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Introduction

Consider the following discrete dynamical system:

x n+1 = x n + y n + A(x n ) y n+1 = y n + A(x n ) ( 1 
)
where A is a trigonometric polynomial with positive Fourier modes: A(x) = N K=1 a K e iKx , N ∈ N, a K ∈ C. This can be viewed as a generalization of the semi-standard map, which is given by A(x) = e ix . The semi-standard map was introduced as a model which is similar to, but easier to study than, the standard map given by A(x) = sin x, where the coexistence of both positive and negative Fourier modes makes the linearization problem more difficult to solve. The standard map, or Taylor-Chirikov map, is the Poincaré section of a kicked rotator and can be used as an approximating model in several areas of physics. It is an example of a simple low-dimensional system displaying chaos and numerical studies (see for instance [START_REF] Greene | Hamiltonian maps in the complex plane[END_REF]) have investigated the boundary between the KAM regime and chaos for this system. However few analytical results are known on the standard map.

With the change of variables z n = e ixn , λ n = e iyn , system (1) is conjugated to the system

z n+1 = λ n z n N K=1 e ia K z K n λ n+1 = λ n N K=1 e ia K z K n (2)
for which the set {0} × S 1 is invariant. Let F (λ, z) = (λz N K=1 e ia K z K , λ N K=1 e ia K z K ) so the system (2) can be written (z n+1 , λ n+1 ) = F (z n , λ n ). One looks for a linearization of the system, that is to say, a map H(z, λ) = (h(z, λ), h 2 (z, λ)), close to the identity, such that F • H = H • R where R(z, λ) = (λz, λ). If there is such a linearization and if it is analytic, then the invariant curves of the rotation R are smoothly preserved. Then one has a family of invariant closed curves in C 2 , corresponding to the numbers λ with modulus 1 and z in a neighbourhood of 0 where the linearization is analytic. Now if λ is rational, there is no way of finding a linearization which is analytic in z. Thus we will have to assign a value to the parameter λ, with |λ| = 1 and arg(λ) ∈ R \ Q, to construct a linearization which is close to the identity and analytic; its radius of convergence will depend on the arithmetical properties of λ.

Davie [START_REF] Davie | The critical function for the semistandard map[END_REF] and Marmi [START_REF] Marmi | Critical functions for complex analytic maps[END_REF] proved that concerning the semi-standard map, the radius of convergence ρ(α) of the linearization is bounded as follows:

exp(-2B(α) -C) ≤ ρ ≤ exp(-2B(α) + C )
where C > 0, C > 0 do not depend on the complex argument α of λ and where B(α) is the Brjuno sum of α. In particular, if B(α) diverges, then there is no analytic linearization around 0. This can be reformulated as stating that the error function α → B(α) + ln ρ(α) is bounded.

After the numerical evidence in [START_REF] Marmi | On the standard map critical function[END_REF], a similar result about the standard map, in the perturbative case, was proved in [START_REF] Berretti | Bryuno Function and the Standard Map[END_REF] and [START_REF] Berretti | Periodic and quasi-periodic orbits for the Standard Map[END_REF]. However, concerning the semi-standard map and in the present paper, the strong assumption of Fourier modes being only positive makes it possible to remove the perturbative assumption.

The Brjuno sum was first introduced in [START_REF] Brjuno | Analytic forms of differential equations[END_REF] to give a sufficient condition to the convergence of the linearization for analytic vector fields around a fixed point. [START_REF] Yoccoz | Petits diviseurs en dimension 1[END_REF] that the Brjuno condition (i.e the convergence of the Brjuno function, or equivalently of the Brjuno sum) is necessary and sufficient to the analytic linearization of the quadratic polynomial and of germs of diffeomorphisms of (C, 0). This resulted in the study of the error function Φ + ln r, where Φ is the Brjuno function and r is the radius of convergence of the linearization for the quadratic polynomial. It was conjectured in [START_REF] Marmi | The Brjuno functions and their regularity properties[END_REF] that this function is 1/2-Hölder and Buff and Chéritat showed first that it is bounded in [START_REF] Buff | Upper bound for the size of quadratic Siegel disks[END_REF], then that it is continuous in [START_REF] Buff | The Brjuno function continuously estimates the size of quadratic Siegel disks[END_REF]. Cheraghi-Chéritat then proved that a restriction of this error function is 1/2-Hölder.

Yoccoz proved in

Brjuno's lower bound on the convergence radius for linearization of analytic vector fields was improved in [START_REF] Giorgilli | Improved estimates for the convergence radius in the Poincaré-Siegel problem[END_REF]. In [START_REF] Stolovitch | Singular complete integrability[END_REF], Stolovitch replaced the arithmetical condition on the spectrum of the linear part by a condition of algebraic nature. The Brjuno sum was also proved to play a role in other analytic linearization problems, as for instance linearization of vector fields around an invariant torus (see [START_REF] Aurouet | Normalisation de champs de vecteurs holomorphes et équations différentielles implicites[END_REF] and [START_REF] Chavaudret | Normal form of holomorphic vector fields with an invariant torus under Brjuno's A condition[END_REF]), or reducibility of quasiperiodic cocycles ( [START_REF] Chavaudret | Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition[END_REF]).

The optimality of the Brjuno condition was also studied in other linearization problems. Carletti-Marmi proved in [START_REF] Carletti | Linearization of analytic and non analytic germs of diffeomorphisms of (C, 0)[END_REF] that the Brjuno condition is also necessary to linearize analytically a germ of diffeomorphism around a fixed point, and generalize it to Gevrey classes. However the continuity of the analogue of the error function for linearization problems more general than the quadratic polynomial remains open up to now.

Our main result is stated in the following two theorems:

Theorem 1 Let ρ be the radius of convergence of the linearization of the system (2). Let d be the greatest common divisor of the indices of the Fourier modes of A. There exists C ≥ 0, which is a non decreasing function of the greatest coefficient of A and which does not depend on α, such that

ρ ≥ exp(- 2 d B(dα) -C) (3) 
Theorem 2 Assume that the coefficients of A satisfy the following assumption: there exists θ ∈ R such that for all k = 1, . . . , N with a k = 0, the complex argument of the number i k-1 a k is kθ.

Let ρ be the radius of convergence of the linearization of the system (2). Let d be the greatest common divisor of the indices of the Fourier modes of A. There exists C ≥ 0, which is a non decreasing function of the smallest coefficient of A and does not depend on α such that

ρ ≤ exp(- 2 d B(dα) + C ) (4) 
In particular, if B(dα) diverges, then there is no analytic linearization.

Remark: Let κ 0 be the smallest integer such that a κ 0 = 0. The assumption in Theorem 2 says that the argument of every non zero a k is the following function of a κ 0 :

Arg(a k ) = k κ 0 Arg(a κ 0 ) + π 2 (1 - k κ 0 )
This assumption is in the spirit of Cremer's couterexample of non-linearizable germs, except that the arguments are defined from the beginning instead of recursively.

Remark: It is also worth mentioning that dα is a Brjuno number if and only if α is a Brjuno number (see Appendix, section 8.2 for a proof).

The main result is obtained by a direct analysis of the coefficients of the formal linearization (which always exists, and is unique if one requires it to be formally close to the identity); as in [START_REF] Marmi | Critical functions for complex analytic maps[END_REF] and [START_REF] Davie | The critical function for the semistandard map[END_REF], it appears that there is a link between those coefficients and the Brjuno sum of dα. To get an upper bound of the radius of convergence, that is to say, a lower bound on the coefficients of the linearization, one uses a strong assumption on the complex arguments of the coefficients of A, in order to be able to bound the sum from below by just one of its terms. However the lower bound on the radius of convergence does not use this assumption.

Notations

Let x ∈ R, one denotes by ||x|| Z the distance between x and the closest integer: ||x|| Z = min p∈Z |x -p|.

Considering the trigonometric polynomial A(x) defined at the beginning, denote by κ 0 < κ 1 < • • • < κ N all indices of Fourier modes of A: thus for all 0 ≤ i ≤ N , a κ i = 0, and if ∀i = 0, . . . , N , K = κ i , then a K = 0. Also denote by κ min (resp. κ max ) the number κ i minimizing (resp. maximizing) {|a κ i |, i = 0, . . . , N }.

Denote by M ⊂ N the additive semi-group generated by {κ 0 , . . . , κ N }:

M = {p 0 κ 0 + • • • + p N κ N > 0, p 0 ∈ N, . . . , p N ∈ N} (5)

Analysis of the linearization

With a reasoning similar to the one in [START_REF] Berretti | Limit at resonances of linearizations of some complex analytic dynamical systems[END_REF] (which is reproduced and adapted to the present model in the appendix), one proves that if H linearizes the system and is close to the identity, that is, its Taylor series starts with (z, λ), then the first component of the linearization is a function h(z, λ) = ize Φ λ (z) satisfying (mod 2iπ):

N K=1 ia K (iz) K e KΦ λ (z) = Φ λ (λ -1 z) + Φ λ (λz) -2Φ λ (z) (6) 
Let λ ∈ C with modulus 1 and α = Arg(λ) 2π . Denoting Φ λ (z) = l≥1 φ l z l and

d l,λ = λ l 2 -λ -l 2 = 2i sin(πlα) (7) 
one gets the following:

K∈{κ 0 ,...,κ N } i K+1 a K z K 1 + p≥1 1 p! ( j≥1 φ j z j ) p K = l≥1 φ l z l d 2 l,λ (8) 
In what follows, λ being fixed with modulus 1 and argument α such that α 2π ∈ R \ Q, we will denote for all l ∈ N \ {0},

D l := -4 sin 2 (πlα) < 0 Then |D l | -1 ≥ 1 4 for all l ≥ 1. Let l ≥ 1, then φ l = 0 if l < κ 0 and if l ≥ κ 0 , φ l = 1 D l K∈ {κ 0 ,..., κ N }, K≤l i K+1 a K [δ K,l + m=1,...,K m≤l-K C m K l-K p 1 =1 • • • l-K pm=1 1 p 1 ! . . . p m ! j 1 1 ,...,j 1 p 1 , . . . j m 1 ,...,j m pm , j 1 1 +•••+j 1 p 1 +... +j m 1 +•••+j m pm =l-K φ j 1 1 . . . φ j 1 p 1 . . . φ j m 1 . . . φ j m pm ] (9) 
Another recurrence relation is worth mentioning: let z) and denote by k≥1 ψ k z k the Taylor expansion of Ψ λ and by l ψ K,l z l the Taylor expansion of Ψ K . Then

Ψ λ (z) = K∈{κ 0 ,...,κ N } Ψ K (z), Ψ K (z) = i K+1 a K z K e KΦ λ (
Ψ λ (z) = Φ λ (λ -1 z) + Φ λ (λz) -2Φ λ (z) (10) 
which implies that for all l ≥ κ 0 ,

ψ l = D l φ l (11) 
Moreover, derivating Ψ K , one sees that ψ K,l = 0 for all l < K, ψ K,K = i K+1 a K , and for all n ≥ K + 1,

(n -K)ψ K,n = n-1 k=1 kφ k ψ K,n-k (12) 
Remark: One sees that φ l = 0 ⇒ l ∈ M. This can be shown by recurrence: for l = κ 0 , the property holds. Assume it holds for all κ 0 ≤ l ≤ l -1, for a fixed l > κ 0 . Assume that φ l = 0. If l ∈ {κ 0 , . . . , κ N }, then l ∈ M; otherwise, there exists

K ∈ {κ 0 , . . . , κ N }, m ≤ l -K, p 1 ≤ l -K, . . . , p m ≤ l -K and non vanishing φ j 1 1 , . . . , φ j m pm such that j 1 1 + • • • + j m pm = l -K. By recurrence assumption, j 1 1 , . . . , j m pm ∈ M therefore l ∈ M.
A similar fact holds for every Ψ K : if ψ K,l = 0, l > K, then l -K ∈ M. Indeed ψ K,l = 0 if l < K and that ψ K,K = i K+1 a K so the recurrence property holds for l ≤ K. Assume the property holds up to a fixed l ≥ K. If ψ K,l+1 = 0 then by [START_REF] Cheraghi | A proof of the Marmi-Moussa-Yoccoz conjecture for rotation numbers of high type[END_REF] 

there exist k ∈ {1, . . . , n-1} such that φ k = 0 and ψ K,l+1-k = 0 so k ∈ M and l + 1 -k ∈ M, therefore l + 1 ∈ M.
Example: If A is a monomial of order K, then Φ λ (z) only has coefficients indexed by multiples of K. Then there exists a function

Ξ λ : C → C such that for all z, Φ λ (z) = Ξ λ (z K ).
The following lemma will be used to bound the coefficients of Φ from below by one of the terms of the sum determining them.

Lemma 3 If there exists θ ∈ R such that for all K ∈ {κ 0 , . . . , κ N }, the complex number i K-1 a K has argument Kθ, then for all l ∈ M, φ l has argument lθ and for all K ∈ {κ 0 , . . . , κ N }, if ψ K,l = 0 then ψ K,l has argument lθ + π.

Proof: First one proves the part of the statement concerning φ l :

1. If l = κ 0 , then [START_REF] Carminati | Linearization of germs: regular dependence on the multiplier[END_REF] implies that φ l = 1 Dκ 0 i κ 0 +1 a κ 0 which is, by assumption, the product of a number of modulus κ 0 θ with -1 Dκ 0 , the latter being real and positive.

2. Let l ≥ κ 0 + 1. Assume that for all l ∈ M such that l ≤ l -1, φ l has argument l θ. If l differs from all κ i , then by ( 9), φ l is the sum of terms which are the product of a number i K+1 a K D l , which by assumption has argument Kθ, with a number which by recurrence assumption has argument (l -K)θ. If l is one of the κ i , then one has to add the term 1 D l i l+1 a l , which has argument lθ.

As for the statement concerning ψ K,l , since ψ K,K = i K+1 a K which has argument Kθ+π, the property holds for l ≤ K. Assume this property holds up to a fixed l ≥ K. By equation [START_REF] Cheraghi | A proof of the Marmi-Moussa-Yoccoz conjecture for rotation numbers of high type[END_REF], if ψ K,l+1 = 0 then ψ K,l+1 is a sum of terms with argument kθ + (l + 1 -k)θ + π for k ∈ {1, . . . , n -1}, therefore it has argument (l + 1)θ + π.

Remark: For instance, A(x) satisfies the assumption of Lemma 3 if it only has coefficients a K ∈ iR + (then θ = π 2 ), or such that i k+1 a K ∈ R -(then θ = 0), or if A is a monomial (without restriction on θ).

The semigroup M

We shall also need the following lemma on the set M: Lemma 4 Let d be the greatest common divisor of κ 0 , . . . , κ n . There exists

N M such that for all integer m ≥ N M , if m is a multiple of d, then m ∈ M. If κ 0 = 1 then N M = 1. Proof: Let I 0 = [κ 0 , κ 0 + • • • + κ N [∩N and for p ≥ 1, let I p = [p(κ 0 + • • • + κ N ), (p + 1)(κ 0 + • • • + κ N )[∩N Then (I p ) p≥0 is a partition of [κ 0 , +∞[∩N. Moreover, if jd ∈ I p ∩ M for some p ≥ 0, then jd + κ 0 + • • • + κ N ,
which is also a multiple of d, belongs to I p+1 ∩ M; therefore, in order to prove this lemma, it is sufficient to prove that for all jd ∈ I 0 \ M, there exists p ≥ 1 such that jd + p(κ 0 + • • • + κ N ) ∈ M. After a finite number of steps, one obtains an integer P such that all multiples of d belonging to I P are also elements of M. Translating by κ 0 + • • • + κ N , one will deduce that all multiples of d greater than p(κ 0 + • • • + κ N ) are also elements of M. Now, let jd ∈ I 0 \ M if it exists (otherwise the proof is finished). By Bezout's theorem, there are relative integers b 0 , . . . , b N , at least one of which is positive, such that b 0 κ 0 +• • •+b N κ N = jd. Sorting the coefficients b i by sign, one infers that jdi/ b i ≤0 b i κ i is a linear combination of the κ i with non negative coefficients, at least one of which is non zero, therefore jd-

i/ b i ≤0 b i κ i ∈ M. Therefore jd+max(-b 0 , . . . , -b N )(κ 0 +• • •+κ N ) ∈ M.

Lemma 4 has the following corollary:

Corollary 5 There exists

N M such that for all a, b ∈ M, if a -b ≥ N M , then a -b ∈ M. Proof: Let d be the greatest common divisor of κ 0 , . . . , κ N . Since every element of M is a multiple of d, if a, b ∈ M, then a -b is a multiple of d. If moreover a -b ≥ N M ,
where N M was defined in Lemma 4, then a -b ∈ M.

The Brjuno sum and the Brjuno function

Let d be the greatest common divisor of κ 0 , . . . , κ N . Let us consider the continued fraction expansion of dα.

Notations:

Let (q k ) be the sequence of the denominators of the approximants of dα.

Recall the well-known recurrence relation: for all j ≥ 0, q j+2 = a j+2 q j+1 + q j [START_REF] Davie | The critical function for the semistandard map[END_REF] where (a j ) is the sequence of integers given by the continued fraction expansion.

The following lemmas are given in order to relate the Brjuno sum with the small divisors of our linearization problem.

Lemma 6 For all k ≥ 1, there is

1 2q k+1 ≤ |D dq k | 1 2 ≤ 3 q k+1
Proof: For all l ∈ Z,

|D l | = 4| sin(πlα)| 2 = 4[(||lα|| Z + R(||πlα|| Z ))] 2
(where R is the remainder in the Taylor-Lagrange formula) whence

||lα|| ≤ |D l | 1 2 ≤ 3||lα|| (14) 
Now for all k ≥ 1,

||q k dα|| Z = min p∈Z |q k dα -p| = q k min p∈Z |dα - p q k | = q k |dα - p k q k | Since 1 2q k q k+1 ≤ |dα - p k q k | ≤ 1 q k q k+1 (15) 
(see for instance [START_REF] Marmi | The Brjuno functions and their regularity properties[END_REF] remark 1.6), there is

1 2q k+1 ≤ |D dq k | 1 2 ≤ 3 q k+1 .
Remark: This cannot be extended to generalized continued fractions since the inequality [START_REF] Giorgilli | Improved convergence estimates for the Schröder-Siegel problem[END_REF] does not hold anymore for generalized continued fractions.

The following lemmas come from [START_REF] Davie | The critical function for the semistandard map[END_REF]. They concern the structure of the set of small divisors and will be used in the lower bound on the radius of convergence. We recall them here and apply the second to our setting.

Lemma 7 ([13], lemma 2.2) Let k ∈ N and n ∈ N, n ≥ 1, such that d is a divisor of n. If |D n | 1 2 < 1 q k , then n d ≥ q k and either q k divides n d or n d ≥ q k+1 4 . Lemma 8 ([13], lemma 2.3) For all k ≥ 0, n ≥ 1, let A k (n) = {dq k ≤ j ≤ n, d|j, 1 6q k+1 ≤ |D j | 1 2 < 1 6q k }. Let E = max(dq k , dq k+1 4 ).
Then there is a function g k : N → R + such that:

• g k (n) ≤ (1 + 2dq k E ) n dq k ; • for all n 1 , n 2 ∈ N, g k (n 1 ) + g k (n 2 ) ≤ g k (n 1 + n 2 ); • if n ∈ A k (n), then g k (n) ≥ g k (n -1) + 1.
Remark: This application of Davie's lemma is possible because the set A k satisfies:

if j 1 = dj 1 < j 2 = dj 2 ∈ A k , then either dq k divides j 2 -j 1 or j 2 -j 1 ≥ dq k+1
4 . Indeed, letting p 1 (resp. p 2 ) be the integer closest to j 1 dα (resp. j 2 dα),

||(j 2 -j 1 )α|| ≤ |p 2 -p 1 -(j 2 -j 1 )dα| ≤ ||j 2 dα|| + ||j 1 dα|| ≤ |D j 2 | 1 2 + |D j 1 | 1 2 < 1 3q k
(the last inequality comes from j 1 , j 2 ∈ A k ). Therefore, by [START_REF] Giorgilli | Improved estimates for the convergence radius in the Poincaré-Siegel problem[END_REF],

|D j 2 -j 1 | 1 2 < 1 q k . Lemma 7 then implies that q k divides j 2 -j 1 or j 2 -j 1 ≥ q k+1 4 .
Lemma 9 There exists C 0 , C 1 > 0 such that

l≥0 1 q l ≤ C 0 and l≥0 1 q l ln q l ≤ C 1
Proof: Let us give a bound on l≥0 1 q l ln q l . Because of the recurrence relation ( 13), the sequence (q l ) increases at least as fast as a Fibonacci sequence the first two terms of which are in {κ 0 , . . . , κ N }: denoting by (f k ) the Fibonacci sequence with f 0 = f 1 = 1, one recursively proves that

q k ≥ f k (16) 
Indeed, q 0 ≥ 1 and q 1 ≥ 1. Assume that q k-1 ≥ f k-1 and q k ≥ f k , then

q k+1 = a k+1 q k+1-1 + q k+1-2 ≥ q k + q k-1 ≥ (f k + f k-1 ) = f k+1 .
Therefore, since the function t → ln t t decreases on [e, +∞[,

l≥0 1 q l ln q l ≤ ln 2 + l≥0 ln f l f l ≤ C 1
where C 1 is a numerical constant. From the inequality [START_REF] Greene | Hamiltonian maps in the complex plane[END_REF], one also infers that

l≥0 1 q l ≤ l≥0 1 f k ≤ C 0
where C 0 is a numerical constant.

Subsequence of fast increasing denominators

Given the number N M which was defined in Lemma 4, let (n k ) the subsequence containing all indices such that

q n 0 ≥ max(N M + 2, 1 + κ max (2 + 1 d )), q n k +1 ≥ q 2 n k + ζ(κ max , d)q n k + η(κ max , d) where ζ, η are given by ζ(κ max , d) = κ max d + 3κ max + 2, η(κ max , d) = ( κ max d + 2κ max )(κ max + 1)
Lemma 10 For all k ≥ 0, it holds that

q n k ≥ max(N M + 2, κ max ) 2 k . Proof: By definition, q n 0 ≥ max(N M + 2, κ max ). Assume that q n k ≥ max(N M + 2, κ max ) 2 k , then q n k+1 ≥ q n k +1 ≥ q 2 n k ≥ max(N M + 2, κ max ) 2 k+1 .
Corollary 11 For all k ≥ 0, k≥0

1 qn k ≤ 1 max(N M +2,κmax)-1 . Proof: Indeed k≥0 1 q n k ≤ k≥0 1 max(N M + 2, κ max ) 2 k ≤ k≥1 1 max(N M + 2, κ max ) k ≤ 1 max(N M + 2, κ max ) -1 . (17) 
Lemma 12 There exists C 2 > 0 such that

B(dα) -C 2 ≤ l≥0 | ln |D qn l | | 2q n l ≤ B(dα) + C 2 Proof: Lemma 6 implies that l≥0 ln q n l +1 -ln 3 q n l ≤ l≥0 | ln |D qn l | | 2q n l ≤ l≥0 ln q n l +1 q n l + l≥0 ln 2 q n l ≤ B(dα) + C 0 ln 2
(where we have also used Lemma 9). Now l≥0 ln q n l +1 q n l = B(dα) -l≥0,q 2 l +ζq l +η>q l+1 ln q l+1 q l (where ζ, η were defined at the beginning of the section). Thus

l≥0 ln q n l +1 q n l ≥ B(dα) - l≥0 ln(q 2 l + ζq l + η) q l ≥ B(dα) - l≥0 ln q l + ln(q l + ζ + η) q l ≥ B(dα) -2 l≥0 ln q l q l - l≥0 ln(ζ + η + 1) q l (18) 
By Lemma 9,

l≥0 ln(ζ + η + 1) q l ≤ C 0 ln(ζ + η + 1)
Therefore one can define C 2 = 2C 1 + C 0 (ln 3 + ln(ζ + η + 1)) and C 2 = C 0 ln 2.

Recursively defined lower bound

In this section we introduce a function F which will be used in giving a lower bound on the coefficients of the linearization. More precisely, we shall prove that

lim sup k→+∞ F (q n k ) q n k -C ≤ lim sup k→+∞ ln |φ qn k | q n k
where C is a constant not depending on α.

Then we shall bound lim sup k→+∞ F (qn k ) qn k by means of the Brjuno sum in the Lemma 13 below.

The function F is recursively defined on the set {q n k , k ≥ 0} as follows:

F (q n 0 ) = 0 ∀k ≥ 1, F (q n k ) = p k 0 | ln |D qn 0 || + p k 0 F (q n 0 ) + • • • + p k k-1 | ln |D qn k-1 || + p k k-1 F (q n k-1 ) (19) 
where the integers p k i are given by successive euclidean divisions on q n k -κ max :

dq n k -κ max = p k k-1 dq n k-1 + r k-1 , r k-1 < dq n k-1 , r k-1 = p k k-2 dq n k-2 + r k-2 , r k-2 < dq n k-2 , . . . , r 1 = p k 0 dq n 0 + r 0 , r 0 < dq n 0 . ( 20 
)
Remark 1 Let i ≥ 0. For all k ≥ i + 1,

p k i ≤ q n i+1 q n i (21) 
Indeed, the integer p k i are recursively given by

F (q n k ) q n k + κ max /d ≥ 0≤l≤k | ln |D dqn l || q n l - 0≤l≤k 4 ln(2q n l+1 ) q n l+1
which implies

F (q n k ) q n k + κ max /d ≥ 0≤l≤k | ln |D dqn l || q n l -4 l≥0 ln q l q l - l≥0 4 ln 2 q l
Lemma 9 then implies

F (q n k ) q n k + κ max /d ≥ 0≤l≤k | ln |D dqn l || q n l -4C 1 -4 ln 2C 0
Finally, by Lemma 12,

lim sup k→+∞ F (q n k ) q n k = lim sup k→+∞ F (q n k ) q n k + κ max /d ≥ 2B(dα) -2C 2 -4C 1 -4 ln 2C 0
Thus one can define C 4 = 2C 2 + 4C 1 + 4 ln 2C 0 .

An upper bound on the radius of convergence

In this section, one shall assume the following:

Assumption 1 Assume that there exists θ ∈ R such that for all k = 1, . . . , N with a k = 0, the complex number i k-1 a k has argument kθ.

In this case, one can prove a lower bound on the coefficients φ l of the linearization in order to bound the radius of convergence from above.

One needs the following simple lower bound on all coefficients, including those not corresponding to a small divisor.

Lemma 14 For all r ∈ N, if |φ r | = 0, then |φ r | ≥ min(1,

|aκ min | 4 ) r κ 0 . Proof: For all K such that a K = 0, it holds that |φ K | ≥ K|a K | 4 ≥ |aκ min | 4 . If |aκ min | 4 < 1, then |φ K | ≥ ( |aκ min | 4 ) K κ 0 . If |aκ min | 4 ≥ 1 then |φ K | ≥ 1.
Let r ∈ M, r ≥ 2. Assume that the property holds for all r ≤ r -1. Then, either there exists i ∈ {0, . . . , N } such that r = κ i , and in this case, |φ r | ≥

aκ i 4 ≥ min(1, |aκ min | 4 ) ≥ min(1, |aκ min | 4
) κ i κ 0 , or there exists i ∈ {0, . . . , N } such that

|φ r | ≥ |a κ i | 4 |φ r-κ i | ≥ |a κ min | 4 |φ r-κ i | If |aκ min | 4
< 1, then the recurrence assumption implies that |φ r | ≥ (

|aκ min | 4 ) κ i κ 0 min(1, |aκ min | 4 ) r-κ i κ 0 ≥ min(1, |aκ min | 4 ) r κ 0 . If |aκ min | 4 ≥ 1 then |φ r | ≥ 1.
Lemma 15 Let κ be such that a κ = 0. For all j > κ 0 and p ∈ N * , there is

|φ pj | ≥ 1 p|D pj | . . . |D 2j | |φ j | p |D j | p-1
Proof: Notice that

|φ pj | = 1 |D pj | |ψ pj | = 1 |D pj | K∈{κ 0 ,...,κ N } |ψ K,pj | (26) 
(one uses the fact that the ψ K,pj have the same argument for every K). Thus by [START_REF] Cheraghi | A proof of the Marmi-Moussa-Yoccoz conjecture for rotation numbers of high type[END_REF],

|φ pj | ≥ 1 |D pj | K (p -1)j pj -K |φ (p-1)j ||ψ K,j | ≥ (p -1)j |D pj |pj |φ (p-1)j ||ψ j | (27) 
Iterating this, one obtains

|φ pj | ≥ 1 p|D pj | . . . |D 2j | |φ j ||ψ j | p-1 = 1 p|D pj | . . . |D 2j | |φ j | p |D j | p-1 . ( 28 
)
The following lemma states a better lower bound for the coefficients of the linearization corresponding to a small divisor.

Lemma 16 For all k ≥ 0, there is

|φ dqn k+1 | ≥ 1 |D dqn k+1 | |a κmax | (k + 2)! ( 1 4 ) d(p k+1 0 +•••+p k+1 k ) |D dqn 0 | dp k+1 0 -1 dp k+1 0 . . . |D dqn k | dp k+1 k -1 dp k+1 k • |φ dqn 0 | p k+1 0 . . . |φ dqn k | p k+1 k min(1, |a κ min | 4 ) R k κ 0 ( 29 
)
where the integers p k+1 0 , . . . , p k+1 k , R k were defined in equation [START_REF] Marmi | On the standard map critical function[END_REF]. Proof: Taking in the recurrence relation ( 9) the term with l = q n k+1 , K = κ max , m = 1,

p 1 = k + 2, j 1 1 = dp k+1 0 (q n 0 + κ max ), . . . , j 1 k+1 = dp k+1 k (q n k + κ max ) and j 1 k+2 = R k , in order to have j 1 1 + • • • + j 1 k+2 = dq n k+1 -κ max , one obtains |φ dqn k+1 | ≥ 1 |D dqn k+1 | κ max |a κmax | (k + 2)! |φ dp k+1 0 (qn 0 +κmax) | . . . |φ dp k+1 k (qn k +κmax) ||φ R k |
Now apply Lemma 15 to every factor in the right hand side, except the last one, and apply Lemma 14 to the last factor. One obtains

|φ dqn k+1 | ≥ 1 |D dqn k+1 | |a κmax | (k + 2)! ( 1 4 ) d(p k+1 0 +•••+p k+1 k ) |D dqn 0 | dp k+1 0 -1 dp k+1 0 . . . |D dqn k | dp k+1 k -1 dp k+1 k • |φ dqn 0 | p k+1 0 . . . |φ dqn k | p k+1 k min(1, |a κ min | 4 ) R k κ 0 . (30) 
The following proposition links the radius of convergence of the linearization to the function F .

Proposition 1 There exists C ≥ 0 such that for all k,

1 dq n k ln |D dqn k φ dqn k | ≥ F (q n k ) dq n k -C
Moreover, one can have C = -2 ln(

|aκ min | 4 ) + 2+N M 1+N M (1 -ln |a κ min |) if |aκ min | 4 < 1 and C = 1 + 1 1+N M otherwise.
Remark: Observe that the coefficients of the linearization increase with the nonlinear part of the system.

Proof: Denote C = -2 ln( |aκ min | 8
) if

|aκ min | 8 < 1 and C = 0 otherwise. Let S 0 = ln 4 q n 0 ; ∀k ≥ 1, S k = 1≤j≤k j ln j + ln(d j q n j ) q n j + 0≤j≤k ln 4 q n j (1 + p j 0 + • • • + p j j-1 + R j κ 0 )
Thus, for all k ≥ 0, S k ≥ 0.

Let k ≥ 0. Let us formulate the following recurrence property:

1 dq n k ln |D dqn k φ dqn k | ≥ F (q n k ) dq n k -S k -C (31) 
First note that this property holds for k = 0. Indeed, since by Corollary 5, q n 0 ≥ N M , which implies that dq n 0 ∈ M, then there exists b 0 , b 1 , . . . , b N ≥ 0 such that dq n 0 = N i=0 b i κ i . Let I be such that b I > 0. Then

|φ dqn 0 | ≥ 1 |D dqn 0 | κ I |a κ I ||φ κ I | b I -1 J =I |φ κ J | b J
Now on the other side, for all 0 ≤ i ≤ N ,

|φ κ i | ≥ |a κ i | |D κ i | ≥ |a κ min | 4 ≥ |a κ min | 8 hence, if |aκ min | 8 < 1,
|φ dqn 0 | ≥ 1 |D dqn 0 | |a κ I |( |a κ min | 8 ) dqn 0 -1
and if

|aκ min | 8 ≥ 1, |φ dqn 0 | ≥ 1 |D dqn 0 | |a κ I | Thus if |aκ min | 8 < 1, 1 dq n 0 ln |φ dqn 0 | ≥ | ln |D dqn 0 || dq n 0 + dq n 0 -1 dq n 0 ln( |a κ min | 8 ) + ln(|a κ I |) dq n 0 ≥ | ln |D dqn 0 || dq n 0 -S 0 - C and if |aκ min | 8 ≥ 1, 1 dq n 0 ln |φ dqn 0 | ≥ | ln |D dqn 0 || dq n 0 + ln(|a κ I |) dq n 0 ≥ | ln |D dqn 0 ||
dq n 0 therefore the property (31) holds for k = 0. Now assume that the recurrence property holds for all 0 ≤ k ≤ k, for a fixed k ≥ 0. Lemma 16 implies

ln |D dqn k+1 φ dqn k+1 | ≥ ln |a κmax | (k + 2)! -d((p k+1 0 + • • • + p k+1 k ) + k + 1) ln 4 -ln(dp k+1 0 . . . dp k+1 k ) + p k+1 0 ln |D dqn 0 φ dqn 0 | + • • • + p k+1 k ln |D dqn k φ dqn k | + R k κ 0 ln min(1, |a κ min | 4 ) (32) 
By recurrence assumption, one infers

1 dq n k+1 ln |D dqn k+1 φ dqn k+1 | ≥ - (k + 2) ln(k + 2) dq n k+1 + ln |a κmax | dq n k+1 - d(p k+1 0 + • • • + p k+1 k ) + k + 1 dq n k+1 ln 4 + p k+1 0 dq n 0 dq n k+1 ( F (q n 0 ) dq n 0 -S 0 -C) + • • • + p k+1 k dq n k dq n k+1 ( F (q n k ) dq n k -S k -C) + R k dκ 0 q n k+1 ln min(1, |a κ min | 4 ) - ln(dp k+1 0 . . . dp k+1 k ) dq n k+1 (33) 
thus by definition of F ,

1 dq n k+1 ln |D dqn k+1 φ dqn k+1 | ≥ F (q n k+1 ) dq n k+1 - (k + 2) ln(k + 2) dq n k+1 + ln |a κmax | dq n k+1 - d(p k+1 0 + • • • + p k+1 k ) + k + 1 q n k+1 ln 4 + R k dκ 0 q n k+1 ln min(1, |a κ min | 4 ) -C - p k+1 0 dq n 0 dq n k+1 S 0 -• • • - p k+1 k dq n k dq n k+1 S k - ln(dp k+1 0 . . . dp k+1 k ) dq n k+1 (34) 
Now for all i = 0, . . Therefore, the property (31) holds for all k ≥ 0.

Finally note that the partial sums S k converge, since from one side, by choice of the subsequence q n j and corollary 11,

1≤j≤k j ln j + ln(d j q n j ) q n j ≤ 1≤j≤k 2 √ q n j + C 1 ≤ 1≤j≤k 2 q n j-1 + C 1 ≤ 2 1 + N M + C 1
and from the other side, by Remark 1,

ln 4 q n 0 + k j=1 ln 4 q n j (1 + R j κ 0 + p j 0 + • • • + p j j-1 ) ≤ ln 4 q n 0 + k j=1 ln 4 q n j (1 + q n 0 + q n 1 + κ max q n 0 + κ max + • • • + q n j-1 + κ max q n j-2 + κ max + q n j q n j-1 ) ≤ ln 4( 1 q n 0 + k j=1 (j + 1)q n j-1 q n j + 1 q n j-1
)

≤ ln 4( 1 q n 0 + k j=1 j + 2 q n j-1 )
≤ ln 4( 8 Proof: Let ρ be the radius of convergence of Φ, then ρ -1 = lim sup j→+∞ |φ j | 

q n 0 + k-1 j=2 j + 3 q n j ) ≤ ln 4( 8 q n 0 + k-1 j=2 1 q n j-1 ) ≤ 9 ln 4 1 + N M (35) 

A lower bound on the radius of convergence

In this section, the second part of the main result is proved. The assumption 1 on the coefficients a K is relaxed.

Theorem 18

The radius of convergence is at least exp(-C -l≥0

2 ln q l+1 dq l ), where C ≥ 0 is defined by and let R its radius of convergence. Expanding w in its Taylor series, w(z) = n≥0 σ n z n , one obtains the following relation between the coefficients σ n (it is the same relation as between the coefficients φ j , only replacing a k by i k+1 and without small divisors):

C = ln(|a κmax |) + r + C 0 if |a κmax | >
σ l = K∈ κ 0 ,..., κ N }, K≤l [δ K,l + m=1,...,K m≤l-K C m K l-K p 1 =1 • • • l-K pm=1 1 p 1 ! . . . p m ! j 1 1 ,...,j 1 p 1 , . . . j m 1 ,...,j m pm , j 1 1 +•••+j 1 p 1 +... +j m 1 +•••+j m pm =l-K σ j 1 1 . . . σ j 1 p 1 . . . σ j m 1 . . . σ j m pm ( 36 
) One can recursively show that the σ n are non negative real numbers. Moreover the function w is analytic, therefore lim sup n→+∞ -1 n ln σ n is equal to -ln R. The function g giving the upper bound is defined as follows: for all k ≥ 0, let g k be the function defined by Davie's lemma 8. Then, for all integer κ 0 ≤ j < q n 0 , let

g(j) = j ln(|a κmax |) + 36j if |a κmax | > 1, and • if j ≥ κ 0 and |D j | 1 2 ≥ 1 6 , then
|D -1 j ||a κmax |e g(j-κ 0 ) σ j ≤ 36|a κmax |e g(j-κ 0 ) σ j ≤ e g(j) σ j

• otherwise there exists k ≥ 0 such that 1 6q k+1 ≤ |D j | 1 2 < 1 6q k , and in this case, |D -1 2 j | ≤ 6q k+1 . Moreover, j ∈ M implies that d divides j; then j ∈ A k (j) therefore, by construction of g k ,

g k (j) = g k (j -κ 0 ) + 1 therefore ln |D -1 j | + ln |a κmax | + g(j -κ 0 ) ≤ 2 ln q k+1 + ln 36 + ln |a κmax | + g(j -κ 0 ) ≤ g(j) thus |φ j | ≤ |D -1 j ||a κmax |e g(j-κ 0 ) σ j ≤ e g(j) σ j
The recurrence is finished. Thus, for all j ≥ κ 0 , 8 Appendix

1 j ln |φ j | ≤ 1 j g(j) + 1 j ln σ j (40) 

8.1

Here we give a proof of equation ( 6) in two lemmas.

Lemma 19 Let H(z, λ) = (h(z, λ), h 2 (z, λ)) be the linearization. Then h 2 (z, λ) = h(z,λ) h(λ -1 z,λ) .

Proof: Let F (z, λ) = (λz N k=1 e ia k z k , λ N k=1 e ia k z k ) be the function generating the system, and R(z, λ) = (λz, λ). Note that if f (z, λ) = N k=1 e ia k z k then F (z, λ) = (zf (z, λ), f (z, λ)). We shall expand the identity H = F • H • R -1 to infer the desired identity. On one side,

F • H • R -1 (z, λ) = F • H(λ -1 z, λ) = F (h(λ -1 z, λ), h 2 (λ -1 z, λ)) = (h(λ -1 z, λ)f (h(λ -1 z, λ), h 2 (λ -1 z, λ)), f (h(λ -1 z, λ), h 2 (λ -1 z, λ))) (42) 
By matching the components of

F • H • R -1 with those of H, one infers that h(z, λ) = h(λ -1 z, λ)f (h(λ -1 z, λ), h 2 (λ -1 z, λ)) and h 2 (z, λ) = f (h(λ -1 z, λ), h 2 (λ -1 z, λ)))
Those two identities imply that for all (z, λ), h 2 (z, λ) = h(z, λ) h(λ -1 z, λ) .

Lemma 20 Let h(z, λ) = ize Φ λ (z) , then equation (6) holds.

Proof: Let F (z, λ) = (λz N k=1 e ia k z k , λ N k=1 e ia k z k ) be the function generating the system, and let R(z, λ) = (λz, λ). By definition, F • H = H • R. Now using Lemma 19, F • H(z, λ) = ( h 2 (z, λ) h(λ -1 z, λ) N k=1 e ia k h(z,λ) k , h(z, λ) h(λ -1 z, λ) N k=1 e ia k h(z,λ) k ) and H • R(z, λ) = (h(λz, λ), h(λz,λ) h(z,λ) ). By matching the components and taking the logarithm modulo 2iπ, one obtains equation (6).

A number is Brjuno if and only if its multiple by an integer is Brjuno

In this section, we will give a proof of the following fact:

Proposition 2 Let α ∈ R \ Q. Let N ∈ N, N ≥ 2.
Then α is a Brjuno number if and only if N α is a Brjuno number. In order to prove this, it will be useful to recall a few classical facts about continued fractions. Let α ∈ R \ Q. Let ( pn qn ) n≥0 be the sequence of best approximants. They have the property that for all rational p q , |α -p q | ≤ 1 2q 2 ⇒ ∃n ≥ 0, p q = p n q n Let (a n ) be the sequence of integers given by the algorithm a 0 = [α], x 0 = {α}, x n+1 = { 1 xn }, a n+1 = [ 1 xn ]. Then q n+1 = a n+1 q n + q n-1 which implies that a n+1 ≤ q n+1 q n (43) Also, there is the following important identity:

|α - p k q k | = 1 q k 1 q k+1 + a k+1 q k (44)
As mentioned in [START_REF] Carminati | Linearization of germs: regular dependence on the multiplier[END_REF], there exists a constant C ≥ 0 such that for all irrational α, ) be the sequence of best approximants of N α.

| n≥0 ln q n+1 q n - ln a n+1 q n | ≤ C ( 
Lemma 21 If a n+1 > 2N , then there exists k ≥ 0 such that p n N q n = p k q k .

Proof: By (44), one has

|α - p n N q n | ≤ 1 N 1 q 2 n a n+1 < 1 2(N q n ) 2 thus p n N q n
is one if the best approximants of α: there exists k ≥ 0 such that p n N q n = p k q k . Now we can prove the Proposition 2. For all n ≥ 0 such that a n+1 > 2N , let k n be an integer such that p n N q n = p kn q kn . Note that q kn ≤ N q n . By (43), ln a n+1 q n ≤ ln q n+1 q n -ln q n q n (46)

The identity (44) adapted to N α implies that q n q n+1 ≤ 1 |N α-

p n q n | therefore ln a n+1 q n ≤ | ln |N α -p n q n || q n -2 ln q n q n ( 47 
)
If a n+1 > 2N , then ln a n+1 q n ≤ N | ln |N α -N p kn q kn || q kn -2N ln q n q n (48)

Again by (44), |α -p kn q kn | ≥ 1 2q kn q kn+1 therefore ln a n+1 q n ≤ N ln q kn+1 q kn + N ln q kn q kn + N (ln N + ln 2) q kn -2N ln q n q n (49)

By taking the sum over n ≥ 0,

(

  this last inequality used Corollary 11). Thus, let C = C + 1 1+N M (2 + 9 ln 4) + C 1 , then C satisfies the statement of this proposition. Theorem 17 The radius of convergence of Φ is bounded from above by exp(-lim sup k→+∞ F (qn k ) dqn k + C) where C ≥ 0 was defined in Proposition 1. It is also bounded from above by exp(-2 d B(dα)+ C M ) where C M = C 4 d + C, with C 4 defined in Lemma 13.

  1 and C = r + C 0 otherwise, with r > 0 only depending on the Fourier modes of the trigonometric polynomial A and C 0 defined in Lemma 9. Proof: Let w be an analytic solution of the functional equation w(z) = k∈{κ 0 ,...,κ N } (ze w(z) ) k
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and for i = 0, . . . , k -2, p k i = E( r i+1 dqn i

), which satisfies [START_REF] Yoccoz | Petits diviseurs en dimension 1[END_REF] by definition of r i+1 .

Lemma 13 There exist C 4 > 0 such that the function F satisfies for all k ≥ 0,

Proof: This can be recursively shown. Assume that for a fixed k ≥ 1 and for all k ≤ k -1, one has

(which holds for k = 1). Then

Now by definition of p k-1 ,

and this quantity is greater than 1 since, by assumption on the subsequence n k ,

+ η where ζ, η were defined at the beginning of Section 4.1. Therefore

(where the last inequality comes from the fact that q n 0 ≥ 1 + κ max (2 + 1 d )). Therefore the property holds for all k ≥ 0. Lemma 6 implies that g(j) = 36j otherwise. Now let j ≥ q n 0 and assume that k is the greatest index such that q k ≤ j; let

The function g is increasing. Moreover for all j 1 , j 2 ≥ κ 0 , as a consequence of Davie's lemma,

Now let us prove that |φ j | ≤ σ j e g(j) for all j ≥ κ 0 . First, if

and |φ κ 0 | ≤ 1 = e g(κ 0 ) otherwise. Assume that this holds for all j ≤ j -1 and consider |φ j |. The relation ( 9) implies

. . .

hence, by recurrence assumption,

1 )+...g(j m pm ) ]

(39) therefore

j ||a κmax |e g(j-κ 0 ) σ j We shall distinguish two cases:

N ln q kn+1 q kn + N ln q kn q kn + N (ln N + ln 2)

If α is a Brjuno number, the right hand side is finite, which implies that N α is a Brjuno number.

It remains to prove that if α is a Brjuno number, then 1 N α is Brjuno. Now the functional identity from [START_REF] Marmi | The Brjuno functions and their regularity properties[END_REF], which holds for α ∈ (0, 1):

implies that any irrational α is Brjuno if and only if 1 α is Brjuno. If α is Brjuno, then 1 α is Brjuno, therefore, by the above, N α is Brjuno, and thus its inverse α N is a Brjuno number.