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Abstract

The present work investigates the elasto-visco-plastic buckling of thick plate structures.

Methods to estimate the buckling of thin elasto-visco-plastic shells and plates are proposed in

literature. To the knowledge of the authors, only few works present experimental results, and

none treat the experimental elasto-visco-plastic buckling of thick plate. Thick rectangular

plates are chosen as a structure of interest to study elasto-visco-plastic buckling. A modeling

/ experimental approach is followed to solve such problem. Buckling experiments at room

temperature on thick elasto-visco-plastic plates subjected to compressive load are performed.

3D digital image correlation (3D-DIC) is used to measure displacement fields on plate surface

during buckling experiments. The experiments are also modeled through a finite element

model. Bodner’s approach is coupled to Hencky’s deformation theory to predict buckling of

elasto-visco-plastic plates. Bifurcation analysis are performed to estimate buckling critical

stresses and strains, and buckling modes. Geometrical and loading imperfections are also

discussed. A good correlation is observed between numerical results and experiments. The

limitation of Bodner’s approach is also discussed.
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1. Introduction

The integrity of structural components is a major issue for nuclear reactors. In addition

to the mechanical loading, the environmental conditions can be extreme in nuclear reactors,

especially for sodium fast reactors.

The structural components of such reactors are exposed to high temperature (more than

520◦C). The buckling of some structural components has been identified as a failure case

under ultimate loading. As many components are made of 316L(N) stainless steel, the

rate-dependency of the material must be taken into account in the buckling analysis.

A global strategy was defined in order to answer to this issue. This strategy intends

to progress step by step, with experiments on simplified geometries and loading, to finally

experiment buckling on elasto-visco-plastic thick shells subjected to external pressure, such

as cylinders or spheres. This work presents results obtained on thick rectangular plates

subjected to a compressive load. These results are used in order to evaluate the numerical/experimenta

strategy for a future extension of the buckling prediction method to complex rate-dependent

shells.

Structural stability has been studied extensively in the past years. Thin shells and plates

were more specifically studied, as they are more likely to buckle in service. Energy based

methods were first developed to define bifurcation points on elastic structures. Hill defined

a theory to assess the stability of plastic solids (see Hill (1958)). This last theory was

applied with success to many elastic and plastic solids. Its efficiency is well known on thin

structures (see Yeh and Kyriakides (1986) or Bardi and Kyriakides (2006)). Nevertheless,

some thick structures, as plates, buckle before reaching Hill ’s bifurcation load. A more

accurate estimation of the bifurcation point was achieved using any deformation theory

to define the tangent operator of the constitutive law. This last method gives better

correlation with experiments than the classical Hill ’s method. This paradox was mentioned

and discussed by Hutchinson and Budiansky (1976).

Concerning thick plates buckling, this topic has also been largely studied in the literature.

Many articles focus on the buckling of thin rectangular plates like in Hoff (1976), Bridget
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et al. (1934), Bijlaard (1949), Peters (1948) or Romeo and Frulla (1994). In addition to

the existing experimental works, many numerical methods where developed to predict the

buckling of elasto-plastic plates subjected various loadings and boundary conditions. They

all intend to define the critical points of the bifurcation condition obtained through the

Shanley ’s concept of continued loading during buckling. This bifurcation condition is defined

in Chakrabarty (2000). The different methods approximate the singular solutions of buckling

in different ways, through trigonometric functions as in Wang et al. (2001) or using Ritz

polynomial function as in Wang and Aung (2007). They are very efficient for simple load

cases and simple boundary conditions. More sophisticated approaches were developed in the

past years using the variational differential quadrature method as in Hasrati et al. (2019)

or Kumar Panda and Ramachandra (2010), or the symplectic superposition method as in

Wang et al. (2016). All methods have their own benefits and level of complexity for their

implementation, especially for complex material behaviours. In this work the approach

described in Wang and Aung (2007) is followed to define a simple and efficient an analytical

buckling prediction method for thick anisotropic plates.

As long as the material is rate-independent, previous methods can be applied with success

to establish the uniqueness of the solution. Rate-dependent materials present a more specific

behaviour.

Two approaches exist in literature, one defined by Bodner et al. (1991), the other

defined by Triantafyllidis et al. (1997). The first one is relatively simple to implement

in any Finite Element (FE) software. This method consists in defining an instantaneous

plasticity problem. It gives an estimate of the bifurcation point for rate-dependent solids.

The instantaneous plasticity problem is defined through the assumption of a constant strain

rate (in time) at buckling initiation.

The method developed by Triantafyllidis et al. (1997) is more rigorous; it gives a sufficient

condition of bifurcation for rate-dependent solids. Two examples were treated numerically

with this method, Shanley ’s column by Massin et al. (1999) and uniaxial plane strain test

by Nestorović et al. (2000). The method suffers of being more complex to implement in a

FE software. Because of the high level of fidelity of Bodner ’s approach for thin structures,
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Triantafyllidis ’ method was not investigated in this work. This particular point is discussed

in detail later.

Using Bodner ’s hypothesis, the existing methods to analyze the stability of rate-independent

materials can be applied to define the stability of the instantaneous plasticity problem.

Bodner ’s approach was applied numerically on different geometries by Paley and Aboudi

(1991), Bodner and Naveh (1988), Mikkelsen (1993) or Mikkelsen (2001).

Most of the existing works only deal with a theoretical or a numerical approach. Only

few works present experimental results on the buckling of rate dependent solids (see Hoff

(1976) or Combescure and Jullien (2017)). To the knowledge of the authors, no experimental

results were published on the buckling of thick elasto-visco-plastic shells or plates.

This work presents results of buckling experiments performed on thick elasto-visco-plastic

rectangular plates subjected to in-plane compressive load. Experiments were performed on

various plate geometries and for various displacement rates. A specific instrumentation was

used to measure the displacement of the plate surface by 3D Digital Image Correlation

(3D-DIC) means. The 3D DIC process is particularly useful to identify the buckling modes

and their possible combinations. It is also useful to detect the buckling initiation. Specific

discussions are dedicated to these topics and the effect of loading imperfection.

The objective of this paper is also to validate an elasto-visco-plastic buckling criterion

based on Hill ’s theory. The criterion couples Bodner ’s hypothesis and Hencky ’s deformation

theory for the calculation of the instantaneous tangential behaviour. This method is inspired

from the work of Eslami and Shariyat (1997). The criterion was applied though an analytical

model to estimate the buckling of thick elasto-visco-plastic rectangular plates subjected to

in-plane compressive loading. The numerical buckling estimations were finally compared to

the experimental results. The domain of validity of Bodner ’s hypothesis is also discussed in

details.

A coupled experimental / numerical approach is proposed to assess the validity of such

a criterion. The approach is based on the following ingredients:

1. Identification of the elasto-visco-plastic behaviour of the tested material :
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As a matter of fact, the constitutive behaviour of the material strongly affects the

buckling predictions. The inverse approach used to identify the elasto-visco-plastic

constitutive law of the tested material is presented.

2. Buckling tests on thick plates made of the elasto-visco-plastic material

under uniaxial compressive force : The initial mid-surface imperfections as well

as the evolution of the 3D surface displacement fields were carefully measured. The

imperfect boundary conditions and the post buckling mode evolution are extracted

from the full field measurement.

3. Buckling predictions: The buckling criterion is embedded in an analytical model

of a perfect plate under perfect compressive loading. The analytical model is based

on the work of Wang and Aung (2007). The identified constitutive law is used in the

model.

4. FE simulation of the buckling tests : The FE simulations take into account the

measured imperfect boundary conditions and the constitutive law of the material.

It is first used to validate the identified constitutive law by comparison of the pre-

buckling and post buckling plates response. It is also used to derive an out-of-plane

displacement based buckling criterion in order to compare the bifurcation results of

the buckling tests and the ones of the analytical model.

This article presents the different elements of this experimental / numerical approach.

First a brief presentation of the material and its mechanical characterisation is given. Then,

the numerical methods and the experimental procedure are introduced. Finally, the results

of the buckling experiments and their correlations with the numerical models are presented

and discussed.

2. Materials and Experiments

The constitutive law is particularly important to study the buckling of any structure.

A model material with an elasto-visco-plastic behaviour at room temperature was selected
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instead of the 316L(N). The choice was motivated in order to reduce experimental constraints.

As the material behaviour depends on its manufacturing process, we will present it briefly

as well as the mechanical characterisation of the model material.

2.1. Specimens manufacturing

Figure 1: Specimen drawings in mm: (a) Tensile test specimen, (b) Buckling test specimen

The model material is a low melting point alloy commonly named Sn-3.0Ag-0.5Cu or

SAC305. It is composed of 96.5% of tin, 3% of silver and 0.5% of copper. Its melting

temperature is 217◦C. Ingots of 250×90×13 mm 3 were first gravity die cast, water quenched

and stress relieved one hour at 100◦C, cf. Wei and Wang (2012). This manufacturing process

ensures a proper microstructure. Two specimens are extracted from each ingot in order to

perform tensile tests or buckling tests. Nine ingots were cast in three sessions for the purpose

of this work.

Two types of specimens were machined from the ingots according to the drawings given

in Figure 1.

Figure 1a shows the tensile specimen shape used for the identification of the constitutive

law. The shape of the specimen was chosen on purpose, so as to obtain an heterogeneous

strain rate field and measure it by DIC during tensile testing. The test data obtained covers

a larger strain rate range (equal to a decade of strain rate), which reduces the number of

specimens to be tested for creep law identification.
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Figure 1b depicts the parametric geometry of specimens used for buckling tests. Buckling

specimen offers large grip zones to be installed in a buckling set-up. These large grip zones

allow to obtain better boundary conditions. This is essential for plate compressive buckling

experiments.

2.2. Material behaviour characterization

2.2.1. Material constitutive law

To model the mechanical behaviour of the SAC 305 alloy, an elasto-visco-plastic constitutive

law was chosen. It is characterised by Hill ’s quadratic anisotropic yield criterion, an isotropic

hardening modeled by three Voce parameters and a Norton flow rule. While the plastic yield

criterion is anisotropic, elasticity is kept isotropic and linear.

The constitutive law is then defined by the set of Equations 1:

σ̇ = C ε̇e,

ε̇ = ε̇e + ε̇p,

σeq =
√
σ : H : σ,

F = σeq −R(p),

R(p) = R0 +
3∑

i=1

Ri

(
1− e(−bip)) ,

ṗ =

(
F

K

)n
,

(1)

where, σ̇ is the Cauchy stress rate tensor, ε̇ is the strain rate tensor, ε̇e is the elastic strain

rate tensor and ε̇p is the plastic strain rate tensor, C is the isotropic elastic linear operator,

σeq is Hill ’s equivalent stress defining the yield surface, H is Hill ’s tensor (used here for

transverse anisotropy), p is the equivalent plastic strain, ṗ is the equivalent plastic strain

rate and R is the hardening variable.

The material parameters to be identified are R0, R1, b1, R2, b2, R3, b3, K, n, H (defined

by Lankford’s ratio) and C defined by Young’s modulus and Poisson’s ratio. Lankford’s
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ratio is defined by:

RLank = εyy/εzz, (2)

with y the width direction of the specimen, z its thickness direction.

2.2.2. FEMU based identification procedure

A Finite Element Model Updating (FEMU) approach was applied to identify the material

parameters. This approach compares numerical data from FE simulations to experimental

data. The interested reader can find detailed information about this method in Avril et al.

(2008).

In our case, tensile tests were performed in order to generate the set of experimental

data. These tests were performed on a 20 kN Instron electro-mechanical testing machine

at room temperature (20◦C). The tests were performed following two weeks after casting

in order to limit the material ageing, cf. Dompierre et al. (2011). The displacement rate is

maintained constant until the total displacement reaches 4 mm.

Eight specimens from four material batches were produced. Two tensile specimens were

manufactured from each material batch. Each specimen was tested according to the testing

conditions summarised in Table 1.

2.2.3. Results of constitutive law identification

The identification algorithm was run on each material batch using the test data extracted

from the two tensile tests. The material parameters were identified for each material batch.

As material discrepancies were observed on test results and on the identified parameters, a

reference law was defined. This references law statistically defines the mechanical behaviour

of the SAC 305 associated to its manufacturing process detailed previously. The reference

law includes the average behaviour of the identified laws from the four batches as well as

their discrepancies.

The characteristics of the material law are presented in Table 2. The minimum and

maximum envelopes of the reference law are defined with 95% probability and 90% confidence.

This statistical approach is classically used in the MMPDS Handbooks MMPDS-10 (2015).
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Specimen Speed [mm.s−1]
Min. strain

rate [s−1]

Max. strain
rate [s−1]

Ingot #
Testing

Temperature
[◦C]

TT/11 3.3 10−3 1 10−5 1 10−4

1
20

TT/12 3.3 10−2 1 10−4 1 10−3 20

TT/21 3.3 10−3 1 10−5 1 10−4

2
20

TT/22 3.3 10−2 1 10−4 1 10−3 20

TT/31 3.3 10−3 1 10−5 1 10−4

3
20

TT/32 3.3 10−2 1 10−4 1 10−3 20

TT/41 3.3 10−3 1 10−5 1 10−4

4
20

TT/42 3.3 10−3 1 10−4 1 10−3 20

Table 1: Summary of tensile testing conditions

K, the Norton coefficient, is linked to K̂, the statistical Norton coefficient, as follows:

K · ṗ1/n
r = K̂ · ṗ1/n̄

r , (3)

where n̄ is the mean experimental Norton exponent, equal to 2.9. ṗr is the specific experimental

strain rate value equal to 2.3 10−4s−1 used to characterise the creep law discrepancy.

In addition the parameters of the mean reference law are presented in Table 3.

2.2.4. Effect of the cooling rate on the material properties

Each test campaign presented in this work corresponds to a group of batches. A group

of batches gathers material batches manufactured at the same time. The three groups

of batches (tensile tests, BTC #1 and BTC #2), used to manufacture all the specimens,

were manufactured at different times of the year and under different climatic conditions.

The temperature of the water used for the quench could have changed by few degrees, as

presented in Table 4. A slight modification of the quench temperature can affect the cooling

rate as well. Kim et al. (2002) show that the cooling rate has an important impact on the

mechanical properties.
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Parameters Mean Std.Dev. Max 95/90 Min 95/90 Units

R̂(0.005) 16.4 0.7 18.9 13.9 MPa

R̂(0.010) 18.0 0.7 20.8 15.3 MPa

R̂(0.020) 19.2 0.8 22.1 16.3 MPa

R̂(0.050) 20.9 0.9 24.2 17.5 MPa

R̂(0.100) 21.8 1.1 25.9 17.7 MPa

n 2.9 0.2 3.9 2.1 n/a

K̂ 133.8 5.3 154.4 115.8 MPa.s1/n

E 41513 n/a n/a n/a MPa

RLank 1.8 n/a n/a n/a n/a

ν 0.35 n/a n/a n/a n/a

Table 2: Statistical properties of the reference law

One can show that it mainly affects the yield stress R0, without affecting the other

hardening parameters nor the creep law. For each group of material, the yield stress was

identified with a FEMU process. The yield stresses identified for each group of batches are

presented in Table 4.

The reference law is used later to compare the buckling experiments with the Finite

Element Analysis (FEA) of the experiments or the numerical buckling predictions. The

yield stresses identified are used either to normalise the stress values or as yield stress offset

in the numerical models.

2.3. Buckling experiments

The experimental set up used for the buckling tests is presented in Figure 2(a). Each end

of the specimen are clamped in self-tightening grips. Grips design allows transverse sliding of

the specimen. The grips are guided by two columns. The lower grip is positioned on a rigid

plate (part of the testing machine) and aligned with the vertical axis of the testing machine.

The compressive load is applied through a 20 kN electro-mechanical testing machine which

can be operated in displacement or load control. A point load is applied to the upper grip
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Parameters Mean reference law Units

R0 15.4 MPa

R1 8.6 MPa

b1 396.9 n/a

R2 5.2 MPa

b2 28.9 n/a

R3 8.3 MPa

b3 2166 n/a

K 137.6 MPa.s1/n

n 2.9 n/a

RLank 1.79 n/a

E 41513 MPa

ν 0.35 n/a

Table 3: Material parameters of the mean reference law

using a hemispherical punch. The testing machine displacement and the reaction load are

recorded during testing.

The instrumentation of the testing machine is completed by three 12 Mpx cameras with

200 mm lenses. The surface of the specimen was covered by a random speckle pattern

characterised by a Gaussian distribution of its grey level. The grey level distribution is

defined by its mean value 133 bits and its standard deviation 48 bits. The speckle pattern

characteristic size is between 5 px and 17 px.

A 3D-DIC method is applied to measure the displacement fields on the surface of the

buckling specimen. A global FE-DIC software called Ufrekles was used (cf. Réthoré (2018)).

For all DIC analysis Q4 elements of 40 px mesh size were used.

The cameras are positioned in a manner to have a Region of Interest (ROI) covering

the entire surface of the plate, as shown in Figure 2(b). To cover the whole width of the

specimen, the cameras are positioned at 20◦ from their nearest neighbour. The cameras are

11



Parameters Tensile tests BTC #1 BTC #2 Units

R0 15.4 14 9.9 MPa

Quench temp. 20 22 28 ◦C

Table 4: Yield stresses identified for each group of batches, tensile tests campaign, BTC

#1: first buckling test campaign and BTC #2: second buckling test campaign

(a) (b)

Figure 2: (a) Experimental set up for plate buckling; (b) Positions and coupling of the

cameras for DIC (considering test rig environment)

coupled with each other to identify the displacement fields on the surface of the specimen

thanks to three 3D-DIC operations.

The plate specimens are characterised by two parameters: the aspect ratio a/b and the

thickness ratio b/h. The plate dimensions are presented in Figure 1b. Two aspect ratios are

tested, 1.00 and 1.33, while the thickness ratio varies from 15 to 10. All specimens have an

effective length a of 40 mm.

During buckling experiment, the testing machine is turned on displacement rate control

mode. Three different displacement rates were tested. The testing conditions for the
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buckling experiments are summarised in Table 5.

Specimen a/b b/h
Speed
[mm.s−1]

Ingot # BTC #
Testing

Temp. [◦C]

BT1/01 1.00 10 2.10−3

0

1

20

BT1/02 1.33 10 2.10−3 20

BT1/11 1.00 13 2.10−3

1
20

BT1/12 1.33 10 2.10−3 20

BT1/21 1.00 10 2.10−3

2
20

BT1/22 1.33 15 2.10−3 20

BT2/31 1.33 10 2.10−2

3

2

20

BT2/32 1.33 10 4.10−4 20

BT2/41 1.33 10 2.10−2

4
20

BT2/42 1.33 10 4.10−4 20

Table 5: Summary of plate geometries and testing conditions

Table 5 summarises the geometrical properties of the buckling specimens tested and their

testing conditions.

2.4. DIC post-processing

The DIC analysis is performed on the images of the three couples of cameras. The

displacement fields identified are then transported to a coordinate system attached to the

plate. It is defined as: (x− y) plane, the best plane going through all DIC nodes identified

and x the axis parallel to the direction of loading. The deviations between the DIC nodes and

the ideal plane define the initial geometrical imperfection. Experimental initial geometrical

imperfections are ignored in this work, as no significant initial imperfections were observed

on the undeformed plate geometry (initial imperfections are lower than 0.005 mm).

Finally, the DIC displacement fields are successively interpolated using polynomial functions

and projected on a structured mesh of Q4 elements. This mesh is used later to generate the

one of the FEA of the buckling experiments (cf. Figure 4 in Section 3.2). The mesh covers
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the entire width of the plate. Axially the mesh does not cover the entire length of the plate;

it is limited to the length covered by the DIC mesh.

The displacement fields generated with this method are named experimental displacement

fields.

3. Numerical methods

In this section two numerical models are presented. First, an analytical model is used to

predict the buckling of thick elasto-visco-plastic plates.

A FE model is also presented. It is used to investigate the effect of loading imperfections

and to identify the yield stress decrease in the pre-buckling phase for each experiment.

3.1. Analytical buckling predictions

The stability of rectangular plates subjected to in plane compressive load is analyzed

through an analytical model. The model is used to predict the critical values and the

associated buckling modes. The plate material behaviour was defined in Section 2.1.

As an elasto-visco-plastic material is used, the strain and stress history need to be defined

before any stability analysis. The mechanical equilibrium is solved first, its stability is tested

then.

The mechanical equilibrium is solved using the classical Mises flow theory, while the

buckling prediction uses an instantaneous deformation theory of plasticity.
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3.1.1. Numerical modeling of the problem

The Reissner-Mindlin plate theory is used to define the plate kinematics. The set of

Equations 4 defines the relation between strain components and displacement fields:

ε̇xx =
∂u̇x
∂x

+ z
∂φ̇y
∂x

ε̇yy =
∂u̇y
∂y

+ z
∂φ̇x
∂y

γ̇xy = z

(
∂φ̇y
∂y

+
∂φ̇x
∂x

)

γ̇xz = φ̇y +
∂ẇ

∂x

γ̇yz = φ̇x +
∂ẇ

∂y

(4)

The bending of the plate is characterised by one displacement field w (the out of plane

displacement) and two rotation fields φx and φy. φx and φy are respectively the angles

corresponding to the rotation of the shell plane sections around x and y.

Figure 3: Definition of the plate buckling problem

The plate is constrained as shown in Figure 3. Two opposite edges are free while the two

others are clamped (the bending degrees of freedom are constrained). The compressive load

is applied through the enforcement of the normal displacement (ux) on the clamped edges.

Because of the rate dependency of the material, an integration algorithm is used to define

the stress state according to the loading history. Mises flow theory is used to integrate the

constitutive law. A classical radial return mapping integration algorithm was implemented.
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This integration algorithm is based on an existing algorithm presented in Simo and Hughes

(1998). The integration algorithm was generalised to anisotropic material and additive

elasto-visco-plastic behaviour. A plane stress formulation is used, this hypothesis is verified

during the pre-buckling phase. Other stress tensor components follow an elastic law.

3.1.2. Buckling prediction

In this paragraph, the method to predict the buckling of thick plates is detailed.

Tangent material law.

A combined approach using Bodner ’s hypothesis with an instantaneous plastic deformation

theory is implemented to define the linear tangent operator. This combination was already

experimented by Eslami and Shariyat (1997).

Using Bodner ’s hypothesis, the strain rate is considered constant (in time) during buckling

(cf. Bodner et al. (1991)). An instantaneous plastic problem is formulated. Hill ’s method is

then used to analyze the uniqueness of the instantaneous plastic problem. The instantaneous

plastic problem is defined by the following consistency equation:

dṗ = d(g(f)) = g′(f)df = 0, (5)

where f is the yield criterion and g defines the creep law.

Because of the thickness of the plates, Hencky ’s deformation theory is used to derive the

instantaneous tangent operator. This theory correlates better with experimental results for

thick plates, see Hutchinson and Budiansky (1976).

Hencky ’s deformation theory flow rule is defined by:

εp = p
Hσ

σeq
. (6)

Its variational expression is then written as:

ε̇p =
σ̇eq
σeq

(
ṗ

σ̇eq
− p

σeq

)
Hσ + p

H σ̇

σeq
. (7)

Using Equation 1, we can write:
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σ̇ = C · (ε̇− ε̇p) ,

= C ·
(
ε̇−

[
σ̇eq
σeq

(
ṗ

σ̇eq
− p

σeq

)
Hσ + p

H σ̇

σeq

])
.

(8)

Finally combining Equations 5 and 8, we obtain:

ε̇ =

[
C−1 +

p

σeq
H +

(
ṗ

σ̇eq
− p

σeq

)
Hσ ⊗Hσ

σ2
eq

]
σ̇, (9)

and therefore:

Ct =

[
C−1 +

p

σeq
H +

(
ṗ

σ̇eq
− p

σeq

)
Hσ ⊗Hσ

σ2
eq

]−1

. (10)

Ct is the tangent operator derived from Hencky ’s deformation theory. This tangent

operator is then used to define the critical points and their associated buckling modes.

Uniqueness of the mechanical equilibrium.

To define the uniqueness of the mechanical equilibrium the model developed by Wang

and Aung (2007) is used. The uniqueness condition is defined according to Chakrabarty

(2000) as follows: ∫
Π dV > 0, (11)

with:

Π = Πi + Πe,

Πi = σ̇t · ε̇,

Πe = −σxx
(
∂ẇ

∂x

)2

− σyy
(
∂ẇ

∂y

)2

− 2σxy

(
∂ẇ

∂x

∂ẇ

∂y

)
.

(12)

The singular solutions of Equation 11 are identified using Ritz ’s method, as described

by Wang and Aung (2007). The bending displacement and rotation fields are approximated

by Ritz polynomial functions:

w(x, y) =

p∑

q=0

q∑

i=0

cmφ
w
m,

φx(x, y) =

p∑

q=0

q∑

i=0

dmφ
x
m,

φy(x, y) =

p∑

q=0

q∑

i=0

emφ
y
m,

(13)
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with:

φwm(x, y) = φwb (x/a)i(y/b)q−i,

φxm(x, y) = φxb (x/a)i(y/b)q−i,

φym(x, y) = φyb(x/a)i(y/b)q−i.

(14)

In Equation 13, p is the degree of the polynomial functions. cm, dm and em are the

coefficients of the polynomial functions. φwb , φxb and φyb are functions enforcing the boundary

conditions on the plate edges. m is defined by:

m = (q + 1) · (q + 2)/2− i (15)

The singular solutions of Equation 11 are obtained by minimising the total potential

energy Π with respect to w, φx and φy. According to Ritz, they respect the following

expression:

[
∂Π

∂cm
,
∂Π

∂dm
,
∂Π

∂em

]
= [0, 0, 0]. (16)

This last equation can be written as a linear problem:

[K] ·




cm

dm

em


 = 0. (17)

K contains the plate geometry, the material behaviour with its tangent operator, the

boundary conditions as well as the loading conditions. For a given equilibrium, the modal

analysis of K gives a set of eigenvalues and eigenvectors. The eigenvectors define the

singular solutions of Equation 11 while the eigenvalues define the equilibrium uniqueness.

An equilibrium is defined as unique if the smallest eigenvalue is positive. If the smallest

eigenvalue is negative, the equilibrium is not unique. A critical or bifurcation point is

defined by an eigenvalue equal to 0.

Testing the uniqueness of every point on the equilibrium path allows to define every

critical point and their associated buckling mode. The first critical point is reached when
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the smallest eigenvalue is 0, the second critical point when the second smallest is 0 and so

on. We will use this model in section 4 and compare its results with the FE post buckling

analysis and the experimental results.

3.2. Finite elements model for post buckling analysis

A FE model was also developed as a link between the analytical model and the buckling

experiments. It is used to identify the yield stress decrease in the pre-buckling phase. Its

other objective is to evaluate the effect of imperfections on the buckling behaviour of thick

plates. Finally, it is also used to compare the analytical buckling predictions with post

buckling analysis results.

The FE model was developed with Cast3M, using Mfront to integrate the constitutive

law (see Helfer et al. (2015)). SHB8PS elements (Abed-Meraim and Combescure (2002))

are used to model the plate geometry.

The SHB8PS element was implemented in Cast3M and Mfront based on several publications

dealing with its formulation, for plasticity, see Abed-Meraim and Combescure (2002, 2009)

and for anisotropic plasticity, see Salahouelhadj et al. (2012). The same integration scheme

as mentioned in Trinh (2009) is followed to integrate the elasto-visco-plastic constitutive

law.

Special case: simulation of each experiment.

The simulation of each experiment is used to identify the yield stress decrease (due

to the cooling rate effect during the quench of the ingot) and to investigate the effect of

experimental loading imperfections.

To simulate each experiment, it is mandatory to be as close as possible to the experimental

conditions. The plate geometry is considered perfectly plane. The initial deviations from

the perfectly plane geometry are lower than 5 µm with no particular shapes. Initial geometric

imperfections are not taken into account for the experiment simulations. The plate dimensions,

a, b and h were measured on each specimen and used to build the FE meshes.

The experimental displacement fields are regularised in time and applied to the FE

mesh boundaries. The 2D FE mesh is extruded to the plate thickness. The boundary
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displacement fields are propagated in the thickness direction according to the Kirchhoff-

Love plate kinematic. In order ignore DIC uncertainties on the FE-DIC mesh boundaries,

the rows of elements close to the grips are removed from the FE-DIC mesh to generate the

FE mesh, as shown in Figure 4.

Figure 4: DIC data transfert to FE model

The simulation is stopped when the maximum value of the out of plane displacement

field is equal to 75% of the plate thickness. This value is chosen in order to reach buckling,

without going too far on this post buckling branch, as it is not the main objective of this

work. Only the pre-buckling phase (before collapse of the plate or maximum load) is used

to identify the yield stress decrease.

As already mentioned, the reference material law defined in Section 2.2 (cf. Tables 2 and

3) with the associated yield stress decrease (cf. Table 4) is used for all FEA.

4. Results and discussions

In this section, the numerical method to predict buckling of thick plates is evaluated

against the experimental results. In a first section the experimental results are analyzed in

order to identify the boundary conditions, the loading and the geometrical imperfections.

An experimental buckling detection criterion is also defined. It is applied to the experiments

to define the experimental critical values. Finally, the experiments are analysed, and

the buckling prediction method is evaluated against the experiments with respect to two

parameters, the plate geometry and the strain rate.
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4.1. Experimental results

All buckling tests were performed in two test campaigns following the testing conditions

listed in Table 5. In a first test campaign (BTC #1), we were interested in the effect of plate

geometry on its buckling behaviour, while in a second one (BTC #2), the effect of strain

rate was investigated. To ease data comparison between all test campaigns, the load data

are normalised according to the following expression in the rest of this article.

σ =
F

A0

−RBTC #i

0 , (18)

with F the experimental load, A0 the initial specimen area and R
BTC #i

0 the mean yield

stress identified for the buckling test campaign #i.

Figure 5: Experimental plate deflection evolution during buckling experiment (BT1/01)

All plate buckling experiments were performed according to the experimental procedure
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detailed in Section 2.3. For all plate buckling experiments the load history and the pictures

from the three cameras were acquired. The pictures were post processed according to the

procedure detailed in Section 2.4.

An example of testing results is presented in Figure 5. The plate deflection is plotted for

various times and loads during testing. The coloured plots correspond to the out of plane

displacement field.

Despite the explicit 3D illustrations of the plate deformed shapes presented in Figure 5,

a 2D cut of the plate deformed configuration is more convenient to describe the buckling

modes. Examples of 2D cuts of the plate at the center lines are presented in Figure 6.

Figure 6: Evolution in time of the experimental out of plane displacement field on both

center lines x = 0 and y = b/2 of the plate (Specimen BT1/01: plate dimensions a = b = 40

mm and h = 4 mm)

The center lines are defined as the axial (y = b/2) and the transverse (x = 0) center lines

respectively defined by c1 and c2 labels in Figure 6. The center lines deflection graphs (Figure

6b and Figure 6c) allow us to identify two geometric properties of the buckling modes. In

the x direction, an Euler beam type mode can be observed, while in the y direction a ”U

shape” type mode is observed.
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4.1.1. Boundary conditions and associated imperfections

As classically known, the buckling behaviour of a structure depends on its boundary

conditions. Therefore, before any discussion or analysis, the boundary conditions need to

be studied. Using the DIC post-processing procedure, the displacement fields close to the

grips can be analyzed. Figure 7 presents the positions of the two lines used to characterise

the boundary conditions of the plate buckling specimen.

Figure 7: Positions of the extraction lines used to characterize the boundary conditions.

An example of post processed displacement fields on the DIC mesh boundaries is presented

in Figures 8(a) and 8(b). The evolutions in time of the displacement and rotation fields

presented in Figure 8(a) and Figure 8(b) are defined by:

∆Ux = Uup
x − U low

x ,

Uy =
(
Uup
y + U low

y

)
/2,

∆Uz = Uup
z − U low

z ,

φ̂x =
(
φupx + φlowx

)
/2,

φ̂y =
(
φupy − φlowy

)
/2,

(19)

with the subscript up corresponding to the upper grip and low to the lower one. The rotation

fields φx and φy are computed using the Kirchhoff-Love plate kinematic. φx and φy are

respectively the plate rotation fields around x and y.

As shown in Figures 8(a) and 8(b), the boundary conditions present some imperfections.

The spatial distribution of ∆Ux is not symmetric. The axial displacement (Ux) increases
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(a) (b)

Figure 8: (a) Displacement fields characterizing the loading conditions of plate BT1/01.

From top to bottom: ∆Ux, Uy and ∆Uz; (b) Rotation fields characterizing the loading

conditions of plate BT1/01. From top to bottom: φ̂y and φ̂x

faster on one side of the plate than on the other side. The same behaviour is observed for

∆Uz. Moreover ∆Uz is not equal to 0. A plate misalignment appears from the beginning of

the experiments, despite the guiding system used.

The averaged rotation field, φ̂y, increases from the beginning of the experiment. Its value

is constant with respect to the plate width, except at the end of the experiment (mostly due

to the buckling mode). φ̂x is almost constant with respect to time, except at the end of the

experiment (mostly due to the buckling mode)

The observations made on the boundary conditions of specimen BT1/01 were also observed

on the other specimens.

Each source of imperfection has a different impact on the buckling behaviour and its

initiation. Two types of imperfection can be identified from the previous observations:

the plate misalignment (from ∆Uz) and the plate bending (from φ̂y). Those two types of

imperfection affect the buckling behaviour of the plate differently.

It was identified that the imperfection on φ̂y is the main contributor to the buckling.
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This is justified as the φ̂y imperfection bends the plate in a manner similar to the buckling

shape observed. Therefore, it seems that this imperfection helps the plate to buckle. The

bending imperfection φ̂y is used later to define a buckling initiation criterion.

4.1.2. Experimental buckling initiation criterion

For plates subjected to compressive load, the tangent singularity at the bifurcation

point is not always satisfied. This property is often demonstrated in the literature (cf.

Hutchinson and Budiansky (1976) and Wang et al. (2001)) by comparing Mises flow theory

with Hencky ’s deformation theory (DT) in the buckling prediction. The collapsing load is

therefore not sufficient to estimate accurately the critical variables.

Post buckling analysis of thick plates.

The tangential bifurcation is illustrated here with a FE post bifurcation analysis. This

analysis is focused on the effect of the loading imperfection on the collapse of the plate. A

rectangular plate with an aspect ratio of 1.33 and a thickness ratio of 10 is considered here.

The plate is subjected to a uni-axial compressive load at constant strain rate. The bending

degrees of freedom of the plate (w, φx, φy) are constrained at both ends.

A pure bending imperfection is introduced through the rotation φy at both ends of the

plate. The rotation field φy at each end of the plate is linear with respect to the time.

Its value is defined in order to obtain a plate deflection equal to a percentage of the plate

thickness at tf (end of the simulation). It is defined by:

φy =

(
R% · h

4

a

)
t

tf
, (20)

where R% is the imperfection amplitude, h the plate thickness, a is the length of the plate,

t the time, and tf the total time.

Several imperfection amplitudes are tested numerically. The bifurcated solutions (coloured

curves in Figure 9a) correspond to a different imperfection amplitude. They are compared

to the perfect solution (black curve in Figure 9a).

First, we see that the collapsing load (i.e. the maximum load) is very dependent on

25



the imperfection amplitude. It does not converge to a unique value when the imperfection

amplitude tends to 0.

Figure 9: Buckling analysis of a square plate for various loading imperfection amplitudes,

comparison of post buckling solutions (FE) and the perfect solution (analytical model);

detection of buckling initiation depicted by crosses. (a) axial stress vs. axial strain, (b)

imperfection ratio vs. axial strain.

Moreover, the evolution of the plate out of plane displacement at the center (wO) is

analyzed. wO is normalized by the plate deflection due to the loading imperfection at

collapse (UO
imper). U

O
imper is defined at plate collapse by:

UO
imper = (R% · h)

tcollapse
tf

. (21)

The normalized plate deflection (wO/UO
imper) is plotted with respect to the axial strain

in Figure 9b for each imperfection amplitude. The equilibrium points corresponding to

wO = UO
imper are identified by crosses in Figure 9.

The identified equilibriums are compared to the bifurcation point computed with the

analytical model (black star in Figure 9a). The equilibrium points defined by wO = UO
imper

are close to the bifurcation point for all imperfection amplitudes tested. This condition

allows to estimate accurately the equilibrium corresponding to the buckling initiation.
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The doubling of the imperfection (i.e. wO = UO
imper) seems to be efficient to detect

the buckling initiation of thick elasto-visco-plastic plates. It is also used to assess the

experimental critical values.

Application to the experimental detection of buckling.

The criterion corresponding to the doubling of the imperfection (wO = UO
imper) is used

to detect the buckling initiation on experiments.

For the experiments, the imperfection at the center of the plate (UO
imper) is linked to the

imperfection on φ̂y by simple pure bending beam equations as follows:

UO
imper = φ̂y

a

4
. (22)

The experimental bending imperfection is evaluated at collapse of the plate (i.e. at the

maximum load).

The discrepancy of the buckling detection is evaluated through the statistical analysis of

φy in y direction at both ends of the plate.

This method is used to assess the buckling initiation as well as its discrepancy. As

observed numerically, buckling initiates before collapse of the plate, as shown in Figure 6

with the label Pcr.

Experimental critical stresses and strains.

Table 6 presents the critical values for each specimen defined with the buckling detection

criterion proposed.

As a first observation, the discrepancy on stress data is limited while the discrepancy on

the critical displacement and strain is in the same order of magnitude as the DIC process

accuracy (0.02 mm). The experimental critical values are discussed in the next subsections.

4.2. Effect of the plate geometry on its buckling behaviour

The effect of the plate geometry on the buckling behaviour is investigated in this subsection.

Our discussion will be supported by experimental results from BTC #1 as well as numerical
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Specimen

Mean value Standard deviation

UO
imper σcrit εcrit UO

imper σcrit εcrit

[mm] [MPa] [%] [µm] [MPa] [%]

BT1/01 0.24 22.3 1.67 0.04 0.2 0.17

BT1/02 0.12 22.1 0.83 0.02 0.1 0.04

BT1/11 0.08 20.5 0.95 0.02 0.1 0.07

BT1/12 0.10 20.5 1.05 0.01 0.1 0.03

BT1/21 0.21 21.6 1.58 0.05 0.2 0.15

BT1/22 0.07 16.4 0.53 0.01 0.1 0.02

BT2/31 0.15 26.6 1.12 0.03 0.1 0.04

BT2/32 0.08 19.7 0.69 0.02 0.2 0.06

BT2/41 0.17 24.6 0.80 0.01 0.1 0.03

BT2/42 0.10 19.5 1.10 0.01 0.1 0.02

Table 6: Summary of the experimental buckling initiation criterion and critical values

analysis. The plate geometry is defined by its aspect ratio a/b and its thickness ratio b/h.

The strain rate is identical for all specimens tested in BTC #1.

4.2.1. FE simulations of the experiments

All experiments were simulated by FEA, with the experimental conditions as an input,

as detailed in Section 2.4. The introduction of imperfect experimental conditions in the FE

model leads to the collapse of the plate. The load history and the deformed shape extracted

from the FE model are compared to the experiments, as presented in Figure 10. In Figure

10, the red plain curve and black dashed curves correspond respectively to the FE and the

experimental load histories. The box plots added to the FE load history curve illustrate

the effect of the material discrepancy (cf. Table 2) on the numerical load history. The

iso-value field plotted in background represents the evolution with respect to time of the

out of plane displacement deviation between the FE model and the experiment. The out of

plane displacement field is only extracted on the axial center line (y = b/2).
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Figure 10: FEA vs. experiment for BT1/01 specimen, Evolution of compressive load

and chronograph of the out of plane displacement deviation on the middle line (y = b/2)

according to time and axial coordinate x

The FEA correlates well with the experiments on both load and out of plane displacement

histories, as shown in Figure 10. Both quantities (load and out of plane displacement) start

diverging close to the experimental plate collapse. Even if the post buckling evolution can

be slightly different, the pre-buckling and the buckling initiation are identical between the

FE model and the experiments.

The same behaviour is observed with other specimens from BTC #1. The FE and

experimental load histories are presented in Figure 11.

The FE simulations of the experiments tend to validate the relevancy of the identified

constitutive law. The reference law well reproduces the structural instability. The experimental

buckling behaviour of thick plates and the buckling predictions are discussed in detail in the

next subsections.

4.2.2. Comparison of the predicted and experimentally observed critical values

As a reminder the predicted critical values were defined using Bodner ’s hypothesis

coupled with a tangent law derived with Hencky ’s deformation theory.

Moreover, 30 randomly generated constitutive laws were used to model the material

discrepancy. The random constitutive laws were generated with respect to the statistical

description of the reference law (cf. Table 2).
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Figure 11: FEA and experimental normalized load according to normalized displacement,

for all specimens from BTC #1 (plain curves: FE simulations and dashed curves:

experimental data)

The critical stress is normalised in order to better visualise the material discrepancy.

This normalisation includes the section dimensions h and b as well as the plate bending

rigidity D = Eh3/[12(1− ν2)].

The experimental normalized critical stresses as well as the critical strains are compared

to the buckling predictions in Figure 12. The buckling predictions are defined with the

analytical model. The buckling predictions and the critical test data are plotted with respect

to the geometrical properties of the plates in Figure 12.

The experimental and predicted normalized critical stresses are presented on the left

plots in Figure 12, while right plots present the experimental and predicted critical strains.

The plain lines correspond to the analytical predictions of the effective normalized critical

stress and strain with respect to the aspect ratio a/b. These predictions are defined with the

mean reference law. The dashed curves correspond to the prediction of the minimum and

maximum critical stress and strain at 95% probability with 90% confidence. The shaded

surfaces correspond to the second and third quartiles of the predicted critical stress and

strain. The experimental critical values are depicted by box plots, including discrepancy in
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Figure 12: Analytical buckling predictions vs. experimental effective normalized critical

stress (left) and critical strain (right), plotted according to the plate aspect ratio and for

each plate thickness ratio

the buckling detection (defined in Table 6).

First, while a limited discrepancy is observed on the experimental critical stresses, a large

discrepancy is observed on the predicted critical stress. The exact contrary is observed for

strain data.

For b/h = 15, the thinnest plate, the critical stress is out of the second and third quartile

range, but within the min/max envelope. The critical strain data of the same plate (b/h

= 15) is out of the min/max envelope. This poor correlation can be explained because
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of the imperfections and the thickness ratio. Indeed, thin plates are often more sensitive

to imperfections. Loading imperfections observed earlier could have initiated the buckling

earlier, explaining the poor correlation.

For other thickness ratio, the critical strain predictions are enveloped by the experimental

strain data. Errors between predictions and experiments can seem important for some b/h

ratio. Nevertheless, these errors are around 0.1% strain, which corresponds to a 0.04 mm

displacement in the axial direction of the plate. These errors must be considered with respect

to the DIC process used. The DIC uncertainty was evaluated at 0.02 mm. Moreover, the

detection criterion is also based on the imperfection amplitude. Depending on when the

imperfection is evaluated, it can affect the evaluation of the critical strain. Therefore, the

correlation is considered as good on the strain data according to the instrumentation means.

The same correlation quality is observed on stress data. The box plots are within the range

defined by the second and third quartiles of the buckling predictions.

To conclude on the critical values, except for b/h = 15, all experimental critical strains

and stresses correlate well with the buckling predictions, as shown in Figure 12.

For the smallest plates (b/h = 13 and 15), only one experiment was performed. The

generalisation of the results should be considered carefully. Additional experiments would

be required in order to generalise these observations.

The effective critical stress and critical strain seem to decrease when the aspect ratio

increases. Moreover, the effective critical stress increases with the thickness ratio, and the

critical strain decreases with the thickness ratio.

4.2.3. Analysis of the buckling modes

For each specimen, the buckling mode can be extracted from the experimental and FE

deformed shape. The buckling modes are extracted from a post buckling deformed shape.

They are extracted on both center lines. They are plotted for each plate aspect ratio in

Figure 13.

In Figure 13, the plain curves are associated to the FE buckling modes and the dashed

curves to the experimental ones. Each colour corresponds to a different plate geometry
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Figure 13: FEA vs. experimental buckling modes, plain curves: FE buckling mode and

dashed curves: experimental buckling mode.

(defined by its aspect ratio and its thickness ratio) in Figure 13.

As already observed in Figure 11, the FEA correlate well with experiments. FE and

experimental buckling modes coincide as shown in Figure 13. The effect of the plate geometry

on the buckling mode can also be observed in Figure 13. On the y center line (x = 0), all

modes are very similar and look like Euler beam modes. On the x center line (y = b/2),

symmetrical and asymmetrical modes can be observed.

Thick square plates (a/b = 1 and b/h = 10) present a slight rotation on their buckling

modes (red curves in Figure 13) compared to other plate geometries. This particular point

is analyzed in the next paragraph.

4.2.4. Mode proximity for thick plates (b/h = 10)

Eigen analysis.

For this particular thickness ratio (b/h = 10), the critical stress and strain were computed

with the analytical model for the three first buckling modes with respect to the plate aspect

ratio. The results of this analysis are presented in Figure 14. Red, green and blue curves

correspond respectively to the evolution of the critical values for the first, the second and the

third modes. The shape of each mode is presented on the right part of Figure 14. The third

mode is only plotted from a/b ≥ 0.95. Before this value the third eigenvalue corresponds to

the fourth mode.

The first and the second mode share the same critical values for plates with a low aspect

ratio. A mode inversion can also be observed between the third and the second mode in

Figure 14 when a/b = 1.33. The first mode corresponds to the one generally observed in
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Figure 14: Evolution of critical stress and strain for the first three modes with respect to

plate aspect ratio (derived from the analytical model).

the experiments. The second mode is its anti-symmetric shape. The third one is a more

energetic mode with two bumps. The difference between the critical stresses of the first two

modes is only 0.8 MPa for a square plate and 1.9 MPa for a 1.33 aspect ratio plate. Equally,

the difference on the critical strain is 0.5% for a square plate and 1.0% for a 1.33 aspect

ratio plate.

The first two modes are very close for a square plate. This proximity could generate

a combination of the first two modes at bifurcation, either by simultaneous buckling or

successive bifurcations. In both cases, a loading or a geometrical imperfection can ease

the apparition of the second mode in the post buckling deformed shape. This point is

investigated in the next paragraph.

Post buckling analysis and effect of imperfections.

Using a FE model, two post buckling simulations were performed. Both simulations are

identical except on the nature of the initial geometric imperfection.

Case 1: A geometric imperfection derived from the first mode only is applied to a perfect

plate. Two plate aspect ratios are investigated, a square plate and a 1.33 aspect ratio plate.

Case 2: A geometric imperfection derived from the first two modes is applied to a perfect

plate. Two plate aspect ratios are investigated, a square plate and a 1.33 aspect ratio plate.

In both cases the plates have a thickness ratio equal to 10.

For both cases, the buckling modes are extracted on both center lines and presented in

Figure 15. The buckling modes of the 1.33 aspect ratio plate are drawn in Figure 15-2, while
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the buckling modes of the square plate are drawn in Figure 15-1.

Figure 15: (1) Post buckling modes obtained for a square plate; (2) Post buckling modes

obtained for a 1.33 aspect ratio plate (from FEA)

The buckling modes corresponding to Case 1 are drawn with plain lines. The buckling

modes corresponding to Case 2 are drawn with dashed lines in Figure 15.

As observed experimentally, the buckling mode of the square plate highly depends on the

nature of the imperfection. The second mode appears when the nature of the imperfection

favours its expression, as shown with the dashed curve in Figure 15-1. The buckling mode

shapes of the 1.33 aspect ratio plate are almost not affected by the second buckling mode

as shown in Figure 15-2. The first and the second modes are already too far away for the

1.33 aspect ratio plate.

Modes proximity can lead to successive bifurcations as observed experimentally and

numerically. This investigation shows the accuracy of the buckling predictions as well as the

FE model with respect to the experiments.

4.2.5. Conclusion on the effect of the plate geometry

From this first discussion several observations can be made. The effect of the plate

geometry on the buckling behaviour has been observed. The aspect ratio as well as the

plate thickness ratio affects the critical values. Moreover, the plate aspect ratio also has an

effect on the nature of the buckling mode. This phenomenon was observed experimentally

for square plates, successive bifurcations or a simultaneous buckling was observed. The

nature of the imperfection can have an important effect on the buckling mode when the first
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bifurcation points are close to each other.

The strain rate was held constant for all specimens tested within BTC # 1 and discussed

in this section. The next section discusses the effect of the strain rate on the buckling

behaviour of thick plates.

4.3. Effect of the strain rate on the buckling of thick plates

The effect of the strain rate on the buckling behaviour is investigated in this section.

Only the results of specimens with a/b = 1.33 and b/h = 10 from BTC #1 and #2 are used.

The FE model and the analytical model are used to investigate the effect of strain rate on

the buckling behaviour.

Table 7 summarises the testing conditions of the specimens used in this section.

Specimen ID a/b b/h V [mm.s−1] Ingot # BTC # V/Vref

BT1/02 1.33 10 2.10−3 0 1 1

BT1/12 1.33 10 2.10−3 1 1 1

BT2/31 1.33 10 2.10−2 3 2 10

BT2/32 1.33 10 4.10−4 3 2 1/5

BT2/41 1.33 10 2.10−2 4 2 10

BT2/42 1.33 10 4.10−4 4 2 1/5

Table 7: Summary of plate geometries and testing conditions

The variation of the strain rate is characterised by the speed ratio V/Vref , where V is the

displacement rate applied and Vref is the displacement rate applied to specimens BT1/02

and BT1/12.

4.3.1. FE simulations of the experiments

As in the previous section the experiments are also simulated with the post buckling

FE model. The correlation with the FEA is still very good on load histories as shown in

Figures 16 for V/Vref = 0.2 and 10. The FE and the experimental curves are close, especially

in the pre-buckling phase. The collapse intervenes at similar times (or strains) in the FE
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simulations and the experiments. The correlation on the displacement fields is similar to

the one presented in Figure 10.

Figure 16: FEA and experimental normalized load according to normalized displacement,

for all specimens from BTC #2 (plain curves: FE simulations and dashed curves:

experimental data)

4.3.2. Comparison of the predicted and experimentally observed critical values

The experimental critical stresses and strains were also identified for each specimen of

BTC #2. The critical values, including buckling detection discrepancy, are presented and

compared to the buckling prediction in Figure 17. The buckling predictions were computed

with the analytical model. The same normalisation as in the previous section was used for

the critical stress.

The box plots in Figure 17 correspond to test data. The mean buckling prediction is

plotted with respect to speed ratio (plain curve). As in the previous section the minimum

and maximum buckling predictions at 95% with 90% confidence are depicted by dashed

curves. Finally, the second and third quartiles are plotted with a shaded surface.

The critical stress increases with the strain rate while the critical strain seems to stay

constant in the speed range covered.

The predicted critical stresses correlate well with the experimental ones.

Regarding the critical strains, even if the box plots seem to not comply well with the

predictions, the difference is around 0.1% of strain. As previously stated, this difference

corresponds to a 0.04 mm displacement in the axial direction. This is of the same order of

magnitude as the DIC error of measure.
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Figure 17: Experimental normalized critical stress and critical strain with respect to speed

ratio

To conclude, the predicted critical values correlate well with the experimental ones.

4.3.3. Analysis of the buckling modes

As for specimens from BTC #1 the buckling modes are extracted on both center lines.

They are plotted in Figure 18 for each speed ratio.

Figure 18: FEA vs. experimental buckling modes, plain curves: FE buckling mode and

dashed curves: experimental buckling mode.

First, a good correlation on the buckling modes is also observed between the FEA and

the experiments. The buckling modes present identical shapes in Figure 18 for the three

displacement rates tested. For the tested plate geometry and in the strain rate range covered,

the buckling mode does not seem to be affected by the strain rate.
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4.3.4. Validity of Bodner’s hypothesis

It is important to notice that the buckling prediction is correct as long as the strain rate

stays constant during buckling. This hypothesis is difficult to verify. In this subsection we

intend to investigate the validity of Bodner ’s hypothesis.

Critical values from a post buckling analysis for a large strain rate range.

In order to complete the experimental observations, a parametric analysis was performed

to investigate the strain rate effect in a larger strain rate range. The buckling predictions

from the analytical model were compared to the buckling detection data obtained from a

FE post buckling model.

The FE critical values were defined with respect to the buckling detection method

presented in subsection 4.1.2. A plate with an aspect ratio of 1.33 and a thickness ratio

of 10 was chosen. The speed ratio is the main parameter of this parametric analysis. It

varies from 0.01 to 100, which corresponds to a strain rate between 5.0 × 10−7 s−1 and

5.0 × 10−3 s−1. An initial imperfection is applied to the FE model, it is derived from the

first buckling mode.

The buckling detection discrepancy is directly linked to the density of probability applied

to the geometric imperfection amplitude. This density of probability is modeled by a

lognormal distribution. This distribution is characterised by its mean value (5% of the

plate thickness) and its standard deviation (5% of the plate thickness).

The results of the parametric analysis are presented in Figure 19. The plain blue curve

corresponds to the buckling predictions from the analytical model. The red box plots depict

the buckling initiation points detected from the FE post buckling model with respect to the

strain rate. In this paragraph, the green box plot of Figure 19 are not discussed, they are

commented in the next paragraph.

Even if the critical strain values from the analytical predictions and the FE post buckling

model are close, the tendency is inverted. The critical strain detected with the FE model

increases when the strain rate increases. The critical strain predicted with the analytical

model decreases when the strain rate increases. This inverted tendency can be easily
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Figure 19: Buckling prediction vs. FE post buckling data, and test data, plate geometry:

a/b = 1.33 and b/h = 10.

explained by the change of strain rate at buckling initiation.

Effect of a rapid strain rate change at buckling.

For elasto-visco-plastic materials when the buckling initiates, the strain rate increases,

as for elasto-plastic materials. In elasto-plasticity, this strain rate increase is due to the loss

of stiffness caused by the buckling mode shape.

For elasto-visco-plastic materials a rapid strain rate increase implies a rapid increase of

the tangent stiffness matrix. This tangent stiffness increase can delay the buckling.

The time scale of the strain rate increase can be compared to the relaxation time of the

material. If the strain rate change occurs in a time scale greater than the relaxation time,

the effect on the tangential stiffness is negligible. On the contrary, if the strain rate increase

occurs in a very small time scale compared to the relaxation time, the stiffness modification

cannot be neglected.

A rapid change of strain rate can be introduced in the analytical model through the

instantaneous tangent modulus defined by the ratio σ̇eq/ṗ. A Taylor expansion of σ̇eq with

respect to ∆ṗ can be written as:
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σ̇eq (ṗ+ ∆ṗ) = σ̇eq (ṗ) +
∂σ̇eq
∂ṗ

∆ṗ

= σ̇eq (ṗ) +
K

n
ṗ1/n−1∆ṗ

(23)

A new tangent modulus can be defined by:

σ̇eq (ṗ+ ∆ṗ)

ṗ+ ∆ṗ
= R′(p)

ṗ

ṗ+ ∆ṗ
+
K

n
ṗ1/n−1 ∆ṗ

ṗ+ ∆ṗ
(24)

This tangent modulus can be considered as the one caused by a rapid change of strain

rate at buckling initiation. ṗ defines the strain rate from the pre-buckling loading, while

∆ṗ defines the change of strain rate at buckling. Figure 20 shows how the critical strain is

affected by the strain rate variation at buckling initiation.

Figure 20: Effect of strain rate variation during buckling on critical strain.

As long as the strain rate change is small, the critical strain is the same as predicted

with Bodner ’s hypothesis. In this particular case, for a strain rate change higher than 1%,

a significant variation on the critical strain can be observed, as shown in Figure 20.

Bodner ’s hypothesis seems suitable for small strain rate changes at buckling. For high

strain rate changes at buckling, Bodner ’s hypothesis is not accurate anymore. The predictions

defined with Bodner ’s hypothesis gives only a lower bound of the bifurcation point.

It seems reasonable to assess that the highest is the strain rate the highest is the strain

rate change at buckling. This assumption can explain the inverted tendency observed
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in Figure 19. This assumption also limits the usage of Bodner ’s hypothesis to structure

subjected to reasonable strain rates.

In addition, the difference between both predictions (analytical and post buckling analysis)

is of the same order of magnitude as the experimental discrepancy (between green box plots)

in Figure 19. Therefore the predictions defined with Bodner ’s hypothesis seem relevant in

a reasonable strain rate range.

4.3.5. Conclusion on the effect of the strain rate

The method implemented here allows to define an estimation of the critical values. To

predict more accurately the buckling of thick plates, the deformation theory should be

coupled to the methods described by Triantafyllidis et al. (1997). Nevertheless, according

to the experiments and the FE modeling, for reasonable strain rates, the present method

predicts well the buckling of thick plates. The buckling predictions comply with the experiments

and the FEA on both critical values and buckling modes, as shown previously in Figures 11,

12, 13, 16, 17 and 18.

5. Conclusion

This article presented an efficient method to assess the buckling of thick plates with

a rate-dependent behaviour. It also experimentally validates the approach inspired from

Eslami and Shariyat (1997) as well as the analytical model proposed by Wang and Aung

(2007) for the plastic buckling of thick plates.

Two parameters were selected to study the buckling of thick plates: the plate geometry

and the strain rate. The experiments were performed according to these two parameters.

An experimental buckling detection criterion was also defined. This criterion is based

on the evolution of the singular solution amplitude. This criterion was used to define the

experimental critical values.

The DIC instrumentation used for the experiments allowed us to investigate the boundary

conditions and to extract the buckling modes for the experimental displacement field.

The prediction model was classically evaluated against the experimental critical values.
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In addition, the specific instrumentation used in this work, allowed us to compare the

predicted buckling modes to the experimental ones. The validation of the predicted buckling

mode as well as the mode proximity observed numerically and experimentally would not have

been possible without the DIC instrumentation.

The investigation of the strain rate effect on the buckling behaviour was a major issue.

From the results presented in this article, it seems that the strain rate mainly affects the

critical values without affecting the buckling mode shape.

The present work also shows the limitation of Bodner ’s hypothesis. For some loading

conditions, Bodner ’s hypothesis does not seem relevant. In the case of plates subjected to

compressive loading, Bodner ’s hypothesis does not seem relevant for high strain rates. High

strain rates could be investigated using the method proposed by Triantafyllidis et al. (1997)

in order to validate the tendency observed numerically.

The prediction method presented in this article gives a new experimentally validated tool

to predict the buckling of rate dependent thick plates. This method can be used as long

as Bodner ’s hypothesis is respected, otherwise it defines a lower bound for the bifurcation

point.
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Appendix A. FEMU identification

The FEMU identification process is based on the flowchart presented in Figure A.21.

This process compares experimental data to numerical ones from a FEA. It takes the

experimental data and the material constitutive law as inputs. The parameters of the

material constitutive law are defined through on algorithm minimizing the objective function.

The main ingredient of this process is the objective function defined as follows:
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Figure A.21: FEMU method data flow

f = Rt ·R
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(A.1)

with subscript n and e respectively stand for numerical and experimental data. F contains

the value of the reaction load for each increment. εxx and εyy are vectors containing

respectively the strain value at every integration point and for every time increment in

x and y directions. λ and λ0 are the vectors containing the material parameters for the

current increment and their initial value. Each type of value is normalised by its acceptable

error value, ηF , ηεxx and ηεyy , as proposed in Neggers et al. (2017). Each component of the

material difference vector (λ− λ0) is also normalized with respect to an acceptable change

of the corresponding parameter during the optimisation process.
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Highlights

• Development of a bifurcation buckling criterion for thick elasto-visco-plastic plates 
subjected to proportional loading.

• Buckling experiments on thick elasto-visco-plastic plates with different shapes and for 
several strain rates.

• Measurement and post processing of the buckling mode shape through 3D-DIC means, 
allowing the observation of modes proximity and successive bifurcations.

• Validation of the buckling criterion on both, critical values (stress and strain) and buckling 
mode shapes.
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