e Φ 1 2 B1 e Φ 2 2 B2 • • • e Φm 2 Bm (3.17)
where a simple plane is defined by

B i ∧ B i = 0 entailing that B 2 i is a scalar, B 2 i ∈ {±1, 0}.
The simple planes B i can be expressed as

B i = M i + ε 1 ∧ P i + ε 2 ∧ K i + ε 1 ∧ ε 2 D i (3.18)
with M i ∈ C + n+2 (p + 1, q + 1), and

(P i , K i ∈ E n , D i ∈ R).
The bivector M i represents the rotation, the vectors P i , K i respectively the translation and transversion, D i the dilation. Expanding the relation B i ∧B i = 0, one obtains

0 = M i ∧ M i + 2ε 1 ∧ (M i ∧ P i ) +2ε 2 ∧ (M i ∧ K i ) + 2ε 1 ∧ ε 2 (D i M i -P i ∧ K i ) (3.19)
and thus

M i ∧ M i = 0, D i M i = P i ∧ K i , (3.20) 
M i ∧ P i = M i ∧ K i = 0. (3.21)
Hence, M i is a simple plane and the vectors P i , K i are coplanar with M i and anticommute with it (M i P i = -P i M i ), and similarly for K i . Developing the term B 2 i yields

B 2 i = M 2 i + D 2 i 4 + P i • K i ∈ {±1, 0} (3.22) 
where

P i • K i = 1 2 (P i K i + K i .P i ) is the interior product of the two vectors. For B 2 i ∈ {-1, 1, 0} one has respectively e Φ i 2 Bi = cos Φ i 2 + B i sin Φ i 2 , (3.23) e Φ i 2 Bi = cosh Φ i 2 + B i sinh Φ i 2 , (3.24) e Φ i 2 Bi = 1 + B i Φ i 2 . (3.25) Each component f i = e Φ i
2 Bi can be decomposed via the Liouville theorem and its extension to pseudo-Euclidean spaces by Haantjes [START_REF] Haantjes | Conformal representations of an n-dimensional euclidean space with a non-definite fundamental form on itself[END_REF] into a rotation (R i ), a translation (T i ), a transversion (V i ) and a dilation (D i ) for example as

f i = R i T i V i D i (3.26) leading for the entire transformation f = f 1 f 2 • • • f m to f = (R 1 T 1 V 1 D 1 ) (R 2 T 2 V 2 D 2 ) • • • (R m T m V m D m ) = (R 1 R 2 • • • R m ) (T 1 T 2 • • • T m ) (V 1 V 2 • • • V m ) (D 1 D 2 • • • D m ) = RT V D (3.27)
where we have used the commutativity of distinct orthogonal simple planes. Hence, one obtains a complete decomposition.

Invariants of the Restricted Conformal Group

The conformal group being isomorphic to O(p + 1, q + 1), the invariants are those of the latter group. For SO(2m) or SO(2m + 1), one has a maximum of m independent Casimir operators commuting with the bivector B generating the group [START_REF] Bincer | Lie Groups and Lie Algebras[END_REF]. For the restricted conformal group SO + (p + 1, q + 1), the invariants can be obtained via the canonical decomposition presented in [START_REF] Girard | Hyperquaternions: An efficient mathematical formalism for geometry[END_REF]. 

Writing B = b 1 B 1 + b 2 B 2 + • • • + b m B m ( 3 
P 2 = (B ∧ B) • B, (3.30) 
P m = (B ∧ B ∧ • • • ∧ B) m factors • (B ∧ B ∧ • • • ∧ B) m-1 factors (3.31)
and the scalars

S 1 = P 1 • P 1 , S 2 = P 2 • P 1 , S m = P m • P 1 (3.32)
which commute with B and thus constitute m invariants.

Example: 4D Conformal Group

The 4D conformal group is of great importance in physics [START_REF] Blumenhagen | Introduction to Conformal Field Theories: With Applications to String Theories[END_REF][START_REF] Kastrup | On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics[END_REF]. We first introduce the algebra, followed by a worked example with a canonical decomposition and the construction of the invariants. Finally, the hyperquaternion representation is compared to an operator representation. x i e i )

ds 2 = dx 2 = dx 2 1 -dx 2 2 -dx 2 3 -dx 2 4 . (4.2) 
The restricted conformal group is expressed by

X = aXa c aa c = 1, a ∈ C + 6 (2, 4 ) (4.3) 
with X = X 0 e 0 + x + X 5 e 5 (and similarly for X ). The group contains the following transformations:

• spatial rotations a = e B θ 2 B 2 = -1, B ∈ (l, m, n) (4.4) 
• boosts a = e B θ 2

B 2 = 1, B ∈ (Il, Im, In) (4.5) • space-time translations a = e ε1P = 1 + ε 1 P P ∈ E 4 , ε 1 = kI + j 2 , ε 2 1 = 0 (4.6) 
• transversions

a = e ε2K = 1 + ε 2 K K ∈ E 4 , ε 2 = j -kI 2 , ε 2 2 = 0 (4.7) • dilations a = e -iI ϕ 2 (ϕ ∈ R) (4.8
) with a total of 15 parameters. A combination of the above transformations leads to the element f

X = f Xf c f f c = 1, f ∈ C + 6 (2, 4 ). (4.9) 
The canonical decomposition of f yields at most three orthogonal commuting simple planes 

B i f = e B1 Φ 1 2 e B2 Φ 2 2 e B3 Φ3 2 , B 2 i ∈ {±1, 0} (4 
B i = M i + ε 1 P i + ε 2 K i + ε 1 ∧ ε 2 D i . (4.11)
One thus obtains a maximum number of three invariants.

Worked Example

As worked example, consider a transformation X = aXa c generated by a dilation, followed by a transversion and a rotation such as a = e n θ 2 e ε2(kKm) e e0en+1 ϕ 2 (4.12)

= 2 3 (1 + n) + 1 2 √ 6 [(J -iK) (l -m)] - 1 √ 6 iI (1 + n) (4.13)
with tan θ 2 = 1, tanh ϕ 2 = 1 2 and the bivector B generating the transformation

B = n - 1 2 iI + 1 4 (J -iK) (l -m) . (4.14) 
Applying the canonical decomposition presented in [START_REF] Girard | Hyperquaternions: An efficient mathematical formalism for geometry[END_REF], one finds

a = e B1 Φ 1 2 e B2 Φ 2 2 (4.15)
where B 1 , B 2 are two commuting orthogonal simple planes

B 1 = 1 10 (J -iK) (3l -m) , (4.16) 
B 2 = - 1 10 (J -iK) (l + 3m) (4.17) with B 2 1 = -1, B 2 2 = 1 tan Φ1 2 = 1, tanh Φ2 2 = 1 2 .
To obtain the invariants, one computes, as indicated above, the quantities

P 1 = B, (4.18) 
P 2 = (B ∧ B) • B = 1 2 + iI + 1 4 (J -iK) (l + m) , (4.19) 
P 3 = (B ∧ B ∧ B) • (B ∧ B) = 0 (4.20)
and the scalars

S 1 = P 1 • P 1 = - 3 4 , S 2 = P 2 • P 1 = -1, S 3 = P 3 • P 1 = 0 (4.21)
yielding the two conformal invariants S 1 , S 2 .

Other Representation

Above, we have given an algebraic representation of the nD conformal groups.

Other representations exist in particular in terms of operators with the correspondence [2, p. 135]

• rotations:

e i e j → x i ∂ ∂xj -x j ∂ ∂xi , • translations: (e 0 + e n+1 ) e i → ∂ ∂xi , • transversions: (e n+1 -e 0 ) e i → x 2 ∂ ∂xi -2x i x k ∂ ∂x k , • dilations: e 0 e n+1 → x i ∂ ∂xi .
Both representations lead to the same Lie algebra, given in Appendix A. Operators are used in quantum mechanics and quantum field theories [START_REF] Adler | Quaternionic Quantum Mechanics and Quantum Fields[END_REF]. Physical applications of conformal groups include in particular electromagnetism, general relativity and conformal field theory [START_REF] Blumenhagen | Introduction to Conformal Field Theories: With Applications to String Theories[END_REF][START_REF] Kastrup | On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics[END_REF].

Conclusion

In this paper, we have developed a new algebraic representation of conformal groups in n dimensions in terms of hyperquaternions. The representation is distinct from matrix ones and gives simple expressions of the generators. After the general formalism, the canonical decomposition and the invariants have been discussed. As concrete example, the 4D relativistic case has been detailed together with a worked example. Finally, the representation has been compared to an operator representation. It is hoped that the hyperquaternionic approach might advance the understanding of the algebraic structure of conformal groups, provide an efficient operational calculus and open new unification perspectives. Potential applications include in particular, conformal geometry, computer graphics and conformal field theory.

One derives easily the following Lie commutators [A, B] = AB -BA, with η ij = (e i e j + e j e i ) /2.

[M ij , M kl ] = η jk M il + η il M jk -η jl M ik -η ik M jl , (A.4) [M ij , P k ] = η jk P i -η ik P j , [M ij , K k ] = η jk K i -η ik K j , (A.5) [M ij , D] = [P i , P j ] = [K i , K j ] = 0, (A.6) [K i , P j ] = 2η ij D + M ij , [D, P i ] = -P i , [D, K i ] = K i . (A.7)

Appendix B. Multivector structure of H ⊗ H ⊗ H

A general hyperquaternion A is a set of 64 terms which can be grouped into a set of 16 quaternions [q i ] = a i + b i l + c i m + d i n with respect to the sets ijk/IJK/lmn A = [q 1 ] + I [q 2 ] + J [q 3 ] + K [q 4 ] +i [q 5 ] + iI [q 6 ] + iJ [q 7 ] + iK [q 8 ] +j [q 9 ] + jI [q 10 ] + jJ [q 11 ] + jK [q 12 ] +k [q 13 ] + kI [q 14 ] + kJ [q 15 ] + kK [q 16 ] (B.1) yielding a multiplication table which can be implemented (algebraically or numerically) on Mathematica using its quaternion product [q i ] * * [q j ] . The complete multivector structure is given below, where e 0123 = e 0 e 1 e 2 e 3 , etc.. A Mathematica notebook, concerning H ⊗ H ⊗ C is provided in [START_REF] Girard | DUAL HY-PERQUATERNION POINCARE GROUPS[END_REF].
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 23 .13) yielding du .dv = λ(x) 2 du.dv. (3.14) A standard simple form of nD transversions x → y(x) is derived within the Clifford algebra C n (p, q) from

  .28) where B m are orthogonal commuting simple planes and b i are scalars, one computes the bivectors P 1 = B, (3.29)

4. 1 .

 1 Algebra Consider the hyperquaternion algebra H ⊗ H ⊗ H [ C 6 (2, 4)] having six generators e 0 = kI, e 1 = kJ, e 2 = kKl, e 3 = kKm, e 4 = kKn, e 5 = j (4.1) and the multivector structure given in Appendix A. The 4D vector space E 4 = span(e 1 , . . . , e 4 ) has the metric (with x = 4 i=1

  .10) with B = b 1 B 1 + b 2 B 2 + b 3 B 3 the bivector of f and

l = e 34 m = e 42 n = e 23 I 2 kKm = e 3 kKn = e 4 

 23234 = e 1234 I l = e 21 I m = e 31 I n = e 41 J = e 2034 J l = e 02 J m = e 03 J n = e 04 K = e 10 Kl = e 1034 Km = e 0124 Kn = e 1023 i = e 012345 il = e 1025 im = e 1035 in = e 1045 iI = e 50 iI l = e 3045 iI m = e 4025 iI n = e 2035 iJ = e 51 iJ l = e 3145 iJ m = e 4125 iJ n = e 2135 iK = e 2345 iKl = e 52 iKm = e 53 iKn = e 54 j = e 5 jl = e 345 jm = e 542 jn = e 235 jI = e 12345 jI l = e 215 jI m = e 531 jI n = e 541 jJ = e 32450 jJ l = e 025 jJ m = e 035 jJ n = e 045 jK = e 105 jKl = e 10345 jKm = e 01245 jKn = e 10235 k = e 10234 kl = e 012 km = e 013 kn = e 014 kI = e 0 kI l = e 034 kI m = e 204 kI n = e 023 kJ = e 1 kJ l = e 134 kJ m = e 214 kJ n = e 123 kK = e 324 kKl = e

Table 1 .

 1 Hyperquaternion conformal group (R: rotation, T: translation, V: transversion, D: dilation
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Appendix A. Lie Algebra of the nD-Conformal Group

Consider an nD space embedded in an n + 2 hyperquaternion algebra with the generators e 0 , e 1 , . . . , e n , e n+1 . The Lie generators of the rotations, translations, transversions and dilations of the restricted conformal group are respectively

e i e j (1 ≤ i, j ≤ n, i = j) , (A.1)